stubGenerator_sparc.cpp 179.9 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25
#include "precompiled.hpp"
26
#include "asm/macroAssembler.inline.hpp"
27 28 29
#include "interpreter/interpreter.hpp"
#include "nativeInst_sparc.hpp"
#include "oops/instanceOop.hpp"
30
#include "oops/method.hpp"
31 32 33 34 35 36 37 38
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
39
#include "runtime/thread.inline.hpp"
40 41 42 43
#include "utilities/top.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
D
duke 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

// Declaration and definition of StubGenerator (no .hpp file).
// For a more detailed description of the stub routine structure
// see the comment in stubRoutines.hpp.

#define __ _masm->

#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

// Note:  The register L7 is used as L7_thread_cache, and may not be used
//        any other way within this module.


static const Register& Lstub_temp = L2;

// -------------------------------------------------------------------------------------------------------------------------
// Stub Code definitions

static address handle_unsafe_access() {
  JavaThread* thread = JavaThread::current();
  address pc  = thread->saved_exception_pc();
  address npc = thread->saved_exception_npc();
  // pc is the instruction which we must emulate
  // doing a no-op is fine:  return garbage from the load

  // request an async exception
  thread->set_pending_unsafe_access_error();

  // return address of next instruction to execute
  return npc;
}

class StubGenerator: public StubCodeGenerator {
 private:

#ifdef PRODUCT
86
#define inc_counter_np(a,b,c)
D
duke 已提交
87 88 89
#else
#define inc_counter_np(counter, t1, t2) \
  BLOCK_COMMENT("inc_counter " #counter); \
90
  __ inc_counter(&counter, t1, t2);
D
duke 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#endif

  //----------------------------------------------------------------------------------------------------
  // Call stubs are used to call Java from C

  address generate_call_stub(address& return_pc) {
    StubCodeMark mark(this, "StubRoutines", "call_stub");
    address start = __ pc();

    // Incoming arguments:
    //
    // o0         : call wrapper address
    // o1         : result (address)
    // o2         : result type
    // o3         : method
    // o4         : (interpreter) entry point
    // o5         : parameters (address)
    // [sp + 0x5c]: parameter size (in words)
    // [sp + 0x60]: thread
    //
    // +---------------+ <--- sp + 0
    // |               |
    // . reg save area .
    // |               |
    // +---------------+ <--- sp + 0x40
    // |               |
    // . extra 7 slots .
    // |               |
    // +---------------+ <--- sp + 0x5c
    // |  param. size  |
    // +---------------+ <--- sp + 0x60
    // |    thread     |
    // +---------------+
    // |               |

    // note: if the link argument position changes, adjust
    //       the code in frame::entry_frame_call_wrapper()

    const Argument link           = Argument(0, false); // used only for GC
    const Argument result         = Argument(1, false);
    const Argument result_type    = Argument(2, false);
    const Argument method         = Argument(3, false);
    const Argument entry_point    = Argument(4, false);
    const Argument parameters     = Argument(5, false);
    const Argument parameter_size = Argument(6, false);
    const Argument thread         = Argument(7, false);

    // setup thread register
    __ ld_ptr(thread.as_address(), G2_thread);
140
    __ reinit_heapbase();
D
duke 已提交
141 142 143 144 145 146

#ifdef ASSERT
    // make sure we have no pending exceptions
    { const Register t = G3_scratch;
      Label L;
      __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
K
kvn 已提交
147
      __ br_null_short(t, Assembler::pt, L);
D
duke 已提交
148 149 150 151 152 153 154 155 156 157
      __ stop("StubRoutines::call_stub: entered with pending exception");
      __ bind(L);
    }
#endif

    // create activation frame & allocate space for parameters
    { const Register t = G3_scratch;
      __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
      __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
      __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
158
      __ sll(t, Interpreter::logStackElementSize, t);           // compute number of bytes
D
duke 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
      __ neg(t);                                                // negate so it can be used with save
      __ save(SP, t, SP);                                       // setup new frame
    }

    // +---------------+ <--- sp + 0
    // |               |
    // . reg save area .
    // |               |
    // +---------------+ <--- sp + 0x40
    // |               |
    // . extra 7 slots .
    // |               |
    // +---------------+ <--- sp + 0x5c
    // |  empty slot   |      (only if parameter size is even)
    // +---------------+
    // |               |
    // .  parameters   .
    // |               |
    // +---------------+ <--- fp + 0
    // |               |
    // . reg save area .
    // |               |
    // +---------------+ <--- fp + 0x40
    // |               |
    // . extra 7 slots .
    // |               |
    // +---------------+ <--- fp + 0x5c
    // |  param. size  |
    // +---------------+ <--- fp + 0x60
    // |    thread     |
    // +---------------+
    // |               |

    // pass parameters if any
    BLOCK_COMMENT("pass parameters if any");
    { const Register src = parameters.as_in().as_register();
      const Register dst = Lentry_args;
      const Register tmp = G3_scratch;
      const Register cnt = G4_scratch;

      // test if any parameters & setup of Lentry_args
      Label exit;
      __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
      __ add( FP, STACK_BIAS, dst );
K
kvn 已提交
203
      __ cmp_zero_and_br(Assembler::zero, cnt, exit);
D
duke 已提交
204 205 206 207 208 209 210 211
      __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args

      // copy parameters if any
      Label loop;
      __ BIND(loop);
      // Store parameter value
      __ ld_ptr(src, 0, tmp);
      __ add(src, BytesPerWord, src);
212
      __ st_ptr(tmp, dst, 0);
D
duke 已提交
213 214
      __ deccc(cnt);
      __ br(Assembler::greater, false, Assembler::pt, loop);
215
      __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
D
duke 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

      // done
      __ BIND(exit);
    }

    // setup parameters, method & call Java function
#ifdef ASSERT
    // layout_activation_impl checks it's notion of saved SP against
    // this register, so if this changes update it as well.
    const Register saved_SP = Lscratch;
    __ mov(SP, saved_SP);                               // keep track of SP before call
#endif

    // setup parameters
    const Register t = G3_scratch;
    __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
232
    __ sll(t, Interpreter::logStackElementSize, t);    // compute number of bytes
D
duke 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    __ sub(FP, t, Gargs);                              // setup parameter pointer
#ifdef _LP64
    __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
#endif
    __ mov(SP, O5_savedSP);


    // do the call
    //
    // the following register must be setup:
    //
    // G2_thread
    // G5_method
    // Gargs
    BLOCK_COMMENT("call Java function");
    __ jmpl(entry_point.as_in().as_register(), G0, O7);
    __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method

    BLOCK_COMMENT("call_stub_return_address:");
    return_pc = __ pc();

    // The callee, if it wasn't interpreted, can return with SP changed so
    // we can no longer assert of change of SP.

    // store result depending on type
    // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
    //  is treated as T_INT)
    { const Register addr = result     .as_in().as_register();
      const Register type = result_type.as_in().as_register();
      Label is_long, is_float, is_double, is_object, exit;
      __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
      __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
      __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
      __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
      __ delayed()->nop();

      // store int result
      __ st(O0, addr, G0);

      __ BIND(exit);
      __ ret();
      __ delayed()->restore();

      __ BIND(is_object);
K
kvn 已提交
277
      __ ba(exit);
D
duke 已提交
278 279 280
      __ delayed()->st_ptr(O0, addr, G0);

      __ BIND(is_float);
K
kvn 已提交
281
      __ ba(exit);
D
duke 已提交
282 283 284
      __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);

      __ BIND(is_double);
K
kvn 已提交
285
      __ ba(exit);
D
duke 已提交
286 287 288 289
      __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);

      __ BIND(is_long);
#ifdef _LP64
K
kvn 已提交
290
      __ ba(exit);
D
duke 已提交
291 292 293 294 295 296 297 298 299 300 301
      __ delayed()->st_long(O0, addr, G0);      // store entire long
#else
#if defined(COMPILER2)
  // All return values are where we want them, except for Longs.  C2 returns
  // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
  // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
  // build we simply always use G1.
  // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
  // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
  // first which would move g1 -> O0/O1 and destroy the exception we were throwing.

K
kvn 已提交
302
      __ ba(exit);
D
duke 已提交
303 304 305
      __ delayed()->stx(G1, addr, G0);  // store entire long
#else
      __ st(O1, addr, BytesPerInt);
K
kvn 已提交
306
      __ ba(exit);
D
duke 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
      __ delayed()->st(O0, addr, G0);
#endif /* COMPILER2 */
#endif /* _LP64 */
     }
     return start;
  }


  //----------------------------------------------------------------------------------------------------
  // Return point for a Java call if there's an exception thrown in Java code.
  // The exception is caught and transformed into a pending exception stored in
  // JavaThread that can be tested from within the VM.
  //
  // Oexception: exception oop

  address generate_catch_exception() {
    StubCodeMark mark(this, "StubRoutines", "catch_exception");

    address start = __ pc();
    // verify that thread corresponds
    __ verify_thread();

    const Register& temp_reg = Gtemp;
330 331 332
    Address pending_exception_addr    (G2_thread, Thread::pending_exception_offset());
    Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset   ());
    Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset   ());
D
duke 已提交
333 334 335 336 337 338 339 340 341 342 343 344

    // set pending exception
    __ verify_oop(Oexception);
    __ st_ptr(Oexception, pending_exception_addr);
    __ set((intptr_t)__FILE__, temp_reg);
    __ st_ptr(temp_reg, exception_file_offset_addr);
    __ set((intptr_t)__LINE__, temp_reg);
    __ st(temp_reg, exception_line_offset_addr);

    // complete return to VM
    assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");

345 346
    AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
    __ jump_to(stub_ret, temp_reg);
D
duke 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    __ delayed()->nop();

    return start;
  }


  //----------------------------------------------------------------------------------------------------
  // Continuation point for runtime calls returning with a pending exception
  // The pending exception check happened in the runtime or native call stub
  // The pending exception in Thread is converted into a Java-level exception
  //
  // Contract with Java-level exception handler: O0 = exception
  //                                             O1 = throwing pc

  address generate_forward_exception() {
    StubCodeMark mark(this, "StubRoutines", "forward_exception");
    address start = __ pc();

    // Upon entry, O7 has the return address returning into Java
    // (interpreted or compiled) code; i.e. the return address
    // becomes the throwing pc.

    const Register& handler_reg = Gtemp;

371
    Address exception_addr(G2_thread, Thread::pending_exception_offset());
D
duke 已提交
372 373 374 375 376

#ifdef ASSERT
    // make sure that this code is only executed if there is a pending exception
    { Label L;
      __ ld_ptr(exception_addr, Gtemp);
K
kvn 已提交
377
      __ br_notnull_short(Gtemp, Assembler::pt, L);
D
duke 已提交
378 379 380 381 382 383 384 385 386 387 388 389
      __ stop("StubRoutines::forward exception: no pending exception (1)");
      __ bind(L);
    }
#endif

    // compute exception handler into handler_reg
    __ get_thread();
    __ ld_ptr(exception_addr, Oexception);
    __ verify_oop(Oexception);
    __ save_frame(0);             // compensates for compiler weakness
    __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
    BLOCK_COMMENT("call exception_handler_for_return_address");
390
    __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
D
duke 已提交
391 392 393 394 395 396 397 398 399
    __ mov(O0, handler_reg);
    __ restore();                 // compensates for compiler weakness

    __ ld_ptr(exception_addr, Oexception);
    __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC

#ifdef ASSERT
    // make sure exception is set
    { Label L;
K
kvn 已提交
400
      __ br_notnull_short(Oexception, Assembler::pt, L);
D
duke 已提交
401 402 403 404 405 406 407 408 409 410 411 412
      __ stop("StubRoutines::forward exception: no pending exception (2)");
      __ bind(L);
    }
#endif
    // jump to exception handler
    __ jmp(handler_reg, 0);
    // clear pending exception
    __ delayed()->st_ptr(G0, exception_addr);

    return start;
  }

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
  // Safefetch stubs.
  void generate_safefetch(const char* name, int size, address* entry,
                          address* fault_pc, address* continuation_pc) {
    // safefetch signatures:
    //   int      SafeFetch32(int*      adr, int      errValue);
    //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
    //
    // arguments:
    //   o0 = adr
    //   o1 = errValue
    //
    // result:
    //   o0  = *adr or errValue

    StubCodeMark mark(this, "StubRoutines", name);

    // Entry point, pc or function descriptor.
    __ align(CodeEntryAlignment);
    *entry = __ pc();

    __ mov(O0, G1);  // g1 = o0
    __ mov(O1, O0);  // o0 = o1
    // Load *adr into c_rarg1, may fault.
    *fault_pc = __ pc();
    switch (size) {
      case 4:
        // int32_t
        __ ldsw(G1, 0, O0);  // o0 = [g1]
        break;
      case 8:
        // int64_t
        __ ldx(G1, 0, O0);   // o0 = [g1]
        break;
      default:
        ShouldNotReachHere();
    }

    // return errValue or *adr
    *continuation_pc = __ pc();
    // By convention with the trap handler we ensure there is a non-CTI
    // instruction in the trap shadow.
    __ nop();
    __ retl();
    __ delayed()->nop();
  }
D
duke 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

  //------------------------------------------------------------------------------------------------------------------------
  // Continuation point for throwing of implicit exceptions that are not handled in
  // the current activation. Fabricates an exception oop and initiates normal
  // exception dispatching in this frame. Only callee-saved registers are preserved
  // (through the normal register window / RegisterMap handling).
  // If the compiler needs all registers to be preserved between the fault
  // point and the exception handler then it must assume responsibility for that in
  // AbstractCompiler::continuation_for_implicit_null_exception or
  // continuation_for_implicit_division_by_zero_exception. All other implicit
  // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  // either at call sites or otherwise assume that stack unwinding will be initiated,
  // so caller saved registers were assumed volatile in the compiler.

