chaitin.cpp 75.0 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_chaitin.cpp.incl"

//=============================================================================

#ifndef PRODUCT
void LRG::dump( ) const {
  ttyLocker ttyl;
  tty->print("%d ",num_regs());
  _mask.dump();
  if( _msize_valid ) {
    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
  } else {
    tty->print(", #?(%d) ",_mask.Size());
  }

  tty->print("EffDeg: ");
  if( _degree_valid ) tty->print( "%d ", _eff_degree );
  else tty->print("? ");

46
  if( is_multidef() ) {
D
duke 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    tty->print("MultiDef ");
    if (_defs != NULL) {
      tty->print("(");
      for (int i = 0; i < _defs->length(); i++) {
        tty->print("N%d ", _defs->at(i)->_idx);
      }
      tty->print(") ");
    }
  }
  else if( _def == 0 ) tty->print("Dead ");
  else tty->print("Def: N%d ",_def->_idx);

  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
  // Flags
  if( _is_oop ) tty->print("Oop ");
  if( _is_float ) tty->print("Float ");
  if( _was_spilled1 ) tty->print("Spilled ");
  if( _was_spilled2 ) tty->print("Spilled2 ");
  if( _direct_conflict ) tty->print("Direct_conflict ");
  if( _fat_proj ) tty->print("Fat ");
  if( _was_lo ) tty->print("Lo ");
  if( _has_copy ) tty->print("Copy ");
  if( _at_risk ) tty->print("Risk ");

  if( _must_spill ) tty->print("Must_spill ");
  if( _is_bound ) tty->print("Bound ");
  if( _msize_valid ) {
    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
  }

  tty->cr();
}
#endif

//------------------------------score------------------------------------------
// Compute score from cost and area.  Low score is best to spill.
static double raw_score( double cost, double area ) {
  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
}

double LRG::score() const {
  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
  // Bigger area lowers score, encourages spilling this live range.
  // Bigger cost raise score, prevents spilling this live range.
  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
  // to turn a divide by a constant into a multiply by the reciprical).
  double score = raw_score( _cost, _area);

  // Account for area.  Basically, LRGs covering large areas are better
  // to spill because more other LRGs get freed up.
  if( _area == 0.0 )            // No area?  Then no progress to spill
    return 1e35;

  if( _was_spilled2 )           // If spilled once before, we are unlikely
    return score + 1e30;        // to make progress again.

  if( _cost >= _area*3.0 )      // Tiny area relative to cost
    return score + 1e17;        // Probably no progress to spill

  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
    return score + 1e10;        // Likely no progress to spill

  return score;
}

//------------------------------LRG_List---------------------------------------
LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
  memset( _lidxs, 0, sizeof(uint)*max );
}

void LRG_List::extend( uint nidx, uint lidx ) {
  _nesting.check();
  if( nidx >= _max ) {
    uint size = 16;
    while( size <= nidx ) size <<=1;
    _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
    _max = size;
  }
  while( _cnt <= nidx )
    _lidxs[_cnt++] = 0;
  _lidxs[nidx] = lidx;
}

#define NUMBUCKS 3

//------------------------------Chaitin----------------------------------------
PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
  : PhaseRegAlloc(unique, cfg, matcher,
#ifndef PRODUCT
       print_chaitin_statistics
#else
       NULL
#endif
       ),
    _names(unique), _uf_map(unique),
    _maxlrg(0), _live(0),
    _spilled_once(Thread::current()->resource_area()),
    _spilled_twice(Thread::current()->resource_area()),
    _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
    _oldphi(unique)
#ifndef PRODUCT
  , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
#endif
{
  NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
  uint i,j;
  // Build a list of basic blocks, sorted by frequency
  _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
  // Experiment with sorting strategies to speed compilation
  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
  Block **buckets[NUMBUCKS];             // Array of buckets
  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
  for( i = 0; i < NUMBUCKS; i++ ) {
    buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
    buckcnt[i] = 0;
    // Bump by three orders of magnitude each time
    cutoff *= 0.001;
    buckval[i] = cutoff;
    for( j = 0; j < _cfg._num_blocks; j++ ) {
      buckets[i][j] = NULL;
    }
  }
  // Sort blocks into buckets
  for( i = 0; i < _cfg._num_blocks; i++ ) {
    for( j = 0; j < NUMBUCKS; j++ ) {
      if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
        // Assign block to end of list for appropriate bucket
        buckets[j][buckcnt[j]++] = _cfg._blocks[i];
        break;                      // kick out of inner loop
      }
    }
  }
  // Dump buckets into final block array
  uint blkcnt = 0;
  for( i = 0; i < NUMBUCKS; i++ ) {
    for( j = 0; j < buckcnt[i]; j++ ) {
      _blks[blkcnt++] = buckets[i][j];
    }
  }

  assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
}

void PhaseChaitin::Register_Allocate() {

  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
  // slots in this area are called "arg_slots".  Above the NEW FP (and in
  // registers) is the outgoing argument area; above that is the spill/temp
  // area.  These are all "frame_slots".  Arg_slots start at the zero
  // stack_slots and count up to the known arg_size.  Frame_slots start at
  // the stack_slot #arg_size and go up.  After allocation I map stack
  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
  // by the frame_size; stack-slots in the frame_slot area are biased by 0.

  _trip_cnt = 0;
  _alternate = 0;
  _matcher._allocation_started = true;

  ResourceArea live_arena;      // Arena for liveness & IFG info
  ResourceMark rm(&live_arena);

  // Need live-ness for the IFG; need the IFG for coalescing.  If the
  // liveness is JUST for coalescing, then I can get some mileage by renaming
  // all copy-related live ranges low and then using the max copy-related
  // live range as a cut-off for LIVE and the IFG.  In other words, I can
  // build a subset of LIVE and IFG just for copies.
  PhaseLive live(_cfg,_names,&live_arena);

  // Need IFG for coalescing and coloring
  PhaseIFG ifg( &live_arena );
  _ifg = &ifg;

  if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);

  // Come out of SSA world to the Named world.  Assign (virtual) registers to
  // Nodes.  Use the same register for all inputs and the output of PhiNodes
  // - effectively ending SSA form.  This requires either coalescing live
  // ranges or inserting copies.  For the moment, we insert "virtual copies"
  // - we pretend there is a copy prior to each Phi in predecessor blocks.
  // We will attempt to coalesce such "virtual copies" before we manifest
  // them for real.
  de_ssa();

231 232 233 234 235
#ifdef ASSERT
  // Veify the graph before RA.
  verify(&live_arena);
#endif

D
duke 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  {
    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
    _live = NULL;                 // Mark live as being not available
    rm.reset_to_mark();           // Reclaim working storage
    IndexSet::reset_memory(C, &live_arena);
    ifg.init(_maxlrg);            // Empty IFG
    gather_lrg_masks( false );    // Collect LRG masks
    live.compute( _maxlrg );      // Compute liveness
    _live = &live;                // Mark LIVE as being available
  }

  // Base pointers are currently "used" by instructions which define new
  // derived pointers.  This makes base pointers live up to the where the
  // derived pointer is made, but not beyond.  Really, they need to be live
  // across any GC point where the derived value is live.  So this code looks
  // at all the GC points, and "stretches" the live range of any base pointer
  // to the GC point.
  if( stretch_base_pointer_live_ranges(&live_arena) ) {
    NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
    // Since some live range stretched, I need to recompute live
    _live = NULL;
    rm.reset_to_mark();         // Reclaim working storage
    IndexSet::reset_memory(C, &live_arena);
    ifg.init(_maxlrg);
    gather_lrg_masks( false );
    live.compute( _maxlrg );
    _live = &live;
  }
  // Create the interference graph using virtual copies
  build_ifg_virtual( );  // Include stack slots this time

  // Aggressive (but pessimistic) copy coalescing.
  // This pass works on virtual copies.  Any virtual copies which are not
  // coalesced get manifested as actual copies
  {
    // The IFG is/was triangular.  I am 'squaring it up' so Union can run
    // faster.  Union requires a 'for all' operation which is slow on the
    // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
    // meaning I can visit all the Nodes neighbors less than a Node in time
    // O(# of neighbors), but I have to visit all the Nodes greater than a
    // given Node and search them for an instance, i.e., time O(#MaxLRG)).
    _ifg->SquareUp();

