os_aix.cpp 165.2 KB
Newer Older
1 2
/*
 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3
 * Copyright 2012, 2014 SAP AG. All rights reserved.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

// According to the AIX OS doc #pragma alloca must be used
// with C++ compiler before referencing the function alloca()
#pragma alloca

// no precompiled headers
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "compiler/compileBroker.hpp"
#include "interpreter/interpreter.hpp"
#include "jvm_aix.h"
#include "libperfstat_aix.hpp"
#include "loadlib_aix.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/filemap.hpp"
#include "mutex_aix.inline.hpp"
#include "oops/oop.inline.hpp"
#include "os_share_aix.hpp"
#include "porting_aix.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm.h"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/globals.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/osThread.hpp"
#include "runtime/perfMemory.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/statSampler.hpp"
#include "runtime/stubRoutines.hpp"
63
#include "runtime/thread.inline.hpp"
64
#include "runtime/threadCritical.hpp"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
#include "runtime/timer.hpp"
#include "services/attachListener.hpp"
#include "services/runtimeService.hpp"
#include "utilities/decoder.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/events.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/vmError.hpp"

// put OS-includes here (sorted alphabetically)
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <poll.h>
#include <procinfo.h>
#include <pthread.h>
#include <pwd.h>
#include <semaphore.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/ipc.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/select.h>
#include <sys/shm.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/systemcfg.h>
#include <sys/time.h>
#include <sys/times.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/vminfo.h>
#include <sys/wait.h>

// Add missing declarations (should be in procinfo.h but isn't until AIX 6.1).
#if !defined(_AIXVERSION_610)
extern "C" {
  int getthrds64(pid_t ProcessIdentifier,
                 struct thrdentry64* ThreadBuffer,
                 int ThreadSize,
                 tid64_t* IndexPointer,
                 int Count);
}
#endif

// Excerpts from systemcfg.h definitions newer than AIX 5.3
#ifndef PV_7
# define PV_7 0x200000          // Power PC 7
# define PV_7_Compat 0x208000   // Power PC 7
#endif

#define MAX_PATH (2 * K)

// for timer info max values which include all bits
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
// for multipage initialization error analysis (in 'g_multipage_error')
#define ERROR_MP_OS_TOO_OLD                          100
#define ERROR_MP_EXTSHM_ACTIVE                       101
#define ERROR_MP_VMGETINFO_FAILED                    102
#define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103

// the semantics in this file are thus that codeptr_t is a *real code ptr*
// This means that any function taking codeptr_t as arguments will assume
// a real codeptr and won't handle function descriptors (eg getFuncName),
// whereas functions taking address as args will deal with function
// descriptors (eg os::dll_address_to_library_name)
typedef unsigned int* codeptr_t;

// typedefs for stackslots, stack pointers, pointers to op codes
typedef unsigned long stackslot_t;
typedef stackslot_t* stackptr_t;

// query dimensions of the stack of the calling thread
static void query_stack_dimensions(address* p_stack_base, size_t* p_stack_size);

// function to check a given stack pointer against given stack limits
inline bool is_valid_stackpointer(stackptr_t sp, stackptr_t stack_base, size_t stack_size) {
  if (((uintptr_t)sp) & 0x7) {
    return false;
  }
  if (sp > stack_base) {
    return false;
  }
  if (sp < (stackptr_t) ((address)stack_base - stack_size)) {
    return false;
  }
  return true;
}

// returns true if function is a valid codepointer
inline bool is_valid_codepointer(codeptr_t p) {
  if (!p) {
    return false;
  }
  if (((uintptr_t)p) & 0x3) {
    return false;
  }
  if (LoadedLibraries::find_for_text_address((address)p) == NULL) {
    return false;
  }
  return true;
}

// macro to check a given stack pointer against given stack limits and to die if test fails
#define CHECK_STACK_PTR(sp, stack_base, stack_size) { \
    guarantee(is_valid_stackpointer((stackptr_t)(sp), (stackptr_t)(stack_base), stack_size), "Stack Pointer Invalid"); \
}

// macro to check the current stack pointer against given stacklimits
#define CHECK_CURRENT_STACK_PTR(stack_base, stack_size) { \
  address sp; \
  sp = os::current_stack_pointer(); \
  CHECK_STACK_PTR(sp, stack_base, stack_size); \
}

////////////////////////////////////////////////////////////////////////////////
// global variables (for a description see os_aix.hpp)

julong    os::Aix::_physical_memory = 0;
pthread_t os::Aix::_main_thread = ((pthread_t)0);
int       os::Aix::_page_size = -1;
int       os::Aix::_on_pase = -1;
int       os::Aix::_os_version = -1;
int       os::Aix::_stack_page_size = -1;
size_t    os::Aix::_shm_default_page_size = -1;
int       os::Aix::_can_use_64K_pages = -1;
int       os::Aix::_can_use_16M_pages = -1;
int       os::Aix::_xpg_sus_mode = -1;
int       os::Aix::_extshm = -1;
int       os::Aix::_logical_cpus = -1;

////////////////////////////////////////////////////////////////////////////////
// local variables

static int      g_multipage_error  = -1;   // error analysis for multipage initialization
static jlong    initial_time_count = 0;
static int      clock_tics_per_sec = 100;
static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
static bool     check_signals      = true;
static pid_t    _initial_pid       = 0;
static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
static sigset_t SR_sigset;
static pthread_mutex_t dl_mutex;           // Used to protect dlsym() calls */

julong os::available_memory() {
  return Aix::available_memory();
}

julong os::Aix::available_memory() {
220 221 222 223 224 225
  os::Aix::meminfo_t mi;
  if (os::Aix::get_meminfo(&mi)) {
    return mi.real_free;
  } else {
    return 0xFFFFFFFFFFFFFFFFLL;
  }
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
}

julong os::physical_memory() {
  return Aix::physical_memory();
}

////////////////////////////////////////////////////////////////////////////////
// environment support

bool os::getenv(const char* name, char* buf, int len) {
  const char* val = ::getenv(name);
  if (val != NULL && strlen(val) < (size_t)len) {
    strcpy(buf, val);
    return true;
  }
  if (len > 0) buf[0] = 0;  // return a null string
  return false;
}


// Return true if user is running as root.

bool os::have_special_privileges() {
  static bool init = false;
  static bool privileges = false;
  if (!init) {
    privileges = (getuid() != geteuid()) || (getgid() != getegid());
    init = true;
  }
  return privileges;
}

// Helper function, emulates disclaim64 using multiple 32bit disclaims
// because we cannot use disclaim64() on AS/400 and old AIX releases.
static bool my_disclaim64(char* addr, size_t size) {

  if (size == 0) {
    return true;
  }

  // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
  const unsigned int maxDisclaimSize = 0x80000000;

  const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
  const unsigned int lastDisclaimSize = (size % maxDisclaimSize);

  char* p = addr;

  for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
    if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
      //if (Verbose)
      fprintf(stderr, "Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
      return false;
    }
    p += maxDisclaimSize;
  }

  if (lastDisclaimSize > 0) {
    if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
      //if (Verbose)
        fprintf(stderr, "Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
      return false;
    }
  }

  return true;
}

// Cpu architecture string
#if defined(PPC32)
static char cpu_arch[] = "ppc";
#elif defined(PPC64)
static char cpu_arch[] = "ppc64";
#else
#error Add appropriate cpu_arch setting
#endif


// Given an address, returns the size of the page backing that address.
size_t os::Aix::query_pagesize(void* addr) {

  vm_page_info pi;
  pi.addr = (uint64_t)addr;
  if (::vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
    return pi.pagesize;
  } else {
    fprintf(stderr, "vmgetinfo failed to retrieve page size for address %p (errno %d).\n", addr, errno);
    assert(false, "vmgetinfo failed to retrieve page size");
    return SIZE_4K;
  }

}

// Returns the kernel thread id of the currently running thread.
pid_t os::Aix::gettid() {
  return (pid_t) thread_self();
}

void os::Aix::initialize_system_info() {

  // get the number of online(logical) cpus instead of configured
  os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
  assert(_processor_count > 0, "_processor_count must be > 0");

  // retrieve total physical storage
  os::Aix::meminfo_t mi;
  if (!os::Aix::get_meminfo(&mi)) {
    fprintf(stderr, "os::Aix::get_meminfo failed.\n"); fflush(stderr);
    assert(false, "os::Aix::get_meminfo failed.");
  }
  _physical_memory = (julong) mi.real_total;
}

// Helper function for tracing page sizes.
static const char* describe_pagesize(size_t pagesize) {
  switch (pagesize) {
    case SIZE_4K : return "4K";
    case SIZE_64K: return "64K";
    case SIZE_16M: return "16M";
    case SIZE_16G: return "16G";
    default:
      assert(false, "surprise");
      return "??";
  }
}

// Retrieve information about multipage size support. Will initialize
// Aix::_page_size, Aix::_stack_page_size, Aix::_can_use_64K_pages,
// Aix::_can_use_16M_pages.
// Must be called before calling os::large_page_init().
void os::Aix::query_multipage_support() {

  guarantee(_page_size == -1 &&
            _stack_page_size == -1 &&
            _can_use_64K_pages == -1 &&
            _can_use_16M_pages == -1 &&
            g_multipage_error == -1,
            "do not call twice");

  _page_size = ::sysconf(_SC_PAGESIZE);

  // This really would surprise me.
  assert(_page_size == SIZE_4K, "surprise!");


371
  // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
372 373 374 375 376 377
  // Default data page size is influenced either by linker options (-bdatapsize)
  // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
  // default should be 4K.
  size_t data_page_size = SIZE_4K;
  {
    void* p = ::malloc(SIZE_16M);
378
    guarantee(p != NULL, "malloc failed");
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    data_page_size = os::Aix::query_pagesize(p);
    ::free(p);
  }

  // query default shm page size (LDR_CNTRL SHMPSIZE)
  {
    const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
    guarantee(shmid != -1, "shmget failed");
    void* p = ::shmat(shmid, NULL, 0);
    ::shmctl(shmid, IPC_RMID, NULL);
    guarantee(p != (void*) -1, "shmat failed");
    _shm_default_page_size = os::Aix::query_pagesize(p);
    ::shmdt(p);
  }

  // before querying the stack page size, make sure we are not running as primordial
  // thread (because primordial thread's stack may have different page size than
  // pthread thread stacks). Running a VM on the primordial thread won't work for a
  // number of reasons so we may just as well guarantee it here
  guarantee(!os::Aix::is_primordial_thread(), "Must not be called for primordial thread");

  // query stack page size
  {
    int dummy = 0;
    _stack_page_size = os::Aix::query_pagesize(&dummy);
    // everything else would surprise me and should be looked into
    guarantee(_stack_page_size == SIZE_4K || _stack_page_size == SIZE_64K, "Wrong page size");
    // also, just for completeness: pthread stacks are allocated from C heap, so
    // stack page size should be the same as data page size
    guarantee(_stack_page_size == data_page_size, "stack page size should be the same as data page size");
  }

  // EXTSHM is bad: among other things, it prevents setting pagesize dynamically
  // for system V shm.
  if (Aix::extshm()) {
    if (Verbose) {
      fprintf(stderr, "EXTSHM is active - will disable large page support.\n"
                      "Please make sure EXTSHM is OFF for large page support.\n");
    }
    g_multipage_error = ERROR_MP_EXTSHM_ACTIVE;
    _can_use_64K_pages = _can_use_16M_pages = 0;
    goto query_multipage_support_end;
  }

  // now check which page sizes the OS claims it supports, and of those, which actually can be used.
  {
    const int MAX_PAGE_SIZES = 4;
    psize_t sizes[MAX_PAGE_SIZES];
    const int num_psizes = ::vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
    if (num_psizes == -1) {
      if (Verbose) {
        fprintf(stderr, "vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)\n", errno);
        fprintf(stderr, "disabling multipage support.\n");
      }
      g_multipage_error = ERROR_MP_VMGETINFO_FAILED;
      _can_use_64K_pages = _can_use_16M_pages = 0;
      goto query_multipage_support_end;
    }
    guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
    assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
    if (Verbose) {
      fprintf(stderr, "vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
      for (int i = 0; i < num_psizes; i ++) {
        fprintf(stderr, " %s ", describe_pagesize(sizes[i]));
      }
      fprintf(stderr, " .\n");
    }

    // Can we use 64K, 16M pages?
    _can_use_64K_pages = 0;
    _can_use_16M_pages = 0;
    for (int i = 0; i < num_psizes; i ++) {
      if (sizes[i] == SIZE_64K) {
        _can_use_64K_pages = 1;
      } else if (sizes[i] == SIZE_16M) {
        _can_use_16M_pages = 1;
      }
    }

    if (!_can_use_64K_pages) {
      g_multipage_error = ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K;
    }

    // Double-check for 16M pages: Even if AIX claims to be able to use 16M pages,
    // there must be an actual 16M page pool, and we must run with enough rights.
    if (_can_use_16M_pages) {
      const int shmid = ::shmget(IPC_PRIVATE, SIZE_16M, IPC_CREAT | S_IRUSR | S_IWUSR);
      guarantee(shmid != -1, "shmget failed");
      struct shmid_ds shm_buf = { 0 };
      shm_buf.shm_pagesize = SIZE_16M;
      const bool can_set_pagesize = ::shmctl(shmid, SHM_PAGESIZE, &shm_buf) == 0 ? true : false;
      const int en = errno;
      ::shmctl(shmid, IPC_RMID, NULL);
      if (!can_set_pagesize) {
        if (Verbose) {
          fprintf(stderr, "Failed to allocate even one misely 16M page. shmctl failed with %d (%s).\n"
                          "Will deactivate 16M support.\n", en, strerror(en));
        }
        _can_use_16M_pages = 0;
      }
    }

  } // end: check which pages can be used for shared memory

query_multipage_support_end:

  guarantee(_page_size != -1 &&
            _stack_page_size != -1 &&
            _can_use_64K_pages != -1 &&
            _can_use_16M_pages != -1, "Page sizes not properly initialized");

  if (_can_use_64K_pages) {
    g_multipage_error = 0;
  }

  if (Verbose) {
    fprintf(stderr, "Data page size (C-Heap, bss, etc): %s\n", describe_pagesize(data_page_size));
    fprintf(stderr, "Thread stack page size (pthread): %s\n", describe_pagesize(_stack_page_size));
    fprintf(stderr, "Default shared memory page size: %s\n", describe_pagesize(_shm_default_page_size));
    fprintf(stderr, "Can use 64K pages dynamically with shared meory: %s\n", (_can_use_64K_pages ? "yes" :"no"));
    fprintf(stderr, "Can use 16M pages dynamically with shared memory: %s\n", (_can_use_16M_pages ? "yes" :"no"));
    fprintf(stderr, "Multipage error details: %d\n", g_multipage_error);
  }

} // end os::Aix::query_multipage_support()

505
// The code for this method was initially derived from the version in os_linux.cpp.
506
void os::init_system_properties_values() {
507

508 509 510 511
#define DEFAULT_LIBPATH "/usr/lib:/lib"
#define EXTENSIONS_DIR  "/lib/ext"
#define ENDORSED_DIR    "/lib/endorsed"

512 513 514 515 516 517 518 519
  // Buffer that fits several sprintfs.
  // Note that the space for the trailing null is provided
  // by the nulls included by the sizeof operator.
  const size_t bufsize =
    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR), // extensions dir
         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
520

521 522 523 524
  // sysclasspath, java_home, dll_dir
  {
    char *pslash;
    os::jvm_path(buf, bufsize);
525

526 527 528
    // Found the full path to libjvm.so.
    // Now cut the path to <java_home>/jre if we can.
    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
529 530
    pslash = strrchr(buf, '/');
    if (pslash != NULL) {
531 532 533 534 535
      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
    }
    Arguments::set_dll_dir(buf);

    if (pslash != NULL) {
536 537
      pslash = strrchr(buf, '/');
      if (pslash != NULL) {
538 539 540 541 542
        *pslash = '\0';          // Get rid of /<arch>.
        pslash = strrchr(buf, '/');
        if (pslash != NULL) {
          *pslash = '\0';        // Get rid of /lib.
        }
543 544
      }
    }
545 546
    Arguments::set_java_home(buf);
    set_boot_path('/', ':');
547 548
  }

549
  // Where to look for native libraries.
550

551
  // On Aix we get the user setting of LIBPATH.
552
  // Eventually, all the library path setting will be done here.
553 554 555 556 557 558 559 560 561
  // Get the user setting of LIBPATH.
  const char *v = ::getenv("LIBPATH");
  const char *v_colon = ":";
  if (v == NULL) { v = ""; v_colon = ""; }

  // Concatenate user and invariant part of ld_library_path.
  // That's +1 for the colon and +1 for the trailing '\0'.
  char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
  sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
562
  Arguments::set_library_path(ld_library_path);
563
  FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
564

565 566 567
  // Extensions directories.
  sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
  Arguments::set_ext_dirs(buf);
568 569

  // Endorsed standards default directory.
570 571 572 573
  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
  Arguments::set_endorsed_dirs(buf);

  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

#undef DEFAULT_LIBPATH
#undef EXTENSIONS_DIR
#undef ENDORSED_DIR
}

////////////////////////////////////////////////////////////////////////////////
// breakpoint support

void os::breakpoint() {
  BREAKPOINT;
}

extern "C" void breakpoint() {
  // use debugger to set breakpoint here
}

////////////////////////////////////////////////////////////////////////////////
// signal support

debug_only(static bool signal_sets_initialized = false);
static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;

bool os::Aix::is_sig_ignored(int sig) {
  struct sigaction oact;
  sigaction(sig, (struct sigaction*)NULL, &oact);
  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
    : CAST_FROM_FN_PTR(void*, oact.sa_handler);
  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
    return true;
  else
    return false;
}

void os::Aix::signal_sets_init() {
  // Should also have an assertion stating we are still single-threaded.
  assert(!signal_sets_initialized, "Already initialized");
  // Fill in signals that are necessarily unblocked for all threads in
  // the VM. Currently, we unblock the following signals:
  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  //                         by -Xrs (=ReduceSignalUsage));
  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  // the dispositions or masks wrt these signals.
  // Programs embedding the VM that want to use the above signals for their
  // own purposes must, at this time, use the "-Xrs" option to prevent
  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  // (See bug 4345157, and other related bugs).
  // In reality, though, unblocking these signals is really a nop, since
  // these signals are not blocked by default.
  sigemptyset(&unblocked_sigs);
  sigemptyset(&allowdebug_blocked_sigs);
  sigaddset(&unblocked_sigs, SIGILL);
  sigaddset(&unblocked_sigs, SIGSEGV);
  sigaddset(&unblocked_sigs, SIGBUS);
  sigaddset(&unblocked_sigs, SIGFPE);
  sigaddset(&unblocked_sigs, SIGTRAP);
  sigaddset(&unblocked_sigs, SIGDANGER);
  sigaddset(&unblocked_sigs, SR_signum);

  if (!ReduceSignalUsage) {
   if (!os::Aix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
     sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
     sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   }
   if (!os::Aix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
     sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
     sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   }
   if (!os::Aix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
     sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
     sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   }
  }
  // Fill in signals that are blocked by all but the VM thread.
  sigemptyset(&vm_sigs);
  if (!ReduceSignalUsage)
    sigaddset(&vm_sigs, BREAK_SIGNAL);
  debug_only(signal_sets_initialized = true);
}