  // Note that we generate only this stub into a RuntimeStub, because it needs to be
  // properly traversed and ignored during GC, so we change the meaning of the "__"
  // macro within this method.
#undef __
#define __ masm->

478
  address generate_throw_exception(const char* name, address runtime_entry,
479
                                   Register arg1 = noreg, Register arg2 = noreg) {
D
duke 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
#ifdef ASSERT
    int insts_size = VerifyThread ? 1 * K : 600;
#else
    int insts_size = VerifyThread ? 1 * K : 256;
#endif /* ASSERT */
    int locs_size  = 32;

    CodeBuffer      code(name, insts_size, locs_size);
    MacroAssembler* masm = new MacroAssembler(&code);

    __ verify_thread();

    // This is an inlined and slightly modified version of call_VM
    // which has the ability to fetch the return PC out of thread-local storage
    __ assert_not_delayed();

    // Note that we always push a frame because on the SPARC
    // architecture, for all of our implicit exception kinds at call
    // sites, the implicit exception is taken before the callee frame
    // is pushed.
    __ save_frame(0);

    int frame_complete = __ offset();

    // Note that we always have a runtime stub frame on the top of stack by this point
    Register last_java_sp = SP;
    // 64-bit last_java_sp is biased!
    __ set_last_Java_frame(last_java_sp, G0);
    if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
    __ save_thread(noreg);
510 511 512 513 514 515 516
    if (arg1 != noreg) {
      assert(arg2 != O1, "clobbered");
      __ mov(arg1, O1);
    }
    if (arg2 != noreg) {
      __ mov(arg2, O2);
    }
D
duke 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530
    // do the call
    BLOCK_COMMENT("call runtime_entry");
    __ call(runtime_entry, relocInfo::runtime_call_type);
    if (!VerifyThread)
      __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
    else
      __ delayed()->nop();             // (thread already passed)
    __ restore_thread(noreg);
    __ reset_last_Java_frame();

    // check for pending exceptions. use Gtemp as scratch register.
#ifdef ASSERT
    Label L;

531
    Address exception_addr(G2_thread, Thread::pending_exception_offset());
D
duke 已提交
532 533
    Register scratch_reg = Gtemp;
    __ ld_ptr(exception_addr, scratch_reg);
K
kvn 已提交
534
    __ br_notnull_short(scratch_reg, Assembler::pt, L);
D
duke 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    __ should_not_reach_here();
    __ bind(L);
#endif // ASSERT
    BLOCK_COMMENT("call forward_exception_entry");
    __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
    // we use O7 linkage so that forward_exception_entry has the issuing PC
    __ delayed()->restore();

    RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
    return stub->entry_point();
  }

#undef __
#define __ _masm->


  // Generate a routine that sets all the registers so we
  // can tell if the stop routine prints them correctly.
  address generate_test_stop() {
    StubCodeMark mark(this, "StubRoutines", "test_stop");
    address start = __ pc();

    int i;

    __ save_frame(0);

    static jfloat zero = 0.0, one = 1.0;

    // put addr in L0, then load through L0 to F0
    __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
    __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1

    // use add to put 2..18 in F2..F18
    for ( i = 2;  i <= 18;  ++i ) {
      __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
    }

    // Now put double 2 in F16, double 18 in F18
    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );

    // use add to put 20..32 in F20..F32
    for (i = 20; i < 32; i += 2) {
      __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
    }

    // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
    for ( i = 0; i < 8; ++i ) {
      if (i < 6) {
        __ set(     i, as_iRegister(i));
        __ set(16 + i, as_oRegister(i));
        __ set(24 + i, as_gRegister(i));
      }
      __ set( 8 + i, as_lRegister(i));
    }

    __ stop("testing stop");


    __ ret();
    __ delayed()->restore();

    return start;
  }


  address generate_stop_subroutine() {
    StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
    address start = __ pc();

    __ stop_subroutine();

    return start;
  }

  address generate_flush_callers_register_windows() {
    StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
    address start = __ pc();

M
morris 已提交
614
    __ flushw();
D
duke 已提交
615 616 617 618 619 620 621 622 623 624
    __ retl(false);
    __ delayed()->add( FP, STACK_BIAS, O0 );
    // The returned value must be a stack pointer whose register save area
    // is flushed, and will stay flushed while the caller executes.

    return start;
  }

  // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
  //
M
morris 已提交
625
  // Arguments:
D
duke 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
  //
  //      exchange_value: O0
  //      dest:           O1
  //
  // Results:
  //
  //     O0: the value previously stored in dest
  //
  address generate_atomic_xchg() {
    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
    address start = __ pc();

    if (UseCASForSwap) {
      // Use CAS instead of swap, just in case the MP hardware
      // prefers to work with just one kind of synch. instruction.
      Label retry;
      __ BIND(retry);
      __ mov(O0, O3);       // scratch copy of exchange value
      __ ld(O1, 0, O2);     // observe the previous value
      // try to replace O2 with O3
M
morris 已提交
646
      __ cas(O1, O2, O3);
K
kvn 已提交
647
      __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
D
duke 已提交
648 649 650 651

      __ retl(false);
      __ delayed()->mov(O2, O0);  // report previous value to caller
    } else {
M
morris 已提交
652 653
      __ retl(false);
      __ delayed()->swap(O1, 0, O0);
D
duke 已提交
654 655 656 657 658 659 660 661
    }

    return start;
  }


  // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
  //
M
morris 已提交
662
  // Arguments:
D
duke 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676
  //
  //      exchange_value: O0
  //      dest:           O1
  //      compare_value:  O2
  //
  // Results:
  //
  //     O0: the value previously stored in dest
  //
  address generate_atomic_cmpxchg() {
    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
    address start = __ pc();

    // cmpxchg(dest, compare_value, exchange_value)
M
morris 已提交
677
    __ cas(O1, O2, O0);
D
duke 已提交
678 679 680 681 682 683 684 685
    __ retl(false);
    __ delayed()->nop();

    return start;
  }

  // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
  //
M
morris 已提交
686
  // Arguments:
D
duke 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
  //
  //      exchange_value: O1:O0
  //      dest:           O2
  //      compare_value:  O4:O3
  //
  // Results:
  //
  //     O1:O0: the value previously stored in dest
  //
  // Overwrites: G1,G2,G3
  //
  address generate_atomic_cmpxchg_long() {
    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
    address start = __ pc();

    __ sllx(O0, 32, O0);
    __ srl(O1, 0, O1);
    __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
    __ sllx(O3, 32, O3);
    __ srl(O4, 0, O4);
    __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
    __ casx(O2, O3, O0);
    __ srl(O0, 0, O1);    // unpacked return value in O1:O0
    __ retl(false);
    __ delayed()->srlx(O0, 32, O0);

    return start;
  }


  // Support for jint Atomic::add(jint add_value, volatile jint* dest).
  //
M
morris 已提交
719
  // Arguments:
D
duke 已提交
720 721 722 723 724 725 726 727
  //
  //      add_value: O0   (e.g., +1 or -1)
  //      dest:      O1
  //
  // Results:
  //
  //     O0: the new value stored in dest
  //
M
morris 已提交
728
  // Overwrites: O3
D
duke 已提交
729 730 731 732 733 734
  //
  address generate_atomic_add() {
    StubCodeMark mark(this, "StubRoutines", "atomic_add");
    address start = __ pc();
    __ BIND(_atomic_add_stub);

M
morris 已提交
735 736
    Label(retry);
    __ BIND(retry);
D
duke 已提交
737

M
morris 已提交
738 739 740 741 742 743
    __ lduw(O1, 0, O2);
    __ add(O0, O2, O3);
    __ cas(O1, O2, O3);
    __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
    __ retl(false);
    __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
D
duke 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

    return start;
  }
  Label _atomic_add_stub;  // called from other stubs


  //------------------------------------------------------------------------------------------------------------------------
  // The following routine generates a subroutine to throw an asynchronous
  // UnknownError when an unsafe access gets a fault that could not be
  // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
  //
  // Arguments :
  //
  //      trapping PC:    O7
  //
  // Results:
  //     posts an asynchronous exception, skips the trapping instruction
  //

  address generate_handler_for_unsafe_access() {
    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
    address start = __ pc();

    const int preserve_register_words = (64 * 2);
768
    Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
D
duke 已提交
769 770 771 772 773 774 775 776 777 778

    Register Lthread = L7_thread_cache;
    int i;

    __ save_frame(0);
    __ mov(G1, L1);
    __ mov(G2, L2);
    __ mov(G3, L3);
    __ mov(G4, L4);
    __ mov(G5, L5);
M
morris 已提交
779
    for (i = 0; i < 64; i += 2) {
D
duke 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792
      __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
    }

    address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
    BLOCK_COMMENT("call handle_unsafe_access");
    __ call(entry_point, relocInfo::runtime_call_type);
    __ delayed()->nop();

    __ mov(L1, G1);
    __ mov(L2, G2);
    __ mov(L3, G3);
    __ mov(L4, G4);
    __ mov(L5, G5);
M
morris 已提交
793
    for (i = 0; i < 64; i += 2) {
D
duke 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
      __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
    }

    __ verify_thread();

    __ jmp(O0, 0);
    __ delayed()->restore();

    return start;
  }


  // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
  // Arguments :
  //
  //      ret  : O0, returned
  //      icc/xcc: set as O0 (depending on wordSize)
  //      sub  : O1, argument, not changed
  //      super: O2, argument, not changed
  //      raddr: O7, blown by call
  address generate_partial_subtype_check() {
815
    __ align(CodeEntryAlignment);
D
duke 已提交
816 817
    StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
    address start = __ pc();
818
    Label miss;
D
duke 已提交
819 820 821

#if defined(COMPILER2) && !defined(_LP64)
    // Do not use a 'save' because it blows the 64-bit O registers.
822
    __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
D
duke 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
    __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
    __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
    __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
    Register Rret   = O0;
    Register Rsub   = O1;
    Register Rsuper = O2;
#else
    __ save_frame(0);
    Register Rret   = I0;
    Register Rsub   = I1;
    Register Rsuper = I2;
#endif

    Register L0_ary_len = L0;
    Register L1_ary_ptr = L1;
    Register L2_super   = L2;
    Register L3_index   = L3;

842 843 844
    __ check_klass_subtype_slow_path(Rsub, Rsuper,
                                     L0, L1, L2, L3,
                                     NULL, &miss);
845

846 847
    // Match falls through here.
    __ addcc(G0,0,Rret);        // set Z flags, Z result
D
duke 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

#if defined(COMPILER2) && !defined(_LP64)
    __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
    __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
    __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
    __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
    __ retl();                  // Result in Rret is zero; flags set to Z
    __ delayed()->add(SP,4*wordSize,SP);
#else
    __ ret();                   // Result in Rret is zero; flags set to Z
    __ delayed()->restore();
#endif

    __ BIND(miss);
    __ addcc(G0,1,Rret);        // set NZ flags, NZ result

#if defined(COMPILER2) && !defined(_LP64)
    __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
    __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
    __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
    __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
    __ retl();                  // Result in Rret is != 0; flags set to NZ
    __ delayed()->add(SP,4*wordSize,SP);
#else
    __ ret();                   // Result in Rret is != 0; flags set to NZ
    __ delayed()->restore();
#endif

    return start;
  }


  // Called from MacroAssembler::verify_oop
  //
  address generate_verify_oop_subroutine() {
    StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");

    address start = __ pc();

    __ verify_oop_subroutine();

    return start;
  }


  //
  // Verify that a register contains clean 32-bits positive value
  // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
  //
  //  Input:
  //    Rint  -  32-bits value
  //    Rtmp  -  scratch
  //
  void assert_clean_int(Register Rint, Register Rtmp) {
#if defined(ASSERT) && defined(_LP64)
    __ signx(Rint, Rtmp);
    __ cmp(Rint, Rtmp);
    __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
#endif
  }

  //
  //  Generate overlap test for array copy stubs
  //
  //  Input:
  //    O0    -  array1
  //    O1    -  array2
  //    O2    -  element count
  //
  //  Kills temps:  O3, O4
  //
  void array_overlap_test(address no_overlap_target, int log2_elem_size) {
    assert(no_overlap_target != NULL, "must be generated");
    array_overlap_test(no_overlap_target, NULL, log2_elem_size);
  }
  void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
    array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
  }
  void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
    const Register from       = O0;
    const Register to         = O1;
    const Register count      = O2;
    const Register to_from    = O3; // to - from
    const Register byte_count = O4; // count << log2_elem_size

      __ subcc(to, from, to_from);
      __ sll_ptr(count, log2_elem_size, byte_count);
      if (NOLp == NULL)
        __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
      else
        __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
      __ delayed()->cmp(to_from, byte_count);
      if (NOLp == NULL)
941
        __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
D
duke 已提交
942
      else
943
        __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
D
duke 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956
      __ delayed()->nop();
  }