    PhaseAggressiveCoalesce coalesce( *this );
    coalesce.coalesce_driver( );
    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
    // not match the Phi itself, insert a copy.
    coalesce.insert_copies(_matcher);
  }

  // After aggressive coalesce, attempt a first cut at coloring.
  // To color, we need the IFG and for that we need LIVE.
  {
    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
    _live = NULL;
    rm.reset_to_mark();           // Reclaim working storage
    IndexSet::reset_memory(C, &live_arena);
    ifg.init(_maxlrg);
    gather_lrg_masks( true );
    live.compute( _maxlrg );
    _live = &live;
  }

  // Build physical interference graph
  uint must_spill = 0;
  must_spill = build_ifg_physical( &live_arena );
  // If we have a guaranteed spill, might as well spill now
  if( must_spill ) {
    if( !_maxlrg ) return;
    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
    C->check_node_count(10*must_spill, "out of nodes before split");
    if (C->failing())  return;
    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
    // or we failed to split
    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
    if (C->failing())  return;

    NOT_PRODUCT( C->verify_graph_edges(); )

    compact();                  // Compact LRGs; return new lower max lrg

    {
      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
      _live = NULL;
      rm.reset_to_mark();         // Reclaim working storage
      IndexSet::reset_memory(C, &live_arena);
      ifg.init(_maxlrg);          // Build a new interference graph
      gather_lrg_masks( true );   // Collect intersect mask
      live.compute( _maxlrg );    // Compute LIVE
      _live = &live;
    }
    build_ifg_physical( &live_arena );
    _ifg->SquareUp();
    _ifg->Compute_Effective_Degree();
    // Only do conservative coalescing if requested
    if( OptoCoalesce ) {
      // Conservative (and pessimistic) copy coalescing of those spills
      PhaseConservativeCoalesce coalesce( *this );
      // If max live ranges greater than cutoff, don't color the stack.
      // This cutoff can be larger than below since it is only done once.
      coalesce.coalesce_driver( );
    }
    compress_uf_map_for_nodes();

#ifdef ASSERT
342
    verify(&live_arena, true);
D
duke 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
#endif
  } else {
    ifg.SquareUp();
    ifg.Compute_Effective_Degree();
#ifdef ASSERT
    set_was_low();
#endif
  }

  // Prepare for Simplify & Select
  cache_lrg_info();           // Count degree of LRGs

  // Simplify the InterFerence Graph by removing LRGs of low degree.
  // LRGs of low degree are trivially colorable.
  Simplify();

  // Select colors by re-inserting LRGs back into the IFG in reverse order.
  // Return whether or not something spills.
  uint spills = Select( );

  // If we spill, split and recycle the entire thing
  while( spills ) {
    if( _trip_cnt++ > 24 ) {
      DEBUG_ONLY( dump_for_spill_split_recycle(); )
      if( _trip_cnt > 27 ) {
        C->record_method_not_compilable("failed spill-split-recycle sanity check");
        return;
      }
    }

    if( !_maxlrg ) return;
    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
    if (C->failing())  return;

    compact();                  // Compact LRGs; return new lower max lrg

    // Nuke the live-ness and interference graph and LiveRanGe info
    {
      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
      _live = NULL;
      rm.reset_to_mark();         // Reclaim working storage
      IndexSet::reset_memory(C, &live_arena);
      ifg.init(_maxlrg);

      // Create LiveRanGe array.
      // Intersect register masks for all USEs and DEFs
      gather_lrg_masks( true );
      live.compute( _maxlrg );
      _live = &live;
    }
    must_spill = build_ifg_physical( &live_arena );
    _ifg->SquareUp();
    _ifg->Compute_Effective_Degree();

    // Only do conservative coalescing if requested
    if( OptoCoalesce ) {
      // Conservative (and pessimistic) copy coalescing
      PhaseConservativeCoalesce coalesce( *this );
      // Check for few live ranges determines how aggressive coalesce is.
      coalesce.coalesce_driver( );
    }
    compress_uf_map_for_nodes();
#ifdef ASSERT
408
    verify(&live_arena, true);
D
duke 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
#endif
    cache_lrg_info();           // Count degree of LRGs

    // Simplify the InterFerence Graph by removing LRGs of low degree.
    // LRGs of low degree are trivially colorable.
    Simplify();

    // Select colors by re-inserting LRGs back into the IFG in reverse order.
    // Return whether or not something spills.
    spills = Select( );
  }

  // Count number of Simplify-Select trips per coloring success.
  _allocator_attempts += _trip_cnt + 1;
  _allocator_successes += 1;

  // Peephole remove copies
  post_allocate_copy_removal();

428 429 430 431 432
#ifdef ASSERT
  // Veify the graph after RA.
  verify(&live_arena);
#endif

D
duke 已提交
433 434 435 436 437 438 439 440
  // max_reg is past the largest *register* used.
  // Convert that to a frame_slot number.
  if( _max_reg <= _matcher._new_SP )
    _framesize = C->out_preserve_stack_slots();
  else _framesize = _max_reg -_matcher._new_SP;
  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");

  // This frame must preserve the required fp alignment
441
  _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
D
duke 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
  assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
#ifndef PRODUCT
  _total_framesize += _framesize;
  if( (int)_framesize > _max_framesize )
    _max_framesize = _framesize;
#endif

  // Convert CISC spills
  fixup_spills();

  // Log regalloc results
  CompileLog* log = Compile::current()->log();
  if (log != NULL) {
    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
  }

  if (C->failing())  return;

  NOT_PRODUCT( C->verify_graph_edges(); )

  // Move important info out of the live_arena to longer lasting storage.
  alloc_node_regs(_names.Size());
  for( uint i=0; i < _names.Size(); i++ ) {
    if( _names[i] ) {           // Live range associated with Node?
      LRG &lrg = lrgs( _names[i] );
      if( lrg.num_regs() == 1 ) {
        _node_regs[i].set1( lrg.reg() );
      } else {                  // Must be a register-pair
        if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
          // Live ranges record the highest register in their mask.
          // We want the low register for the AD file writer's convenience.
          _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
        } else {                // Misaligned; extract 2 bits
          OptoReg::Name hi = lrg.reg(); // Get hi register
          lrg.Remove(hi);       // Yank from mask
          int lo = lrg.mask().find_first_elem(); // Find lo
          _node_regs[i].set_pair( hi, lo );
        }
      }
      if( lrg._is_oop ) _node_oops.set(i);
    } else {
      _node_regs[i].set_bad();
    }
  }

  // Done!
  _live = NULL;
  _ifg = NULL;
  C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
}

//------------------------------de_ssa-----------------------------------------
void PhaseChaitin::de_ssa() {
  // Set initial Names for all Nodes.  Most Nodes get the virtual register
  // number.  A few get the ZERO live range number.  These do not
  // get allocated, but instead rely on correct scheduling to ensure that
  // only one instance is simultaneously live at a time.
  uint lr_counter = 1;
  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
    Block *b = _cfg._blocks[i];
    uint cnt = b->_nodes.size();

    // Handle all the normal Nodes in the block
    for( uint j = 0; j < cnt; j++ ) {
      Node *n = b->_nodes[j];
      // Pre-color to the zero live range, or pick virtual register
      const RegMask &rm = n->out_RegMask();
      _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
    }
  }
  // Reset the Union-Find mapping to be identity
  reset_uf_map(lr_counter);
}


//------------------------------gather_lrg_masks-------------------------------
// Gather LiveRanGe information, including register masks.  Modification of
// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {

  // Nail down the frame pointer live range
  uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite

  // For all blocks
  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
    Block *b = _cfg._blocks[i];

    // For all instructions
    for( uint j = 1; j < b->_nodes.size(); j++ ) {
      Node *n = b->_nodes[j];
      uint input_edge_start =1; // Skip control most nodes
      if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
      uint idx = n->is_Copy();