// These are signals that are unblocked while a thread is running Java.
// (For some reason, they get blocked by default.)
sigset_t* os::Aix::unblocked_signals() {
  assert(signal_sets_initialized, "Not initialized");
  return &unblocked_sigs;
}

// These are the signals that are blocked while a (non-VM) thread is
// running Java. Only the VM thread handles these signals.
sigset_t* os::Aix::vm_signals() {
  assert(signal_sets_initialized, "Not initialized");
  return &vm_sigs;
}

// These are signals that are blocked during cond_wait to allow debugger in
sigset_t* os::Aix::allowdebug_blocked_signals() {
  assert(signal_sets_initialized, "Not initialized");
  return &allowdebug_blocked_sigs;
}

void os::Aix::hotspot_sigmask(Thread* thread) {

  //Save caller's signal mask before setting VM signal mask
  sigset_t caller_sigmask;
  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);

  OSThread* osthread = thread->osthread();
  osthread->set_caller_sigmask(caller_sigmask);

  pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);

  if (!ReduceSignalUsage) {
    if (thread->is_VM_thread()) {
      // Only the VM thread handles BREAK_SIGNAL ...
      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
    } else {
      // ... all other threads block BREAK_SIGNAL
      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
    }
  }
}

// retrieve memory information.
// Returns false if something went wrong;
// content of pmi undefined in this case.
bool os::Aix::get_meminfo(meminfo_t* pmi) {

  assert(pmi, "get_meminfo: invalid parameter");

  memset(pmi, 0, sizeof(meminfo_t));

  if (os::Aix::on_pase()) {

    Unimplemented();
    return false;

  } else {

    // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
    // See:
    // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
    //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
    // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
    //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm

    perfstat_memory_total_t psmt;
    memset (&psmt, '\0', sizeof(psmt));
    const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
    if (rc == -1) {
      fprintf(stderr, "perfstat_memory_total() failed (errno=%d)\n", errno);
      assert(0, "perfstat_memory_total() failed");
      return false;
    }

    assert(rc == 1, "perfstat_memory_total() - weird return code");

    // excerpt from
    // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
    //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
    // The fields of perfstat_memory_total_t:
    // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
    // u_longlong_t real_total         Total real memory (in 4 KB pages).
    // u_longlong_t real_free          Free real memory (in 4 KB pages).
    // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
    // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).

    pmi->virt_total = psmt.virt_total * 4096;
    pmi->real_total = psmt.real_total * 4096;
    pmi->real_free = psmt.real_free * 4096;
    pmi->pgsp_total = psmt.pgsp_total * 4096;
    pmi->pgsp_free = psmt.pgsp_free * 4096;

    return true;

  }
} // end os::Aix::get_meminfo

// Retrieve global cpu information.
// Returns false if something went wrong;
// the content of pci is undefined in this case.
bool os::Aix::get_cpuinfo(cpuinfo_t* pci) {
  assert(pci, "get_cpuinfo: invalid parameter");
  memset(pci, 0, sizeof(cpuinfo_t));

  perfstat_cpu_total_t psct;
  memset (&psct, '\0', sizeof(psct));

  if (-1 == libperfstat::perfstat_cpu_total(NULL, &psct, sizeof(perfstat_cpu_total_t), 1)) {
    fprintf(stderr, "perfstat_cpu_total() failed (errno=%d)\n", errno);
    assert(0, "perfstat_cpu_total() failed");
    return false;
  }

  // global cpu information
  strcpy (pci->description, psct.description);
  pci->processorHZ = psct.processorHZ;
  pci->ncpus = psct.ncpus;
  os::Aix::_logical_cpus = psct.ncpus;
  for (int i = 0; i < 3; i++) {
    pci->loadavg[i] = (double) psct.loadavg[i] / (1 << SBITS);
  }

  // get the processor version from _system_configuration
  switch (_system_configuration.version) {
  case PV_7:
    strcpy(pci->version, "Power PC 7");
    break;
  case PV_6_1:
    strcpy(pci->version, "Power PC 6 DD1.x");
    break;
  case PV_6:
    strcpy(pci->version, "Power PC 6");
    break;
  case PV_5:
    strcpy(pci->version, "Power PC 5");
    break;
  case PV_5_2:
    strcpy(pci->version, "Power PC 5_2");
    break;
  case PV_5_3:
    strcpy(pci->version, "Power PC 5_3");
    break;
  case PV_5_Compat:
    strcpy(pci->version, "PV_5_Compat");
    break;
  case PV_6_Compat:
    strcpy(pci->version, "PV_6_Compat");
    break;
  case PV_7_Compat:
    strcpy(pci->version, "PV_7_Compat");
    break;
  default:
    strcpy(pci->version, "unknown");
  }

  return true;

} //end os::Aix::get_cpuinfo

//////////////////////////////////////////////////////////////////////////////
// detecting pthread library

void os::Aix::libpthread_init() {
  return;
}

//////////////////////////////////////////////////////////////////////////////
// create new thread

// Thread start routine for all newly created threads
static void *java_start(Thread *thread) {

  // find out my own stack dimensions
  {
    // actually, this should do exactly the same as thread->record_stack_base_and_size...
    address base = 0;
    size_t size = 0;
    query_stack_dimensions(&base, &size);
    thread->set_stack_base(base);
    thread->set_stack_size(size);
  }

  // Do some sanity checks.
  CHECK_CURRENT_STACK_PTR(thread->stack_base(), thread->stack_size());

  // Try to randomize the cache line index of hot stack frames.
  // This helps when threads of the same stack traces evict each other's
  // cache lines. The threads can be either from the same JVM instance, or
  // from different JVM instances. The benefit is especially true for
  // processors with hyperthreading technology.

  static int counter = 0;
  int pid = os::current_process_id();
  alloca(((pid ^ counter++) & 7) * 128);

  ThreadLocalStorage::set_thread(thread);

  OSThread* osthread = thread->osthread();

  // thread_id is kernel thread id (similar to Solaris LWP id)
  osthread->set_thread_id(os::Aix::gettid());

  // initialize signal mask for this thread
  os::Aix::hotspot_sigmask(thread);

  // initialize floating point control register
  os::Aix::init_thread_fpu_state();

  assert(osthread->get_state() == RUNNABLE, "invalid os thread state");

  // call one more level start routine
  thread->run();

  return 0;
}

bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {

  // We want the whole function to be synchronized.
  ThreadCritical cs;

  assert(thread->osthread() == NULL, "caller responsible");

  // Allocate the OSThread object
  OSThread* osthread = new OSThread(NULL, NULL);
  if (osthread == NULL) {
    return false;
  }

  // set the correct thread state
  osthread->set_thread_type(thr_type);

  // Initial state is ALLOCATED but not INITIALIZED
  osthread->set_state(ALLOCATED);

  thread->set_osthread(osthread);

  // init thread attributes
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");

  // Make sure we run in 1:1 kernel-user-thread mode.
  if (os::Aix::on_aix()) {
    guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
    guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
  } // end: aix

  // Start in suspended state, and in os::thread_start, wake the thread up.
  guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");

  // calculate stack size if it's not specified by caller
  if (os::Aix::supports_variable_stack_size()) {
    if (stack_size == 0) {
      stack_size = os::Aix::default_stack_size(thr_type);

      switch (thr_type) {
      case os::java_thread:
        // Java threads use ThreadStackSize whose default value can be changed with the flag -Xss.
        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
        stack_size = JavaThread::stack_size_at_create();
        break;
      case os::compiler_thread:
        if (CompilerThreadStackSize > 0) {
          stack_size = (size_t)(CompilerThreadStackSize * K);
          break;
        } // else fall through:
          // use VMThreadStackSize if CompilerThreadStackSize is not defined
      case os::vm_thread:
      case os::pgc_thread:
      case os::cgc_thread:
      case os::watcher_thread:
        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
        break;
      }
    }

    stack_size = MAX2(stack_size, os::Aix::min_stack_allowed);
    pthread_attr_setstacksize(&attr, stack_size);
  } //else let thread_create() pick the default value (96 K on AIX)

  pthread_t tid;
  int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);

  pthread_attr_destroy(&attr);

  if (ret != 0) {
    if (PrintMiscellaneous && (Verbose || WizardMode)) {
      perror("pthread_create()");
    }
    // Need to clean up stuff we've allocated so far
    thread->set_osthread(NULL);
    delete osthread;
    return false;
  }

  // Store pthread info into the OSThread
  osthread->set_pthread_id(tid);

  return true;
}

/////////////////////////////////////////////////////////////////////////////
// attach existing thread

// bootstrap the main thread
bool os::create_main_thread(JavaThread* thread) {
  assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
  return create_attached_thread(thread);
}

bool os::create_attached_thread(JavaThread* thread) {
#ifdef ASSERT
    thread->verify_not_published();
#endif

  // Allocate the OSThread object
  OSThread* osthread = new OSThread(NULL, NULL);

  if (osthread == NULL) {
    return false;
  }

  // Store pthread info into the OSThread
  osthread->set_thread_id(os::Aix::gettid());
  osthread->set_pthread_id(::pthread_self());

  // initialize floating point control register
  os::Aix::init_thread_fpu_state();

  // some sanity checks
  CHECK_CURRENT_STACK_PTR(thread->stack_base(), thread->stack_size());

  // Initial thread state is RUNNABLE
  osthread->set_state(RUNNABLE);

  thread->set_osthread(osthread);

  if (UseNUMA) {
    int lgrp_id = os::numa_get_group_id();
    if (lgrp_id != -1) {
      thread->set_lgrp_id(lgrp_id);
    }
  }

  // initialize signal mask for this thread
  // and save the caller's signal mask
  os::Aix::hotspot_sigmask(thread);

  return true;
}

void os::pd_start_thread(Thread* thread) {
  int status = pthread_continue_np(thread->osthread()->pthread_id());
  assert(status == 0, "thr_continue failed");
}

// Free OS resources related to the OSThread
void os::free_thread(OSThread* osthread) {
  assert(osthread != NULL, "osthread not set");

  if (Thread::current()->osthread() == osthread) {
    // Restore caller's signal mask
    sigset_t sigmask = osthread->caller_sigmask();
    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   }

  delete osthread;
}

//////////////////////////////////////////////////////////////////////////////
// thread local storage

int os::allocate_thread_local_storage() {
  pthread_key_t key;
  int rslt = pthread_key_create(&key, NULL);
  assert(rslt == 0, "cannot allocate thread local storage");
  return (int)key;
}

// Note: This is currently not used by VM, as we don't destroy TLS key
// on VM exit.
void os::free_thread_local_storage(int index) {
  int rslt = pthread_key_delete((pthread_key_t)index);
  assert(rslt == 0, "invalid index");
}

void os::thread_local_storage_at_put(int index, void* value) {
  int rslt = pthread_setspecific((pthread_key_t)index, value);
  assert(rslt == 0, "pthread_setspecific failed");
}

extern "C" Thread* get_thread() {
  return ThreadLocalStorage::thread();
}

////////////////////////////////////////////////////////////////////////////////
// time support

// Time since start-up in seconds to a fine granularity.
// Used by VMSelfDestructTimer and the MemProfiler.
double os::elapsedTime() {
  return (double)(os::elapsed_counter()) * 0.000001;
}

jlong os::elapsed_counter() {
  timeval time;
  int status = gettimeofday(&time, NULL);
  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
}

jlong os::elapsed_frequency() {
  return (1000 * 1000);
}

// For now, we say that linux does not support vtime. I have no idea
// whether it can actually be made to (DLD, 9/13/05).

bool os::supports_vtime() { return false; }
bool os::enable_vtime()   { return false; }
bool os::vtime_enabled()  { return false; }
double os::elapsedVTime() {
  // better than nothing, but not much
  return elapsedTime();
}

jlong os::javaTimeMillis() {
  timeval time;
  int status = gettimeofday(&time, NULL);
  assert(status != -1, "aix error at gettimeofday()");
  return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
}

// We need to manually declare mread_real_time,
// because IBM didn't provide a prototype in time.h.
// (they probably only ever tested in C, not C++)
extern "C"
int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);

jlong os::javaTimeNanos() {
  if (os::Aix::on_pase()) {
    Unimplemented();
    return 0;
  }
  else {
    // On AIX use the precision of processors real time clock
    // or time base registers.
    timebasestruct_t time;
    int rc;

    // If the CPU has a time register, it will be used and
    // we have to convert to real time first. After convertion we have following data:
    // time.tb_high [seconds since 00:00:00 UTC on 1.1.1970]
    // time.tb_low  [nanoseconds after the last full second above]
    // We better use mread_real_time here instead of read_real_time
    // to ensure that we will get a monotonic increasing time.
    if (mread_real_time(&time, TIMEBASE_SZ) != RTC_POWER) {
      rc = time_base_to_time(&time, TIMEBASE_SZ);
      assert(rc != -1, "aix error at time_base_to_time()");
    }
    return jlong(time.tb_high) * (1000 * 1000 * 1000) + jlong(time.tb_low);
  }
}

void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  {
    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
    info_ptr->max_value = ALL_64_BITS;

    // gettimeofday is a real time clock so it skips
    info_ptr->may_skip_backward = true;
    info_ptr->may_skip_forward = true;
  }

  info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
}

// Return the real, user, and system times in seconds from an
// arbitrary fixed point in the past.
bool os::getTimesSecs(double* process_real_time,
                      double* process_user_time,
                      double* process_system_time) {
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
  struct tms ticks;
  clock_t real_ticks = times(&ticks);

  if (real_ticks == (clock_t) (-1)) {
    return false;
  } else {
    double ticks_per_second = (double) clock_tics_per_sec;
    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
    *process_real_time = ((double) real_ticks) / ticks_per_second;

    return true;
  }
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
}


char * os::local_time_string(char *buf, size_t buflen) {
  struct tm t;
  time_t long_time;
  time(&long_time);
  localtime_r(&long_time, &t);
  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
               t.tm_hour, t.tm_min, t.tm_sec);
  return buf;
}

struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
  return localtime_r(clock, res);
}

////////////////////////////////////////////////////////////////////////////////
// runtime exit support

// Note: os::shutdown() might be called very early during initialization, or
// called from signal handler. Before adding something to os::shutdown(), make
// sure it is async-safe and can handle partially initialized VM.
void os::shutdown() {

  // allow PerfMemory to attempt cleanup of any persistent resources
  perfMemory_exit();

  // needs to remove object in file system
  AttachListener::abort();

  // flush buffered output, finish log files
  ostream_abort();

  // Check for abort hook
  abort_hook_t abort_hook = Arguments::abort_hook();
  if (abort_hook != NULL) {
    abort_hook();
  }

}

// Note: os::abort() might be called very early during initialization, or
// called from signal handler. Before adding something to os::abort(), make
// sure it is async-safe and can handle partially initialized VM.
void os::abort(bool dump_core) {
  os::shutdown();
  if (dump_core) {
#ifndef PRODUCT
    fdStream out(defaultStream::output_fd());
    out.print_raw("Current thread is ");
    char buf[16];
    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
    out.print_raw_cr(buf);
    out.print_raw_cr("Dumping core ...");
#endif
    ::abort(); // dump core
  }

  ::exit(1);
}

// Die immediately, no exit hook, no abort hook, no cleanup.
void os::die() {
  ::abort();
}

// This method is a copy of JDK's sysGetLastErrorString
// from src/solaris/hpi/src/system_md.c

size_t os::lasterror(char *buf, size_t len) {

  if (errno == 0)  return 0;

  const char *s = ::strerror(errno);
  size_t n = ::strlen(s);
  if (n >= len) {
    n = len - 1;
  }
  ::strncpy(buf, s, n);
  buf[n] = '\0';
  return n;
}

intx os::current_thread_id() { return (intx)pthread_self(); }
int os::current_process_id() {

  // This implementation returns a unique pid, the pid of the
  // launcher thread that starts the vm 'process'.

  // Under POSIX, getpid() returns the same pid as the
  // launcher thread rather than a unique pid per thread.
  // Use gettid() if you want the old pre NPTL behaviour.