  //
  //  Generate pre-write barrier for array.
  //
  //  Input:
  //     addr     - register containing starting address
  //     count    - register containing element count
  //     tmp      - scratch register
  //
  //  The input registers are overwritten.
  //
957
  void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
D
duke 已提交
958
    BarrierSet* bs = Universe::heap()->barrier_set();
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
        // With G1, don't generate the call if we statically know that the target in uninitialized
        if (!dest_uninitialized) {
          __ save_frame(0);
          // Save the necessary global regs... will be used after.
          if (addr->is_global()) {
            __ mov(addr, L0);
          }
          if (count->is_global()) {
            __ mov(count, L1);
          }
          __ mov(addr->after_save(), O0);
          // Get the count into O1
          __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
          __ delayed()->mov(count->after_save(), O1);
          if (addr->is_global()) {
            __ mov(L0, addr);
          }
          if (count->is_global()) {
            __ mov(L1, count);
          }
          __ restore();
        }
        break;
      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
      case BarrierSet::ModRef:
        break;
      default:
        ShouldNotReachHere();
D
duke 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
    }
  }
  //
  //  Generate post-write barrier for array.
  //
  //  Input:
  //     addr     - register containing starting address
  //     count    - register containing element count
  //     tmp      - scratch register
  //
  //  The input registers are overwritten.
  //
  void gen_write_ref_array_post_barrier(Register addr, Register count,
1004
                                        Register tmp) {
D
duke 已提交
1005 1006 1007 1008 1009 1010 1011 1012
    BarrierSet* bs = Universe::heap()->barrier_set();

    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
        {
          // Get some new fresh output registers.
          __ save_frame(0);
1013
          __ mov(addr->after_save(), O0);
D
duke 已提交
1014
          __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
1015
          __ delayed()->mov(count->after_save(), O1);
D
duke 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
          __ restore();
        }
        break;
      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
        {
          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
          assert_different_registers(addr, count, tmp);

          Label L_loop;

1028 1029
          __ sll_ptr(count, LogBytesPerHeapOop, count);
          __ sub(count, BytesPerHeapOop, count);
D
duke 已提交
1030 1031 1032 1033 1034
          __ add(count, addr, count);
          // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
          __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
          __ srl_ptr(count, CardTableModRefBS::card_shift, count);
          __ sub(count, addr, count);
1035 1036
          AddressLiteral rs(ct->byte_map_base);
          __ set(rs, tmp);
D
duke 已提交
1037
        __ BIND(L_loop);
1038
          __ stb(G0, tmp, addr);
D
duke 已提交
1039 1040 1041
          __ subcc(count, 1, count);
          __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
          __ delayed()->add(addr, 1, addr);
1042
        }
D
duke 已提交
1043 1044 1045
        break;
      case BarrierSet::ModRef:
        break;
1046
      default:
D
duke 已提交
1047 1048 1049 1050
        ShouldNotReachHere();
    }
  }

1051 1052 1053 1054 1055 1056 1057
  //
  // Generate main code for disjoint arraycopy
  //
  typedef void (StubGenerator::*CopyLoopFunc)(Register from, Register to, Register count, int count_dec,
                                              Label& L_loop, bool use_prefetch, bool use_bis);

  void disjoint_copy_core(Register from, Register to, Register count, int log2_elem_size,
1058
                          int iter_size, StubGenerator::CopyLoopFunc copy_loop_func) {
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    Label L_copy;

    assert(log2_elem_size <= 3, "the following code should be changed");
    int count_dec = 16>>log2_elem_size;

    int prefetch_dist = MAX2(ArraycopySrcPrefetchDistance, ArraycopyDstPrefetchDistance);
    assert(prefetch_dist < 4096, "invalid value");
    prefetch_dist = (prefetch_dist + (iter_size-1)) & (-iter_size); // round up to one iteration copy size
    int prefetch_count = (prefetch_dist >> log2_elem_size); // elements count

    if (UseBlockCopy) {
      Label L_block_copy, L_block_copy_prefetch, L_skip_block_copy;

      // 64 bytes tail + bytes copied in one loop iteration
      int tail_size = 64 + iter_size;
      int block_copy_count = (MAX2(tail_size, (int)BlockCopyLowLimit)) >> log2_elem_size;
      // Use BIS copy only for big arrays since it requires membar.
      __ set(block_copy_count, O4);
      __ cmp_and_br_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_skip_block_copy);
      // This code is for disjoint source and destination:
      //   to <= from || to >= from+count
      // but BIS will stomp over 'from' if (to > from-tail_size && to <= from)
      __ sub(from, to, O4);
      __ srax(O4, 4, O4); // divide by 16 since following short branch have only 5 bits for imm.
      __ cmp_and_br_short(O4, (tail_size>>4), Assembler::lessEqualUnsigned, Assembler::pn, L_skip_block_copy);

      __ wrasi(G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
      // BIS should not be used to copy tail (64 bytes+iter_size)
      // to avoid zeroing of following values.
      __ sub(count, (tail_size>>log2_elem_size), count); // count is still positive >= 0

      if (prefetch_count > 0) { // rounded up to one iteration count
        // Do prefetching only if copy size is bigger
        // than prefetch distance.
        __ set(prefetch_count, O4);
        __ cmp_and_brx_short(count, O4, Assembler::less, Assembler::pt, L_block_copy);
        __ sub(count, prefetch_count, count);

        (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy_prefetch, true, true);
        __ add(count, prefetch_count, count); // restore count

      } // prefetch_count > 0

      (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy, false, true);
      __ add(count, (tail_size>>log2_elem_size), count); // restore count

      __ wrasi(G0, Assembler::ASI_PRIMARY_NOFAULT);
      // BIS needs membar.
      __ membar(Assembler::StoreLoad);
      // Copy tail
      __ ba_short(L_copy);

      __ BIND(L_skip_block_copy);
    } // UseBlockCopy

    if (prefetch_count > 0) { // rounded up to one iteration count
      // Do prefetching only if copy size is bigger
      // than prefetch distance.
      __ set(prefetch_count, O4);
      __ cmp_and_brx_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_copy);
      __ sub(count, prefetch_count, count);

      Label L_copy_prefetch;
      (this->*copy_loop_func)(from, to, count, count_dec, L_copy_prefetch, true, false);
      __ add(count, prefetch_count, count); // restore count

    } // prefetch_count > 0

    (this->*copy_loop_func)(from, to, count, count_dec, L_copy, false, false);
  }



  //
  // Helper methods for copy_16_bytes_forward_with_shift()
  //
  void copy_16_bytes_shift_loop(Register from, Register to, Register count, int count_dec,
                                Label& L_loop, bool use_prefetch, bool use_bis) {

    const Register left_shift  = G1; // left  shift bit counter
    const Register right_shift = G5; // right shift bit counter

    __ align(OptoLoopAlignment);
    __ BIND(L_loop);
    if (use_prefetch) {
      if (ArraycopySrcPrefetchDistance > 0) {
        __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
      }
      if (ArraycopyDstPrefetchDistance > 0) {
        __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
      }
    }
    __ ldx(from, 0, O4);
    __ ldx(from, 8, G4);
    __ inc(to, 16);
    __ inc(from, 16);
    __ deccc(count, count_dec); // Can we do next iteration after this one?
    __ srlx(O4, right_shift, G3);
    __ bset(G3, O3);
    __ sllx(O4, left_shift,  O4);
    __ srlx(G4, right_shift, G3);
    __ bset(G3, O4);
    if (use_bis) {
      __ stxa(O3, to, -16);
      __ stxa(O4, to, -8);
    } else {
      __ stx(O3, to, -16);
      __ stx(O4, to, -8);
    }
    __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
    __ delayed()->sllx(G4, left_shift,  O3);
  }
D
duke 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

  // Copy big chunks forward with shift
  //
  // Inputs:
  //   from      - source arrays
  //   to        - destination array aligned to 8-bytes
  //   count     - elements count to copy >= the count equivalent to 16 bytes
  //   count_dec - elements count's decrement equivalent to 16 bytes
  //   L_copy_bytes - copy exit label
  //
  void copy_16_bytes_forward_with_shift(Register from, Register to,
1182 1183 1184 1185
                     Register count, int log2_elem_size, Label& L_copy_bytes) {
    Label L_aligned_copy, L_copy_last_bytes;
    assert(log2_elem_size <= 3, "the following code should be changed");
    int count_dec = 16>>log2_elem_size;
D
duke 已提交
1186 1187

    // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
1188 1189 1190
    __ andcc(from, 7, G1); // misaligned bytes
    __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
    __ delayed()->nop();
D
duke 已提交
1191 1192 1193 1194

    const Register left_shift  = G1; // left  shift bit counter
    const Register right_shift = G5; // right shift bit counter

1195 1196 1197
    __ sll(G1, LogBitsPerByte, left_shift);
    __ mov(64, right_shift);
    __ sub(right_shift, left_shift, right_shift);
D
duke 已提交
1198 1199 1200 1201 1202

    //
    // Load 2 aligned 8-bytes chunks and use one from previous iteration
    // to form 2 aligned 8-bytes chunks to store.
    //
1203 1204 1205 1206 1207 1208
    __ dec(count, count_dec);   // Pre-decrement 'count'
    __ andn(from, 7, from);     // Align address
    __ ldx(from, 0, O3);
    __ inc(from, 8);
    __ sllx(O3, left_shift,  O3);

1209
    disjoint_copy_core(from, to, count, log2_elem_size, 16, &StubGenerator::copy_16_bytes_shift_loop);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

    __ inccc(count, count_dec>>1 ); // + 8 bytes
    __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
    __ delayed()->inc(count, count_dec>>1); // restore 'count'

    // copy 8 bytes, part of them already loaded in O3
    __ ldx(from, 0, O4);
    __ inc(to, 8);
    __ inc(from, 8);
    __ srlx(O4, right_shift, G3);
    __ bset(O3, G3);
    __ stx(G3, to, -8);
D
duke 已提交
1222 1223

    __ BIND(L_copy_last_bytes);
1224 1225 1226
    __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
    __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
    __ delayed()->sub(from, right_shift, from);       // restore address
D
duke 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

    __ BIND(L_aligned_copy);
  }

  // Copy big chunks backward with shift
  //
  // Inputs:
  //   end_from  - source arrays end address
  //   end_to    - destination array end address aligned to 8-bytes
  //   count     - elements count to copy >= the count equivalent to 16 bytes
  //   count_dec - elements count's decrement equivalent to 16 bytes
  //   L_aligned_copy - aligned copy exit label
  //   L_copy_bytes   - copy exit label
  //
  void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
                     Register count, int count_dec,
                     Label& L_aligned_copy, Label& L_copy_bytes) {
    Label L_loop, L_copy_last_bytes;

    // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
      __ andcc(end_from, 7, G1); // misaligned bytes
      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
      __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'

    const Register left_shift  = G1; // left  shift bit counter
    const Register right_shift = G5; // right shift bit counter

      __ sll(G1, LogBitsPerByte, left_shift);
      __ mov(64, right_shift);
      __ sub(right_shift, left_shift, right_shift);

    //
    // Load 2 aligned 8-bytes chunks and use one from previous iteration
    // to form 2 aligned 8-bytes chunks to store.
    //
      __ andn(end_from, 7, end_from);     // Align address
      __ ldx(end_from, 0, O3);
1264
      __ align(OptoLoopAlignment);
D
duke 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    __ BIND(L_loop);
      __ ldx(end_from, -8, O4);
      __ deccc(count, count_dec); // Can we do next iteration after this one?
      __ ldx(end_from, -16, G4);
      __ dec(end_to, 16);
      __ dec(end_from, 16);
      __ srlx(O3, right_shift, O3);
      __ sllx(O4, left_shift,  G3);
      __ bset(G3, O3);
      __ stx(O3, end_to, 8);
      __ srlx(O4, right_shift, O4);
      __ sllx(G4, left_shift,  G3);
      __ bset(G3, O4);
      __ stx(O4, end_to, 0);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
      __ delayed()->mov(G4, O3);

      __ inccc(count, count_dec>>1 ); // + 8 bytes
      __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
      __ delayed()->inc(count, count_dec>>1); // restore 'count'

      // copy 8 bytes, part of them already loaded in O3
      __ ldx(end_from, -8, O4);
      __ dec(end_to, 8);
      __ dec(end_from, 8);
      __ srlx(O3, right_shift, O3);
      __ sllx(O4, left_shift,  G3);
      __ bset(O3, G3);
      __ stx(G3, end_to, 0);

    __ BIND(L_copy_last_bytes);
      __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
      __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
      __ delayed()->add(end_from, left_shift, end_from); // restore address
  }

  //
  //  Generate stub for disjoint byte copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
1310
  address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
D
duke 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_skip_alignment, L_align;
    Label L_copy_byte, L_copy_byte_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register offset    = O5;   // offset from start of arrays
    // O3, O4, G3, G4 are used as temp registers

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

1326 1327 1328 1329 1330
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

    // for short arrays, just do single element copy
    __ cmp(count, 23); // 16 + 7
    __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
    __ delayed()->mov(G0, offset);

    if (aligned) {
      // 'aligned' == true when it is known statically during compilation
      // of this arraycopy call site that both 'from' and 'to' addresses
      // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
      //
      // Aligned arrays have 4 bytes alignment in 32-bits VM
      // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
      //
#ifndef _LP64
      // copy a 4-bytes word if necessary to align 'to' to 8 bytes
      __ andcc(to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
      __ delayed()->ld(from, 0, O3);
      __ inc(from, 4);
      __ inc(to, 4);
      __ dec(count, 4);
      __ st(O3, to, -4);
    __ BIND(L_skip_alignment);
#endif
    } else {
      // copy bytes to align 'to' on 8 byte boundary
      __ andcc(to, 7, G1); // misaligned bytes
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->neg(G1);
      __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
      __ sub(count, G1, count);
    __ BIND(L_align);
      __ ldub(from, 0, O3);
      __ deccc(G1);
      __ inc(from);
      __ stb(O3, to, 0);
      __ br(Assembler::notZero, false, Assembler::pt, L_align);
      __ delayed()->inc(to);
    __ BIND(L_skip_alignment);
    }
#ifdef _LP64
    if (!aligned)
#endif
    {
      // Copy with shift 16 bytes per iteration if arrays do not have
      // the same alignment mod 8, otherwise fall through to the next
      // code for aligned copy.
      // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
      // Also jump over aligned copy after the copy with shift completed.