      // Get virtual register number, same as LiveRanGe index
      uint vreg = n2lidx(n);
      LRG &lrg = lrgs(vreg);
      if( vreg ) {              // No vreg means un-allocable (e.g. memory)

        // Collect has-copy bit
        if( idx ) {
          lrg._has_copy = 1;
          uint clidx = n2lidx(n->in(idx));
          LRG &copy_src = lrgs(clidx);
          copy_src._has_copy = 1;
        }

        // Check for float-vs-int live range (used in register-pressure
        // calculations)
        const Type *n_type = n->bottom_type();
        if( n_type->is_floatingpoint() )
          lrg._is_float = 1;

        // Check for twice prior spilling.  Once prior spilling might have
        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
        // further spilling is unlikely to make progress.
        if( _spilled_once.test(n->_idx) ) {
          lrg._was_spilled1 = 1;
          if( _spilled_twice.test(n->_idx) )
            lrg._was_spilled2 = 1;
        }

#ifndef PRODUCT
        if (trace_spilling() && lrg._def != NULL) {
          // collect defs for MultiDef printing
          if (lrg._defs == NULL) {
            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
            lrg._defs->append(lrg._def);
          }
          lrg._defs->append(n);
        }
#endif

        // Check for a single def LRG; these can spill nicely
        // via rematerialization.  Flag as NULL for no def found
        // yet, or 'n' for single def or -1 for many defs.
        lrg._def = lrg._def ? NodeSentinel : n;

        // Limit result register mask to acceptable registers
        const RegMask &rm = n->out_RegMask();
        lrg.AND( rm );
        // Check for bound register masks
        const RegMask &lrgmask = lrg.mask();
        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
          lrg._is_bound = 1;

        // Check for maximum frequency value
        if( lrg._maxfreq < b->_freq )
          lrg._maxfreq = b->_freq;

        int ireg = n->ideal_reg();
        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
                "oops must be in Op_RegP's" );
        // Check for oop-iness, or long/double
        // Check for multi-kill projection
        switch( ireg ) {
        case MachProjNode::fat_proj:
          // Fat projections have size equal to number of registers killed
          lrg.set_num_regs(rm.Size());
          lrg.set_reg_pressure(lrg.num_regs());
          lrg._fat_proj = 1;
          lrg._is_bound = 1;
          break;
        case Op_RegP:
#ifdef _LP64
          lrg.set_num_regs(2);  // Size is 2 stack words
#else
          lrg.set_num_regs(1);  // Size is 1 stack word
#endif
          // Register pressure is tracked relative to the maximum values
          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
          // and relative to other types which compete for the same regs.
          //
          // The following table contains suggested values based on the
          // architectures as defined in each .ad file.
          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
          // compile-speed or performance.
          // Note1:
          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
          // since .ad registers are defined as high and low halves.
          // These reg_pressure values remain compatible with the code
          // in is_high_pressure() which relates get_invalid_mask_size(),
          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
          // Note2:
          // SPARC -d32 has 24 registers available for integral values,
          // but only 10 of these are safe for 64-bit longs.
          // Using set_reg_pressure(2) for both int and long means
          // the allocator will believe it can fit 26 longs into
          // registers.  Using 2 for longs and 1 for ints means the
          // allocator will attempt to put 52 integers into registers.
          // The settings below limit this problem to methods with
          // many long values which are being run on 32-bit SPARC.
          //
          // ------------------- reg_pressure --------------------
          // Each entry is reg_pressure_per_value,number_of_regs
          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
          // IA32     2     1     1          1    1          6           6
          // IA64     1     1     1          1    1         50          41
          // SPARC    2     2     2          2    2         48 (24)     52 (26)
          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
          // AMD64    1     1     1          1    1         14          15
          // -----------------------------------------------------
#if defined(SPARC)
          lrg.set_reg_pressure(2);  // use for v9 as well
#else
          lrg.set_reg_pressure(1);  // normally one value per register
#endif
          if( n_type->isa_oop_ptr() ) {
            lrg._is_oop = 1;
          }
          break;
        case Op_RegL:           // Check for long or double
        case Op_RegD:
          lrg.set_num_regs(2);
          // Define platform specific register pressure
#ifdef SPARC
          lrg.set_reg_pressure(2);
#elif defined(IA32)
          if( ireg == Op_RegL ) {
            lrg.set_reg_pressure(2);
          } else {
            lrg.set_reg_pressure(1);
          }
#else
          lrg.set_reg_pressure(1);  // normally one value per register
#endif
          // If this def of a double forces a mis-aligned double,
          // flag as '_fat_proj' - really flag as allowing misalignment
          // AND changes how we count interferences.  A mis-aligned
          // double can interfere with TWO aligned pairs, or effectively
          // FOUR registers!
          if( rm.is_misaligned_Pair() ) {
            lrg._fat_proj = 1;
            lrg._is_bound = 1;
          }
          break;
        case Op_RegF:
        case Op_RegI:
681
        case Op_RegN:
D
duke 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        case Op_RegFlags:
        case 0:                 // not an ideal register
          lrg.set_num_regs(1);
#ifdef SPARC
          lrg.set_reg_pressure(2);
#else
          lrg.set_reg_pressure(1);
#endif
          break;
        default:
          ShouldNotReachHere();
        }
      }

      // Now do the same for inputs
      uint cnt = n->req();
      // Setup for CISC SPILLING
      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
      if( UseCISCSpill && after_aggressive ) {
        inp = n->cisc_operand();
        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
          // Convert operand number to edge index number
          inp = n->as_Mach()->operand_index(inp);
      }
      // Prepare register mask for each input
      for( uint k = input_edge_start; k < cnt; k++ ) {
        uint vreg = n2lidx(n->in(k));
        if( !vreg ) continue;

        // If this instruction is CISC Spillable, add the flags
        // bit to its appropriate input
        if( UseCISCSpill && after_aggressive && inp == k ) {
#ifndef PRODUCT
          if( TraceCISCSpill ) {
            tty->print("  use_cisc_RegMask: ");
            n->dump();
          }
#endif
          n->as_Mach()->use_cisc_RegMask();
        }

        LRG &lrg = lrgs(vreg);
        // // Testing for floating point code shape
        // Node *test = n->in(k);
        // if( test->is_Mach() ) {
        //   MachNode *m = test->as_Mach();
        //   int  op = m->ideal_Opcode();
        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
        //     int zzz = 1;
        //   }
        // }

        // Limit result register mask to acceptable registers.
        // Do not limit registers from uncommon uses before
        // AggressiveCoalesce.  This effectively pre-virtual-splits
        // around uncommon uses of common defs.
        const RegMask &rm = n->in_RegMask(k);
        if( !after_aggressive &&
          _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
          // Since we are BEFORE aggressive coalesce, leave the register
          // mask untrimmed by the call.  This encourages more coalescing.
          // Later, AFTER aggressive, this live range will have to spill
          // but the spiller handles slow-path calls very nicely.
        } else {
          lrg.AND( rm );
        }
        // Check for bound register masks
        const RegMask &lrgmask = lrg.mask();
        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
          lrg._is_bound = 1;
        // If this use of a double forces a mis-aligned double,
        // flag as '_fat_proj' - really flag as allowing misalignment
        // AND changes how we count interferences.  A mis-aligned
        // double can interfere with TWO aligned pairs, or effectively
        // FOUR registers!
        if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
          lrg._fat_proj = 1;
          lrg._is_bound = 1;
        }
        // if the LRG is an unaligned pair, we will have to spill
        // so clear the LRG's register mask if it is not already spilled
        if ( !n->is_SpillCopy() &&
764
               (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
D
duke 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
               lrgmask.is_misaligned_Pair()) {
          lrg.Clear();
        }

        // Check for maximum frequency value
        if( lrg._maxfreq < b->_freq )
          lrg._maxfreq = b->_freq;

      } // End for all allocated inputs
    } // end for all instructions
  } // end for all blocks