  // if you are looking for the result of a call to getpid() that
  // returns a unique pid for the calling thread, then look at the
  // OSThread::thread_id() method in osThread_linux.hpp file

  return (int)(_initial_pid ? _initial_pid : getpid());
}

// DLL functions

const char* os::dll_file_extension() { return ".so"; }

// This must be hard coded because it's the system's temporary
// directory not the java application's temp directory, ala java.io.tmpdir.
const char* os::get_temp_directory() { return "/tmp"; }

static bool file_exists(const char* filename) {
  struct stat statbuf;
  if (filename == NULL || strlen(filename) == 0) {
    return false;
  }
  return os::stat(filename, &statbuf) == 0;
}

bool os::dll_build_name(char* buffer, size_t buflen,
                        const char* pname, const char* fname) {
  bool retval = false;
  // Copied from libhpi
  const size_t pnamelen = pname ? strlen(pname) : 0;

  // Return error on buffer overflow.
  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
    *buffer = '\0';
    return retval;
  }

  if (pnamelen == 0) {
    snprintf(buffer, buflen, "lib%s.so", fname);
    retval = true;
  } else if (strchr(pname, *os::path_separator()) != NULL) {
    int n;
    char** pelements = split_path(pname, &n);
    for (int i = 0; i < n; i++) {
      // Really shouldn't be NULL, but check can't hurt
      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
        continue; // skip the empty path values
      }
      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
      if (file_exists(buffer)) {
        retval = true;
        break;
      }
    }
    // release the storage
    for (int i = 0; i < n; i++) {
      if (pelements[i] != NULL) {
        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
      }
    }
    if (pelements != NULL) {
      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
    }
  } else {
    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
    retval = true;
  }
  return retval;
}

// Check if addr is inside libjvm.so.
bool os::address_is_in_vm(address addr) {

  // Input could be a real pc or a function pointer literal. The latter
  // would be a function descriptor residing in the data segment of a module.

  const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(addr);
  if (lib) {
    if (strcmp(lib->get_shortname(), "libjvm.so") == 0) {
      return true;
    } else {
      return false;
    }
  } else {
    lib = LoadedLibraries::find_for_data_address(addr);
    if (lib) {
      if (strcmp(lib->get_shortname(), "libjvm.so") == 0) {
        return true;
      } else {
        return false;
      }
    } else {
      return false;
    }
  }
}

// Resolve an AIX function descriptor literal to a code pointer.
// If the input is a valid code pointer to a text segment of a loaded module,
//   it is returned unchanged.
// If the input is a valid AIX function descriptor, it is resolved to the
//   code entry point.
// If the input is neither a valid function descriptor nor a valid code pointer,
//   NULL is returned.
static address resolve_function_descriptor_to_code_pointer(address p) {

  const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(p);
  if (lib) {
    // its a real code pointer
    return p;
  } else {
    lib = LoadedLibraries::find_for_data_address(p);
    if (lib) {
      // pointer to data segment, potential function descriptor
      address code_entry = (address)(((FunctionDescriptor*)p)->entry());
      if (LoadedLibraries::find_for_text_address(code_entry)) {
        // Its a function descriptor
        return code_entry;
      }
    }
  }
  return NULL;
}

bool os::dll_address_to_function_name(address addr, char *buf,
                                      int buflen, int *offset) {
  if (offset) {
    *offset = -1;
  }
  if (buf) {
    buf[0] = '\0';
  }

  // Resolve function ptr literals first.
  addr = resolve_function_descriptor_to_code_pointer(addr);
  if (!addr) {
    return false;
  }

  // Go through Decoder::decode to call getFuncName which reads the name from the traceback table.
  return Decoder::decode(addr, buf, buflen, offset);
}

static int getModuleName(codeptr_t pc,                    // [in] program counter
                         char* p_name, size_t namelen,    // [out] optional: function name
                         char* p_errmsg, size_t errmsglen // [out] optional: user provided buffer for error messages
                         ) {

  // initialize output parameters
  if (p_name && namelen > 0) {
    *p_name = '\0';
  }
  if (p_errmsg && errmsglen > 0) {
    *p_errmsg = '\0';
  }

  const LoadedLibraryModule* const lib = LoadedLibraries::find_for_text_address((address)pc);
  if (lib) {
    if (p_name && namelen > 0) {
      sprintf(p_name, "%.*s", namelen, lib->get_shortname());
    }
    return 0;
  }

  if (Verbose) {
    fprintf(stderr, "pc outside any module");
  }

  return -1;

}

bool os::dll_address_to_library_name(address addr, char* buf,
                                     int buflen, int* offset) {
  if (offset) {
    *offset = -1;
  }
  if (buf) {
      buf[0] = '\0';
  }

  // Resolve function ptr literals first.
  addr = resolve_function_descriptor_to_code_pointer(addr);
  if (!addr) {
    return false;
  }

  if (::getModuleName((codeptr_t) addr, buf, buflen, 0, 0) == 0) {
    return true;
  }
  return false;
}

// Loads .dll/.so and in case of error it checks if .dll/.so was built
// for the same architecture as Hotspot is running on
void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {

  if (ebuf && ebuflen > 0) {
    ebuf[0] = '\0';
    ebuf[ebuflen - 1] = '\0';
  }

  if (!filename || strlen(filename) == 0) {
    ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
    return NULL;
  }

  // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
  void * result= ::dlopen(filename, RTLD_LAZY);
  if (result != NULL) {
    // Reload dll cache. Don't do this in signal handling.
    LoadedLibraries::reload();
    return result;
  } else {
    // error analysis when dlopen fails
    const char* const error_report = ::dlerror();
    if (error_report && ebuf && ebuflen > 0) {
      snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
               filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
    }
  }
  return NULL;
}

// Glibc-2.0 libdl is not MT safe. If you are building with any glibc,
// chances are you might want to run the generated bits against glibc-2.0
// libdl.so, so always use locking for any version of glibc.
void* os::dll_lookup(void* handle, const char* name) {
  pthread_mutex_lock(&dl_mutex);
  void* res = dlsym(handle, name);
  pthread_mutex_unlock(&dl_mutex);
  return res;
}

1477 1478 1479 1480
void* os::get_default_process_handle() {
  return (void*)::dlopen(NULL, RTLD_LAZY);
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
void os::print_dll_info(outputStream *st) {
  st->print_cr("Dynamic libraries:");
  LoadedLibraries::print(st);
}

void os::print_os_info(outputStream* st) {
  st->print("OS:");

  st->print("uname:");
  struct utsname name;
  uname(&name);
  st->print(name.sysname); st->print(" ");
  st->print(name.nodename); st->print(" ");
  st->print(name.release); st->print(" ");
  st->print(name.version); st->print(" ");
  st->print(name.machine);
  st->cr();

  // rlimit
  st->print("rlimit:");
  struct rlimit rlim;

  st->print(" STACK ");
  getrlimit(RLIMIT_STACK, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%uk", rlim.rlim_cur >> 10);

  st->print(", CORE ");
  getrlimit(RLIMIT_CORE, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%uk", rlim.rlim_cur >> 10);

  st->print(", NPROC ");
  st->print("%d", sysconf(_SC_CHILD_MAX));

  st->print(", NOFILE ");
  getrlimit(RLIMIT_NOFILE, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%d", rlim.rlim_cur);

  st->print(", AS ");
  getrlimit(RLIMIT_AS, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%uk", rlim.rlim_cur >> 10);

  // Print limits on DATA, because it limits the C-heap.
  st->print(", DATA ");
  getrlimit(RLIMIT_DATA, &rlim);
  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  else st->print("%uk", rlim.rlim_cur >> 10);
  st->cr();

  // load average
  st->print("load average:");
  double loadavg[3] = {-1.L, -1.L, -1.L};
  os::loadavg(loadavg, 3);
  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  st->cr();
}

void os::print_memory_info(outputStream* st) {

  st->print_cr("Memory:");

  st->print_cr("  default page size: %s", describe_pagesize(os::vm_page_size()));
  st->print_cr("  default stack page size: %s", describe_pagesize(os::vm_page_size()));
  st->print_cr("  default shm page size: %s", describe_pagesize(os::Aix::shm_default_page_size()));
  st->print_cr("  can use 64K pages dynamically: %s", (os::Aix::can_use_64K_pages() ? "yes" :"no"));
  st->print_cr("  can use 16M pages dynamically: %s", (os::Aix::can_use_16M_pages() ? "yes" :"no"));
  if (g_multipage_error != 0) {
    st->print_cr("  multipage error: %d", g_multipage_error);
  }

  // print out LDR_CNTRL because it affects the default page sizes
  const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
  st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");

  const char* const extshm = ::getenv("EXTSHM");
  st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");

  // Call os::Aix::get_meminfo() to retrieve memory statistics.
  os::Aix::meminfo_t mi;
  if (os::Aix::get_meminfo(&mi)) {
    char buffer[256];
    if (os::Aix::on_aix()) {
      jio_snprintf(buffer, sizeof(buffer),
                   "  physical total : %llu\n"
                   "  physical free  : %llu\n"
                   "  swap total     : %llu\n"
                   "  swap free      : %llu\n",
                   mi.real_total,
                   mi.real_free,
                   mi.pgsp_total,
                   mi.pgsp_free);
    } else {
      Unimplemented();
    }
    st->print_raw(buffer);
  } else {
    st->print_cr("  (no more information available)");
  }
}

void os::pd_print_cpu_info(outputStream* st) {
  // cpu
  st->print("CPU:");
  st->print("total %d", os::processor_count());
  // It's not safe to query number of active processors after crash
  // st->print("(active %d)", os::active_processor_count());
  st->print(" %s", VM_Version::cpu_features());
  st->cr();
}

void os::print_siginfo(outputStream* st, void* siginfo) {
  // Use common posix version.
  os::Posix::print_siginfo_brief(st, (const siginfo_t*) siginfo);
  st->cr();
}


static void print_signal_handler(outputStream* st, int sig,
                                 char* buf, size_t buflen);

void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  st->print_cr("Signal Handlers:");
  print_signal_handler(st, SIGSEGV, buf, buflen);
  print_signal_handler(st, SIGBUS , buf, buflen);
  print_signal_handler(st, SIGFPE , buf, buflen);
  print_signal_handler(st, SIGPIPE, buf, buflen);
  print_signal_handler(st, SIGXFSZ, buf, buflen);
  print_signal_handler(st, SIGILL , buf, buflen);
  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  print_signal_handler(st, SR_signum, buf, buflen);
  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  print_signal_handler(st, SIGTRAP, buf, buflen);
  print_signal_handler(st, SIGDANGER, buf, buflen);
}

static char saved_jvm_path[MAXPATHLEN] = {0};

// Find the full path to the current module, libjvm.so or libjvm_g.so
void os::jvm_path(char *buf, jint buflen) {
  // Error checking.
  if (buflen < MAXPATHLEN) {
    assert(false, "must use a large-enough buffer");
    buf[0] = '\0';
    return;
  }
  // Lazy resolve the path to current module.
  if (saved_jvm_path[0] != 0) {
    strcpy(buf, saved_jvm_path);
    return;
  }

  Dl_info dlinfo;
  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  assert(ret != 0, "cannot locate libjvm");
  char* rp = realpath((char *)dlinfo.dli_fname, buf);
  assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");

  strcpy(saved_jvm_path, buf);
}

void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  // no prefix required, not even "_"
}

void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  // no suffix required
}

////////////////////////////////////////////////////////////////////////////////
// sun.misc.Signal support

static volatile jint sigint_count = 0;

static void
UserHandler(int sig, void *siginfo, void *context) {
  // 4511530 - sem_post is serialized and handled by the manager thread. When
  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  // don't want to flood the manager thread with sem_post requests.
  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
    return;

  // Ctrl-C is pressed during error reporting, likely because the error
  // handler fails to abort. Let VM die immediately.
  if (sig == SIGINT && is_error_reported()) {
    os::die();
  }

  os::signal_notify(sig);
}

void* os::user_handler() {
  return CAST_FROM_FN_PTR(void*, UserHandler);
}

extern "C" {
  typedef void (*sa_handler_t)(int);
  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
}

void* os::signal(int signal_number, void* handler) {
  struct sigaction sigAct, oldSigAct;

  sigfillset(&(sigAct.sa_mask));

  // Do not block out synchronous signals in the signal handler.
  // Blocking synchronous signals only makes sense if you can really
  // be sure that those signals won't happen during signal handling,
  // when the blocking applies.  Normal signal handlers are lean and
  // do not cause signals. But our signal handlers tend to be "risky"
  // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
  // On AIX, PASE there was a case where a SIGSEGV happened, followed
  // by a SIGILL, which was blocked due to the signal mask. The process
  // just hung forever. Better to crash from a secondary signal than to hang.
  sigdelset(&(sigAct.sa_mask), SIGSEGV);
  sigdelset(&(sigAct.sa_mask), SIGBUS);
  sigdelset(&(sigAct.sa_mask), SIGILL);
  sigdelset(&(sigAct.sa_mask), SIGFPE);
  sigdelset(&(sigAct.sa_mask), SIGTRAP);

  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;

  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);

  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
    // -1 means registration failed
    return (void *)-1;
  }

  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
}

void os::signal_raise(int signal_number) {
  ::raise(signal_number);
}

//
// The following code is moved from os.cpp for making this
// code platform specific, which it is by its very nature.
//

// Will be modified when max signal is changed to be dynamic
int os::sigexitnum_pd() {
  return NSIG;
}

// a counter for each possible signal value
static volatile jint pending_signals[NSIG+1] = { 0 };

// Linux(POSIX) specific hand shaking semaphore.
static sem_t sig_sem;

void os::signal_init_pd() {
  // Initialize signal structures
  ::memset((void*)pending_signals, 0, sizeof(pending_signals));

  // Initialize signal semaphore
  int rc = ::sem_init(&sig_sem, 0, 0);
  guarantee(rc != -1, "sem_init failed");
}

void os::signal_notify(int sig) {
  Atomic::inc(&pending_signals[sig]);
  ::sem_post(&sig_sem);
}

static int check_pending_signals(bool wait) {
  Atomic::store(0, &sigint_count);
  for (;;) {
    for (int i = 0; i < NSIG + 1; i++) {
      jint n = pending_signals[i];
      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
        return i;
      }
    }
    if (!wait) {
      return -1;
    }
    JavaThread *thread = JavaThread::current();
    ThreadBlockInVM tbivm(thread);

    bool threadIsSuspended;
    do {
      thread->set_suspend_equivalent();
      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()

      ::sem_wait(&sig_sem);

      // were we externally suspended while we were waiting?
      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
      if (threadIsSuspended) {
        //
        // The semaphore has been incremented, but while we were waiting
        // another thread suspended us. We don't want to continue running
        // while suspended because that would surprise the thread that
        // suspended us.
        //
        ::sem_post(&sig_sem);

        thread->java_suspend_self();
      }
    } while (threadIsSuspended);
  }
}

int os::signal_lookup() {
  return check_pending_signals(false);
}

int os::signal_wait() {
  return check_pending_signals(true);
}

////////////////////////////////////////////////////////////////////////////////
// Virtual Memory

// AddrRange describes an immutable address range
//
// This is a helper class for the 'shared memory bookkeeping' below.
class AddrRange {
  friend class ShmBkBlock;

  char* _start;
  size_t _size;

public:

  AddrRange(char* start, size_t size)
    : _start(start), _size(size)
  {}

  AddrRange(const AddrRange& r)
    : _start(r.start()), _size(r.size())
  {}

  char* start() const { return _start; }
  size_t size() const { return _size; }
  char* end() const { return _start + _size; }
  bool is_empty() const { return _size == 0 ? true : false; }

  static AddrRange empty_range() { return AddrRange(NULL, 0); }

  bool contains(const char* p) const {
    return start() <= p && end() > p;
  }

  bool contains(const AddrRange& range) const {
    return start() <= range.start() && end() >= range.end();
  }

  bool intersects(const AddrRange& range) const {
    return (range.start() <= start() && range.end() > start()) ||
           (range.start() < end() && range.end() >= end()) ||
           contains(range);
  }

  bool is_same_range(const AddrRange& range) const {
    return start() == range.start() && size() == range.size();
  }

  // return the closest inside range consisting of whole pages
  AddrRange find_closest_aligned_range(size_t pagesize) const {
    if (pagesize == 0 || is_empty()) {
      return empty_range();
    }
    char* const from = (char*)align_size_up((intptr_t)_start, pagesize);
    char* const to = (char*)align_size_down((intptr_t)end(), pagesize);
    if (from > to) {
      return empty_range();
    }
    return AddrRange(from, to - from);
  }
};

////////////////////////////////////////////////////////////////////////////
// shared memory bookkeeping
//
// the os::reserve_memory() API and friends hand out different kind of memory, depending
// on need and circumstances. Memory may be allocated with mmap() or with shmget/shmat.
//
// But these memory types have to be treated differently. For example, to uncommit
// mmap-based memory, msync(MS_INVALIDATE) is needed, to uncommit shmat-based memory,
// disclaim64() is needed.
//
// Therefore we need to keep track of the allocated memory segments and their
// properties.

// ShmBkBlock: base class for all blocks in the shared memory bookkeeping
class ShmBkBlock {

  ShmBkBlock* _next;

protected:

  AddrRange _range;
  const size_t _pagesize;
  const bool _pinned;

public:

  ShmBkBlock(AddrRange range, size_t pagesize, bool pinned)
    : _range(range), _pagesize(pagesize), _pinned(pinned) , _next(NULL) {

    assert(_pagesize == SIZE_4K || _pagesize == SIZE_64K || _pagesize == SIZE_16M, "invalid page size");
    assert(!_range.is_empty(), "invalid range");
  }

  virtual void print(outputStream* st) const {
    st->print("0x%p ... 0x%p (%llu) - %d %s pages - %s",
              _range.start(), _range.end(), _range.size(),
              _range.size() / _pagesize, describe_pagesize(_pagesize),
              _pinned ? "pinned" : "");
  }

  enum Type { MMAP, SHMAT };
  virtual Type getType() = 0;

  char* base() const { return _range.start(); }
  size_t size() const { return _range.size(); }

  void setAddrRange(AddrRange range) {
    _range = range;
  }

  bool containsAddress(const char* p) const {
    return _range.contains(p);
  }

  bool containsRange(const char* p, size_t size) const {
    return _range.contains(AddrRange((char*)p, size));
  }

  bool isSameRange(const char* p, size_t size) const {
    return _range.is_same_range(AddrRange((char*)p, size));
  }

  virtual bool disclaim(char* p, size_t size) = 0;
  virtual bool release() = 0;

  // blocks live in a list.
  ShmBkBlock* next() const { return _next; }
  void set_next(ShmBkBlock* blk) { _next = blk; }

}; // end: ShmBkBlock


// ShmBkMappedBlock: describes an block allocated with mmap()
class ShmBkMappedBlock : public ShmBkBlock {
public:

  ShmBkMappedBlock(AddrRange range)
    : ShmBkBlock(range, SIZE_4K, false) {} // mmap: always 4K, never pinned

  void print(outputStream* st) const {
    ShmBkBlock::print(st);
    st->print_cr(" - mmap'ed");
  }

  Type getType() {
    return MMAP;
  }

  bool disclaim(char* p, size_t size) {

    AddrRange r(p, size);

    guarantee(_range.contains(r), "invalid disclaim");

    // only disclaim whole ranges.
    const AddrRange r2 = r.find_closest_aligned_range(_pagesize);
    if (r2.is_empty()) {
      return true;
    }

    const int rc = ::msync(r2.start(), r2.size(), MS_INVALIDATE);

    if (rc != 0) {
      warning("msync(0x%p, %llu, MS_INVALIDATE) failed (%d)\n", r2.start(), r2.size(), errno);
    }

    return rc == 0 ? true : false;
  }

  bool release() {
    // mmap'ed blocks are released using munmap
    if (::munmap(_range.start(), _range.size()) != 0) {
      warning("munmap(0x%p, %llu) failed (%d)\n", _range.start(), _range.size(), errno);
      return false;
    }
    return true;
  }
}; // end: ShmBkMappedBlock

// ShmBkShmatedBlock: describes an block allocated with shmget/shmat()
class ShmBkShmatedBlock : public ShmBkBlock {
public:

  ShmBkShmatedBlock(AddrRange range, size_t pagesize, bool pinned)
    : ShmBkBlock(range, pagesize, pinned) {}

  void print(outputStream* st) const {
    ShmBkBlock::print(st);
    st->print_cr(" - shmat'ed");
  }

  Type getType() {
    return SHMAT;
  }

  bool disclaim(char* p, size_t size) {

    AddrRange r(p, size);

    if (_pinned) {
      return true;
    }

    // shmat'ed blocks are disclaimed using disclaim64
    guarantee(_range.contains(r), "invalid disclaim");