1382
      copy_16_bytes_forward_with_shift(from, to, count, 0, L_copy_byte);
D
duke 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
    }

    // Both array are 8 bytes aligned, copy 16 bytes at a time
      __ and3(count, 7, G4); // Save count
      __ srl(count, 3, count);
     generate_disjoint_long_copy_core(aligned);
      __ mov(G4, count);     // Restore count

    // copy tailing bytes
    __ BIND(L_copy_byte);
K
kvn 已提交
1393
      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
1394
      __ align(OptoLoopAlignment);
D
duke 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    __ BIND(L_copy_byte_loop);
      __ ldub(from, offset, O3);
      __ deccc(count);
      __ stb(O3, to, offset);
      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
      __ delayed()->inc(offset);

    __ BIND(L_exit);
      // O3, O4 are used as temp registers
      inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
      __ retl();
      __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate stub for conjoint byte copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
1419 1420
  address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
                                      address *entry, const char *name) {
D
duke 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
    // Do reverse copy.

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_skip_alignment, L_align, L_aligned_copy;
    Label L_copy_byte, L_copy_byte_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register end_from  = from; // source array end address
    const Register end_to    = to;   // destination array end address

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

1438 1439 1440 1441 1442
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

    array_overlap_test(nooverlap_target, 0);

    __ add(to, count, end_to);       // offset after last copied element

    // for short arrays, just do single element copy
    __ cmp(count, 23); // 16 + 7
    __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
    __ delayed()->add(from, count, end_from);

    {
      // Align end of arrays since they could be not aligned even
      // when arrays itself are aligned.

      // copy bytes to align 'end_to' on 8 byte boundary
      __ andcc(end_to, 7, G1); // misaligned bytes
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->nop();
      __ sub(count, G1, count);
    __ BIND(L_align);
      __ dec(end_from);
      __ dec(end_to);
      __ ldub(end_from, 0, O3);
      __ deccc(G1);
      __ brx(Assembler::notZero, false, Assembler::pt, L_align);
      __ delayed()->stb(O3, end_to, 0);
    __ BIND(L_skip_alignment);
    }
#ifdef _LP64
    if (aligned) {
      // Both arrays are aligned to 8-bytes in 64-bits VM.
      // The 'count' is decremented in copy_16_bytes_backward_with_shift()
      // in unaligned case.
      __ dec(count, 16);
    } else
#endif
    {
      // Copy with shift 16 bytes per iteration if arrays do not have
      // the same alignment mod 8, otherwise jump to the next
      // code for aligned copy (and substracting 16 from 'count' before jump).
      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
      // Also jump over aligned copy after the copy with shift completed.

      copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
                                        L_aligned_copy, L_copy_byte);
    }
    // copy 4 elements (16 bytes) at a time
1490
      __ align(OptoLoopAlignment);
D
duke 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    __ BIND(L_aligned_copy);
      __ dec(end_from, 16);
      __ ldx(end_from, 8, O3);
      __ ldx(end_from, 0, O4);
      __ dec(end_to, 16);
      __ deccc(count, 16);
      __ stx(O3, end_to, 8);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
      __ delayed()->stx(O4, end_to, 0);
      __ inc(count, 16);

    // copy 1 element (2 bytes) at a time
    __ BIND(L_copy_byte);
K
kvn 已提交
1504
      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
1505
      __ align(OptoLoopAlignment);
D
duke 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    __ BIND(L_copy_byte_loop);
      __ dec(end_from);
      __ dec(end_to);
      __ ldub(end_from, 0, O4);
      __ deccc(count);
      __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
      __ delayed()->stb(O4, end_to, 0);

    __ BIND(L_exit);
    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate stub for disjoint short copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
1531
  address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
D
duke 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_skip_alignment, L_skip_alignment2;
    Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register offset    = O5;   // offset from start of arrays
    // O3, O4, G3, G4 are used as temp registers

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

1547 1548 1549 1550 1551
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

    // for short arrays, just do single element copy
    __ cmp(count, 11); // 8 + 3  (22 bytes)
    __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
    __ delayed()->mov(G0, offset);

    if (aligned) {
      // 'aligned' == true when it is known statically during compilation
      // of this arraycopy call site that both 'from' and 'to' addresses
      // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
      //
      // Aligned arrays have 4 bytes alignment in 32-bits VM
      // and 8 bytes - in 64-bits VM.
      //
#ifndef _LP64
      // copy a 2-elements word if necessary to align 'to' to 8 bytes
      __ andcc(to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->ld(from, 0, O3);
      __ inc(from, 4);
      __ inc(to, 4);
      __ dec(count, 2);
      __ st(O3, to, -4);
    __ BIND(L_skip_alignment);
#endif
    } else {
      // copy 1 element if necessary to align 'to' on an 4 bytes
      __ andcc(to, 3, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->lduh(from, 0, O3);
      __ inc(from, 2);
      __ inc(to, 2);
      __ dec(count);
      __ sth(O3, to, -2);
    __ BIND(L_skip_alignment);

      // copy 2 elements to align 'to' on an 8 byte boundary
      __ andcc(to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
      __ delayed()->lduh(from, 0, O3);
      __ dec(count, 2);
      __ lduh(from, 2, O4);
      __ inc(from, 4);
      __ inc(to, 4);
      __ sth(O3, to, -4);
      __ sth(O4, to, -2);
    __ BIND(L_skip_alignment2);
    }
#ifdef _LP64
    if (!aligned)
#endif
    {
      // Copy with shift 16 bytes per iteration if arrays do not have
      // the same alignment mod 8, otherwise fall through to the next
      // code for aligned copy.
      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
      // Also jump over aligned copy after the copy with shift completed.

1610
      copy_16_bytes_forward_with_shift(from, to, count, 1, L_copy_2_bytes);
D
duke 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
    }

    // Both array are 8 bytes aligned, copy 16 bytes at a time
      __ and3(count, 3, G4); // Save
      __ srl(count, 2, count);
     generate_disjoint_long_copy_core(aligned);
      __ mov(G4, count); // restore

    // copy 1 element at a time
    __ BIND(L_copy_2_bytes);
K
kvn 已提交
1621
      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
1622
      __ align(OptoLoopAlignment);
D
duke 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
    __ BIND(L_copy_2_bytes_loop);
      __ lduh(from, offset, O3);
      __ deccc(count);
      __ sth(O3, to, offset);
      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
      __ delayed()->inc(offset, 2);

    __ BIND(L_exit);
      // O3, O4 are used as temp registers
      inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
      __ retl();
      __ delayed()->mov(G0, O0); // return 0
    return start;
  }

N
never 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
  //
  //  Generate stub for disjoint short fill.  If "aligned" is true, the
  //  "to" address is assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      to:    O0
  //      value: O1
  //      count: O2 treated as signed
  //
  address generate_fill(BasicType t, bool aligned, const char* name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    const Register to        = O0;   // source array address
    const Register value     = O1;   // fill value
    const Register count     = O2;   // elements count
    // O3 is used as a temp register

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

    Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
N
never 已提交
1660
    Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
N
never 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

    int shift = -1;
    switch (t) {
       case T_BYTE:
        shift = 2;
        break;
       case T_SHORT:
        shift = 1;
        break;
      case T_INT:
         shift = 0;
        break;
      default: ShouldNotReachHere();
    }

    BLOCK_COMMENT("Entry:");

    if (t == T_BYTE) {
      // Zero extend value
      __ and3(value, 0xff, value);
      __ sllx(value, 8, O3);
      __ or3(value, O3, value);
    }
    if (t == T_SHORT) {
      // Zero extend value
N
never 已提交
1686 1687
      __ sllx(value, 48, value);
      __ srlx(value, 48, value);
N
never 已提交
1688 1689 1690 1691 1692 1693 1694
    }
    if (t == T_BYTE || t == T_SHORT) {
      __ sllx(value, 16, O3);
      __ or3(value, O3, value);
    }

    __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
N
never 已提交
1695 1696
    __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
    __ delayed()->andcc(count, 1, G0);
N
never 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

    if (!aligned && (t == T_BYTE || t == T_SHORT)) {
      // align source address at 4 bytes address boundary
      if (t == T_BYTE) {
        // One byte misalignment happens only for byte arrays
        __ andcc(to, 1, G0);
        __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
        __ delayed()->nop();
        __ stb(value, to, 0);
        __ inc(to, 1);
        __ dec(count, 1);
        __ BIND(L_skip_align1);
      }
      // Two bytes misalignment happens only for byte and short (char) arrays
      __ andcc(to, 2, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
      __ delayed()->nop();
      __ sth(value, to, 0);
      __ inc(to, 2);
      __ dec(count, 1 << (shift - 1));
      __ BIND(L_skip_align2);
    }
#ifdef _LP64
    if (!aligned) {
#endif
    // align to 8 bytes, we know we are 4 byte aligned to start
    __ andcc(to, 7, G0);
    __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
    __ delayed()->nop();
    __ stw(value, to, 0);
    __ inc(to, 4);
    __ dec(count, 1 << shift);
    __ BIND(L_fill_32_bytes);
#ifdef _LP64
    }
#endif

    if (t == T_INT) {
      // Zero extend value
      __ srl(value, 0, value);
    }
    if (t == T_BYTE || t == T_SHORT || t == T_INT) {
      __ sllx(value, 32, O3);
      __ or3(value, O3, value);
    }

1743 1744 1745 1746 1747 1748
    Label L_check_fill_8_bytes;
    // Fill 32-byte chunks
    __ subcc(count, 8 << shift, count);
    __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
    __ delayed()->nop();

N
never 已提交
1749
    Label L_fill_32_bytes_loop, L_fill_4_bytes;
N
never 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    __ align(16);
    __ BIND(L_fill_32_bytes_loop);

    __ stx(value, to, 0);
    __ stx(value, to, 8);
    __ stx(value, to, 16);
    __ stx(value, to, 24);

    __ subcc(count, 8 << shift, count);
    __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
    __ delayed()->add(to, 32, to);

    __ BIND(L_check_fill_8_bytes);
    __ addcc(count, 8 << shift, count);
    __ brx(Assembler::zero, false, Assembler::pn, L_exit);
    __ delayed()->subcc(count, 1 << (shift + 1), count);
    __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
    __ delayed()->andcc(count, 1<<shift, G0);

    //
    // length is too short, just fill 8 bytes at a time
    //
    Label L_fill_8_bytes_loop;
    __ BIND(L_fill_8_bytes_loop);
    __ stx(value, to, 0);
    __ subcc(count, 1 << (shift + 1), count);
    __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
    __ delayed()->add(to, 8, to);

    // fill trailing 4 bytes
    __ andcc(count, 1<<shift, G0);  // in delay slot of branches
N
never 已提交
1781 1782 1783
    if (t == T_INT) {
      __ BIND(L_fill_elements);
    }
N
never 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
    __ BIND(L_fill_4_bytes);
    __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
    if (t == T_BYTE || t == T_SHORT) {
      __ delayed()->andcc(count, 1<<(shift-1), G0);
    } else {
      __ delayed()->nop();
    }
    __ stw(value, to, 0);
    if (t == T_BYTE || t == T_SHORT) {
      __ inc(to, 4);
      // fill trailing 2 bytes
      __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
      __ BIND(L_fill_2_bytes);
      __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
      __ delayed()->andcc(count, 1, count);
      __ sth(value, to, 0);
      if (t == T_BYTE) {
        __ inc(to, 2);
        // fill trailing byte
        __ andcc(count, 1, count);  // in delay slot of branches
        __ BIND(L_fill_byte);
        __ brx(Assembler::zero, false, Assembler::pt, L_exit);
        __ delayed()->nop();
        __ stb(value, to, 0);
      } else {
        __ BIND(L_fill_byte);
      }
    } else {
      __ BIND(L_fill_2_bytes);
    }
    __ BIND(L_exit);
    __ retl();
N
never 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
    __ delayed()->nop();

    // Handle copies less than 8 bytes.  Int is handled elsewhere.
    if (t == T_BYTE) {
      __ BIND(L_fill_elements);
      Label L_fill_2, L_fill_4;
      // in delay slot __ andcc(count, 1, G0);
      __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
      __ delayed()->andcc(count, 2, G0);
      __ stb(value, to, 0);
      __ inc(to, 1);
      __ BIND(L_fill_2);
      __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
      __ delayed()->andcc(count, 4, G0);
      __ stb(value, to, 0);
      __ stb(value, to, 1);
      __ inc(to, 2);
      __ BIND(L_fill_4);
      __ brx(Assembler::zero, false, Assembler::pt, L_exit);
      __ delayed()->nop();
      __ stb(value, to, 0);
      __ stb(value, to, 1);
      __ stb(value, to, 2);
      __ retl();
      __ delayed()->stb(value, to, 3);
    }

    if (t == T_SHORT) {
      Label L_fill_2;
      __ BIND(L_fill_elements);
      // in delay slot __ andcc(count, 1, G0);
      __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
      __ delayed()->andcc(count, 2, G0);
      __ sth(value, to, 0);
      __ inc(to, 2);
      __ BIND(L_fill_2);
      __ brx(Assembler::zero, false, Assembler::pt, L_exit);
      __ delayed()->nop();
      __ sth(value, to, 0);
      __ retl();
      __ delayed()->sth(value, to, 2);
    }
N
never 已提交
1858 1859 1860
    return start;
  }

D
duke 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869
  //
  //  Generate stub for conjoint short copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
1870 1871
  address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
                                       address *entry, const char *name) {
D
duke 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
    // Do reverse copy.