  // Final per-liverange setup
  for( uint i2=0; i2<_maxlrg; i2++ ) {
    LRG &lrg = lrgs(i2);
    if( lrg.num_regs() == 2 && !lrg._fat_proj )
      lrg.ClearToPairs();
    lrg.compute_set_mask_size();
    if( lrg.not_free() ) {      // Handle case where we lose from the start
      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
      lrg._direct_conflict = 1;
    }
    lrg.set_degree(0);          // no neighbors in IFG yet
  }
}

//------------------------------set_was_low------------------------------------
// Set the was-lo-degree bit.  Conservative coalescing should not change the
// colorability of the graph.  If any live range was of low-degree before
// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
// The bit is checked in Simplify.
void PhaseChaitin::set_was_low() {
#ifdef ASSERT
  for( uint i = 1; i < _maxlrg; i++ ) {
    int size = lrgs(i).num_regs();
    uint old_was_lo = lrgs(i)._was_lo;
    lrgs(i)._was_lo = 0;
    if( lrgs(i).lo_degree() ) {
      lrgs(i)._was_lo = 1;      // Trivially of low degree
    } else {                    // Else check the Brigg's assertion
      // Brigg's observation is that the lo-degree neighbors of a
      // hi-degree live range will not interfere with the color choices
      // of said hi-degree live range.  The Simplify reverse-stack-coloring
      // order takes care of the details.  Hence you do not have to count
      // low-degree neighbors when determining if this guy colors.
      int briggs_degree = 0;
      IndexSet *s = _ifg->neighbors(i);
      IndexSetIterator elements(s);
      uint lidx;
      while((lidx = elements.next()) != 0) {
        if( !lrgs(lidx).lo_degree() )
          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
      }
      if( briggs_degree < lrgs(i).degrees_of_freedom() )
        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
    }
    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
  }
#endif
}

#define REGISTER_CONSTRAINED 16

//------------------------------cache_lrg_info---------------------------------
// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
void PhaseChaitin::cache_lrg_info( ) {

  for( uint i = 1; i < _maxlrg; i++ ) {
    LRG &lrg = lrgs(i);

    // Check for being of low degree: means we can be trivially colored.
    // Low degree, dead or must-spill guys just get to simplify right away
    if( lrg.lo_degree() ||
       !lrg.alive() ||
        lrg._must_spill ) {
      // Split low degree list into those guys that must get a
      // register and those that can go to register or stack.
      // The idea is LRGs that can go register or stack color first when
      // they have a good chance of getting a register.  The register-only
      // lo-degree live ranges always get a register.
      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
        lrg._next = _lo_stk_degree;
        _lo_stk_degree = i;
      } else {
        lrg._next = _lo_degree;
        _lo_degree = i;
      }
    } else {                    // Else high degree
      lrgs(_hi_degree)._prev = i;
      lrg._next = _hi_degree;
      lrg._prev = 0;
      _hi_degree = i;
    }
  }
}

//------------------------------Pre-Simplify-----------------------------------
// Simplify the IFG by removing LRGs of low degree that have NO copies
void PhaseChaitin::Pre_Simplify( ) {

  // Warm up the lo-degree no-copy list
  int lo_no_copy = 0;
  for( uint i = 1; i < _maxlrg; i++ ) {
    if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
        !lrgs(i).alive() ||
        lrgs(i)._must_spill ) {
      lrgs(i)._next = lo_no_copy;
      lo_no_copy = i;
    }
  }

  while( lo_no_copy ) {
    uint lo = lo_no_copy;
    lo_no_copy = lrgs(lo)._next;
    int size = lrgs(lo).num_regs();

    // Put the simplified guy on the simplified list.
    lrgs(lo)._next = _simplified;
    _simplified = lo;

    // Yank this guy from the IFG.
    IndexSet *adj = _ifg->remove_node( lo );

    // If any neighbors' degrees fall below their number of
    // allowed registers, then put that neighbor on the low degree
    // list.  Note that 'degree' can only fall and 'numregs' is
    // unchanged by this action.  Thus the two are equal at most once,
    // so LRGs hit the lo-degree worklists at most once.
    IndexSetIterator elements(adj);
    uint neighbor;
    while ((neighbor = elements.next()) != 0) {
      LRG *n = &lrgs(neighbor);
      assert( _ifg->effective_degree(neighbor) == n->degree(), "" );

      // Check for just becoming of-low-degree
      if( n->just_lo_degree() && !n->_has_copy ) {
        assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
        // Put on lo-degree list
        n->_next = lo_no_copy;
        lo_no_copy = neighbor;
      }
    }
  } // End of while lo-degree no_copy worklist not empty

  // No more lo-degree no-copy live ranges to simplify
}

//------------------------------Simplify---------------------------------------
// Simplify the IFG by removing LRGs of low degree.
void PhaseChaitin::Simplify( ) {

  while( 1 ) {                  // Repeat till simplified it all
    // May want to explore simplifying lo_degree before _lo_stk_degree.
    // This might result in more spills coloring into registers during
    // Select().
    while( _lo_degree || _lo_stk_degree ) {
      // If possible, pull from lo_stk first
      uint lo;
      if( _lo_degree ) {
        lo = _lo_degree;
        _lo_degree = lrgs(lo)._next;
      } else {
        lo = _lo_stk_degree;
        _lo_stk_degree = lrgs(lo)._next;
      }

      // Put the simplified guy on the simplified list.
      lrgs(lo)._next = _simplified;
      _simplified = lo;
      // If this guy is "at risk" then mark his current neighbors
      if( lrgs(lo)._at_risk ) {
        IndexSetIterator elements(_ifg->neighbors(lo));
        uint datum;
        while ((datum = elements.next()) != 0) {
          lrgs(datum)._risk_bias = lo;
        }
      }

      // Yank this guy from the IFG.
      IndexSet *adj = _ifg->remove_node( lo );

      // If any neighbors' degrees fall below their number of
      // allowed registers, then put that neighbor on the low degree
      // list.  Note that 'degree' can only fall and 'numregs' is
      // unchanged by this action.  Thus the two are equal at most once,
      // so LRGs hit the lo-degree worklist at most once.
      IndexSetIterator elements(adj);
      uint neighbor;
      while ((neighbor = elements.next()) != 0) {
        LRG *n = &lrgs(neighbor);
#ifdef ASSERT
957
        if( VerifyOpto || VerifyRegisterAllocator ) {
D
duke 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
        }
#endif

        // Check for just becoming of-low-degree just counting registers.
        // _must_spill live ranges are already on the low degree list.
        if( n->just_lo_degree() && !n->_must_spill ) {
          assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
          // Pull from hi-degree list
          uint prev = n->_prev;
          uint next = n->_next;
          if( prev ) lrgs(prev)._next = next;
          else _hi_degree = next;
          lrgs(next)._prev = prev;
          n->_next = _lo_degree;
          _lo_degree = neighbor;
        }
      }
    } // End of while lo-degree/lo_stk_degree worklist not empty

    // Check for got everything: is hi-degree list empty?
    if( !_hi_degree ) break;

    // Time to pick a potential spill guy
    uint lo_score = _hi_degree;
    double score = lrgs(lo_score).score();
    double area = lrgs(lo_score)._area;

    // Find cheapest guy
    debug_only( int lo_no_simplify=0; );
    for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
      assert( !(*_ifg->_yanked)[i], "" );
      // It's just vaguely possible to move hi-degree to lo-degree without
      // going through a just-lo-degree stage: If you remove a double from
      // a float live range it's degree will drop by 2 and you can skip the
      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
      if( lrgs(i).lo_degree() ) {
        lo_score = i;
        break;
      }
      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
      double iscore = lrgs(i).score();
      double iarea = lrgs(i)._area;

      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
      // wins.  Ties happen because all live ranges in question have spilled
      // a few times before and the spill-score adds a huge number which
      // washes out the low order bits.  We are choosing the lesser of 2
      // evils; in this case pick largest area to spill.
      if( iscore < score ||
          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) {
        lo_score = i;
        score = iscore;
        area = iarea;
      }
    }
    LRG *lo_lrg = &lrgs(lo_score);
    // The live range we choose for spilling is either hi-degree, or very
    // rarely it can be low-degree.  If we choose a hi-degree live range
    // there better not be any lo-degree choices.
    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );

    // Pull from hi-degree list
    uint prev = lo_lrg->_prev;
    uint next = lo_lrg->_next;
    if( prev ) lrgs(prev)._next = next;
    else _hi_degree = next;
    lrgs(next)._prev = prev;
    // Jam him on the lo-degree list, despite his high degree.
    // Maybe he'll get a color, and maybe he'll spill.
    // Only Select() will know.
    lrgs(lo_score)._at_risk = true;
    _lo_degree = lo_score;
    lo_lrg->_next = 0;

  } // End of while not simplified everything

}

//------------------------------bias_color-------------------------------------
// Choose a color using the biasing heuristic
OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {

  // Check for "at_risk" LRG's
  uint risk_lrg = Find(lrg._risk_bias);
  if( risk_lrg != 0 ) {
    // Walk the colored neighbors of the "at_risk" candidate
    // Choose a color which is both legal and already taken by a neighbor
    // of the "at_risk" candidate in order to improve the chances of the
    // "at_risk" candidate of coloring
    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
    uint datum;
    while ((datum = elements.next()) != 0) {
      OptoReg::Name reg = lrgs(datum).reg();
      // If this LRG's register is legal for us, choose it
      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
          (lrg.num_regs()==1 || // either size 1
           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
        return reg;
    }
  }

  uint copy_lrg = Find(lrg._copy_bias);
  if( copy_lrg != 0 ) {
    // If he has a color,
    if( !(*(_ifg->_yanked))[copy_lrg] ) {
      OptoReg::Name reg = lrgs(copy_lrg).reg();
      //  And it is legal for you,
      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
          (lrg.num_regs()==1 || // either size 1
           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
        return reg;
    } else if( chunk == 0 ) {
      // Choose a color which is legal for him
      RegMask tempmask = lrg.mask();
      tempmask.AND(lrgs(copy_lrg).mask());
      OptoReg::Name reg;
      if( lrg.num_regs() == 1 ) {
        reg = tempmask.find_first_elem();
      } else {
        tempmask.ClearToPairs();
        reg = tempmask.find_first_pair();
      }
      if( OptoReg::is_valid(reg) )
        return reg;
    }
  }

  // If no bias info exists, just go with the register selection ordering
  if( lrg.num_regs() == 2 ) {
    // Find an aligned pair
    return OptoReg::add(lrg.mask().find_first_pair(),chunk);
  }

  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  // copy removal to remove many more copies, by preventing a just-assigned
  // register from being repeatedly assigned.
  OptoReg::Name reg = lrg.mask().find_first_elem();
  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
    // This 'Remove; find; Insert' idiom is an expensive way to find the
    // SECOND element in the mask.
    lrg.Remove(reg);
    OptoReg::Name reg2 = lrg.mask().find_first_elem();
    lrg.Insert(reg);
    if( OptoReg::is_reg(reg2))
      reg = reg2;
  }
  return OptoReg::add( reg, chunk );
}

//------------------------------choose_color-----------------------------------
// Choose a color in the current chunk
OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");

  if( lrg.num_regs() == 1 ||    // Common Case
      !lrg._fat_proj )          // Aligned+adjacent pairs ok
    // Use a heuristic to "bias" the color choice
    return bias_color(lrg, chunk);

  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );

  // Fat-proj case or misaligned double argument.
  assert(lrg.compute_mask_size() == lrg.num_regs() ||
         lrg.num_regs() == 2,"fat projs exactly color" );
  assert( !chunk, "always color in 1st chunk" );
  // Return the highest element in the set.
  return lrg.mask().find_last_elem();
}

//------------------------------Select-----------------------------------------
// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
// in reverse order of removal.  As long as nothing of hi-degree was yanked,
// everything going back is guaranteed a color.  Select that color.  If some
// hi-degree LRG cannot get a color then we record that we must spill.
uint PhaseChaitin::Select( ) {
  uint spill_reg = LRG::SPILL_REG;
  _max_reg = OptoReg::Name(0);  // Past max register used
  while( _simplified ) {
    // Pull next LRG from the simplified list - in reverse order of removal
    uint lidx = _simplified;
    LRG *lrg = &lrgs(lidx);
    _simplified = lrg->_next;


#ifndef PRODUCT
    if (trace_spilling()) {
      ttyLocker ttyl;
      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
                    lrg->degrees_of_freedom());
      lrg->dump();
    }
#endif

    // Re-insert into the IFG
    _ifg->re_insert(lidx);
    if( !lrg->alive() ) continue;
    // capture allstackedness flag before mask is hacked
    const int is_allstack = lrg->mask().is_AllStack();

    // Yeah, yeah, yeah, I know, I know.  I can refactor this
    // to avoid the GOTO, although the refactored code will not
    // be much clearer.  We arrive here IFF we have a stack-based
    // live range that cannot color in the current chunk, and it
    // has to move into the next free stack chunk.
    int chunk = 0;              // Current chunk is first chunk
    retry_next_chunk:

    // Remove neighbor colors
    IndexSet *s = _ifg->neighbors(lidx);

    debug_only(RegMask orig_mask = lrg->mask();)
    IndexSetIterator elements(s);
    uint neighbor;
    while ((neighbor = elements.next()) != 0) {
      // Note that neighbor might be a spill_reg.  In this case, exclusion
      // of its color will be a no-op, since the spill_reg chunk is in outer
      // space.  Also, if neighbor is in a different chunk, this exclusion
      // will be a no-op.  (Later on, if lrg runs out of possible colors in
      // its chunk, a new chunk of color may be tried, in which case
      // examination of neighbors is started again, at retry_next_chunk.)
      LRG &nlrg = lrgs(neighbor);
      OptoReg::Name nreg = nlrg.reg();
      // Only subtract masks in the same chunk
      if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
#ifndef PRODUCT
        uint size = lrg->mask().Size();
        RegMask rm = lrg->mask();
#endif
        lrg->SUBTRACT(nlrg.mask());
#ifndef PRODUCT
        if (trace_spilling() && lrg->mask().Size() != size) {
          ttyLocker ttyl;
          tty->print("L%d ", lidx);
          rm.dump();
          tty->print(" intersected L%d ", neighbor);
          nlrg.mask().dump();
          tty->print(" removed ");
          rm.SUBTRACT(lrg->mask());
          rm.dump();
          tty->print(" leaving ");
          lrg->mask().dump();
          tty->cr();
        }
#endif
      }
    }
    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
    // Aligned pairs need aligned masks
    if( lrg->num_regs() == 2 && !lrg->_fat_proj )
      lrg->ClearToPairs();

    // Check if a color is available and if so pick the color
    OptoReg::Name reg = choose_color( *lrg, chunk );
#ifdef SPARC
    debug_only(lrg->compute_set_mask_size());
    assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
#endif

    //---------------
    // If we fail to color and the AllStack flag is set, trigger
    // a chunk-rollover event
    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
      // Bump register mask up to next stack chunk
      chunk += RegMask::CHUNK_SIZE;
      lrg->Set_All();

      goto retry_next_chunk;
    }

    //---------------
    // Did we get a color?
    else if( OptoReg::is_valid(reg)) {
#ifndef PRODUCT
      RegMask avail_rm = lrg->mask();
#endif

      // Record selected register
      lrg->set_reg(reg);

      if( reg >= _max_reg )     // Compute max register limit
        _max_reg = OptoReg::add(reg,1);
      // Fold reg back into normal space
      reg = OptoReg::add(reg,-chunk);