    // only disclaim whole ranges.
    const AddrRange r2 = r.find_closest_aligned_range(_pagesize);
    if (r2.is_empty()) {
      return true;
    }

    const bool rc = my_disclaim64(r2.start(), r2.size());

    if (Verbose && !rc) {
      warning("failed to disclaim shm %p-%p\n", r2.start(), r2.end());
    }

    return rc;
  }

  bool release() {
    bool rc = false;
    if (::shmdt(_range.start()) != 0) {
      warning("shmdt(0x%p) failed (%d)\n", _range.start(), errno);
    } else {
      rc = true;
    }
    return rc;
  }

}; // end: ShmBkShmatedBlock

static ShmBkBlock* g_shmbk_list = NULL;
static volatile jint g_shmbk_table_lock = 0;

// keep some usage statistics
static struct {
  int nodes;    // number of nodes in list
  size_t bytes; // reserved - not committed - bytes.
  int reserves; // how often reserve was called
  int lookups;  // how often a lookup was made
} g_shmbk_stats = { 0, 0, 0, 0 };

// add information about a shared memory segment to the bookkeeping
static void shmbk_register(ShmBkBlock* p_block) {
  guarantee(p_block, "logic error");
  p_block->set_next(g_shmbk_list);
  g_shmbk_list = p_block;
  g_shmbk_stats.reserves ++;
  g_shmbk_stats.bytes += p_block->size();
  g_shmbk_stats.nodes ++;
}

// remove information about a shared memory segment by its starting address
static void shmbk_unregister(ShmBkBlock* p_block) {
  ShmBkBlock* p = g_shmbk_list;
  ShmBkBlock* prev = NULL;
  while (p) {
    if (p == p_block) {
      if (prev) {
        prev->set_next(p->next());
      } else {
        g_shmbk_list = p->next();
      }
      g_shmbk_stats.nodes --;
      g_shmbk_stats.bytes -= p->size();
      return;
    }
    prev = p;
    p = p->next();
  }
  assert(false, "should not happen");
}

// given a pointer, return shared memory bookkeeping record for the segment it points into
// using the returned block info must happen under lock protection
static ShmBkBlock* shmbk_find_by_containing_address(const char* addr) {
  g_shmbk_stats.lookups ++;
  ShmBkBlock* p = g_shmbk_list;
  while (p) {
    if (p->containsAddress(addr)) {
      return p;
    }
    p = p->next();
  }
  return NULL;
}

// dump all information about all memory segments allocated with os::reserve_memory()
void shmbk_dump_info() {
  tty->print_cr("-- shared mem bookkeeping (alive: %d segments, %llu bytes, "
    "total reserves: %d total lookups: %d)",
    g_shmbk_stats.nodes, g_shmbk_stats.bytes, g_shmbk_stats.reserves, g_shmbk_stats.lookups);
  const ShmBkBlock* p = g_shmbk_list;
  int i = 0;
  while (p) {
    p->print(tty);
    p = p->next();
    i ++;
  }
}

#define LOCK_SHMBK     { ThreadCritical _LOCK_SHMBK;
#define UNLOCK_SHMBK   }

// End: shared memory bookkeeping
////////////////////////////////////////////////////////////////////////////////////////////////////

int os::vm_page_size() {
  // Seems redundant as all get out
  assert(os::Aix::page_size() != -1, "must call os::init");
  return os::Aix::page_size();
}

// Aix allocates memory by pages.
int os::vm_allocation_granularity() {
  assert(os::Aix::page_size() != -1, "must call os::init");
  return os::Aix::page_size();
}

int os::Aix::commit_memory_impl(char* addr, size_t size, bool exec) {

  // Commit is a noop. There is no explicit commit
  // needed on AIX. Memory is committed when touched.
  //
  // Debug : check address range for validity
#ifdef ASSERT
  LOCK_SHMBK
    ShmBkBlock* const block = shmbk_find_by_containing_address(addr);
    if (!block) {
      fprintf(stderr, "invalid pointer: " INTPTR_FORMAT "\n", addr);
      shmbk_dump_info();
      assert(false, "invalid pointer");
      return false;
    } else if (!block->containsRange(addr, size)) {
      fprintf(stderr, "invalid range: " INTPTR_FORMAT " .. " INTPTR_FORMAT "\n", addr, addr + size);
      shmbk_dump_info();
      assert(false, "invalid range");
      return false;
    }
  UNLOCK_SHMBK
#endif // ASSERT

  return 0;
}

bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  return os::Aix::commit_memory_impl(addr, size, exec) == 0;
}

void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
                                  const char* mesg) {
  assert(mesg != NULL, "mesg must be specified");
  os::Aix::commit_memory_impl(addr, size, exec);
}

int os::Aix::commit_memory_impl(char* addr, size_t size,
                                size_t alignment_hint, bool exec) {
  return os::Aix::commit_memory_impl(addr, size, exec);
}

bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
                          bool exec) {
  return os::Aix::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
}

void os::pd_commit_memory_or_exit(char* addr, size_t size,
                                  size_t alignment_hint, bool exec,
                                  const char* mesg) {
  os::Aix::commit_memory_impl(addr, size, alignment_hint, exec);
}

bool os::pd_uncommit_memory(char* addr, size_t size) {

  // Delegate to ShmBkBlock class which knows how to uncommit its memory.

  bool rc = false;
  LOCK_SHMBK
    ShmBkBlock* const block = shmbk_find_by_containing_address(addr);
    if (!block) {
      fprintf(stderr, "invalid pointer: 0x%p.\n", addr);
      shmbk_dump_info();
      assert(false, "invalid pointer");
      return false;
    } else if (!block->containsRange(addr, size)) {
      fprintf(stderr, "invalid range: 0x%p .. 0x%p.\n", addr, addr + size);
      shmbk_dump_info();
      assert(false, "invalid range");
      return false;
    }
    rc = block->disclaim(addr, size);
  UNLOCK_SHMBK

  if (Verbose && !rc) {
    warning("failed to disclaim 0x%p .. 0x%p (0x%llX bytes).", addr, addr + size, size);
  }
  return rc;
}

bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  return os::guard_memory(addr, size);
}

bool os::remove_stack_guard_pages(char* addr, size_t size) {
  return os::unguard_memory(addr, size);
}

void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
}

void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
}

void os::numa_make_global(char *addr, size_t bytes) {
}

void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
}

bool os::numa_topology_changed() {
  return false;
}

size_t os::numa_get_groups_num() {
  return 1;
}

int os::numa_get_group_id() {
  return 0;
}

size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  if (size > 0) {
    ids[0] = 0;
    return 1;
  }
  return 0;
}

bool os::get_page_info(char *start, page_info* info) {
  return false;
}

char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  return end;
}

// Flags for reserve_shmatted_memory:
#define RESSHM_WISHADDR_OR_FAIL                     1
#define RESSHM_TRY_16M_PAGES                        2
#define RESSHM_16M_PAGES_OR_FAIL                    4

// Result of reserve_shmatted_memory:
struct shmatted_memory_info_t {
  char* addr;
  size_t pagesize;
  bool pinned;
};

// Reserve a section of shmatted memory.
// params:
// bytes [in]: size of memory, in bytes
// requested_addr [in]: wish address.
//                      NULL = no wish.
//                      If RESSHM_WISHADDR_OR_FAIL is set in flags and wish address cannot
//                      be obtained, function will fail. Otherwise wish address is treated as hint and
//                      another pointer is returned.
// flags [in]:          some flags. Valid flags are:
//                      RESSHM_WISHADDR_OR_FAIL - fail if wish address is given and cannot be obtained.
//                      RESSHM_TRY_16M_PAGES - try to allocate from 16M page pool
//                          (requires UseLargePages and Use16MPages)
//                      RESSHM_16M_PAGES_OR_FAIL - if you cannot allocate from 16M page pool, fail.
//                          Otherwise any other page size will do.
// p_info [out] :       holds information about the created shared memory segment.
static bool reserve_shmatted_memory(size_t bytes, char* requested_addr, int flags, shmatted_memory_info_t* p_info) {

  assert(p_info, "parameter error");

  // init output struct.
  p_info->addr = NULL;

  // neither should we be here for EXTSHM=ON.
  if (os::Aix::extshm()) {
    ShouldNotReachHere();
  }

  // extract flags. sanity checks.
  const bool wishaddr_or_fail =
    flags & RESSHM_WISHADDR_OR_FAIL;
  const bool try_16M_pages =
    flags & RESSHM_TRY_16M_PAGES;
  const bool f16M_pages_or_fail =
    flags & RESSHM_16M_PAGES_OR_FAIL;

  // first check: if a wish address is given and it is mandatory, but not aligned to segment boundary,
  // shmat will fail anyway, so save some cycles by failing right away
  if (requested_addr && ((uintptr_t)requested_addr % SIZE_256M == 0)) {
    if (wishaddr_or_fail) {
      return false;
    } else {
      requested_addr = NULL;
    }
  }

  char* addr = NULL;

  // Align size of shm up to the largest possible page size, to avoid errors later on when we try to change
  // pagesize dynamically.
  const size_t size = align_size_up(bytes, SIZE_16M);

  // reserve the shared segment
  int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
  if (shmid == -1) {
    warning("shmget(.., %lld, ..) failed (errno: %d).", size, errno);
    return false;
  }

  // Important note:
  // It is very important that we, upon leaving this function, do not leave a shm segment alive.
  // We must right after attaching it remove it from the system. System V shm segments are global and
  // survive the process.
  // So, from here on: Do not assert. Do not return. Always do a "goto cleanup_shm".

  // try forcing the page size
  size_t pagesize = -1; // unknown so far

  if (UseLargePages) {

    struct shmid_ds shmbuf;
    memset(&shmbuf, 0, sizeof(shmbuf));

    // First, try to take from 16M page pool if...
    if (os::Aix::can_use_16M_pages()  // we can ...
        && Use16MPages                // we are not explicitly forbidden to do so (-XX:-Use16MPages)..
        && try_16M_pages) {           // caller wants us to.
      shmbuf.shm_pagesize = SIZE_16M;
      if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) == 0) {
        pagesize = SIZE_16M;
      } else {
        warning("Failed to allocate %d 16M pages. 16M page pool might be exhausted. (shmctl failed with %d)",
                size / SIZE_16M, errno);
        if (f16M_pages_or_fail) {
          goto cleanup_shm;
        }
      }
    }

    // Nothing yet? Try setting 64K pages. Note that I never saw this fail, but in theory it might,
    // because the 64K page pool may also be exhausted.
    if (pagesize == -1) {
      shmbuf.shm_pagesize = SIZE_64K;
      if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) == 0) {
        pagesize = SIZE_64K;
      } else {
        warning("Failed to allocate %d 64K pages. (shmctl failed with %d)",
                size / SIZE_64K, errno);
        // here I give up. leave page_size -1 - later, after attaching, we will query the
        // real page size of the attached memory. (in theory, it may be something different
        // from 4K if LDR_CNTRL SHM_PSIZE is set)
      }
    }
  }

  // sanity point
  assert(pagesize == -1 || pagesize == SIZE_16M || pagesize == SIZE_64K, "wrong page size");

  // Now attach the shared segment.
  addr = (char*) shmat(shmid, requested_addr, 0);
  if (addr == (char*)-1) {
    // How to handle attach failure:
    // If it failed for a specific wish address, tolerate this: in that case, if wish address was
    // mandatory, fail, if not, retry anywhere.
    // If it failed for any other reason, treat that as fatal error.
    addr = NULL;
    if (requested_addr) {
      if (wishaddr_or_fail) {
        goto cleanup_shm;
      } else {
        addr = (char*) shmat(shmid, NULL, 0);
        if (addr == (char*)-1) { // fatal
          addr = NULL;
          warning("shmat failed (errno: %d)", errno);
          goto cleanup_shm;
        }
      }
    } else { // fatal
      addr = NULL;
      warning("shmat failed (errno: %d)", errno);
      goto cleanup_shm;
    }
  }

  // sanity point
  assert(addr && addr != (char*) -1, "wrong address");

  // after successful Attach remove the segment - right away.
  if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
    warning("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
    guarantee(false, "failed to remove shared memory segment!");
  }
  shmid = -1;

  // query the real page size. In case setting the page size did not work (see above), the system
  // may have given us something other then 4K (LDR_CNTRL)
  {
    const size_t real_pagesize = os::Aix::query_pagesize(addr);
    if (pagesize != -1) {
      assert(pagesize == real_pagesize, "unexpected pagesize after shmat");
    } else {
      pagesize = real_pagesize;
    }
  }

  // Now register the reserved block with internal book keeping.
  LOCK_SHMBK
    const bool pinned = pagesize >= SIZE_16M ? true : false;
    ShmBkShmatedBlock* const p_block = new ShmBkShmatedBlock(AddrRange(addr, size), pagesize, pinned);
    assert(p_block, "");
    shmbk_register(p_block);
  UNLOCK_SHMBK

cleanup_shm:

  // if we have not done so yet, remove the shared memory segment. This is very important.
  if (shmid != -1) {
    if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
      warning("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
      guarantee(false, "failed to remove shared memory segment!");
    }
    shmid = -1;
  }

  // trace
  if (Verbose && !addr) {
    if (requested_addr != NULL) {
2436
      warning("failed to shm-allocate 0x%llX bytes at wish address 0x%p.", size, requested_addr);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
    } else {
      warning("failed to shm-allocate 0x%llX bytes at any address.", size);
    }
  }

  // hand info to caller
  if (addr) {
    p_info->addr = addr;
    p_info->pagesize = pagesize;
    p_info->pinned = pagesize == SIZE_16M ? true : false;
  }

  // sanity test:
  if (requested_addr && addr && wishaddr_or_fail) {
    guarantee(addr == requested_addr, "shmat error");
  }

  // just one more test to really make sure we have no dangling shm segments.
  guarantee(shmid == -1, "dangling shm segments");

  return addr ? true : false;

} // end: reserve_shmatted_memory

// Reserve memory using mmap. Behaves the same as reserve_shmatted_memory():
// will return NULL in case of an error.
static char* reserve_mmaped_memory(size_t bytes, char* requested_addr) {

  // if a wish address is given, but not aligned to 4K page boundary, mmap will fail.
  if (requested_addr && ((uintptr_t)requested_addr % os::vm_page_size() != 0)) {
    warning("Wish address 0x%p not aligned to page boundary.", requested_addr);
    return NULL;
  }

  const size_t size = align_size_up(bytes, SIZE_4K);

  // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
  // msync(MS_INVALIDATE) (see os::uncommit_memory)
  int flags = MAP_ANONYMOUS | MAP_SHARED;

  // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
  // it means if wishaddress is given but MAP_FIXED is not set.
  //
  // Note however that this changes semantics in SPEC1170 mode insofar as MAP_FIXED
  // clobbers the address range, which is probably not what the caller wants. That's
  // why I assert here (again) that the SPEC1170 compat mode is off.
  // If we want to be able to run under SPEC1170, we have to do some porting and
  // testing.
  if (requested_addr != NULL) {
    assert(!os::Aix::xpg_sus_mode(), "SPEC1170 mode not allowed.");
    flags |= MAP_FIXED;
  }

  char* addr = (char*)::mmap(requested_addr, size, PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);

  if (addr == MAP_FAILED) {
    // attach failed: tolerate for specific wish addresses. Not being able to attach
    // anywhere is a fatal error.
    if (requested_addr == NULL) {
      // It's ok to fail here if the machine has not enough memory.
      warning("mmap(NULL, 0x%llX, ..) failed (%d)", size, errno);
    }
    addr = NULL;
    goto cleanup_mmap;
  }

  // If we did request a specific address and that address was not available, fail.
  if (addr && requested_addr) {
    guarantee(addr == requested_addr, "unexpected");
  }

  // register this mmap'ed segment with book keeping
  LOCK_SHMBK
    ShmBkMappedBlock* const p_block = new ShmBkMappedBlock(AddrRange(addr, size));
    assert(p_block, "");
    shmbk_register(p_block);
  UNLOCK_SHMBK

cleanup_mmap:

2517 2518 2519
  // trace
  if (Verbose) {
    if (addr) {
2520 2521
      fprintf(stderr, "mmap-allocated 0x%p .. 0x%p (0x%llX bytes)\n", addr, addr + bytes, bytes);
    }
2522 2523 2524 2525 2526 2527
    else {
      if (requested_addr != NULL) {
        warning("failed to mmap-allocate 0x%llX bytes at wish address 0x%p.", bytes, requested_addr);
      } else {
        warning("failed to mmap-allocate 0x%llX bytes at any address.", bytes);
      }
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
    }
  }

  return addr;

} // end: reserve_mmaped_memory

// Reserves and attaches a shared memory segment.
// Will assert if a wish address is given and could not be obtained.
char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
  return os::attempt_reserve_memory_at(bytes, requested_addr);
}

bool os::pd_release_memory(char* addr, size_t size) {

  // delegate to ShmBkBlock class which knows how to uncommit its memory.

  bool rc = false;
  LOCK_SHMBK
    ShmBkBlock* const block = shmbk_find_by_containing_address(addr);
    if (!block) {
      fprintf(stderr, "invalid pointer: 0x%p.\n", addr);
      shmbk_dump_info();
      assert(false, "invalid pointer");
      return false;
    }
    else if (!block->isSameRange(addr, size)) {
      if (block->getType() == ShmBkBlock::MMAP) {
        // Release only the same range or a the beginning or the end of a range.
        if (block->base() == addr && size < block->size()) {
          ShmBkMappedBlock* const b = new ShmBkMappedBlock(AddrRange(block->base() + size, block->size() - size));
          assert(b, "");
          shmbk_register(b);
          block->setAddrRange(AddrRange(addr, size));
        }
        else if (addr > block->base() && addr + size == block->base() + block->size()) {
          ShmBkMappedBlock* const b = new ShmBkMappedBlock(AddrRange(block->base(), block->size() - size));
          assert(b, "");
          shmbk_register(b);
          block->setAddrRange(AddrRange(addr, size));
        }
        else {
          fprintf(stderr, "invalid mmap range: 0x%p .. 0x%p.\n", addr, addr + size);
          shmbk_dump_info();
          assert(false, "invalid mmap range");
          return false;
        }
      }
      else {
        // Release only the same range. No partial release allowed.
        // Soften the requirement a bit, because the user may think he owns a smaller size
        // than the block is due to alignment etc.
        if (block->base() != addr || block->size() < size) {
          fprintf(stderr, "invalid shmget range: 0x%p .. 0x%p.\n", addr, addr + size);
          shmbk_dump_info();
          assert(false, "invalid shmget range");
          return false;
        }
      }
    }
    rc = block->release();
    assert(rc, "release failed");
    // remove block from bookkeeping
    shmbk_unregister(block);
    delete block;
  UNLOCK_SHMBK

  if (!rc) {
    warning("failed to released %lu bytes at 0x%p", size, addr);
  }

  return rc;
}

static bool checked_mprotect(char* addr, size_t size, int prot) {

  // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
  // not tell me if protection failed when trying to protect an un-protectable range.
  //
  // This means if the memory was allocated using shmget/shmat, protection wont work
  // but mprotect will still return 0:
  //
  // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm

  bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;

  if (!rc) {
    const char* const s_errno = strerror(errno);
    warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
    return false;
  }