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
    Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register end_from  = from; // source array end address
    const Register end_to    = to;   // destination array end address

    const Register byte_count = O3;  // bytes count to copy

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

1891 1892 1893 1894 1895
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

    array_overlap_test(nooverlap_target, 1);

    __ sllx(count, LogBytesPerShort, byte_count);
    __ add(to, byte_count, end_to);  // offset after last copied element

    // for short arrays, just do single element copy
    __ cmp(count, 11); // 8 + 3  (22 bytes)
    __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
    __ delayed()->add(from, byte_count, end_from);

    {
      // Align end of arrays since they could be not aligned even
      // when arrays itself are aligned.

      // copy 1 element if necessary to align 'end_to' on an 4 bytes
      __ andcc(end_to, 3, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->lduh(end_from, -2, O3);
      __ dec(end_from, 2);
      __ dec(end_to, 2);
      __ dec(count);
      __ sth(O3, end_to, 0);
    __ BIND(L_skip_alignment);

      // copy 2 elements to align 'end_to' on an 8 byte boundary
      __ andcc(end_to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
      __ delayed()->lduh(end_from, -2, O3);
      __ dec(count, 2);
      __ lduh(end_from, -4, O4);
      __ dec(end_from, 4);
      __ dec(end_to, 4);
      __ sth(O3, end_to, 2);
      __ sth(O4, end_to, 0);
    __ BIND(L_skip_alignment2);
    }
#ifdef _LP64
    if (aligned) {
      // Both arrays are aligned to 8-bytes in 64-bits VM.
      // The 'count' is decremented in copy_16_bytes_backward_with_shift()
      // in unaligned case.
      __ dec(count, 8);
    } else
#endif
    {
      // Copy with shift 16 bytes per iteration if arrays do not have
      // the same alignment mod 8, otherwise jump to the next
      // code for aligned copy (and substracting 8 from 'count' before jump).
      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
      // Also jump over aligned copy after the copy with shift completed.

      copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
                                        L_aligned_copy, L_copy_2_bytes);
    }
    // copy 4 elements (16 bytes) at a time
1952
      __ align(OptoLoopAlignment);
D
duke 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
    __ BIND(L_aligned_copy);
      __ dec(end_from, 16);
      __ ldx(end_from, 8, O3);
      __ ldx(end_from, 0, O4);
      __ dec(end_to, 16);
      __ deccc(count, 8);
      __ stx(O3, end_to, 8);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
      __ delayed()->stx(O4, end_to, 0);
      __ inc(count, 8);

    // copy 1 element (2 bytes) at a time
    __ BIND(L_copy_2_bytes);
K
kvn 已提交
1966
      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
D
duke 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
    __ BIND(L_copy_2_bytes_loop);
      __ dec(end_from, 2);
      __ dec(end_to, 2);
      __ lduh(end_from, 0, O4);
      __ deccc(count);
      __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
      __ delayed()->sth(O4, end_to, 0);

    __ BIND(L_exit);
    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
  //
  // Helper methods for generate_disjoint_int_copy_core()
  //
  void copy_16_bytes_loop(Register from, Register to, Register count, int count_dec,
                          Label& L_loop, bool use_prefetch, bool use_bis) {

    __ align(OptoLoopAlignment);
    __ BIND(L_loop);
    if (use_prefetch) {
      if (ArraycopySrcPrefetchDistance > 0) {
        __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
      }
      if (ArraycopyDstPrefetchDistance > 0) {
        __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
      }
    }
    __ ldx(from, 4, O4);
    __ ldx(from, 12, G4);
    __ inc(to, 16);
    __ inc(from, 16);
    __ deccc(count, 4); // Can we do next iteration after this one?

    __ srlx(O4, 32, G3);
    __ bset(G3, O3);
    __ sllx(O4, 32, O4);
    __ srlx(G4, 32, G3);
    __ bset(G3, O4);
    if (use_bis) {
      __ stxa(O3, to, -16);
      __ stxa(O4, to, -8);
    } else {
      __ stx(O3, to, -16);
      __ stx(O4, to, -8);
    }
    __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
    __ delayed()->sllx(G4, 32,  O3);

  }

D
duke 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
  //
  //  Generate core code for disjoint int copy (and oop copy on 32-bit).
  //  If "aligned" is true, the "from" and "to" addresses are assumed
  //  to be heapword aligned.
  //
  // Arguments:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  void generate_disjoint_int_copy_core(bool aligned) {

    Label L_skip_alignment, L_aligned_copy;
2035
    Label L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
D
duke 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register offset    = O5;   // offset from start of arrays
    // O3, O4, G3, G4 are used as temp registers

    // 'aligned' == true when it is known statically during compilation
    // of this arraycopy call site that both 'from' and 'to' addresses
    // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
    //
    // Aligned arrays have 4 bytes alignment in 32-bits VM
    // and 8 bytes - in 64-bits VM.
    //
#ifdef _LP64
    if (!aligned)
#endif
    {
      // The next check could be put under 'ifndef' since the code in
      // generate_disjoint_long_copy_core() has own checks and set 'offset'.

      // for short arrays, just do single element copy
      __ cmp(count, 5); // 4 + 1 (20 bytes)
      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
      __ delayed()->mov(G0, offset);

      // copy 1 element to align 'to' on an 8 byte boundary
      __ andcc(to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->ld(from, 0, O3);
      __ inc(from, 4);
      __ inc(to, 4);
      __ dec(count);
      __ st(O3, to, -4);
    __ BIND(L_skip_alignment);

    // if arrays have same alignment mod 8, do 4 elements copy
      __ andcc(from, 7, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
      __ delayed()->ld(from, 0, O3);

    //
    // Load 2 aligned 8-bytes chunks and use one from previous iteration
    // to form 2 aligned 8-bytes chunks to store.
    //
    // copy_16_bytes_forward_with_shift() is not used here since this
    // code is more optimal.

    // copy with shift 4 elements (16 bytes) at a time
      __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
2086
      __ sllx(O3, 32,  O3);
D
duke 已提交
2087

2088
      disjoint_copy_core(from, to, count, 2, 16, &StubGenerator::copy_16_bytes_loop);
D
duke 已提交
2089 2090 2091 2092 2093

      __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
      __ delayed()->inc(count, 4); // restore 'count'

    __ BIND(L_aligned_copy);
2094 2095
    } // !aligned

D
duke 已提交
2096 2097 2098 2099 2100 2101 2102 2103
    // copy 4 elements (16 bytes) at a time
      __ and3(count, 1, G4); // Save
      __ srl(count, 1, count);
     generate_disjoint_long_copy_core(aligned);
      __ mov(G4, count);     // Restore

    // copy 1 element at a time
    __ BIND(L_copy_4_bytes);
K
kvn 已提交
2104
      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
D
duke 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
    __ BIND(L_copy_4_bytes_loop);
      __ ld(from, offset, O3);
      __ deccc(count);
      __ st(O3, to, offset);
      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
      __ delayed()->inc(offset, 4);
    __ BIND(L_exit);
  }

  //
  //  Generate stub for disjoint int copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
2123
  address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
D
duke 已提交
2124 2125 2126 2127 2128 2129 2130
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    const Register count = O2;
    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

2131 2132 2133 2134 2135
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

    generate_disjoint_int_copy_core(aligned);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate core code for conjoint int copy (and oop copy on 32-bit).
  //  If "aligned" is true, the "from" and "to" addresses are assumed
  //  to be heapword aligned.
  //
  // Arguments:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  void generate_conjoint_int_copy_core(bool aligned) {
    // Do reverse copy.

    Label L_skip_alignment, L_aligned_copy;
    Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register end_from  = from; // source array end address
    const Register end_to    = to;   // destination array end address
    // O3, O4, O5, G3 are used as temp registers

    const Register byte_count = O3;  // bytes count to copy

      __ sllx(count, LogBytesPerInt, byte_count);
      __ add(to, byte_count, end_to); // offset after last copied element

      __ cmp(count, 5); // for short arrays, just do single element copy
      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
      __ delayed()->add(from, byte_count, end_from);

    // copy 1 element to align 'to' on an 8 byte boundary
      __ andcc(end_to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->nop();
      __ dec(count);
      __ dec(end_from, 4);
      __ dec(end_to,   4);
      __ ld(end_from, 0, O4);
      __ st(O4, end_to, 0);
    __ BIND(L_skip_alignment);

    // Check if 'end_from' and 'end_to' has the same alignment.
      __ andcc(end_from, 7, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
      __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4

    // copy with shift 4 elements (16 bytes) at a time
    //
    // Load 2 aligned 8-bytes chunks and use one from previous iteration
    // to form 2 aligned 8-bytes chunks to store.
    //
      __ ldx(end_from, -4, O3);
2200
      __ align(OptoLoopAlignment);
D
duke 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
    __ BIND(L_copy_16_bytes);
      __ ldx(end_from, -12, O4);
      __ deccc(count, 4);
      __ ldx(end_from, -20, O5);
      __ dec(end_to, 16);
      __ dec(end_from, 16);
      __ srlx(O3, 32, O3);
      __ sllx(O4, 32, G3);
      __ bset(G3, O3);
      __ stx(O3, end_to, 8);
      __ srlx(O4, 32, O4);
      __ sllx(O5, 32, G3);
      __ bset(O4, G3);
      __ stx(G3, end_to, 0);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
      __ delayed()->mov(O5, O3);

      __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
      __ delayed()->inc(count, 4);

    // copy 4 elements (16 bytes) at a time
2222
      __ align(OptoLoopAlignment);
D
duke 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
    __ BIND(L_aligned_copy);
      __ dec(end_from, 16);
      __ ldx(end_from, 8, O3);
      __ ldx(end_from, 0, O4);
      __ dec(end_to, 16);
      __ deccc(count, 4);
      __ stx(O3, end_to, 8);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
      __ delayed()->stx(O4, end_to, 0);
      __ inc(count, 4);

    // copy 1 element (4 bytes) at a time
    __ BIND(L_copy_4_bytes);
K
kvn 已提交
2236
      __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
D
duke 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
    __ BIND(L_copy_4_bytes_loop);
      __ dec(end_from, 4);
      __ dec(end_to, 4);
      __ ld(end_from, 0, O4);
      __ deccc(count);
      __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
      __ delayed()->st(O4, end_to, 0);
    __ BIND(L_exit);
  }

  //
  //  Generate stub for conjoint int copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
2256 2257
  address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
                                     address *entry, const char *name) {
D
duke 已提交
2258 2259 2260 2261 2262 2263
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.