      // If the live range is not bound, then we actually had some choices
      // to make.  In this case, the mask has more bits in it than the colors
T
twisti 已提交
1249
      // chosen.  Restrict the mask to just what was picked.
D
duke 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
      if( lrg->num_regs() == 1 ) { // Size 1 live range
        lrg->Clear();           // Clear the mask
        lrg->Insert(reg);       // Set regmask to match selected reg
        lrg->set_mask_size(1);
      } else if( !lrg->_fat_proj ) {
        // For pairs, also insert the low bit of the pair
        assert( lrg->num_regs() == 2, "unbound fatproj???" );
        lrg->Clear();           // Clear the mask
        lrg->Insert(reg);       // Set regmask to match selected reg
        lrg->Insert(OptoReg::add(reg,-1));
        lrg->set_mask_size(2);
      } else {                  // Else fatproj
        // mask must be equal to fatproj bits, by definition
      }
#ifndef PRODUCT
      if (trace_spilling()) {
        ttyLocker ttyl;
        tty->print("L%d selected ", lidx);
        lrg->mask().dump();
        tty->print(" from ");
        avail_rm.dump();
        tty->cr();
      }
#endif
      // Note that reg is the highest-numbered register in the newly-bound mask.
    } // end color available case

    //---------------
    // Live range is live and no colors available
    else {
      assert( lrg->alive(), "" );
1281
      assert( !lrg->_fat_proj || lrg->is_multidef() ||
D
duke 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );

      // Assign the special spillreg register
      lrg->set_reg(OptoReg::Name(spill_reg++));
      // Do not empty the regmask; leave mask_size lying around
      // for use during Spilling
#ifndef PRODUCT
      if( trace_spilling() ) {
        ttyLocker ttyl;
        tty->print("L%d spilling with neighbors: ", lidx);
        s->dump();
        debug_only(tty->print(" original mask: "));
        debug_only(orig_mask.dump());
        dump_lrg(lidx);
      }
#endif
    } // end spill case

  }

  return spill_reg-LRG::SPILL_REG;      // Return number of spills
}


//------------------------------copy_was_spilled-------------------------------
// Copy 'was_spilled'-edness from the source Node to the dst Node.
void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  if( _spilled_once.test(src->_idx) ) {
    _spilled_once.set(dst->_idx);
    lrgs(Find(dst))._was_spilled1 = 1;
    if( _spilled_twice.test(src->_idx) ) {
      _spilled_twice.set(dst->_idx);
      lrgs(Find(dst))._was_spilled2 = 1;
    }
  }
}

//------------------------------set_was_spilled--------------------------------
// Set the 'spilled_once' or 'spilled_twice' flag on a node.
void PhaseChaitin::set_was_spilled( Node *n ) {
  if( _spilled_once.test_set(n->_idx) )
    _spilled_twice.set(n->_idx);
}

//------------------------------fixup_spills-----------------------------------
// Convert Ideal spill instructions into proper FramePtr + offset Loads and
// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
void PhaseChaitin::fixup_spills() {
  // This function does only cisc spill work.
  if( !UseCISCSpill ) return;

  NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )

  // Grab the Frame Pointer
  Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);

  // For all blocks
  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
    Block *b = _cfg._blocks[i];

    // For all instructions in block
    uint last_inst = b->end_idx();
    for( uint j = 1; j <= last_inst; j++ ) {
      Node *n = b->_nodes[j];

      // Dead instruction???
      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
              C->top() == n ||  // Or the random TOP node
              n->is_Proj(),     // Or a fat-proj kill node
              "No dead instructions after post-alloc" );

      int inp = n->cisc_operand();
      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
        // Convert operand number to edge index number
        MachNode *mach = n->as_Mach();
        inp = mach->operand_index(inp);
        Node *src = n->in(inp);   // Value to load or store
        LRG &lrg_cisc = lrgs( Find_const(src) );
        OptoReg::Name src_reg = lrg_cisc.reg();
        // Doubles record the HIGH register of an adjacent pair.
        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
          // This is a CISC Spill, get stack offset and construct new node
#ifndef PRODUCT
          if( TraceCISCSpill ) {
            tty->print("    reg-instr:  ");
            n->dump();
          }
#endif
          int stk_offset = reg2offset(src_reg);
          // Bailout if we might exceed node limit when spilling this instruction
          C->check_node_count(0, "out of nodes fixing spills");
          if (C->failing())  return;
          // Transform node
          MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
          cisc->set_req(inp,fp);          // Base register is frame pointer
          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
            assert( cisc->oper_input_base() == 2, "Only adding one edge");
            cisc->ins_req(1,src);         // Requires a memory edge
          }
          b->_nodes.map(j,cisc);          // Insert into basic block
1384
          n->subsume_by(cisc); // Correct graph
D
duke 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
          //
          ++_used_cisc_instructions;
#ifndef PRODUCT
          if( TraceCISCSpill ) {
            tty->print("    cisc-instr: ");
            cisc->dump();
          }
#endif
        } else {
#ifndef PRODUCT
          if( TraceCISCSpill ) {
            tty->print("    using reg-instr: ");
            n->dump();
          }
#endif
          ++_unused_cisc_instructions;    // input can be on stack
        }
      }

    } // End of for all instructions

  } // End of for all blocks
}

//------------------------------find_base_for_derived--------------------------
// Helper to stretch above; recursively discover the base Node for a
// given derived Node.  Easy for AddP-related machine nodes, but needs
// to be recursive for derived Phis.
Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  // See if already computed; if so return it
  if( derived_base_map[derived->_idx] )
    return derived_base_map[derived->_idx];

  // See if this happens to be a base.
  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  // pointers derived from NULL!  These are always along paths that
  // can't happen at run-time but the optimizer cannot deduce it so
  // we have to handle it gracefully.
  const TypePtr *tj = derived->bottom_type()->isa_ptr();
  // If its an OOP with a non-zero offset, then it is derived.
  if( tj->_offset == 0 ) {
    derived_base_map[derived->_idx] = derived;
    return derived;
  }
  // Derived is NULL+offset?  Base is NULL!
  if( derived->is_Con() ) {
    Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR );
    uint no_lidx = 0;  // an unmatched constant in debug info has no LRG
    _names.extend(base->_idx, no_lidx);
    derived_base_map[derived->_idx] = base;
    return base;
  }

  // Check for AddP-related opcodes
  if( !derived->is_Phi() ) {
    assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
    Node *base = derived->in(AddPNode::Base);
    derived_base_map[derived->_idx] = base;
    return base;
  }

  // Recursively find bases for Phis.
  // First check to see if we can avoid a base Phi here.
  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  uint i;
  for( i = 2; i < derived->req(); i++ )
    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
      break;
  // Went to the end without finding any different bases?
  if( i == derived->req() ) {   // No need for a base Phi here
    derived_base_map[derived->_idx] = base;
    return base;
  }

  // Now we see we need a base-Phi here to merge the bases
  base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() );
  for( i = 1; i < derived->req(); i++ )
    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));

  // Search the current block for an existing base-Phi
  Block *b = _cfg._bbs[derived->_idx];
  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
    Node *phi = b->_nodes[i];
    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
      b->_nodes.insert( i, base ); // Must insert created Phi here as base
      _cfg._bbs.map( base->_idx, b );
      new_lrg(base,maxlrg++);
      break;
    }
    // See if Phi matches.
    uint j;
    for( j = 1; j < base->req(); j++ )
      if( phi->in(j) != base->in(j) &&
          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
        break;
    if( j == base->req() ) {    // All inputs match?
      base = phi;               // Then use existing 'phi' and drop 'base'
      break;
    }
  }


  // Cache info for later passes
  derived_base_map[derived->_idx] = base;
  return base;
}


//------------------------------stretch_base_pointer_live_ranges---------------
// At each Safepoint, insert extra debug edges for each pair of derived value/
// base pointer that is live across the Safepoint for oopmap building.  The
// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
// required edge set.
bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
  int must_recompute_live = false;
  uint maxlrg = _maxlrg;
  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );

  // For all blocks in RPO do...
  for( uint i=0; i<_cfg._num_blocks; i++ ) {
    Block *b = _cfg._blocks[i];
    // Note use of deep-copy constructor.  I cannot hammer the original
    // liveout bits, because they are needed by the following coalesce pass.
    IndexSet liveout(_live->live(b));

    for( uint j = b->end_idx() + 1; j > 1; j-- ) {
      Node *n = b->_nodes[j-1];