  // mprotect success check
  //
  // Mprotect said it changed the protection but can I believe it?
  //
  // To be sure I need to check the protection afterwards. Try to
  // read from protected memory and check whether that causes a segfault.
  //
  if (!os::Aix::xpg_sus_mode()) {

    if (StubRoutines::SafeFetch32_stub()) {

      const bool read_protected =
        (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
         SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;

      if (prot & PROT_READ) {
        rc = !read_protected;
      } else {
        rc = read_protected;
      }
    }
  }
  if (!rc) {
    assert(false, "mprotect failed.");
  }
  return rc;
}

// Set protections specified
bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
  unsigned int p = 0;
  switch (prot) {
  case MEM_PROT_NONE: p = PROT_NONE; break;
  case MEM_PROT_READ: p = PROT_READ; break;
  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  default:
    ShouldNotReachHere();
  }
  // is_committed is unused.
  return checked_mprotect(addr, size, p);
}

bool os::guard_memory(char* addr, size_t size) {
  return checked_mprotect(addr, size, PROT_NONE);
}

bool os::unguard_memory(char* addr, size_t size) {
  return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
}

// Large page support

static size_t _large_page_size = 0;

// Enable large page support if OS allows that.
void os::large_page_init() {

  // Note: os::Aix::query_multipage_support must run first.

  if (!UseLargePages) {
    return;
  }

  if (!Aix::can_use_64K_pages()) {
    assert(!Aix::can_use_16M_pages(), "64K is a precondition for 16M.");
    UseLargePages = false;
    return;
  }

  if (!Aix::can_use_16M_pages() && Use16MPages) {
    fprintf(stderr, "Cannot use 16M pages. Please ensure that there is a 16M page pool "
            " and that the VM runs with CAP_BYPASS_RAC_VMM and CAP_PROPAGATE capabilities.\n");
  }

  // Do not report 16M page alignment as part of os::_page_sizes if we are
  // explicitly forbidden from using 16M pages. Doing so would increase the
  // alignment the garbage collector calculates with, slightly increasing
  // heap usage. We should only pay for 16M alignment if we really want to
  // use 16M pages.
  if (Use16MPages && Aix::can_use_16M_pages()) {
    _large_page_size = SIZE_16M;
    _page_sizes[0] = SIZE_16M;
    _page_sizes[1] = SIZE_64K;
    _page_sizes[2] = SIZE_4K;
    _page_sizes[3] = 0;
  } else if (Aix::can_use_64K_pages()) {
    _large_page_size = SIZE_64K;
    _page_sizes[0] = SIZE_64K;
    _page_sizes[1] = SIZE_4K;
    _page_sizes[2] = 0;
  }

  if (Verbose) {
    ("Default large page size is 0x%llX.", _large_page_size);
  }
} // end: os::large_page_init()

char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  // "exec" is passed in but not used. Creating the shared image for
  // the code cache doesn't have an SHM_X executable permission to check.
  Unimplemented();
  return 0;
}

bool os::release_memory_special(char* base, size_t bytes) {
  // detaching the SHM segment will also delete it, see reserve_memory_special()
  Unimplemented();
  return false;
}

size_t os::large_page_size() {
  return _large_page_size;
}

bool os::can_commit_large_page_memory() {
  // Well, sadly we cannot commit anything at all (see comment in
  // os::commit_memory) but we claim to so we can make use of large pages
  return true;
}

bool os::can_execute_large_page_memory() {
  // We can do that
  return true;
}

// Reserve memory at an arbitrary address, only if that area is
// available (and not reserved for something else).
char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {

  bool use_mmap = false;

  // mmap: smaller graining, no large page support
  // shm: large graining (256M), large page support, limited number of shm segments
  //
  // Prefer mmap wherever we either do not need large page support or have OS limits

  if (!UseLargePages || bytes < SIZE_16M) {
    use_mmap = true;
  }

  char* addr = NULL;
  if (use_mmap) {
    addr = reserve_mmaped_memory(bytes, requested_addr);
  } else {
    // shmat: wish address is mandatory, and do not try 16M pages here.
    shmatted_memory_info_t info;
    const int flags = RESSHM_WISHADDR_OR_FAIL;
    if (reserve_shmatted_memory(bytes, requested_addr, flags, &info)) {
      addr = info.addr;
    }
  }

  return addr;
}

size_t os::read(int fd, void *buf, unsigned int nBytes) {
  return ::read(fd, buf, nBytes);
}

#define NANOSECS_PER_MILLISEC 1000000

int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  assert(thread == Thread::current(), "thread consistency check");

  // Prevent nasty overflow in deadline calculation
  // by handling long sleeps similar to solaris or windows.
  const jlong limit = INT_MAX;
  int result;
  while (millis > limit) {
    if ((result = os::sleep(thread, limit, interruptible)) != OS_OK) {
      return result;
    }
    millis -= limit;
  }

  ParkEvent * const slp = thread->_SleepEvent;
  slp->reset();
  OrderAccess::fence();

  if (interruptible) {
    jlong prevtime = javaTimeNanos();

    // Prevent precision loss and too long sleeps
    jlong deadline = prevtime + millis * NANOSECS_PER_MILLISEC;

    for (;;) {
      if (os::is_interrupted(thread, true)) {
        return OS_INTRPT;
      }

      jlong newtime = javaTimeNanos();

      assert(newtime >= prevtime, "time moving backwards");
      // Doing prevtime and newtime in microseconds doesn't help precision,
      // and trying to round up to avoid lost milliseconds can result in a
      // too-short delay.
      millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;

      if (millis <= 0) {
        return OS_OK;
      }

      // Stop sleeping if we passed the deadline
      if (newtime >= deadline) {
        return OS_OK;
      }

      prevtime = newtime;

      {
        assert(thread->is_Java_thread(), "sanity check");
        JavaThread *jt = (JavaThread *) thread;
        ThreadBlockInVM tbivm(jt);
        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);

        jt->set_suspend_equivalent();

        slp->park(millis);

        // were we externally suspended while we were waiting?
        jt->check_and_wait_while_suspended();
      }
    }
  } else {
    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
    jlong prevtime = javaTimeNanos();

    // Prevent precision loss and too long sleeps
    jlong deadline = prevtime + millis * NANOSECS_PER_MILLISEC;

    for (;;) {
      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
      // the 1st iteration ...
      jlong newtime = javaTimeNanos();

      if (newtime - prevtime < 0) {
        // time moving backwards, should only happen if no monotonic clock
        // not a guarantee() because JVM should not abort on kernel/glibc bugs
        // - HS14 Commented out as not implemented.
        // - TODO Maybe we should implement it?
        //assert(!Aix::supports_monotonic_clock(), "time moving backwards");
      } else {
        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
      }

      if (millis <= 0) break;

      if (newtime >= deadline) {
        break;
      }

      prevtime = newtime;
      slp->park(millis);
    }
    return OS_OK;
  }
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
void os::naked_short_sleep(jlong ms) {
  struct timespec req;

  assert(ms < 1000, "Un-interruptable sleep, short time use only");
  req.tv_sec = 0;
  if (ms > 0) {
    req.tv_nsec = (ms % 1000) * 1000000;
  }
  else {
    req.tv_nsec = 1;
  }

  nanosleep(&req, NULL);

  return;
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
}

// Sleep forever; naked call to OS-specific sleep; use with CAUTION
void os::infinite_sleep() {
  while (true) {    // sleep forever ...
    ::sleep(100);   // ... 100 seconds at a time
  }
}

// Used to convert frequent JVM_Yield() to nops
bool os::dont_yield() {
  return DontYieldALot;
}

void os::yield() {
  sched_yield();
}

os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN; }

void os::yield_all(int attempts) {
  // Yields to all threads, including threads with lower priorities
  // Threads on Linux are all with same priority. The Solaris style
  // os::yield_all() with nanosleep(1ms) is not necessary.
  sched_yield();
}

// Called from the tight loops to possibly influence time-sharing heuristics
void os::loop_breaker(int attempts) {
  os::yield_all(attempts);
}

////////////////////////////////////////////////////////////////////////////////
// thread priority support

// From AIX manpage to pthread_setschedparam
// (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
//    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
//
// "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
// range from 40 to 80, where 40 is the least favored priority and 80
// is the most favored."
//
// (Actually, I doubt this even has an impact on AIX, as we do kernel
// scheduling there; however, this still leaves iSeries.)
//
// We use the same values for AIX and PASE.
int os::java_to_os_priority[CriticalPriority + 1] = {
  54,             // 0 Entry should never be used

  55,             // 1 MinPriority
  55,             // 2
  56,             // 3

  56,             // 4
  57,             // 5 NormPriority
  57,             // 6

  58,             // 7
  58,             // 8
  59,             // 9 NearMaxPriority

  60,             // 10 MaxPriority

  60              // 11 CriticalPriority
};

OSReturn os::set_native_priority(Thread* thread, int newpri) {
  if (!UseThreadPriorities) return OS_OK;
  pthread_t thr = thread->osthread()->pthread_id();
  int policy = SCHED_OTHER;
  struct sched_param param;
  param.sched_priority = newpri;
  int ret = pthread_setschedparam(thr, policy, &param);

  if (Verbose) {
    if (ret == 0) {
      fprintf(stderr, "changed priority of thread %d to %d\n", (int)thr, newpri);
    } else {
      fprintf(stderr, "Could not changed priority for thread %d to %d (error %d, %s)\n",
              (int)thr, newpri, ret, strerror(ret));
    }
  }
  return (ret == 0) ? OS_OK : OS_ERR;
}

OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  if (!UseThreadPriorities) {
    *priority_ptr = java_to_os_priority[NormPriority];
    return OS_OK;
  }
  pthread_t thr = thread->osthread()->pthread_id();
  int policy = SCHED_OTHER;
  struct sched_param param;
  int ret = pthread_getschedparam(thr, &policy, &param);
  *priority_ptr = param.sched_priority;

  return (ret == 0) ? OS_OK : OS_ERR;
}

// Hint to the underlying OS that a task switch would not be good.
// Void return because it's a hint and can fail.
void os::hint_no_preempt() {}

////////////////////////////////////////////////////////////////////////////////
// suspend/resume support

//  the low-level signal-based suspend/resume support is a remnant from the
//  old VM-suspension that used to be for java-suspension, safepoints etc,
//  within hotspot. Now there is a single use-case for this:
//    - calling get_thread_pc() on the VMThread by the flat-profiler task
//      that runs in the watcher thread.
//  The remaining code is greatly simplified from the more general suspension
//  code that used to be used.
//
//  The protocol is quite simple:
//  - suspend:
//      - sends a signal to the target thread
//      - polls the suspend state of the osthread using a yield loop
//      - target thread signal handler (SR_handler) sets suspend state
//        and blocks in sigsuspend until continued
//  - resume:
//      - sets target osthread state to continue
//      - sends signal to end the sigsuspend loop in the SR_handler
//
//  Note that the SR_lock plays no role in this suspend/resume protocol.
//

static void resume_clear_context(OSThread *osthread) {
  osthread->set_ucontext(NULL);
  osthread->set_siginfo(NULL);
}

static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  osthread->set_ucontext(context);
  osthread->set_siginfo(siginfo);
}

//
// Handler function invoked when a thread's execution is suspended or
// resumed. We have to be careful that only async-safe functions are
// called here (Note: most pthread functions are not async safe and
// should be avoided.)
//
// Note: sigwait() is a more natural fit than sigsuspend() from an
// interface point of view, but sigwait() prevents the signal hander
// from being run. libpthread would get very confused by not having
// its signal handlers run and prevents sigwait()'s use with the
// mutex granting granting signal.
//
// Currently only ever called on the VMThread and JavaThreads (PC sampling).
//
static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  // Save and restore errno to avoid confusing native code with EINTR
  // after sigsuspend.
  int old_errno = errno;

  Thread* thread = Thread::current();
  OSThread* osthread = thread->osthread();
  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");

  os::SuspendResume::State current = osthread->sr.state();
  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
    suspend_save_context(osthread, siginfo, context);

    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
    os::SuspendResume::State state = osthread->sr.suspended();
    if (state == os::SuspendResume::SR_SUSPENDED) {
      sigset_t suspend_set;  // signals for sigsuspend()

      // get current set of blocked signals and unblock resume signal
      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
      sigdelset(&suspend_set, SR_signum);

      // wait here until we are resumed
      while (1) {
        sigsuspend(&suspend_set);

        os::SuspendResume::State result = osthread->sr.running();
        if (result == os::SuspendResume::SR_RUNNING) {
          break;
        }
      }

    } else if (state == os::SuspendResume::SR_RUNNING) {
      // request was cancelled, continue
    } else {
      ShouldNotReachHere();
    }

    resume_clear_context(osthread);
  } else if (current == os::SuspendResume::SR_RUNNING) {
    // request was cancelled, continue
  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
    // ignore
  } else {
    ShouldNotReachHere();
  }

  errno = old_errno;
}


static int SR_initialize() {
  struct sigaction act;
  char *s;
  // Get signal number to use for suspend/resume
  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
    int sig = ::strtol(s, 0, 10);
    if (sig > 0 || sig < NSIG) {
      SR_signum = sig;
    }
  }

  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");

  sigemptyset(&SR_sigset);
  sigaddset(&SR_sigset, SR_signum);

  // Set up signal handler for suspend/resume.
  act.sa_flags = SA_RESTART|SA_SIGINFO;
  act.sa_handler = (void (*)(int)) SR_handler;

  // SR_signum is blocked by default.
  // 4528190 - We also need to block pthread restart signal (32 on all
  // supported Linux platforms). Note that LinuxThreads need to block
  // this signal for all threads to work properly. So we don't have
  // to use hard-coded signal number when setting up the mask.
  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);

  if (sigaction(SR_signum, &act, 0) == -1) {
    return -1;
  }

  // Save signal flag
  os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
  return 0;
}

static int SR_finalize() {
  return 0;
}

static int sr_notify(OSThread* osthread) {
  int status = pthread_kill(osthread->pthread_id(), SR_signum);
  assert_status(status == 0, status, "pthread_kill");
  return status;
}

// "Randomly" selected value for how long we want to spin
// before bailing out on suspending a thread, also how often
// we send a signal to a thread we want to resume
static const int RANDOMLY_LARGE_INTEGER = 1000000;
static const int RANDOMLY_LARGE_INTEGER2 = 100;

// returns true on success and false on error - really an error is fatal
// but this seems the normal response to library errors
static bool do_suspend(OSThread* osthread) {
  assert(osthread->sr.is_running(), "thread should be running");
  // mark as suspended and send signal

  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
    // failed to switch, state wasn't running?
    ShouldNotReachHere();
    return false;
  }

  if (sr_notify(osthread) != 0) {
    // try to cancel, switch to running

    os::SuspendResume::State result = osthread->sr.cancel_suspend();
    if (result == os::SuspendResume::SR_RUNNING) {
      // cancelled
      return false;
    } else if (result == os::SuspendResume::SR_SUSPENDED) {
      // somehow managed to suspend
      return true;
    } else {
      ShouldNotReachHere();
      return false;
    }
  }

  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED

  for (int n = 0; !osthread->sr.is_suspended(); n++) {
    for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
      os::yield_all(i);
    }

    // timeout, try to cancel the request
    if (n >= RANDOMLY_LARGE_INTEGER) {
      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
      if (cancelled == os::SuspendResume::SR_RUNNING) {
        return false;
      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
        return true;
      } else {
        ShouldNotReachHere();
        return false;
      }
    }
  }

  guarantee(osthread->sr.is_suspended(), "Must be suspended");
  return true;
}

static void do_resume(OSThread* osthread) {
  //assert(osthread->sr.is_suspended(), "thread should be suspended");

  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
    // failed to switch to WAKEUP_REQUEST
    ShouldNotReachHere();
    return;
  }

  while (!osthread->sr.is_running()) {
    if (sr_notify(osthread) == 0) {
      for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
        for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
          os::yield_all(i);
        }
      }
    } else {
      ShouldNotReachHere();
    }
  }

  guarantee(osthread->sr.is_running(), "Must be running!");
}

////////////////////////////////////////////////////////////////////////////////
// interrupt support

void os::interrupt(Thread* thread) {
  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
    "possibility of dangling Thread pointer");

  OSThread* osthread = thread->osthread();

  if (!osthread->interrupted()) {
    osthread->set_interrupted(true);
    // More than one thread can get here with the same value of osthread,
    // resulting in multiple notifications.  We do, however, want the store
    // to interrupted() to be visible to other threads before we execute unpark().
    OrderAccess::fence();
    ParkEvent * const slp = thread->_SleepEvent;
    if (slp != NULL) slp->unpark();
  }

  // For JSR166. Unpark even if interrupt status already was set
  if (thread->is_Java_thread())
    ((JavaThread*)thread)->parker()->unpark();

  ParkEvent * ev = thread->_ParkEvent;
  if (ev != NULL) ev->unpark();

}

bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
    "possibility of dangling Thread pointer");

  OSThread* osthread = thread->osthread();

  bool interrupted = osthread->interrupted();

  if (interrupted && clear_interrupted) {
    osthread->set_interrupted(false);
    // consider thread->_SleepEvent->reset() ... optional optimization
  }

  return interrupted;
}

///////////////////////////////////////////////////////////////////////////////////
// signal handling (except suspend/resume)

// This routine may be used by user applications as a "hook" to catch signals.
// The user-defined signal handler must pass unrecognized signals to this
// routine, and if it returns true (non-zero), then the signal handler must
// return immediately. If the flag "abort_if_unrecognized" is true, then this
// routine will never retun false (zero), but instead will execute a VM panic
// routine kill the process.
//
// If this routine returns false, it is OK to call it again. This allows
// the user-defined signal handler to perform checks either before or after
// the VM performs its own checks. Naturally, the user code would be making
// a serious error if it tried to handle an exception (such as a null check
// or breakpoint) that the VM was generating for its own correct operation.
//
// This routine may recognize any of the following kinds of signals:
//   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
// It should be consulted by handlers for any of those signals.
//
// The caller of this routine must pass in the three arguments supplied
// to the function referred to in the "sa_sigaction" (not the "sa_handler")
// field of the structure passed to sigaction(). This routine assumes that
// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
//
// Note that the VM will print warnings if it detects conflicting signal
// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
//
extern "C" JNIEXPORT int
JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);

// Set thread signal mask (for some reason on AIX sigthreadmask() seems
// to be the thing to call; documentation is not terribly clear about whether
// pthread_sigmask also works, and if it does, whether it does the same.
bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
  const int rc = ::pthread_sigmask(how, set, oset);
  // return value semantics differ slightly for error case:
  // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
  // (so, pthread_sigmask is more theadsafe for error handling)
  // But success is always 0.
  return rc == 0 ? true : false;
}