2264 2265 2266 2267 2268
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

    array_overlap_test(nooverlap_target, 2);

    generate_conjoint_int_copy_core(aligned);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
  //
  // Helper methods for generate_disjoint_long_copy_core()
  //
  void copy_64_bytes_loop(Register from, Register to, Register count, int count_dec,
                          Label& L_loop, bool use_prefetch, bool use_bis) {
    __ align(OptoLoopAlignment);
    __ BIND(L_loop);
    for (int off = 0; off < 64; off += 16) {
      if (use_prefetch && (off & 31) == 0) {
        if (ArraycopySrcPrefetchDistance > 0) {
2291
          __ prefetch(from, ArraycopySrcPrefetchDistance+off, Assembler::severalReads);
2292 2293
        }
        if (ArraycopyDstPrefetchDistance > 0) {
2294
          __ prefetch(to, ArraycopyDstPrefetchDistance+off, Assembler::severalWritesAndPossiblyReads);
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
        }
      }
      __ ldx(from,  off+0, O4);
      __ ldx(from,  off+8, O5);
      if (use_bis) {
        __ stxa(O4, to,  off+0);
        __ stxa(O5, to,  off+8);
      } else {
        __ stx(O4, to,  off+0);
        __ stx(O5, to,  off+8);
      }
    }
    __ deccc(count, 8);
    __ inc(from, 64);
    __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
    __ delayed()->inc(to, 64);
  }

D
duke 已提交
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
  //
  //  Generate core code for disjoint long copy (and oop copy on 64-bit).
  //  "aligned" is ignored, because we must make the stronger
  //  assumption that both addresses are always 64-bit aligned.
  //
  // Arguments:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
  // count -= 2;
  // if ( count >= 0 ) { // >= 2 elements
  //   if ( count > 6) { // >= 8 elements
  //     count -= 6; // original count - 8
  //     do {
  //       copy_8_elements;
  //       count -= 8;
  //     } while ( count >= 0 );
  //     count += 6;
  //   }
  //   if ( count >= 0 ) { // >= 2 elements
  //     do {
  //       copy_2_elements;
  //     } while ( (count=count-2) >= 0 );
  //   }
  // }
  // count += 2;
  // if ( count != 0 ) { // 1 element left
  //   copy_1_element;
  // }
  //
D
duke 已提交
2344 2345 2346 2347 2348 2349 2350 2351
  void generate_disjoint_long_copy_core(bool aligned) {
    Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
    const Register from    = O0;  // source array address
    const Register to      = O1;  // destination array address
    const Register count   = O2;  // elements count
    const Register offset0 = O4;  // element offset
    const Register offset8 = O5;  // next element offset

2352 2353 2354 2355
    __ deccc(count, 2);
    __ mov(G0, offset0);   // offset from start of arrays (0)
    __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
    __ delayed()->add(offset0, 8, offset8);
2356 2357

    // Copy by 64 bytes chunks
2358

2359 2360
    const Register from64 = O3;  // source address
    const Register to64   = G3;  // destination address
2361 2362 2363 2364 2365 2366 2367
    __ subcc(count, 6, O3);
    __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
    __ delayed()->mov(to,   to64);
    // Now we can use O4(offset0), O5(offset8) as temps
    __ mov(O3, count);
    // count >= 0 (original count - 8)
    __ mov(from, from64);
2368

2369
    disjoint_copy_core(from64, to64, count, 3, 64, &StubGenerator::copy_64_bytes_loop);
2370 2371 2372

      // Restore O4(offset0), O5(offset8)
      __ sub(from64, from, offset0);
2373
      __ inccc(count, 6); // restore count
2374 2375 2376 2377
      __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
      __ delayed()->add(offset0, 8, offset8);

      // Copy by 16 bytes chunks
2378
      __ align(OptoLoopAlignment);
D
duke 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
    __ BIND(L_copy_16_bytes);
      __ ldx(from, offset0, O3);
      __ ldx(from, offset8, G3);
      __ deccc(count, 2);
      __ stx(O3, to, offset0);
      __ inc(offset0, 16);
      __ stx(G3, to, offset8);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
      __ delayed()->inc(offset8, 16);

2389
      // Copy last 8 bytes
D
duke 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
    __ BIND(L_copy_8_bytes);
      __ inccc(count, 2);
      __ brx(Assembler::zero, true, Assembler::pn, L_exit );
      __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
      __ ldx(from, offset0, O3);
      __ stx(O3, to, offset0);
    __ BIND(L_exit);
  }

  //
  //  Generate stub for disjoint long copy.
  //  "aligned" is ignored, because we must make the stronger
  //  assumption that both addresses are always 64-bit aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
2409
  address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
D
duke 已提交
2410 2411 2412 2413 2414 2415
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.

2416 2417 2418 2419 2420
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

    generate_disjoint_long_copy_core(aligned);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate core code for conjoint long copy (and oop copy on 64-bit).
  //  "aligned" is ignored, because we must make the stronger
  //  assumption that both addresses are always 64-bit aligned.
  //
  // Arguments:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  void generate_conjoint_long_copy_core(bool aligned) {
    // Do reverse copy.
    Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
    const Register from    = O0;  // source array address
    const Register to      = O1;  // destination array address
    const Register count   = O2;  // elements count
    const Register offset8 = O4;  // element offset
    const Register offset0 = O5;  // previous element offset

      __ subcc(count, 1, count);
      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
      __ delayed()->sllx(count, LogBytesPerLong, offset8);
      __ sub(offset8, 8, offset0);
2454
      __ align(OptoLoopAlignment);
D
duke 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
    __ BIND(L_copy_16_bytes);
      __ ldx(from, offset8, O2);
      __ ldx(from, offset0, O3);
      __ stx(O2, to, offset8);
      __ deccc(offset8, 16);      // use offset8 as counter
      __ stx(O3, to, offset0);
      __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
      __ delayed()->dec(offset0, 16);

    __ BIND(L_copy_8_bytes);
      __ brx(Assembler::negative, false, Assembler::pn, L_exit );
      __ delayed()->nop();
      __ ldx(from, 0, O3);
      __ stx(O3, to, 0);
    __ BIND(L_exit);
  }

  //  Generate stub for conjoint long copy.
  //  "aligned" is ignored, because we must make the stronger
  //  assumption that both addresses are always 64-bit aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
2481 2482
  address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
                                      address *entry, const char *name) {
D
duke 已提交
2483 2484 2485 2486
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

2487
    assert(aligned, "Should always be aligned");
D
duke 已提交
2488 2489 2490

    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.

2491 2492 2493 2494 2495
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

    array_overlap_test(nooverlap_target, 3);

    generate_conjoint_long_copy_core(aligned);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //  Generate stub for disjoint oop copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
2516 2517
  address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
                                     bool dest_uninitialized = false) {
D
duke 已提交
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528

    const Register from  = O0;  // source array address
    const Register to    = O1;  // destination array address
    const Register count = O2;  // elements count

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

2529 2530 2531 2532 2533
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
2534 2535 2536 2537

    // save arguments for barrier generation
    __ mov(to, G1);
    __ mov(count, G5);
2538
    gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
D
duke 已提交
2539
  #ifdef _LP64
2540 2541 2542 2543 2544 2545
    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
    if (UseCompressedOops) {
      generate_disjoint_int_copy_core(aligned);
    } else {
      generate_disjoint_long_copy_core(aligned);
    }
D
duke 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
  #else
    generate_disjoint_int_copy_core(aligned);
  #endif
    // O0 is used as temp register
    gen_write_ref_array_post_barrier(G1, G5, O0);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //  Generate stub for conjoint oop copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
2567
  address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
2568 2569
                                     address *entry, const char *name,
                                     bool dest_uninitialized = false) {
D
duke 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

    const Register from  = O0;  // source array address
    const Register to    = O1;  // destination array address
    const Register count = O2;  // elements count

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

2581 2582 2583 2584 2585 2586 2587
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here
      BLOCK_COMMENT("Entry:");
    }

    array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
D
duke 已提交
2588 2589 2590 2591

    // save arguments for barrier generation
    __ mov(to, G1);
    __ mov(count, G5);
2592
    gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
D
duke 已提交
2593 2594

  #ifdef _LP64
2595 2596 2597 2598 2599
    if (UseCompressedOops) {
      generate_conjoint_int_copy_core(aligned);
    } else {
      generate_conjoint_long_copy_core(aligned);
    }
D
duke 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
  #else
    generate_conjoint_int_copy_core(aligned);
  #endif

    // O0 is used as temp register
    gen_write_ref_array_post_barrier(G1, G5, O0);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }


  // Helper for generating a dynamic type check.
  // Smashes only the given temp registers.
  void generate_type_check(Register sub_klass,
                           Register super_check_offset,
                           Register super_klass,
                           Register temp,
2621
                           Label& L_success) {
D
duke 已提交
2622 2623 2624 2625
    assert_different_registers(sub_klass, super_check_offset, super_klass, temp);

    BLOCK_COMMENT("type_check:");

2626
    Label L_miss, L_pop_to_miss;
D
duke 已提交
2627 2628 2629

    assert_clean_int(super_check_offset, temp);

2630 2631 2632
    __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
                                     &L_success, &L_miss, NULL,
                                     super_check_offset);
D
duke 已提交
2633

2634
    BLOCK_COMMENT("type_check_slow_path:");
D
duke 已提交
2635
    __ save_frame(0);
2636 2637 2638 2639
    __ check_klass_subtype_slow_path(sub_klass->after_save(),
                                     super_klass->after_save(),
                                     L0, L1, L2, L4,
                                     NULL, &L_pop_to_miss);
K
kvn 已提交
2640
    __ ba(L_success);
2641
    __ delayed()->restore();
D
duke 已提交
2642

2643 2644
    __ bind(L_pop_to_miss);
    __ restore();
D
duke 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660

    // Fall through on failure!
    __ BIND(L_miss);
  }


  //  Generate stub for checked oop copy.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //      ckoff: O3 (super_check_offset)
  //      ckval: O4 (super_klass)
  //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
  //
2661
  address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
D
duke 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

    const Register O0_from   = O0;      // source array address
    const Register O1_to     = O1;      // destination array address
    const Register O2_count  = O2;      // elements count
    const Register O3_ckoff  = O3;      // super_check_offset
    const Register O4_ckval  = O4;      // super_klass

    const Register O5_offset = O5;      // loop var, with stride wordSize
    const Register G1_remain = G1;      // loop var, with stride -1
    const Register G3_oop    = G3;      // actual oop copied
    const Register G4_klass  = G4;      // oop._klass
    const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

#ifdef ASSERT
2680
    // We sometimes save a frame (see generate_type_check below).
D
duke 已提交
2681 2682 2683 2684 2685
    // If this will cause trouble, let's fail now instead of later.
    __ save_frame(0);
    __ restore();
#endif

2686 2687
    assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.

D
duke 已提交
2688 2689 2690 2691 2692 2693
#ifdef ASSERT
    // caller guarantees that the arrays really are different
    // otherwise, we would have to make conjoint checks
    { Label L;
      __ mov(O3, G1);           // spill: overlap test smashes O3
      __ mov(O4, G4);           // spill: overlap test smashes O4
2694
      array_overlap_test(L, LogBytesPerHeapOop);
D
duke 已提交
2695 2696 2697 2698 2699 2700 2701
      __ stop("checkcast_copy within a single array");
      __ bind(L);
      __ mov(G1, O3);
      __ mov(G4, O4);
    }
#endif //ASSERT

2702 2703 2704 2705 2706
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from generic stub)
      BLOCK_COMMENT("Entry:");
    }
2707
    gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
D
duke 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724

    Label load_element, store_element, do_card_marks, fail, done;
    __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
    __ brx(Assembler::notZero, false, Assembler::pt, load_element);
    __ delayed()->mov(G0, O5_offset);   // offset from start of arrays

    // Empty array:  Nothing to do.
    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->set(0, O0);           // return 0 on (trivial) success

    // ======== begin loop ========
    // (Loop is rotated; its entry is load_element.)
    // Loop variables:
    //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
    //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
    //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
2725
    __ align(OptoLoopAlignment);
D
duke 已提交
2726

2727 2728
    __ BIND(store_element);
    __ deccc(G1_remain);                // decrement the count
2729 2730
    __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
    __ inc(O5_offset, heapOopSize);     // step to next offset
D
duke 已提交
2731 2732 2733 2734
    __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
    __ delayed()->set(0, O0);           // return -1 on success

    // ======== loop entry is here ========
2735
    __ BIND(load_element);
2736
    __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
K
kvn 已提交
2737
    __ br_null_short(G3_oop, Assembler::pt, store_element);
D
duke 已提交
2738

2739
    __ load_klass(G3_oop, G4_klass); // query the object klass
D
duke 已提交
2740 2741 2742

    generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
                        // branch to this on success:
2743
                        store_element);
D
duke 已提交
2744 2745 2746 2747 2748 2749
    // ======== end loop ========

    // It was a real error; we must depend on the caller to finish the job.
    // Register G1 has number of *remaining* oops, O2 number of *total* oops.
    // Emit GC store barriers for the oops we have copied (O2 minus G1),
    // and report their number to the caller.
2750
    __ BIND(fail);
D
duke 已提交
2751 2752 2753 2754
    __ subcc(O2_count, G1_remain, O2_count);
    __ brx(Assembler::zero, false, Assembler::pt, done);
    __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller

2755
    __ BIND(do_card_marks);
D
duke 已提交
2756 2757
    gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]

2758
    __ BIND(done);
D
duke 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->nop();             // return value in 00

    return start;
  }


  //  Generate 'unsafe' array copy stub
  //  Though just as safe as the other stubs, it takes an unscaled
  //  size_t argument instead of an element count.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 byte count, treated as ssize_t, can be zero
  //
  // Examines the alignment of the operands and dispatches
  // to a long, int, short, or byte copy loop.
  //
2779 2780 2781 2782 2783
  address generate_unsafe_copy(const char* name,
                               address byte_copy_entry,
                               address short_copy_entry,
                               address int_copy_entry,
                               address long_copy_entry) {
D
duke 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

    const Register O0_from   = O0;      // source array address
    const Register O1_to     = O1;      // destination array address
    const Register O2_count  = O2;      // elements count

    const Register G1_bits   = G1;      // test copy of low bits

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    // bump this on entry, not on exit:
    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);

    __ or3(O0_from, O1_to, G1_bits);
    __ or3(O2_count,       G1_bits, G1_bits);

    __ btst(BytesPerLong-1, G1_bits);
    __ br(Assembler::zero, true, Assembler::pt,
          long_copy_entry, relocInfo::runtime_call_type);
    // scale the count on the way out:
    __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);

    __ btst(BytesPerInt-1, G1_bits);
    __ br(Assembler::zero, true, Assembler::pt,
          int_copy_entry, relocInfo::runtime_call_type);
    // scale the count on the way out:
    __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);

    __ btst(BytesPerShort-1, G1_bits);
    __ br(Assembler::zero, true, Assembler::pt,
          short_copy_entry, relocInfo::runtime_call_type);
    // scale the count on the way out:
    __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);