      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
      // like to see in the same register.  Compare uses the loop-phi and so
      // extends its live range BUT cannot be part of the cycle.  If this
      // extended live range overlaps with the update of the loop-phi value
      // we need both alive at the same time -- which requires at least 1
      // copy.  But because Intel has only 2-address registers we end up with
      // at least 2 copies, one before the loop-phi update instruction and
      // one after.  Instead we split the input to the compare just after the
      // phi.
      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
        Node *phi = n->in(1);
        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
          Block *phi_block = _cfg._bbs[phi->_idx];
          if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
            Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
            insert_proj( phi_block, 1, spill, maxlrg++ );
            n->set_req(1,spill);
            must_recompute_live = true;
          }
        }
      }

      // Get value being defined
      uint lidx = n2lidx(n);
      if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
        // Remove from live-out set
        liveout.remove(lidx);

        // Copies do not define a new value and so do not interfere.
        // Remove the copies source from the liveout set before interfering.
        uint idx = n->is_Copy();
        if( idx ) liveout.remove( n2lidx(n->in(idx)) );
      }

      // Found a safepoint?
      JVMState *jvms = n->jvms();
      if( jvms ) {
        // Now scan for a live derived pointer
        IndexSetIterator elements(&liveout);
        uint neighbor;
        while ((neighbor = elements.next()) != 0) {
          // Find reaching DEF for base and derived values
          // This works because we are still in SSA during this call.
          Node *derived = lrgs(neighbor)._def;
          const TypePtr *tj = derived->bottom_type()->isa_ptr();
          // If its an OOP with a non-zero offset, then it is derived.
          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
            Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
            assert( base->_idx < _names.Size(), "" );
            // Add reaching DEFs of derived pointer and base pointer as a
            // pair of inputs
            n->add_req( derived );
            n->add_req( base );

            // See if the base pointer is already live to this point.
            // Since I'm working on the SSA form, live-ness amounts to
            // reaching def's.  So if I find the base's live range then
            // I know the base's def reaches here.
            if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
                 !liveout.member( n2lidx(base) ) ) && // not live) AND
                 (n2lidx(base) > 0)                && // not a constant
                 _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
              // Base pointer is not currently live.  Since I stretched
              // the base pointer to here and it crosses basic-block
              // boundaries, the global live info is now incorrect.
              // Recompute live.
              must_recompute_live = true;
            } // End of if base pointer is not live to debug info
          }
        } // End of scan all live data for derived ptrs crossing GC point
      } // End of if found a GC point

      // Make all inputs live
      if( !n->is_Phi() ) {      // Phi function uses come from prior block
        for( uint k = 1; k < n->req(); k++ ) {
          uint lidx = n2lidx(n->in(k));
          if( lidx < _maxlrg )
            liveout.insert( lidx );
        }
      }

    } // End of forall instructions in block
    liveout.clear();  // Free the memory used by liveout.

  } // End of forall blocks
  _maxlrg = maxlrg;

  // If I created a new live range I need to recompute live
  if( maxlrg != _ifg->_maxlrg )
    must_recompute_live = true;

  return must_recompute_live != 0;
}


//------------------------------add_reference----------------------------------
// Extend the node to LRG mapping
void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
  _names.extend( node->_idx, n2lidx(old_node) );
}

//------------------------------dump-------------------------------------------
#ifndef PRODUCT
void PhaseChaitin::dump( const Node *n ) const {
  uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
  tty->print("L%d",r);
  if( r && n->Opcode() != Op_Phi ) {
    if( _node_regs ) {          // Got a post-allocation copy of allocation?
      tty->print("[");
      OptoReg::Name second = get_reg_second(n);
      if( OptoReg::is_valid(second) ) {
        if( OptoReg::is_reg(second) )
          tty->print("%s:",Matcher::regName[second]);
        else
          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
      }
      OptoReg::Name first = get_reg_first(n);
      if( OptoReg::is_reg(first) )
        tty->print("%s]",Matcher::regName[first]);
      else
         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
    } else
    n->out_RegMask().dump();
  }
  tty->print("/N%d\t",n->_idx);
  tty->print("%s === ", n->Name());
  uint k;
  for( k = 0; k < n->req(); k++) {
    Node *m = n->in(k);
    if( !m ) tty->print("_ ");
    else {
      uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
      tty->print("L%d",r);
      // Data MultiNode's can have projections with no real registers.
      // Don't die while dumping them.
      int op = n->Opcode();
      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
        if( _node_regs ) {
          tty->print("[");
          OptoReg::Name second = get_reg_second(n->in(k));
          if( OptoReg::is_valid(second) ) {
            if( OptoReg::is_reg(second) )
              tty->print("%s:",Matcher::regName[second]);
            else
              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
                         reg2offset_unchecked(second));
          }
          OptoReg::Name first = get_reg_first(n->in(k));
          if( OptoReg::is_reg(first) )
            tty->print("%s]",Matcher::regName[first]);
          else
            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
                       reg2offset_unchecked(first));
        } else
          n->in_RegMask(k).dump();
      }
      tty->print("/N%d ",m->_idx);
    }
  }
  if( k < n->len() && n->in(k) ) tty->print("| ");
  for( ; k < n->len(); k++ ) {
    Node *m = n->in(k);
    if( !m ) break;
    uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
    tty->print("L%d",r);
    tty->print("/N%d ",m->_idx);
  }
  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  else n->dump_spec(tty);
  if( _spilled_once.test(n->_idx ) ) {
    tty->print(" Spill_1");
    if( _spilled_twice.test(n->_idx ) )
      tty->print(" Spill_2");
  }
  tty->print("\n");
}

void PhaseChaitin::dump( const Block * b ) const {
  b->dump_head( &_cfg._bbs );

  // For all instructions
  for( uint j = 0; j < b->_nodes.size(); j++ )
    dump(b->_nodes[j]);
  // Print live-out info at end of block
  if( _live ) {
    tty->print("Liveout: ");
    IndexSet *live = _live->live(b);
    IndexSetIterator elements(live);
    tty->print("{");
    uint i;
    while ((i = elements.next()) != 0) {
      tty->print("L%d ", Find_const(i));
    }
    tty->print_cr("}");
  }
  tty->print("\n");
}

void PhaseChaitin::dump() const {
  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
              _matcher._new_SP, _framesize );

  // For all blocks
  for( uint i = 0; i < _cfg._num_blocks; i++ )
    dump(_cfg._blocks[i]);
  // End of per-block dump
  tty->print("\n");

  if (!_ifg) {
    tty->print("(No IFG.)\n");
    return;
  }

  // Dump LRG array
  tty->print("--- Live RanGe Array ---\n");
  for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
    tty->print("L%d: ",i2);
    if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
    else tty->print("new LRG");
  }
  tty->print_cr("");

  // Dump lo-degree list
  tty->print("Lo degree: ");
  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
    tty->print("L%d ",i3);
  tty->print_cr("");

  // Dump lo-stk-degree list
  tty->print("Lo stk degree: ");
  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
    tty->print("L%d ",i4);
  tty->print_cr("");

  // Dump lo-degree list
  tty->print("Hi degree: ");
  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
    tty->print("L%d ",i5);
  tty->print_cr("");
}

//------------------------------dump_degree_lists------------------------------
void PhaseChaitin::dump_degree_lists() const {
  // Dump lo-degree list
  tty->print("Lo degree: ");
  for( uint i = _lo_degree; i; i = lrgs(i)._next )
    tty->print("L%d ",i);
  tty->print_cr("");

  // Dump lo-stk-degree list
  tty->print("Lo stk degree: ");
  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
    tty->print("L%d ",i2);
  tty->print_cr("");

  // Dump lo-degree list
  tty->print("Hi degree: ");
  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
    tty->print("L%d ",i3);
  tty->print_cr("");
}