// Function to unblock all signals which are, according
// to POSIX, typical program error signals. If they happen while being blocked,
// they typically will bring down the process immediately.
bool unblock_program_error_signals() {
  sigset_t set;
  ::sigemptyset(&set);
  ::sigaddset(&set, SIGILL);
  ::sigaddset(&set, SIGBUS);
  ::sigaddset(&set, SIGFPE);
  ::sigaddset(&set, SIGSEGV);
  return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
}

// Renamed from 'signalHandler' to avoid collision with other shared libs.
void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
  assert(info != NULL && uc != NULL, "it must be old kernel");

  // Never leave program error signals blocked;
  // on all our platforms they would bring down the process immediately when
  // getting raised while being blocked.
  unblock_program_error_signals();

  JVM_handle_aix_signal(sig, info, uc, true);
}


// This boolean allows users to forward their own non-matching signals
// to JVM_handle_aix_signal, harmlessly.
bool os::Aix::signal_handlers_are_installed = false;

// For signal-chaining
struct sigaction os::Aix::sigact[MAXSIGNUM];
unsigned int os::Aix::sigs = 0;
bool os::Aix::libjsig_is_loaded = false;
typedef struct sigaction *(*get_signal_t)(int);
get_signal_t os::Aix::get_signal_action = NULL;

struct sigaction* os::Aix::get_chained_signal_action(int sig) {
  struct sigaction *actp = NULL;

  if (libjsig_is_loaded) {
    // Retrieve the old signal handler from libjsig
    actp = (*get_signal_action)(sig);
  }
  if (actp == NULL) {
    // Retrieve the preinstalled signal handler from jvm
    actp = get_preinstalled_handler(sig);
  }

  return actp;
}

static bool call_chained_handler(struct sigaction *actp, int sig,
                                 siginfo_t *siginfo, void *context) {
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
  // Call the old signal handler
  if (actp->sa_handler == SIG_DFL) {
    // It's more reasonable to let jvm treat it as an unexpected exception
    // instead of taking the default action.
    return false;
  } else if (actp->sa_handler != SIG_IGN) {
    if ((actp->sa_flags & SA_NODEFER) == 0) {
      // automaticlly block the signal
      sigaddset(&(actp->sa_mask), sig);
    }

    sa_handler_t hand = NULL;
    sa_sigaction_t sa = NULL;
    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
    // retrieve the chained handler
    if (siginfo_flag_set) {
      sa = actp->sa_sigaction;
    } else {
      hand = actp->sa_handler;
    }

    if ((actp->sa_flags & SA_RESETHAND) != 0) {
      actp->sa_handler = SIG_DFL;
    }

    // try to honor the signal mask
    sigset_t oset;
    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);

    // call into the chained handler
    if (siginfo_flag_set) {
      (*sa)(sig, siginfo, context);
    } else {
      (*hand)(sig);
    }

    // restore the signal mask
    pthread_sigmask(SIG_SETMASK, &oset, 0);
  }
  // Tell jvm's signal handler the signal is taken care of.
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
  return true;
}

bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  bool chained = false;
  // signal-chaining
  if (UseSignalChaining) {
    struct sigaction *actp = get_chained_signal_action(sig);
    if (actp != NULL) {
      chained = call_chained_handler(actp, sig, siginfo, context);
    }
  }
  return chained;
}

struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
  if ((((unsigned int)1 << sig) & sigs) != 0) {
    return &sigact[sig];
  }
  return NULL;
}

void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  sigact[sig] = oldAct;
  sigs |= (unsigned int)1 << sig;
}

// for diagnostic
int os::Aix::sigflags[MAXSIGNUM];

int os::Aix::get_our_sigflags(int sig) {
  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  return sigflags[sig];
}

void os::Aix::set_our_sigflags(int sig, int flags) {
  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  sigflags[sig] = flags;
}

void os::Aix::set_signal_handler(int sig, bool set_installed) {
  // Check for overwrite.
  struct sigaction oldAct;
  sigaction(sig, (struct sigaction*)NULL, &oldAct);

  void* oldhand = oldAct.sa_sigaction
    ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
    : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  // Renamed 'signalHandler' to avoid collision with other shared libs.
  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
    if (AllowUserSignalHandlers || !set_installed) {
      // Do not overwrite; user takes responsibility to forward to us.
      return;
    } else if (UseSignalChaining) {
      // save the old handler in jvm
      save_preinstalled_handler(sig, oldAct);
      // libjsig also interposes the sigaction() call below and saves the
      // old sigaction on it own.
    } else {
      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
                    "%#lx for signal %d.", (long)oldhand, sig));
    }
  }

  struct sigaction sigAct;
  sigfillset(&(sigAct.sa_mask));
  if (!set_installed) {
    sigAct.sa_handler = SIG_DFL;
    sigAct.sa_flags = SA_RESTART;
  } else {
    // Renamed 'signalHandler' to avoid collision with other shared libs.
    sigAct.sa_sigaction = javaSignalHandler;
    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  }
  // Save flags, which are set by ours
  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  sigflags[sig] = sigAct.sa_flags;

  int ret = sigaction(sig, &sigAct, &oldAct);
  assert(ret == 0, "check");

  void* oldhand2 = oldAct.sa_sigaction
                 ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
                 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
}

// install signal handlers for signals that HotSpot needs to
// handle in order to support Java-level exception handling.
void os::Aix::install_signal_handlers() {
  if (!signal_handlers_are_installed) {
    signal_handlers_are_installed = true;

    // signal-chaining
    typedef void (*signal_setting_t)();
    signal_setting_t begin_signal_setting = NULL;
    signal_setting_t end_signal_setting = NULL;
    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
    if (begin_signal_setting != NULL) {
      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
      libjsig_is_loaded = true;
      assert(UseSignalChaining, "should enable signal-chaining");
    }
    if (libjsig_is_loaded) {
      // Tell libjsig jvm is setting signal handlers
      (*begin_signal_setting)();
    }

    set_signal_handler(SIGSEGV, true);
    set_signal_handler(SIGPIPE, true);
    set_signal_handler(SIGBUS, true);
    set_signal_handler(SIGILL, true);
    set_signal_handler(SIGFPE, true);
    set_signal_handler(SIGTRAP, true);
    set_signal_handler(SIGXFSZ, true);
    set_signal_handler(SIGDANGER, true);

    if (libjsig_is_loaded) {
      // Tell libjsig jvm finishes setting signal handlers
      (*end_signal_setting)();
    }

    // We don't activate signal checker if libjsig is in place, we trust ourselves
    // and if UserSignalHandler is installed all bets are off.
    // Log that signal checking is off only if -verbose:jni is specified.
    if (CheckJNICalls) {
      if (libjsig_is_loaded) {
        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
        check_signals = false;
      }
      if (AllowUserSignalHandlers) {
        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
        check_signals = false;
      }
      // need to initialize check_signal_done
      ::sigemptyset(&check_signal_done);
    }
  }
}

static const char* get_signal_handler_name(address handler,
                                           char* buf, int buflen) {
  int offset;
  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  if (found) {
    // skip directory names
    const char *p1, *p2;
    p1 = buf;
    size_t len = strlen(os::file_separator());
    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
    // The way os::dll_address_to_library_name is implemented on Aix
    // right now, it always returns -1 for the offset which is not
    // terribly informative.
    // Will fix that. For now, omit the offset.
    jio_snprintf(buf, buflen, "%s", p1);
  } else {
    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  }
  return buf;
}

static void print_signal_handler(outputStream* st, int sig,
                                 char* buf, size_t buflen) {
  struct sigaction sa;
  sigaction(sig, NULL, &sa);

  st->print("%s: ", os::exception_name(sig, buf, buflen));

  address handler = (sa.sa_flags & SA_SIGINFO)
    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
    : CAST_FROM_FN_PTR(address, sa.sa_handler);

  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
    st->print("SIG_DFL");
  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
    st->print("SIG_IGN");
  } else {
    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  }

  // Print readable mask.
  st->print(", sa_mask[0]=");
  os::Posix::print_signal_set_short(st, &sa.sa_mask);

  address rh = VMError::get_resetted_sighandler(sig);
  // May be, handler was resetted by VMError?
  if (rh != NULL) {
    handler = rh;
    sa.sa_flags = VMError::get_resetted_sigflags(sig);
  }

  // Print textual representation of sa_flags.
  st->print(", sa_flags=");
  os::Posix::print_sa_flags(st, sa.sa_flags);

  // Check: is it our handler?
  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
    // It is our signal handler.
    // Check for flags, reset system-used one!
    if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
      st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
                os::Aix::get_our_sigflags(sig));
    }
  }
  st->cr();
}


#define DO_SIGNAL_CHECK(sig) \
  if (!sigismember(&check_signal_done, sig)) \
    os::Aix::check_signal_handler(sig)

// This method is a periodic task to check for misbehaving JNI applications
// under CheckJNI, we can add any periodic checks here

void os::run_periodic_checks() {

  if (check_signals == false) return;

  // SEGV and BUS if overridden could potentially prevent
  // generation of hs*.log in the event of a crash, debugging
  // such a case can be very challenging, so we absolutely
  // check the following for a good measure:
  DO_SIGNAL_CHECK(SIGSEGV);
  DO_SIGNAL_CHECK(SIGILL);
  DO_SIGNAL_CHECK(SIGFPE);
  DO_SIGNAL_CHECK(SIGBUS);
  DO_SIGNAL_CHECK(SIGPIPE);
  DO_SIGNAL_CHECK(SIGXFSZ);
  if (UseSIGTRAP) {
    DO_SIGNAL_CHECK(SIGTRAP);
  }
  DO_SIGNAL_CHECK(SIGDANGER);

  // ReduceSignalUsage allows the user to override these handlers
  // see comments at the very top and jvm_solaris.h
  if (!ReduceSignalUsage) {
    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
    DO_SIGNAL_CHECK(BREAK_SIGNAL);
  }

  DO_SIGNAL_CHECK(SR_signum);
  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
}

typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);

static os_sigaction_t os_sigaction = NULL;

void os::Aix::check_signal_handler(int sig) {
  char buf[O_BUFLEN];
  address jvmHandler = NULL;

  struct sigaction act;
  if (os_sigaction == NULL) {
    // only trust the default sigaction, in case it has been interposed
    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
    if (os_sigaction == NULL) return;
  }

  os_sigaction(sig, (struct sigaction*)NULL, &act);

  address thisHandler = (act.sa_flags & SA_SIGINFO)
    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
    : CAST_FROM_FN_PTR(address, act.sa_handler);


  switch(sig) {
  case SIGSEGV:
  case SIGBUS:
  case SIGFPE:
  case SIGPIPE:
  case SIGILL:
  case SIGXFSZ:
    // Renamed 'signalHandler' to avoid collision with other shared libs.
    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
    break;

  case SHUTDOWN1_SIGNAL:
  case SHUTDOWN2_SIGNAL:
  case SHUTDOWN3_SIGNAL:
  case BREAK_SIGNAL:
    jvmHandler = (address)user_handler();
    break;

  case INTERRUPT_SIGNAL:
    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
    break;

  default:
    if (sig == SR_signum) {
      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
    } else {
      return;
    }
    break;
  }

  if (thisHandler != jvmHandler) {
    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
    // No need to check this sig any longer
    sigaddset(&check_signal_done, sig);
  } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
    tty->print("expected:" PTR32_FORMAT, os::Aix::get_our_sigflags(sig));
    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
    // No need to check this sig any longer
    sigaddset(&check_signal_done, sig);
  }

  // Dump all the signal
  if (sigismember(&check_signal_done, sig)) {
    print_signal_handlers(tty, buf, O_BUFLEN);
  }
}

extern bool signal_name(int signo, char* buf, size_t len);

const char* os::exception_name(int exception_code, char* buf, size_t size) {
  if (0 < exception_code && exception_code <= SIGRTMAX) {
    // signal
    if (!signal_name(exception_code, buf, size)) {
      jio_snprintf(buf, size, "SIG%d", exception_code);
    }
    return buf;
  } else {
    return NULL;
  }
}

// To install functions for atexit system call
extern "C" {
  static void perfMemory_exit_helper() {
    perfMemory_exit();
  }
}

// This is called _before_ the most of global arguments have been parsed.
void os::init(void) {
  // This is basic, we want to know if that ever changes.
  // (shared memory boundary is supposed to be a 256M aligned)
  assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");

  // First off, we need to know whether we run on AIX or PASE, and
  // the OS level we run on.
  os::Aix::initialize_os_info();

  // Scan environment (SPEC1170 behaviour, etc)
  os::Aix::scan_environment();

  // Check which pages are supported by AIX.
  os::Aix::query_multipage_support();

  // Next, we need to initialize libo4 and libperfstat libraries.
  if (os::Aix::on_pase()) {
    os::Aix::initialize_libo4();
  } else {
    os::Aix::initialize_libperfstat();
  }

  // Reset the perfstat information provided by ODM.
  if (os::Aix::on_aix()) {
    libperfstat::perfstat_reset();
  }

  // Now initialze basic system properties. Note that for some of the values we
  // need libperfstat etc.
  os::Aix::initialize_system_info();

  // Initialize large page support.
  if (UseLargePages) {
    os::large_page_init();
    if (!UseLargePages) {
      // initialize os::_page_sizes
      _page_sizes[0] = Aix::page_size();
      _page_sizes[1] = 0;
      if (Verbose) {
        fprintf(stderr, "Large Page initialization failed: setting UseLargePages=0.\n");
      }
    }
  } else {
    // initialize os::_page_sizes
    _page_sizes[0] = Aix::page_size();
    _page_sizes[1] = 0;
  }

  // debug trace
  if (Verbose) {
    fprintf(stderr, "os::vm_page_size 0x%llX\n", os::vm_page_size());
    fprintf(stderr, "os::large_page_size 0x%llX\n", os::large_page_size());
    fprintf(stderr, "os::_page_sizes = ( ");
    for (int i = 0; _page_sizes[i]; i ++) {
      fprintf(stderr, " %s ", describe_pagesize(_page_sizes[i]));
    }
    fprintf(stderr, ")\n");
  }

  _initial_pid = getpid();

  clock_tics_per_sec = sysconf(_SC_CLK_TCK);

  init_random(1234567);

  ThreadCritical::initialize();

  // Main_thread points to the aboriginal thread.
  Aix::_main_thread = pthread_self();

  initial_time_count = os::elapsed_counter();
  pthread_mutex_init(&dl_mutex, NULL);
}

// this is called _after_ the global arguments have been parsed
jint os::init_2(void) {

  if (Verbose) {
    fprintf(stderr, "processor count: %d\n", os::_processor_count);
    fprintf(stderr, "physical memory: %lu\n", Aix::_physical_memory);
  }

  // initially build up the loaded dll map
  LoadedLibraries::reload();

  const int page_size = Aix::page_size();
  const int map_size = page_size;

  address map_address = (address) MAP_FAILED;
  const int prot  = PROT_READ;
  const int flags = MAP_PRIVATE|MAP_ANONYMOUS;

  // use optimized addresses for the polling page,
  // e.g. map it to a special 32-bit address.
  if (OptimizePollingPageLocation) {
    // architecture-specific list of address wishes:
    address address_wishes[] = {
      // AIX: addresses lower than 0x30000000 don't seem to work on AIX.
      // PPC64: all address wishes are non-negative 32 bit values where
      // the lower 16 bits are all zero. we can load these addresses
      // with a single ppc_lis instruction.
      (address) 0x30000000, (address) 0x31000000,
      (address) 0x32000000, (address) 0x33000000,
      (address) 0x40000000, (address) 0x41000000,
      (address) 0x42000000, (address) 0x43000000,
      (address) 0x50000000, (address) 0x51000000,
      (address) 0x52000000, (address) 0x53000000,
      (address) 0x60000000, (address) 0x61000000,
      (address) 0x62000000, (address) 0x63000000
    };
    int address_wishes_length = sizeof(address_wishes)/sizeof(address);

    // iterate over the list of address wishes:
    for (int i=0; i<address_wishes_length; i++) {
      // try to map with current address wish.
      // AIX: AIX needs MAP_FIXED if we provide an address and mmap will
      // fail if the address is already mapped.
      map_address = (address) ::mmap(address_wishes[i] - (ssize_t)page_size,
                                     map_size, prot,
                                     flags | MAP_FIXED,
                                     -1, 0);
      if (Verbose) {
        fprintf(stderr, "SafePoint Polling Page address: %p (wish) => %p\n",
                address_wishes[i], map_address + (ssize_t)page_size);
      }

      if (map_address + (ssize_t)page_size == address_wishes[i]) {
        // map succeeded and map_address is at wished address, exit loop.
        break;
      }

      if (map_address != (address) MAP_FAILED) {
        // map succeeded, but polling_page is not at wished address, unmap and continue.
        ::munmap(map_address, map_size);
        map_address = (address) MAP_FAILED;
      }
      // map failed, continue loop.
    }
  } // end OptimizePollingPageLocation

  if (map_address == (address) MAP_FAILED) {
    map_address = (address) ::mmap(NULL, map_size, prot, flags, -1, 0);
  }
  guarantee(map_address != MAP_FAILED, "os::init_2: failed to allocate polling page");
  os::set_polling_page(map_address);

  if (!UseMembar) {
    address mem_serialize_page = (address) ::mmap(NULL, Aix::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
    guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
    os::set_memory_serialize_page(mem_serialize_page);

#ifndef PRODUCT
    if (Verbose && PrintMiscellaneous)
      tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
#endif
  }

  // initialize suspend/resume support - must do this before signal_sets_init()
  if (SR_initialize() != 0) {
    perror("SR_initialize failed");
    return JNI_ERR;
  }

  Aix::signal_sets_init();
  Aix::install_signal_handlers();

  // Check minimum allowable stack size for thread creation and to initialize
  // the java system classes, including StackOverflowError - depends on page
  // size. Add a page for compiler2 recursion in main thread.
  // Add in 2*BytesPerWord times page size to account for VM stack during
  // class initialization depending on 32 or 64 bit VM.
  os::Aix::min_stack_allowed = MAX2(os::Aix::min_stack_allowed,
            (size_t)(StackYellowPages+StackRedPages+StackShadowPages +
                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Aix::page_size());

  size_t threadStackSizeInBytes = ThreadStackSize * K;
  if (threadStackSizeInBytes != 0 &&
      threadStackSizeInBytes < os::Aix::min_stack_allowed) {
        tty->print_cr("\nThe stack size specified is too small, "
                      "Specify at least %dk",
                      os::Aix::min_stack_allowed / K);
        return JNI_ERR;
  }

  // Make the stack size a multiple of the page size so that
  // the yellow/red zones can be guarded.
  // note that this can be 0, if no default stacksize was set
  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes, vm_page_size()));

  Aix::libpthread_init();

  if (MaxFDLimit) {
    // set the number of file descriptors to max. print out error
    // if getrlimit/setrlimit fails but continue regardless.
    struct rlimit nbr_files;
    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
    if (status != 0) {
      if (PrintMiscellaneous && (Verbose || WizardMode))
        perror("os::init_2 getrlimit failed");
    } else {
      nbr_files.rlim_cur = nbr_files.rlim_max;
      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
      if (status != 0) {
        if (PrintMiscellaneous && (Verbose || WizardMode))
          perror("os::init_2 setrlimit failed");
      }
    }
  }

  if (PerfAllowAtExitRegistration) {
    // only register atexit functions if PerfAllowAtExitRegistration is set.
    // atexit functions can be delayed until process exit time, which
    // can be problematic for embedded VM situations. Embedded VMs should
    // call DestroyJavaVM() to assure that VM resources are released.