    __ br(Assembler::always, false, Assembler::pt,
          byte_copy_entry, relocInfo::runtime_call_type);
    __ delayed()->nop();

    return start;
  }


  // Perform range checks on the proposed arraycopy.
  // Kills the two temps, but nothing else.
  // Also, clean the sign bits of src_pos and dst_pos.
  void arraycopy_range_checks(Register src,     // source array oop (O0)
                              Register src_pos, // source position (O1)
                              Register dst,     // destination array oo (O2)
                              Register dst_pos, // destination position (O3)
                              Register length,  // length of copy (O4)
                              Register temp1, Register temp2,
                              Label& L_failed) {
    BLOCK_COMMENT("arraycopy_range_checks:");

    //  if (src_pos + length > arrayOop(src)->length() ) FAIL;

    const Register array_length = temp1;  // scratch
    const Register end_pos      = temp2;  // scratch

    // Note:  This next instruction may be in the delay slot of a branch:
    __ add(length, src_pos, end_pos);  // src_pos + length
    __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
    __ cmp(end_pos, array_length);
    __ br(Assembler::greater, false, Assembler::pn, L_failed);

    //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
    __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
    __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
    __ cmp(end_pos, array_length);
    __ br(Assembler::greater, false, Assembler::pn, L_failed);

    // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
    // Move with sign extension can be used since they are positive.
    __ delayed()->signx(src_pos, src_pos);
    __ signx(dst_pos, dst_pos);

    BLOCK_COMMENT("arraycopy_range_checks done");
  }


  //
  //  Generate generic array copy stubs
  //
  //  Input:
  //    O0    -  src oop
  //    O1    -  src_pos
  //    O2    -  dst oop
  //    O3    -  dst_pos
  //    O4    -  element count
  //
  //  Output:
  //    O0 ==  0  -  success
  //    O0 == -1  -  need to call System.arraycopy
  //
2879 2880 2881 2882 2883 2884 2885
  address generate_generic_copy(const char *name,
                                address entry_jbyte_arraycopy,
                                address entry_jshort_arraycopy,
                                address entry_jint_arraycopy,
                                address entry_oop_arraycopy,
                                address entry_jlong_arraycopy,
                                address entry_checkcast_arraycopy) {
D
duke 已提交
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
    Label L_failed, L_objArray;

    // Input registers
    const Register src      = O0;  // source array oop
    const Register src_pos  = O1;  // source position
    const Register dst      = O2;  // destination array oop
    const Register dst_pos  = O3;  // destination position
    const Register length   = O4;  // elements count

    // registers used as temp
    const Register G3_src_klass = G3; // source array klass
    const Register G4_dst_klass = G4; // destination array klass
    const Register G5_lh        = G5; // layout handler
    const Register O5_temp      = O5;

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    // bump this on entry, not on exit:
    inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);

    // In principle, the int arguments could be dirty.
    //assert_clean_int(src_pos, G1);
    //assert_clean_int(dst_pos, G1);
    //assert_clean_int(length, G1);

    //-----------------------------------------------------------------------
    // Assembler stubs will be used for this call to arraycopy
    // if the following conditions are met:
    //
    // (1) src and dst must not be null.
    // (2) src_pos must not be negative.
    // (3) dst_pos must not be negative.
    // (4) length  must not be negative.
    // (5) src klass and dst klass should be the same and not NULL.
    // (6) src and dst should be arrays.
    // (7) src_pos + length must not exceed length of src.
    // (8) dst_pos + length must not exceed length of dst.
    BLOCK_COMMENT("arraycopy initial argument checks");

    //  if (src == NULL) return -1;
    __ br_null(src, false, Assembler::pn, L_failed);

    //  if (src_pos < 0) return -1;
    __ delayed()->tst(src_pos);
    __ br(Assembler::negative, false, Assembler::pn, L_failed);
    __ delayed()->nop();

    //  if (dst == NULL) return -1;
    __ br_null(dst, false, Assembler::pn, L_failed);

    //  if (dst_pos < 0) return -1;
    __ delayed()->tst(dst_pos);
    __ br(Assembler::negative, false, Assembler::pn, L_failed);

    //  if (length < 0) return -1;
    __ delayed()->tst(length);
    __ br(Assembler::negative, false, Assembler::pn, L_failed);

    BLOCK_COMMENT("arraycopy argument klass checks");
    //  get src->klass()
2948
    if (UseCompressedClassPointers) {
2949 2950 2951 2952 2953
      __ delayed()->nop(); // ??? not good
      __ load_klass(src, G3_src_klass);
    } else {
      __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
    }
D
duke 已提交
2954 2955 2956 2957 2958

#ifdef ASSERT
    //  assert(src->klass() != NULL);
    BLOCK_COMMENT("assert klasses not null");
    { Label L_a, L_b;
K
kvn 已提交
2959
      __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
D
duke 已提交
2960 2961 2962
      __ bind(L_a);
      __ stop("broken null klass");
      __ bind(L_b);
2963
      __ load_klass(dst, G4_dst_klass);
D
duke 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
      __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
      __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
      BLOCK_COMMENT("assert done");
    }
#endif

    // Load layout helper
    //
    //  |array_tag|     | header_size | element_type |     |log2_element_size|
    // 32        30    24            16              8     2                 0
    //
    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
    //

2978
    int lh_offset = in_bytes(Klass::layout_helper_offset());
D
duke 已提交
2979 2980 2981 2982

    // Load 32-bits signed value. Use br() instruction with it to check icc.
    __ lduw(G3_src_klass, lh_offset, G5_lh);

2983
    if (UseCompressedClassPointers) {
2984 2985
      __ load_klass(dst, G4_dst_klass);
    }
D
duke 已提交
2986 2987 2988 2989 2990
    // Handle objArrays completely differently...
    juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
    __ set(objArray_lh, O5_temp);
    __ cmp(G5_lh,       O5_temp);
    __ br(Assembler::equal, false, Assembler::pt, L_objArray);
2991
    if (UseCompressedClassPointers) {
2992 2993 2994 2995
      __ delayed()->nop();
    } else {
      __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
    }
D
duke 已提交
2996 2997

    //  if (src->klass() != dst->klass()) return -1;
K
kvn 已提交
2998
    __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
D
duke 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022

    //  if (!src->is_Array()) return -1;
    __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
    __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);

    // At this point, it is known to be a typeArray (array_tag 0x3).
#ifdef ASSERT
    __ delayed()->nop();
    { Label L;
      jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
      __ set(lh_prim_tag_in_place, O5_temp);
      __ cmp(G5_lh,                O5_temp);
      __ br(Assembler::greaterEqual, false, Assembler::pt, L);
      __ delayed()->nop();
      __ stop("must be a primitive array");
      __ bind(L);
    }
#else
    __ delayed();                               // match next insn to prev branch
#endif

    arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
                           O5_temp, G4_dst_klass, L_failed);

3023
    // TypeArrayKlass
D
duke 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
    //
    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
    //

    const Register G4_offset = G4_dst_klass;    // array offset
    const Register G3_elsize = G3_src_klass;    // log2 element size

    __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
    __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
    __ add(src, G4_offset, src);       // src array offset
    __ add(dst, G4_offset, dst);       // dst array offset
    __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size

    // next registers should be set before the jump to corresponding stub
    const Register from     = O0;  // source array address
    const Register to       = O1;  // destination array address
    const Register count    = O2;  // elements count

    // 'from', 'to', 'count' registers should be set in this order
    // since they are the same as 'src', 'src_pos', 'dst'.

    BLOCK_COMMENT("scale indexes to element size");
    __ sll_ptr(src_pos, G3_elsize, src_pos);
    __ sll_ptr(dst_pos, G3_elsize, dst_pos);
    __ add(src, src_pos, from);       // src_addr
    __ add(dst, dst_pos, to);         // dst_addr

    BLOCK_COMMENT("choose copy loop based on element size");
    __ cmp(G3_elsize, 0);
3054
    __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
D
duke 已提交
3055 3056 3057
    __ delayed()->signx(length, count); // length

    __ cmp(G3_elsize, LogBytesPerShort);
3058
    __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
D
duke 已提交
3059 3060 3061
    __ delayed()->signx(length, count); // length

    __ cmp(G3_elsize, LogBytesPerInt);
3062
    __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
D
duke 已提交
3063 3064 3065
    __ delayed()->signx(length, count); // length
#ifdef ASSERT
    { Label L;
K
kvn 已提交
3066
      __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
D
duke 已提交
3067 3068 3069 3070
      __ stop("must be long copy, but elsize is wrong");
      __ bind(L);
    }
#endif
3071
    __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
D
duke 已提交
3072 3073
    __ delayed()->signx(length, count); // length

3074
    // ObjArrayKlass
D
duke 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
  __ BIND(L_objArray);
    // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length

    Label L_plain_copy, L_checkcast_copy;
    //  test array classes for subtyping
    __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
    __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
    __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below

    // Identically typed arrays can be copied without element-wise checks.
    arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
                           O5_temp, G5_lh, L_failed);

    __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
    __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
3090 3091
    __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
    __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
D
duke 已提交
3092 3093 3094
    __ add(src, src_pos, from);       // src_addr
    __ add(dst, dst_pos, to);         // dst_addr
  __ BIND(L_plain_copy);
3095
    __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
D
duke 已提交
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
    __ delayed()->signx(length, count); // length

  __ BIND(L_checkcast_copy);
    // live at this point:  G3_src_klass, G4_dst_klass
    {
      // Before looking at dst.length, make sure dst is also an objArray.
      // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
      __ cmp(G5_lh,                    O5_temp);
      __ br(Assembler::notEqual, false, Assembler::pn, L_failed);

      // It is safe to examine both src.length and dst.length.
      __ delayed();                             // match next insn to prev branch
      arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
                             O5_temp, G5_lh, L_failed);

      // Marshal the base address arguments now, freeing registers.
      __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
      __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
3114 3115
      __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
      __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
D
duke 已提交
3116 3117 3118 3119 3120 3121 3122 3123 3124
      __ add(src, src_pos, from);               // src_addr
      __ add(dst, dst_pos, to);                 // dst_addr
      __ signx(length, count);                  // length (reloaded)

      Register sco_temp = O3;                   // this register is free now
      assert_different_registers(from, to, count, sco_temp,
                                 G4_dst_klass, G3_src_klass);

      // Generate the type check.
3125
      int sco_offset = in_bytes(Klass::super_check_offset_offset());
D
duke 已提交
3126 3127 3128 3129
      __ lduw(G4_dst_klass, sco_offset, sco_temp);
      generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
                          O5_temp, L_plain_copy);

3130 3131
      // Fetch destination element klass from the ObjArrayKlass header.
      int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
D
duke 已提交
3132 3133 3134 3135 3136

      // the checkcast_copy loop needs two extra arguments:
      __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
      // lduw(O4, sco_offset, O3);              // sco of elem klass

3137
      __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
D
duke 已提交
3138 3139 3140 3141 3142 3143 3144 3145 3146
      __ delayed()->lduw(O4, sco_offset, O3);
    }

  __ BIND(L_failed);
    __ retl();
    __ delayed()->sub(G0, 1, O0); // return -1
    return start;
  }

K
kvn 已提交
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
  //
  //  Generate stub for heap zeroing.
  //  "to" address is aligned to jlong (8 bytes).
  //
  // Arguments for generated stub:
  //      to:    O0
  //      count: O1 treated as signed (count of HeapWord)
  //             count could be 0
  //
  address generate_zero_aligned_words(const char* name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    const Register to    = O0;   // source array address
    const Register count = O1;   // HeapWords count
    const Register temp  = O2;   // scratch

    Label Ldone;
    __ sllx(count, LogHeapWordSize, count); // to bytes count
    // Use BIS for zeroing
    __ bis_zeroing(to, count, temp, Ldone);
    __ bind(Ldone);
    __ retl();
    __ delayed()->nop();
    return start;
}

D
duke 已提交
3175
  void generate_arraycopy_stubs() {
3176 3177 3178 3179 3180 3181 3182 3183
    address entry;
    address entry_jbyte_arraycopy;
    address entry_jshort_arraycopy;
    address entry_jint_arraycopy;
    address entry_oop_arraycopy;
    address entry_jlong_arraycopy;
    address entry_checkcast_arraycopy;

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
    //*** jbyte
    // Always need aligned and unaligned versions
    StubRoutines::_jbyte_disjoint_arraycopy         = generate_disjoint_byte_copy(false, &entry,
                                                                                  "jbyte_disjoint_arraycopy");
    StubRoutines::_jbyte_arraycopy                  = generate_conjoint_byte_copy(false, entry,
                                                                                  &entry_jbyte_arraycopy,
                                                                                  "jbyte_arraycopy");
    StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
                                                                                  "arrayof_jbyte_disjoint_arraycopy");
    StubRoutines::_arrayof_jbyte_arraycopy          = generate_conjoint_byte_copy(true, entry, NULL,
                                                                                  "arrayof_jbyte_arraycopy");

    //*** jshort
    // Always need aligned and unaligned versions
    StubRoutines::_jshort_disjoint_arraycopy         = generate_disjoint_short_copy(false, &entry,
                                                                                    "jshort_disjoint_arraycopy");
    StubRoutines::_jshort_arraycopy                  = generate_conjoint_short_copy(false, entry,
                                                                                    &entry_jshort_arraycopy,
                                                                                    "jshort_arraycopy");
3203 3204 3205 3206 3207
    StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
                                                                                    "arrayof_jshort_disjoint_arraycopy");
    StubRoutines::_arrayof_jshort_arraycopy          = generate_conjoint_short_copy(true, entry, NULL,
                                                                                    "arrayof_jshort_arraycopy");