//------------------------------dump_simplified--------------------------------
void PhaseChaitin::dump_simplified() const {
  tty->print("Simplified: ");
  for( uint i = _simplified; i; i = lrgs(i)._next )
    tty->print("L%d ",i);
  tty->print_cr("");
}

static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  if ((int)reg < 0)
    sprintf(buf, "<OptoReg::%d>", (int)reg);
  else if (OptoReg::is_reg(reg))
    strcpy(buf, Matcher::regName[reg]);
  else
    sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
            pc->reg2offset(reg));
  return buf+strlen(buf);
}

//------------------------------dump_register----------------------------------
// Dump a register name into a buffer.  Be intelligent if we get called
// before allocation is complete.
char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  if( !this ) {                 // Not got anything?
    sprintf(buf,"N%d",n->_idx); // Then use Node index
  } else if( _node_regs ) {
    // Post allocation, use direct mappings, no LRG info available
    print_reg( get_reg_first(n), this, buf );
  } else {
    uint lidx = Find_const(n); // Grab LRG number
    if( !_ifg ) {
      sprintf(buf,"L%d",lidx);  // No register binding yet
    } else if( !lidx ) {        // Special, not allocated value
      strcpy(buf,"Special");
    } else if( (lrgs(lidx).num_regs() == 1)
                ? !lrgs(lidx).mask().is_bound1()
                : !lrgs(lidx).mask().is_bound2() ) {
      sprintf(buf,"L%d",lidx); // No register binding yet
    } else {                    // Hah!  We have a bound machine register
      print_reg( lrgs(lidx).reg(), this, buf );
    }
  }
  return buf+strlen(buf);
}

//----------------------dump_for_spill_split_recycle--------------------------
void PhaseChaitin::dump_for_spill_split_recycle() const {
  if( WizardMode && (PrintCompilation || PrintOpto) ) {
    // Display which live ranges need to be split and the allocator's state
    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
    for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
        tty->print("L%d: ", bidx);
        lrgs(bidx).dump();
      }
    }
    tty->cr();
    dump();
  }
}

//------------------------------dump_frame------------------------------------
void PhaseChaitin::dump_frame() const {
  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  const TypeTuple *domain = C->tf()->domain();
  const int        argcnt = domain->cnt() - TypeFunc::Parms;

  // Incoming arguments in registers dump
  for( int k = 0; k < argcnt; k++ ) {
    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
    if( OptoReg::is_reg(parmreg))  {
      const char *reg_name = OptoReg::regname(parmreg);
      tty->print("#r%3.3d %s", parmreg, reg_name);
      parmreg = _matcher._parm_regs[k].second();
      if( OptoReg::is_reg(parmreg))  {
        tty->print(":%s", OptoReg::regname(parmreg));
      }
      tty->print("   : parm %d: ", k);
      domain->field_at(k + TypeFunc::Parms)->dump();
      tty->print_cr("");
    }
  }

  // Check for un-owned padding above incoming args
  OptoReg::Name reg = _matcher._new_SP;
  if( reg > _matcher._in_arg_limit ) {
    reg = OptoReg::add(reg, -1);
    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  }

  // Incoming argument area dump
  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  while( reg > begin_in_arg ) {
    reg = OptoReg::add(reg, -1);
    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
    int j;
    for( j = 0; j < argcnt; j++) {
      if( _matcher._parm_regs[j].first() == reg ||
          _matcher._parm_regs[j].second() == reg ) {
        tty->print("parm %d: ",j);
        domain->field_at(j + TypeFunc::Parms)->dump();
        tty->print_cr("");
        break;
      }
    }
    if( j >= argcnt )
      tty->print_cr("HOLE, owned by SELF");
  }

  // Old outgoing preserve area
  while( reg > _matcher._old_SP ) {
    reg = OptoReg::add(reg, -1);
    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  }

  // Old SP
  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);

  // Preserve area dump
  reg = OptoReg::add(reg, -1);
  while( OptoReg::is_stack(reg)) {
    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
    if( _matcher.return_addr() == reg )
      tty->print_cr("return address");
    else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
             VerifyStackAtCalls )
      tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
    else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
    else
      tty->print_cr("pad2, in_preserve");
    reg = OptoReg::add(reg, -1);
  }

  // Spill area dump
  reg = OptoReg::add(_matcher._new_SP, _framesize );
  while( reg > _matcher._out_arg_limit ) {
    reg = OptoReg::add(reg, -1);
    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  }

  // Outgoing argument area dump
  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
    reg = OptoReg::add(reg, -1);
    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  }

  // Outgoing new preserve area
  while( reg > _matcher._new_SP ) {
    reg = OptoReg::add(reg, -1);
    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  }
  tty->print_cr("#");
}

//------------------------------dump_bb----------------------------------------
void PhaseChaitin::dump_bb( uint pre_order ) const {
  tty->print_cr("---dump of B%d---",pre_order);
  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
    Block *b = _cfg._blocks[i];
    if( b->_pre_order == pre_order )
      dump(b);
  }
}

//------------------------------dump_lrg---------------------------------------
void PhaseChaitin::dump_lrg( uint lidx ) const {
  tty->print_cr("---dump of L%d---",lidx);

  if( _ifg ) {
    if( lidx >= _maxlrg ) {
      tty->print("Attempt to print live range index beyond max live range.\n");
      return;
    }
    tty->print("L%d: ",lidx);
    lrgs(lidx).dump( );
  }
  if( _ifg ) {    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
    _ifg->neighbors(lidx)->dump();
    tty->cr();
  }
  // For all blocks
  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
    Block *b = _cfg._blocks[i];
    int dump_once = 0;

    // For all instructions
    for( uint j = 0; j < b->_nodes.size(); j++ ) {
      Node *n = b->_nodes[j];
      if( Find_const(n) == lidx ) {
        if( !dump_once++ ) {
          tty->cr();
          b->dump_head( &_cfg._bbs );
        }
        dump(n);
        continue;
      }
      uint cnt = n->req();
      for( uint k = 1; k < cnt; k++ ) {
        Node *m = n->in(k);
        if (!m)  continue;  // be robust in the dumper
        if( Find_const(m) == lidx ) {
          if( !dump_once++ ) {
            tty->cr();
            b->dump_head( &_cfg._bbs );
          }
          dump(n);
        }
      }
    }
  } // End of per-block dump
  tty->cr();
}
#endif // not PRODUCT

//------------------------------print_chaitin_statistics-------------------------------
int PhaseChaitin::_final_loads  = 0;
int PhaseChaitin::_final_stores = 0;
int PhaseChaitin::_final_memoves= 0;
int PhaseChaitin::_final_copies = 0;
double PhaseChaitin::_final_load_cost  = 0;
double PhaseChaitin::_final_store_cost = 0;
double PhaseChaitin::_final_memove_cost= 0;
double PhaseChaitin::_final_copy_cost  = 0;
int PhaseChaitin::_conserv_coalesce = 0;
int PhaseChaitin::_conserv_coalesce_pair = 0;
int PhaseChaitin::_conserv_coalesce_trie = 0;
int PhaseChaitin::_conserv_coalesce_quad = 0;
int PhaseChaitin::_post_alloc = 0;
int PhaseChaitin::_lost_opp_pp_coalesce = 0;
int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
int PhaseChaitin::_used_cisc_instructions   = 0;
int PhaseChaitin::_unused_cisc_instructions = 0;
int PhaseChaitin::_allocator_attempts       = 0;
int PhaseChaitin::_allocator_successes      = 0;

#ifndef PRODUCT
uint PhaseChaitin::_high_pressure           = 0;
uint PhaseChaitin::_low_pressure            = 0;

void PhaseChaitin::print_chaitin_statistics() {
  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  tty->print_cr("Adjusted spill cost = %7.0f.",
                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
                _final_copy_cost*1.0 + _final_memove_cost*12.0);
  tty->print("Conservatively coalesced %d copies, %d pairs",
                _conserv_coalesce, _conserv_coalesce_pair);
  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  tty->print_cr(", %d post alloc.", _post_alloc);
  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  if( _used_cisc_instructions || _unused_cisc_instructions )
    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
                   _used_cisc_instructions, _unused_cisc_instructions);
  if( _allocator_successes != 0 )
    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
}
#endif // not PRODUCT