    // note: perfMemory_exit_helper atexit function may be removed in
    // the future if the appropriate cleanup code can be added to the
    // VM_Exit VMOperation's doit method.
    if (atexit(perfMemory_exit_helper) != 0) {
      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
    }
  }

  return JNI_OK;
}

// this is called at the end of vm_initialization
void os::init_3(void) {
  return;
}

// Mark the polling page as unreadable
void os::make_polling_page_unreadable(void) {
  if (!guard_memory((char*)_polling_page, Aix::page_size())) {
    fatal("Could not disable polling page");
  }
};

// Mark the polling page as readable
void os::make_polling_page_readable(void) {
  // Changed according to os_linux.cpp.
  if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
    fatal(err_msg("Could not enable polling page at " PTR_FORMAT, _polling_page));
  }
};

int os::active_processor_count() {
  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  return online_cpus;
}

void os::set_native_thread_name(const char *name) {
  // Not yet implemented.
  return;
}

bool os::distribute_processes(uint length, uint* distribution) {
  // Not yet implemented.
  return false;
}

bool os::bind_to_processor(uint processor_id) {
  // Not yet implemented.
  return false;
}

void os::SuspendedThreadTask::internal_do_task() {
  if (do_suspend(_thread->osthread())) {
    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
    do_task(context);
    do_resume(_thread->osthread());
  }
}

class PcFetcher : public os::SuspendedThreadTask {
public:
  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  ExtendedPC result();
protected:
  void do_task(const os::SuspendedThreadTaskContext& context);
private:
  ExtendedPC _epc;
};

ExtendedPC PcFetcher::result() {
  guarantee(is_done(), "task is not done yet.");
  return _epc;
}

void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  Thread* thread = context.thread();
  OSThread* osthread = thread->osthread();
  if (osthread->ucontext() != NULL) {
    _epc = os::Aix::ucontext_get_pc((ucontext_t *) context.ucontext());
  } else {
    // NULL context is unexpected, double-check this is the VMThread.
    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  }
}

// Suspends the target using the signal mechanism and then grabs the PC before
// resuming the target. Used by the flat-profiler only
ExtendedPC os::get_thread_pc(Thread* thread) {
  // Make sure that it is called by the watcher for the VMThread.
  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  assert(thread->is_VM_thread(), "Can only be called for VMThread");

  PcFetcher fetcher(thread);
  fetcher.run();
  return fetcher.result();
}

// Not neede on Aix.
// int os::Aix::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime) {
// }

////////////////////////////////////////////////////////////////////////////////
// debug support

static address same_page(address x, address y) {
  intptr_t page_bits = -os::vm_page_size();
  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
    return x;
  else if (x > y)
    return (address)(intptr_t(y) | ~page_bits) + 1;
  else
    return (address)(intptr_t(y) & page_bits);
}

bool os::find(address addr, outputStream* st) {
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105

  st->print(PTR_FORMAT ": ", addr);

  const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(addr);
  if (lib) {
    lib->print(st);
    return true;
  } else {
    lib = LoadedLibraries::find_for_data_address(addr);
    if (lib) {
      lib->print(st);
      return true;
    } else {
      st->print_cr("(outside any module)");
    }
  }

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
  return false;
}

////////////////////////////////////////////////////////////////////////////////
// misc

// This does not do anything on Aix. This is basically a hook for being
// able to use structured exception handling (thread-local exception filters)
// on, e.g., Win32.
void
os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
                         JavaCallArguments* args, Thread* thread) {
  f(value, method, args, thread);
}

void os::print_statistics() {
}

int os::message_box(const char* title, const char* message) {
  int i;
  fdStream err(defaultStream::error_fd());
  for (i = 0; i < 78; i++) err.print_raw("=");
  err.cr();
  err.print_raw_cr(title);
  for (i = 0; i < 78; i++) err.print_raw("-");
  err.cr();
  err.print_raw_cr(message);
  for (i = 0; i < 78; i++) err.print_raw("=");
  err.cr();

  char buf[16];
  // Prevent process from exiting upon "read error" without consuming all CPU
  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }

  return buf[0] == 'y' || buf[0] == 'Y';
}

int os::stat(const char *path, struct stat *sbuf) {
  char pathbuf[MAX_PATH];
  if (strlen(path) > MAX_PATH - 1) {
    errno = ENAMETOOLONG;
    return -1;
  }
  os::native_path(strcpy(pathbuf, path));
  return ::stat(pathbuf, sbuf);
}

bool os::check_heap(bool force) {
  return true;
}

// int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
//   return ::vsnprintf(buf, count, format, args);
// }

// Is a (classpath) directory empty?
bool os::dir_is_empty(const char* path) {
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
  DIR *dir = NULL;
  struct dirent *ptr;

  dir = opendir(path);
  if (dir == NULL) return true;

  /* Scan the directory */
  bool result = true;
  char buf[sizeof(struct dirent) + MAX_PATH];
  while (result && (ptr = ::readdir(dir)) != NULL) {
    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
      result = false;
    }
  }
  closedir(dir);
  return result;
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
}

// This code originates from JDK's sysOpen and open64_w
// from src/solaris/hpi/src/system_md.c

#ifndef O_DELETE
#define O_DELETE 0x10000
#endif

// Open a file. Unlink the file immediately after open returns
// if the specified oflag has the O_DELETE flag set.
// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c

int os::open(const char *path, int oflag, int mode) {

  if (strlen(path) > MAX_PATH - 1) {
    errno = ENAMETOOLONG;
    return -1;
  }
  int fd;
  int o_delete = (oflag & O_DELETE);
  oflag = oflag & ~O_DELETE;

  fd = ::open64(path, oflag, mode);
  if (fd == -1) return -1;

4205
  // If the open succeeded, the file might still be a directory.
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
  {
    struct stat64 buf64;
    int ret = ::fstat64(fd, &buf64);
    int st_mode = buf64.st_mode;

    if (ret != -1) {
      if ((st_mode & S_IFMT) == S_IFDIR) {
        errno = EISDIR;
        ::close(fd);
        return -1;
      }
    } else {
      ::close(fd);
      return -1;
    }
  }

  // All file descriptors that are opened in the JVM and not
  // specifically destined for a subprocess should have the
  // close-on-exec flag set. If we don't set it, then careless 3rd
  // party native code might fork and exec without closing all
  // appropriate file descriptors (e.g. as we do in closeDescriptors in
  // UNIXProcess.c), and this in turn might:
  //
  // - cause end-of-file to fail to be detected on some file
  //   descriptors, resulting in mysterious hangs, or
  //
  // - might cause an fopen in the subprocess to fail on a system
  //   suffering from bug 1085341.
  //
  // (Yes, the default setting of the close-on-exec flag is a Unix
  // design flaw.)
  //
  // See:
  // 1085341: 32-bit stdio routines should support file descriptors >255
  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
#ifdef FD_CLOEXEC
  {
    int flags = ::fcntl(fd, F_GETFD);
    if (flags != -1)
      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  }
#endif

  if (o_delete != 0) {
    ::unlink(path);
  }
  return fd;
}


// create binary file, rewriting existing file if required
int os::create_binary_file(const char* path, bool rewrite_existing) {
4260 4261 4262 4263 4264
  int oflags = O_WRONLY | O_CREAT;
  if (!rewrite_existing) {
    oflags |= O_EXCL;
  }
  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
}

// return current position of file pointer
jlong os::current_file_offset(int fd) {
  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
}

// move file pointer to the specified offset
jlong os::seek_to_file_offset(int fd, jlong offset) {
  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
}

// This code originates from JDK's sysAvailable
// from src/solaris/hpi/src/native_threads/src/sys_api_td.c

int os::available(int fd, jlong *bytes) {
  jlong cur, end;
  int mode;
  struct stat64 buf64;

  if (::fstat64(fd, &buf64) >= 0) {
    mode = buf64.st_mode;
    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
      // XXX: is the following call interruptible? If so, this might
      // need to go through the INTERRUPT_IO() wrapper as for other
      // blocking, interruptible calls in this file.
      int n;
      if (::ioctl(fd, FIONREAD, &n) >= 0) {
        *bytes = n;
        return 1;
      }
    }
  }
  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
    return 0;
  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
    return 0;
  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
    return 0;
  }
  *bytes = end - cur;
  return 1;
}

int os::socket_available(int fd, jint *pbytes) {
  // Linux doc says EINTR not returned, unlike Solaris
  int ret = ::ioctl(fd, FIONREAD, pbytes);

  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  // is expected to return 0 on failure and 1 on success to the jdk.
  return (ret < 0) ? 0 : 1;
}

// Map a block of memory.
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
                        char *addr, size_t bytes, bool read_only,
                        bool allow_exec) {
  Unimplemented();
  return NULL;
}


// Remap a block of memory.
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
                          char *addr, size_t bytes, bool read_only,
                          bool allow_exec) {
  // same as map_memory() on this OS
  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
                        allow_exec);
}

// Unmap a block of memory.
bool os::pd_unmap_memory(char* addr, size_t bytes) {
  return munmap(addr, bytes) == 0;
}

// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
// of a thread.
//
// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
// the fast estimate available on the platform.

jlong os::current_thread_cpu_time() {
  // return user + sys since the cost is the same
  const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
  assert(n >= 0, "negative CPU time");
  return n;
}

jlong os::thread_cpu_time(Thread* thread) {
  // consistent with what current_thread_cpu_time() returns
  const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
  assert(n >= 0, "negative CPU time");
  return n;
}

jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  assert(n >= 0, "negative CPU time");
  return n;
}

static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
  bool error = false;

  jlong sys_time = 0;
  jlong user_time = 0;

  // reimplemented using getthrds64().
  //
  // goes like this:
  // For the thread in question, get the kernel thread id. Then get the
  // kernel thread statistics using that id.
  //
  // This only works of course when no pthread scheduling is used,
  // ie there is a 1:1 relationship to kernel threads.
  // On AIX, see AIXTHREAD_SCOPE variable.

  pthread_t pthtid = thread->osthread()->pthread_id();

  // retrieve kernel thread id for the pthread:
  tid64_t tid = 0;
  struct __pthrdsinfo pinfo;
  // I just love those otherworldly IBM APIs which force me to hand down
  // dummy buffers for stuff I dont care for...
  char dummy[1];
  int dummy_size = sizeof(dummy);
  if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
                          dummy, &dummy_size) == 0) {
    tid = pinfo.__pi_tid;
  } else {
    tty->print_cr("pthread_getthrds_np failed.");
    error = true;
  }

  // retrieve kernel timing info for that kernel thread
  if (!error) {
    struct thrdentry64 thrdentry;
    if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
      sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
      user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
    } else {
      tty->print_cr("pthread_getthrds_np failed.");
      error = true;
    }
  }

  if (p_sys_time) {
    *p_sys_time = sys_time;
  }

  if (p_user_time) {
    *p_user_time = user_time;
  }

  if (error) {
    return false;
  }

  return true;
}

jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  jlong sys_time;
  jlong user_time;

  if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
    return -1;
  }

  return user_sys_cpu_time ? sys_time + user_time : user_time;
}

void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  info_ptr->may_skip_backward = false;     // elapsed time not wall time
  info_ptr->may_skip_forward = false;      // elapsed time not wall time
  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
}

void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  info_ptr->may_skip_backward = false;     // elapsed time not wall time
  info_ptr->may_skip_forward = false;      // elapsed time not wall time
  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
}

bool os::is_thread_cpu_time_supported() {
  return true;
}

// System loadavg support. Returns -1 if load average cannot be obtained.
// For now just return the system wide load average (no processor sets).
int os::loadavg(double values[], int nelem) {

  // Implemented using libperfstat on AIX.

  guarantee(nelem >= 0 && nelem <= 3, "argument error");
  guarantee(values, "argument error");

  if (os::Aix::on_pase()) {
    Unimplemented();
    return -1;
  } else {
    // AIX: use libperfstat
    //
    // See also:
    // http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_cputot.htm
    // /usr/include/libperfstat.h:

    // Use the already AIX version independent get_cpuinfo.
    os::Aix::cpuinfo_t ci;
    if (os::Aix::get_cpuinfo(&ci)) {
      for (int i = 0; i < nelem; i++) {
        values[i] = ci.loadavg[i];
      }
    } else {
      return -1;
    }
    return nelem;
  }
}

void os::pause() {
  char filename[MAX_PATH];
  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  } else {
    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  }

  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  if (fd != -1) {
    struct stat buf;
    ::close(fd);
    while (::stat(filename, &buf) == 0) {
      (void)::poll(NULL, 0, 100);
    }
  } else {
    jio_fprintf(stderr,
      "Could not open pause file '%s', continuing immediately.\n", filename);
  }
}

bool os::Aix::is_primordial_thread() {
  if (pthread_self() == (pthread_t)1) {
    return true;
  } else {
    return false;
  }
}

// OS recognitions (PASE/AIX, OS level) call this before calling any
// one of Aix::on_pase(), Aix::os_version() static
void os::Aix::initialize_os_info() {

  assert(_on_pase == -1 && _os_version == -1, "already called.");

  struct utsname uts;
  memset(&uts, 0, sizeof(uts));
  strcpy(uts.sysname, "?");
  if (::uname(&uts) == -1) {
    fprintf(stderr, "uname failed (%d)\n", errno);
    guarantee(0, "Could not determine whether we run on AIX or PASE");
  } else {
    if (Verbose) {
      fprintf(stderr,"uname says: sysname \"%s\" version \"%s\" release \"%s\" "
              "node \"%s\" machine \"%s\"\n",
              uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
    }
    const int major = atoi(uts.version);
    assert(major > 0, "invalid OS version");
    const int minor = atoi(uts.release);
    assert(minor > 0, "invalid OS release");
    _os_version = (major << 8) | minor;
    if (strcmp(uts.sysname, "OS400") == 0) {
      Unimplemented();
    } else if (strcmp(uts.sysname, "AIX") == 0) {
      // We run on AIX. We do not support versions older than AIX 5.3.
      _on_pase = 0;
      if (_os_version < 0x0503) {
        fprintf(stderr, "AIX release older than AIX 5.3 not supported.\n");
        assert(false, "AIX release too old.");
      } else {
        if (Verbose) {
          fprintf(stderr, "We run on AIX %d.%d\n", major, minor);
        }
      }
    } else {
      assert(false, "unknown OS");
    }
  }

  guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");

} // end: os::Aix::initialize_os_info()

// Scan environment for important settings which might effect the VM.
// Trace out settings. Warn about invalid settings and/or correct them.
//
// Must run after os::Aix::initialue_os_info().
void os::Aix::scan_environment() {

  char* p;
  int rc;

  // Warn explicity if EXTSHM=ON is used. That switch changes how
  // System V shared memory behaves. One effect is that page size of
  // shared memory cannot be change dynamically, effectivly preventing
  // large pages from working.
  // This switch was needed on AIX 32bit, but on AIX 64bit the general
  // recommendation is (in OSS notes) to switch it off.
  p = ::getenv("EXTSHM");
  if (Verbose) {
    fprintf(stderr, "EXTSHM=%s.\n", p ? p : "<unset>");
  }
  if (p && strcmp(p, "ON") == 0) {
    fprintf(stderr, "Unsupported setting: EXTSHM=ON. Large Page support will be disabled.\n");
    _extshm = 1;
  } else {
    _extshm = 0;
  }

  // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
  // Not tested, not supported.
  //
  // Note that it might be worth the trouble to test and to require it, if only to
  // get useful return codes for mprotect.
  //
  // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
  // exec() ? before loading the libjvm ? ....)
  p = ::getenv("XPG_SUS_ENV");
  if (Verbose) {
    fprintf(stderr, "XPG_SUS_ENV=%s.\n", p ? p : "<unset>");
  }
  if (p && strcmp(p, "ON") == 0) {
    _xpg_sus_mode = 1;
    fprintf(stderr, "Unsupported setting: XPG_SUS_ENV=ON\n");
    // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
    // clobber address ranges. If we ever want to support that, we have to do some
    // testing first.
    guarantee(false, "XPG_SUS_ENV=ON not supported");
  } else {
    _xpg_sus_mode = 0;
  }

  // Switch off AIX internal (pthread) guard pages. This has
  // immediate effect for any pthread_create calls which follow.
  p = ::getenv("AIXTHREAD_GUARDPAGES");
  if (Verbose) {
    fprintf(stderr, "AIXTHREAD_GUARDPAGES=%s.\n", p ? p : "<unset>");
    fprintf(stderr, "setting AIXTHREAD_GUARDPAGES=0.\n");
  }
  rc = ::putenv("AIXTHREAD_GUARDPAGES=0");
  guarantee(rc == 0, "");

} // end: os::Aix::scan_environment()

// PASE: initialize the libo4 library (AS400 PASE porting library).
void os::Aix::initialize_libo4() {
  Unimplemented();
}

// AIX: initialize the libperfstat library (we load this dynamically
// because it is only available on AIX.
void os::Aix::initialize_libperfstat() {

  assert(os::Aix::on_aix(), "AIX only");

  if (!libperfstat::init()) {
    fprintf(stderr, "libperfstat initialization failed.\n");
    assert(false, "libperfstat initialization failed");
  } else {
    if (Verbose) {
      fprintf(stderr, "libperfstat initialized.\n");
    }
  }
} // end: os::Aix::initialize_libperfstat

/////////////////////////////////////////////////////////////////////////////
// thread stack

// function to query the current stack size using pthread_getthrds_np
//
// ! do not change anything here unless you know what you are doing !
static void query_stack_dimensions(address* p_stack_base, size_t* p_stack_size) {

  // This only works when invoked on a pthread. As we agreed not to use
  // primordial threads anyway, I assert here
  guarantee(!os::Aix::is_primordial_thread(), "not allowed on the primordial thread");

  // information about this api can be found (a) in the pthread.h header and
  // (b) in http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_getthrds_np.htm
  //
  // The use of this API to find out the current stack is kind of undefined.
  // But after a lot of tries and asking IBM about it, I concluded that it is safe
  // enough for cases where I let the pthread library create its stacks. For cases
  // where I create an own stack and pass this to pthread_create, it seems not to
  // work (the returned stack size in that case is 0).

  pthread_t tid = pthread_self();
  struct __pthrdsinfo pinfo;
  char dummy[1]; // we only need this to satisfy the api and to not get E
  int dummy_size = sizeof(dummy);

  memset(&pinfo, 0, sizeof(pinfo));

  const int rc = pthread_getthrds_np (&tid, PTHRDSINFO_QUERY_ALL, &pinfo,
                                      sizeof(pinfo), dummy, &dummy_size);

  if (rc != 0) {
    fprintf(stderr, "pthread_getthrds_np failed (%d)\n", rc);
    guarantee(0, "pthread_getthrds_np failed");
  }

  guarantee(pinfo.__pi_stackend, "returned stack base invalid");

  // the following can happen when invoking pthread_getthrds_np on a pthread running on a user provided stack
  // (when handing down a stack to pthread create, see pthread_attr_setstackaddr).
  // Not sure what to do here - I feel inclined to forbid this use case completely.
  guarantee(pinfo.__pi_stacksize, "returned stack size invalid");

  // On AIX, stacks are not necessarily page aligned so round the base and size accordingly
  if (p_stack_base) {
    (*p_stack_base) = (address) align_size_up((intptr_t)pinfo.__pi_stackend, os::Aix::stack_page_size());
  }

  if (p_stack_size) {
    (*p_stack_size) = pinfo.__pi_stacksize - os::Aix::stack_page_size();
  }

#ifndef PRODUCT
  if (Verbose) {
    fprintf(stderr,
            "query_stack_dimensions() -> real stack_base=" INTPTR_FORMAT ", real stack_addr=" INTPTR_FORMAT
            ", real stack_size=" INTPTR_FORMAT
            ", stack_base=" INTPTR_FORMAT ", stack_size=" INTPTR_FORMAT "\n",
            (intptr_t)pinfo.__pi_stackend, (intptr_t)pinfo.__pi_stackaddr, pinfo.__pi_stacksize,
            (intptr_t)align_size_up((intptr_t)pinfo.__pi_stackend, os::Aix::stack_page_size()),
            pinfo.__pi_stacksize - os::Aix::stack_page_size());
  }
#endif

} // end query_stack_dimensions

// get the current stack base from the OS (actually, the pthread library)
address os::current_stack_base() {
  address p;
  query_stack_dimensions(&p, 0);
  return p;
}

// get the current stack size from the OS (actually, the pthread library)
size_t os::current_stack_size() {
  size_t s;
  query_stack_dimensions(0, &s);
  return s;
}

// Refer to the comments in os_solaris.cpp park-unpark.
//
// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
// hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
// For specifics regarding the bug see GLIBC BUGID 261237 :
//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
// is used. (The simple C test-case provided in the GLIBC bug report manifests the
// hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
// and monitorenter when we're using 1-0 locking. All those operations may result in
// calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
// of libpthread avoids the problem, but isn't practical.
//
// Possible remedies:
//
// 1.   Establish a minimum relative wait time. 50 to 100 msecs seems to work.
//      This is palliative and probabilistic, however. If the thread is preempted
//      between the call to compute_abstime() and pthread_cond_timedwait(), more
//      than the minimum period may have passed, and the abstime may be stale (in the
//      past) resultin in a hang. Using this technique reduces the odds of a hang
//      but the JVM is still vulnerable, particularly on heavily loaded systems.
//
// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
//      of the usual flag-condvar-mutex idiom. The write side of the pipe is set
//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
//      reduces to poll()+read(). This works well, but consumes 2 FDs per extant
//      thread.
//
// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
//      that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
//      This also works well. In fact it avoids kernel-level scalability impediments
//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
//      timers in a graceful fashion.
//
// 4.   When the abstime value is in the past it appears that control returns
//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
//      Subsequent timedwait/wait calls may hang indefinitely. Given that, we
//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
//      It may be possible to avoid reinitialization by checking the return
//      value from pthread_cond_timedwait(). In addition to reinitializing the
//      condvar we must establish the invariant that cond_signal() is only called
//      within critical sections protected by the adjunct mutex. This prevents
//      cond_signal() from "seeing" a condvar that's in the midst of being
//      reinitialized or that is corrupt. Sadly, this invariant obviates the
//      desirable signal-after-unlock optimization that avoids futile context switching.
//
//      I'm also concerned that some versions of NTPL might allocate an auxilliary
//      structure when a condvar is used or initialized. cond_destroy() would
//      release the helper structure. Our reinitialize-after-timedwait fix
//      put excessive stress on malloc/free and locks protecting the c-heap.
//
// We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
// It may be possible to refine (4) by checking the kernel and NTPL verisons
// and only enabling the work-around for vulnerable environments.

// utility to compute the abstime argument to timedwait:
// millis is the relative timeout time
// abstime will be the absolute timeout time
// TODO: replace compute_abstime() with unpackTime()

static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  if (millis < 0) millis = 0;
  struct timeval now;
  int status = gettimeofday(&now, NULL);
  assert(status == 0, "gettimeofday");
  jlong seconds = millis / 1000;
  millis %= 1000;
  if (seconds > 50000000) { // see man cond_timedwait(3T)
    seconds = 50000000;
  }
  abstime->tv_sec = now.tv_sec  + seconds;
  long       usec = now.tv_usec + millis * 1000;
  if (usec >= 1000000) {
    abstime->tv_sec += 1;
    usec -= 1000000;
  }
  abstime->tv_nsec = usec * 1000;
  return abstime;
}


// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
// Conceptually TryPark() should be equivalent to park(0).

int os::PlatformEvent::TryPark() {
  for (;;) {
    const int v = _Event;
    guarantee ((v == 0) || (v == 1), "invariant");
    if (Atomic::cmpxchg (0, &_Event, v) == v) return v;
  }
}

void os::PlatformEvent::park() {       // AKA "down()"
  // Invariant: Only the thread associated with the Event/PlatformEvent
  // may call park().
  // TODO: assert that _Assoc != NULL or _Assoc == Self
  int v;
  for (;;) {
    v = _Event;
    if (Atomic::cmpxchg (v-1, &_Event, v) == v) break;
  }
  guarantee (v >= 0, "invariant");
  if (v == 0) {
    // Do this the hard way by blocking ...
    int status = pthread_mutex_lock(_mutex);
    assert_status(status == 0, status, "mutex_lock");
    guarantee (_nParked == 0, "invariant");
    ++ _nParked;
    while (_Event < 0) {
      status = pthread_cond_wait(_cond, _mutex);
      assert_status(status == 0 || status == ETIMEDOUT, status, "cond_timedwait");
    }
    -- _nParked;

    // In theory we could move the ST of 0 into _Event past the unlock(),
    // but then we'd need a MEMBAR after the ST.
    _Event = 0;
    status = pthread_mutex_unlock(_mutex);
    assert_status(status == 0, status, "mutex_unlock");
  }
  guarantee (_Event >= 0, "invariant");
}

int os::PlatformEvent::park(jlong millis) {
  guarantee (_nParked == 0, "invariant");

  int v;
  for (;;) {
    v = _Event;
    if (Atomic::cmpxchg (v-1, &_Event, v) == v) break;
  }
  guarantee (v >= 0, "invariant");
  if (v != 0) return OS_OK;

  // We do this the hard way, by blocking the thread.
  // Consider enforcing a minimum timeout value.
  struct timespec abst;
  compute_abstime(&abst, millis);

  int ret = OS_TIMEOUT;
  int status = pthread_mutex_lock(_mutex);
  assert_status(status == 0, status, "mutex_lock");
  guarantee (_nParked == 0, "invariant");
  ++_nParked;

  // Object.wait(timo) will return because of
  // (a) notification
  // (b) timeout
  // (c) thread.interrupt
  //
  // Thread.interrupt and object.notify{All} both call Event::set.
  // That is, we treat thread.interrupt as a special case of notification.
  // The underlying Solaris implementation, cond_timedwait, admits
  // spurious/premature wakeups, but the JLS/JVM spec prevents the
  // JVM from making those visible to Java code. As such, we must
  // filter out spurious wakeups. We assume all ETIME returns are valid.
  //
  // TODO: properly differentiate simultaneous notify+interrupt.
  // In that case, we should propagate the notify to another waiter.

  while (_Event < 0) {
    status = pthread_cond_timedwait(_cond, _mutex, &abst);
    assert_status(status == 0 || status == ETIMEDOUT,
          status, "cond_timedwait");
    if (!FilterSpuriousWakeups) break;         // previous semantics
    if (status == ETIMEDOUT) break;
    // We consume and ignore EINTR and spurious wakeups.
  }
  --_nParked;
  if (_Event >= 0) {
     ret = OS_OK;
  }
  _Event = 0;
  status = pthread_mutex_unlock(_mutex);
  assert_status(status == 0, status, "mutex_unlock");
  assert (_nParked == 0, "invariant");
  return ret;
}

void os::PlatformEvent::unpark() {
  int v, AnyWaiters;
  for (;;) {
    v = _Event;
    if (v > 0) {
      // The LD of _Event could have reordered or be satisfied
      // by a read-aside from this processor's write buffer.
      // To avoid problems execute a barrier and then
      // ratify the value.
      OrderAccess::fence();
      if (_Event == v) return;
      continue;
    }
    if (Atomic::cmpxchg (v+1, &_Event, v) == v) break;
  }
  if (v < 0) {
    // Wait for the thread associated with the event to vacate
    int status = pthread_mutex_lock(_mutex);
    assert_status(status == 0, status, "mutex_lock");
    AnyWaiters = _nParked;

    if (AnyWaiters != 0) {
      // We intentional signal *after* dropping the lock
      // to avoid a common class of futile wakeups.
      status = pthread_cond_signal(_cond);
      assert_status(status == 0, status, "cond_signal");
    }
    // Mutex should be locked for pthread_cond_signal(_cond).
    status = pthread_mutex_unlock(_mutex);
    assert_status(status == 0, status, "mutex_unlock");
  }

  // Note that we signal() _after dropping the lock for "immortal" Events.
  // This is safe and avoids a common class of futile wakeups. In rare
  // circumstances this can cause a thread to return prematurely from
  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  // simply re-test the condition and re-park itself.
}


// JSR166
// -------------------------------------------------------

//
// The solaris and linux implementations of park/unpark are fairly
// conservative for now, but can be improved. They currently use a
// mutex/condvar pair, plus a a count.
// Park decrements count if > 0, else does a condvar wait. Unpark
// sets count to 1 and signals condvar. Only one thread ever waits
// on the condvar. Contention seen when trying to park implies that someone
// is unparking you, so don't wait. And spurious returns are fine, so there
// is no need to track notifications.
//

#define MAX_SECS 100000000
//
// This code is common to linux and solaris and will be moved to a
// common place in dolphin.
//
// The passed in time value is either a relative time in nanoseconds
// or an absolute time in milliseconds. Either way it has to be unpacked
// into suitable seconds and nanoseconds components and stored in the
// given timespec structure.
// Given time is a 64-bit value and the time_t used in the timespec is only
// a signed-32-bit value (except on 64-bit Linux) we have to watch for
// overflow if times way in the future are given. Further on Solaris versions
// prior to 10 there is a restriction (see cond_timedwait) that the specified
// number of seconds, in abstime, is less than current_time + 100,000,000.
// As it will be 28 years before "now + 100000000" will overflow we can
// ignore overflow and just impose a hard-limit on seconds using the value
// of "now + 100,000,000". This places a limit on the timeout of about 3.17
// years from "now".
//

static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  assert (time > 0, "convertTime");

  struct timeval now;
  int status = gettimeofday(&now, NULL);
  assert(status == 0, "gettimeofday");

  time_t max_secs = now.tv_sec + MAX_SECS;

  if (isAbsolute) {
    jlong secs = time / 1000;
    if (secs > max_secs) {
      absTime->tv_sec = max_secs;
    }
    else {
      absTime->tv_sec = secs;
    }
    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  }
  else {
    jlong secs = time / NANOSECS_PER_SEC;
    if (secs >= MAX_SECS) {
      absTime->tv_sec = max_secs;
      absTime->tv_nsec = 0;
    }
    else {
      absTime->tv_sec = now.tv_sec + secs;
      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
        absTime->tv_nsec -= NANOSECS_PER_SEC;
        ++absTime->tv_sec; // note: this must be <= max_secs
      }
    }
  }
  assert(absTime->tv_sec >= 0, "tv_sec < 0");
  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
}

void Parker::park(bool isAbsolute, jlong time) {
  // Optional fast-path check:
  // Return immediately if a permit is available.
  if (_counter > 0) {
      _counter = 0;
      OrderAccess::fence();
      return;
  }

  Thread* thread = Thread::current();
  assert(thread->is_Java_thread(), "Must be JavaThread");
  JavaThread *jt = (JavaThread *)thread;

  // Optional optimization -- avoid state transitions if there's an interrupt pending.
  // Check interrupt before trying to wait
  if (Thread::is_interrupted(thread, false)) {
    return;
  }

  // Next, demultiplex/decode time arguments
  timespec absTime;
  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
    return;
  }
  if (time > 0) {
    unpackTime(&absTime, isAbsolute, time);
  }


  // Enter safepoint region
  // Beware of deadlocks such as 6317397.
  // The per-thread Parker:: mutex is a classic leaf-lock.
  // In particular a thread must never block on the Threads_lock while
  // holding the Parker:: mutex. If safepoints are pending both the
  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  ThreadBlockInVM tbivm(jt);

  // Don't wait if cannot get lock since interference arises from
  // unblocking. Also. check interrupt before trying wait
  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
    return;
  }

  int status;
  if (_counter > 0) { // no wait needed
    _counter = 0;
    status = pthread_mutex_unlock(_mutex);
    assert (status == 0, "invariant");
    OrderAccess::fence();
    return;
  }

#ifdef ASSERT
  // Don't catch signals while blocked; let the running threads have the signals.
  // (This allows a debugger to break into the running thread.)
  sigset_t oldsigs;
  sigset_t* allowdebug_blocked = os::Aix::allowdebug_blocked_signals();
  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
#endif

  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  jt->set_suspend_equivalent();
  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()

  if (time == 0) {
    status = pthread_cond_wait (_cond, _mutex);
  } else {
    status = pthread_cond_timedwait (_cond, _mutex, &absTime);
    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
      pthread_cond_destroy (_cond);
      pthread_cond_init    (_cond, NULL);
    }
  }
  assert_status(status == 0 || status == EINTR ||
                status == ETIME || status == ETIMEDOUT,
                status, "cond_timedwait");

#ifdef ASSERT
  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
#endif

  _counter = 0;
  status = pthread_mutex_unlock(_mutex);
  assert_status(status == 0, status, "invariant");
  // If externally suspended while waiting, re-suspend
  if (jt->handle_special_suspend_equivalent_condition()) {
    jt->java_suspend_self();
  }

  OrderAccess::fence();
}

void Parker::unpark() {
  int s, status;
  status = pthread_mutex_lock(_mutex);
  assert (status == 0, "invariant");
  s = _counter;
  _counter = 1;
  if (s < 1) {
    if (WorkAroundNPTLTimedWaitHang) {
      status = pthread_cond_signal (_cond);
      assert (status == 0, "invariant");
      status = pthread_mutex_unlock(_mutex);
      assert (status == 0, "invariant");
    } else {
      status = pthread_mutex_unlock(_mutex);
      assert (status == 0, "invariant");
      status = pthread_cond_signal (_cond);
      assert (status == 0, "invariant");
    }
  } else {
    pthread_mutex_unlock(_mutex);
    assert (status == 0, "invariant");
  }
}


extern char** environ;

// Run the specified command in a separate process. Return its exit value,
// or -1 on failure (e.g. can't fork a new process).
// Unlike system(), this function can be called from signal handler. It
// doesn't block SIGINT et al.
int os::fork_and_exec(char* cmd) {
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
  char * argv[4] = {"sh", "-c", cmd, NULL};

  pid_t pid = fork();

  if (pid < 0) {
    // fork failed
    return -1;

  } else if (pid == 0) {
    // child process

    // try to be consistent with system(), which uses "/usr/bin/sh" on AIX
    execve("/usr/bin/sh", argv, environ);

    // execve failed
    _exit(-1);

  } else  {
    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
    // care about the actual exit code, for now.

    int status;

    // Wait for the child process to exit.  This returns immediately if
    // the child has already exited. */
    while (waitpid(pid, &status, 0) < 0) {
        switch (errno) {
        case ECHILD: return 0;
        case EINTR: break;
        default: return -1;
        }
    }

    if (WIFEXITED(status)) {
       // The child exited normally; get its exit code.
       return WEXITSTATUS(status);
    } else if (WIFSIGNALED(status)) {
       // The child exited because of a signal
       // The best value to return is 0x80 + signal number,
       // because that is what all Unix shells do, and because
       // it allows callers to distinguish between process exit and
       // process death by signal.
       return 0x80 + WTERMSIG(status);
    } else {
       // Unknown exit code; pass it through
       return status;
    }
  }
  // Remove warning.
  return -1;
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
}

// is_headless_jre()
//
// Test for the existence of xawt/libmawt.so or libawt_xawt.so
// in order to report if we are running in a headless jre.
//
// Since JDK8 xawt/libmawt.so is moved into the same directory
// as libawt.so, and renamed libawt_xawt.so
bool os::is_headless_jre() {
  struct stat statbuf;
  char buf[MAXPATHLEN];
  char libmawtpath[MAXPATHLEN];
  const char *xawtstr  = "/xawt/libmawt.so";
  const char *new_xawtstr = "/libawt_xawt.so";

  char *p;

  // Get path to libjvm.so
  os::jvm_path(buf, sizeof(buf));

  // Get rid of libjvm.so
  p = strrchr(buf, '/');
  if (p == NULL) return false;
  else *p = '\0';

  // Get rid of client or server
  p = strrchr(buf, '/');
  if (p == NULL) return false;
  else *p = '\0';

  // check xawt/libmawt.so
  strcpy(libmawtpath, buf);
  strcat(libmawtpath, xawtstr);
  if (::stat(libmawtpath, &statbuf) == 0) return false;

  // check libawt_xawt.so
  strcpy(libmawtpath, buf);
  strcat(libmawtpath, new_xawtstr);
  if (::stat(libmawtpath, &statbuf) == 0) return false;

  return true;
}

// Get the default path to the core file
// Returns the length of the string
int os::get_core_path(char* buffer, size_t bufferSize) {
  const char* p = get_current_directory(buffer, bufferSize);

  if (p == NULL) {
    assert(p != NULL, "failed to get current directory");
    return 0;
  }

  return strlen(buffer);
}

#ifndef PRODUCT
void TestReserveMemorySpecial_test() {
  // No tests available for this platform
}
#endif