3208 3209 3210 3211 3212 3213
    //*** jint
    // Aligned versions
    StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
                                                                                "arrayof_jint_disjoint_arraycopy");
    StubRoutines::_arrayof_jint_arraycopy          = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
                                                                                "arrayof_jint_arraycopy");
D
duke 已提交
3214
#ifdef _LP64
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
    // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
    // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
    StubRoutines::_jint_disjoint_arraycopy         = generate_disjoint_int_copy(false, &entry,
                                                                                "jint_disjoint_arraycopy");
    StubRoutines::_jint_arraycopy                  = generate_conjoint_int_copy(false, entry,
                                                                                &entry_jint_arraycopy,
                                                                                "jint_arraycopy");
#else
    // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
    // (in fact in 32bit we always have a pre-loop part even in the aligned version,
    //  because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
    StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
    StubRoutines::_jint_arraycopy          = StubRoutines::_arrayof_jint_arraycopy;
D
duke 已提交
3228
#endif
3229 3230


3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
    //*** jlong
    // It is always aligned
    StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
                                                                                  "arrayof_jlong_disjoint_arraycopy");
    StubRoutines::_arrayof_jlong_arraycopy          = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
                                                                                  "arrayof_jlong_arraycopy");
    StubRoutines::_jlong_disjoint_arraycopy         = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
    StubRoutines::_jlong_arraycopy                  = StubRoutines::_arrayof_jlong_arraycopy;


    //*** oops
    // Aligned versions
    StubRoutines::_arrayof_oop_disjoint_arraycopy        = generate_disjoint_oop_copy(true, &entry,
                                                                                      "arrayof_oop_disjoint_arraycopy");
    StubRoutines::_arrayof_oop_arraycopy                 = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
                                                                                      "arrayof_oop_arraycopy");
    // Aligned versions without pre-barriers
    StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
                                                                                      "arrayof_oop_disjoint_arraycopy_uninit",
                                                                                      /*dest_uninitialized*/true);
    StubRoutines::_arrayof_oop_arraycopy_uninit          = generate_conjoint_oop_copy(true, entry, NULL,
                                                                                      "arrayof_oop_arraycopy_uninit",
                                                                                      /*dest_uninitialized*/true);
#ifdef _LP64
    if (UseCompressedOops) {
      // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
      StubRoutines::_oop_disjoint_arraycopy            = generate_disjoint_oop_copy(false, &entry,
                                                                                    "oop_disjoint_arraycopy");
      StubRoutines::_oop_arraycopy                     = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
                                                                                    "oop_arraycopy");
      // Unaligned versions without pre-barriers
      StubRoutines::_oop_disjoint_arraycopy_uninit     = generate_disjoint_oop_copy(false, &entry,
                                                                                    "oop_disjoint_arraycopy_uninit",
                                                                                    /*dest_uninitialized*/true);
      StubRoutines::_oop_arraycopy_uninit              = generate_conjoint_oop_copy(false, entry, NULL,
                                                                                    "oop_arraycopy_uninit",
                                                                                    /*dest_uninitialized*/true);
    } else
#endif
    {
      // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
      StubRoutines::_oop_disjoint_arraycopy            = StubRoutines::_arrayof_oop_disjoint_arraycopy;
      StubRoutines::_oop_arraycopy                     = StubRoutines::_arrayof_oop_arraycopy;
      StubRoutines::_oop_disjoint_arraycopy_uninit     = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
      StubRoutines::_oop_arraycopy_uninit              = StubRoutines::_arrayof_oop_arraycopy_uninit;
    }

    StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
    StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
                                                                        /*dest_uninitialized*/true);
D
duke 已提交
3281

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
    StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
                                                              entry_jbyte_arraycopy,
                                                              entry_jshort_arraycopy,
                                                              entry_jint_arraycopy,
                                                              entry_jlong_arraycopy);
    StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
                                                               entry_jbyte_arraycopy,
                                                               entry_jshort_arraycopy,
                                                               entry_jint_arraycopy,
                                                               entry_oop_arraycopy,
                                                               entry_jlong_arraycopy,
                                                               entry_checkcast_arraycopy);
N
never 已提交
3294 3295 3296 3297 3298 3299 3300

    StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
    StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
    StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
    StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
    StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
    StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
K
kvn 已提交
3301 3302 3303 3304

    if (UseBlockZeroing) {
      StubRoutines::_zero_aligned_words = generate_zero_aligned_words("zero_aligned_words");
    }
D
duke 已提交
3305 3306
  }

K
kvn 已提交
3307
  address generate_aescrypt_encryptBlock() {
3308 3309 3310
    // required since we read expanded key 'int' array starting first element without alignment considerations
    assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
           "the following code assumes that first element of an int array is aligned to 8 bytes");
K
kvn 已提交
3311
    __ align(CodeEntryAlignment);
3312 3313
    StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
    Label L_load_misaligned_input, L_load_expanded_key, L_doLast128bit, L_storeOutput, L_store_misaligned_output;
K
kvn 已提交
3314 3315 3316 3317 3318 3319 3320 3321 3322
    address start = __ pc();
    Register from = O0; // source byte array
    Register to = O1;   // destination byte array
    Register key = O2;  // expanded key array
    const Register keylen = O4; //reg for storing expanded key array length

    // read expanded key length
    __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    // Method to address arbitrary alignment for load instructions:
    // Check last 3 bits of 'from' address to see if it is aligned to 8-byte boundary
    // If zero/aligned then continue with double FP load instructions
    // If not zero/mis-aligned then alignaddr will set GSR.align with number of bytes to skip during faligndata
    // alignaddr will also convert arbitrary aligned 'from' address to nearest 8-byte aligned address
    // load 3 * 8-byte components (to read 16 bytes input) in 3 different FP regs starting at this aligned address
    // faligndata will then extract (based on GSR.align value) the appropriate 8 bytes from the 2 source regs

    // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
    __ andcc(from, 7, G0);
    __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input);
    __ delayed()->alignaddr(from, G0, from);

    // aligned case: load input into F54-F56
    __ ldf(FloatRegisterImpl::D, from, 0, F54);
    __ ldf(FloatRegisterImpl::D, from, 8, F56);
    __ ba_short(L_load_expanded_key);

    __ BIND(L_load_misaligned_input);
    __ ldf(FloatRegisterImpl::D, from, 0, F54);
    __ ldf(FloatRegisterImpl::D, from, 8, F56);
    __ ldf(FloatRegisterImpl::D, from, 16, F58);
    __ faligndata(F54, F56, F54);
    __ faligndata(F56, F58, F56);

    __ BIND(L_load_expanded_key);
    // Since we load expanded key buffers starting first element, 8-byte alignment is guaranteed
K
kvn 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
    for ( int i = 0;  i <= 38; i += 2 ) {
      __ ldf(FloatRegisterImpl::D, key, i*4, as_FloatRegister(i));
    }

    // perform cipher transformation
    __ fxor(FloatRegisterImpl::D, F0, F54, F54);
    __ fxor(FloatRegisterImpl::D, F2, F56, F56);
    // rounds 1 through 8
    for ( int i = 4;  i <= 28; i += 8 ) {
      __ aes_eround01(as_FloatRegister(i), F54, F56, F58);
      __ aes_eround23(as_FloatRegister(i+2), F54, F56, F60);
      __ aes_eround01(as_FloatRegister(i+4), F58, F60, F54);
      __ aes_eround23(as_FloatRegister(i+6), F58, F60, F56);
    }
    __ aes_eround01(F36, F54, F56, F58); //round 9
    __ aes_eround23(F38, F54, F56, F60);

    // 128-bit original key size
    __ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pt, L_doLast128bit);

    for ( int i = 40;  i <= 50; i += 2 ) {
      __ ldf(FloatRegisterImpl::D, key, i*4, as_FloatRegister(i) );
    }
    __ aes_eround01(F40, F58, F60, F54); //round 10
    __ aes_eround23(F42, F58, F60, F56);
    __ aes_eround01(F44, F54, F56, F58); //round 11
    __ aes_eround23(F46, F54, F56, F60);

    // 192-bit original key size
    __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pt, L_storeOutput);

    __ ldf(FloatRegisterImpl::D, key, 208, F52);
    __ aes_eround01(F48, F58, F60, F54); //round 12
    __ aes_eround23(F50, F58, F60, F56);
    __ ldf(FloatRegisterImpl::D, key, 216, F46);
    __ ldf(FloatRegisterImpl::D, key, 224, F48);
    __ ldf(FloatRegisterImpl::D, key, 232, F50);
    __ aes_eround01(F52, F54, F56, F58); //round 13
    __ aes_eround23(F46, F54, F56, F60);
3389
    __ ba_short(L_storeOutput);
K
kvn 已提交
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399

    __ BIND(L_doLast128bit);
    __ ldf(FloatRegisterImpl::D, key, 160, F48);
    __ ldf(FloatRegisterImpl::D, key, 168, F50);

    __ BIND(L_storeOutput);
    // perform last round of encryption common for all key sizes
    __ aes_eround01_l(F48, F58, F60, F54); //last round
    __ aes_eround23_l(F50, F58, F60, F56);

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
    // Method to address arbitrary alignment for store instructions:
    // Check last 3 bits of 'dest' address to see if it is aligned to 8-byte boundary
    // If zero/aligned then continue with double FP store instructions
    // If not zero/mis-aligned then edge8n will generate edge mask in result reg (O3 in below case)
    // Example: If dest address is 0x07 and nearest 8-byte aligned address is 0x00 then edge mask will be 00000001
    // Compute (8-n) where n is # of bytes skipped by partial store(stpartialf) inst from edge mask, n=7 in this case
    // We get the value of n from the andcc that checks 'dest' alignment. n is available in O5 in below case.
    // Set GSR.align to (8-n) using alignaddr
    // Circular byte shift store values by n places so that the original bytes are at correct position for stpartialf
    // Set the arbitrarily aligned 'dest' address to nearest 8-byte aligned address
    // Store (partial) the original first (8-n) bytes starting at the original 'dest' address
    // Negate the edge mask so that the subsequent stpartialf can store the original (8-n-1)th through 8th bytes at appropriate address
    // We need to execute this process for both the 8-byte result values

    // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
    __ andcc(to, 7, O5);
    __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output);
    __ delayed()->edge8n(to, G0, O3);

    // aligned case: store output into the destination array
    __ stf(FloatRegisterImpl::D, F54, to, 0);
K
kvn 已提交
3421
    __ retl();
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
    __ delayed()->stf(FloatRegisterImpl::D, F56, to, 8);

    __ BIND(L_store_misaligned_output);
    __ add(to, 8, O4);
    __ mov(8, O2);
    __ sub(O2, O5, O2);
    __ alignaddr(O2, G0, O2);
    __ faligndata(F54, F54, F54);
    __ faligndata(F56, F56, F56);
    __ and3(to, -8, to);
    __ and3(O4, -8, O4);
    __ stpartialf(to, O3, F54, Assembler::ASI_PST8_PRIMARY);
    __ stpartialf(O4, O3, F56, Assembler::ASI_PST8_PRIMARY);
    __ add(to, 8, to);
    __ add(O4, 8, O4);
    __ orn(G0, O3, O3);
    __ stpartialf(to, O3, F54, Assembler::ASI_PST8_PRIMARY);
    __ retl();
    __ delayed()->stpartialf(O4, O3, F56, Assembler::ASI_PST8_PRIMARY);
K
kvn 已提交
3441 3442 3443 3444 3445

    return start;
  }

  address generate_aescrypt_decryptBlock() {
3446 3447 3448 3449 3450
    assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
           "the following code assumes that first element of an int array is aligned to 8 bytes");
    // required since we read original key 'byte' array as well in the decryption stubs
    assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0,
           "the following code assumes that first element of a byte array is aligned to 8 bytes");
K
kvn 已提交
3451
    __ align(CodeEntryAlignment);
3452
    StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
K
kvn 已提交
3453
    address start = __ pc();
3454 3455
    Label L_load_misaligned_input, L_load_original_key, L_expand192bit, L_expand256bit, L_reload_misaligned_input;
    Label L_256bit_transform, L_common_transform, L_store_misaligned_output;
K
kvn 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464
    Register from = O0; // source byte array
    Register to = O1;   // destination byte array
    Register key = O2;  // expanded key array
    Register original_key = O3;  // original key array only required during decryption
    const Register keylen = O4;  // reg for storing expanded key array length

    // read expanded key array length
    __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
    // save 'from' since we may need to recheck alignment in case of 256-bit decryption
    __ mov(from, G1);

    // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
    __ andcc(from, 7, G0);
    __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input);
    __ delayed()->alignaddr(from, G0, from);

    // aligned case: load input into F52-F54
    __ ldf(FloatRegisterImpl::D, from, 0, F52);
    __ ldf(FloatRegisterImpl::D, from, 8, F54);
    __ ba_short(L_load_original_key);
K
kvn 已提交
3477

3478 3479 3480 3481 3482 3483 3484 3485
    __ BIND(L_load_misaligned_input);
    __ ldf(FloatRegisterImpl::D, from, 0, F52);
    __ ldf(FloatRegisterImpl::D, from, 8, F54);
    __ ldf(FloatRegisterImpl::D, from, 16, F56);
    __ faligndata(F52, F54, F52);
    __ faligndata(F54, F56, F54);

    __ BIND(L_load_original_key);
K
kvn 已提交
3486
    // load original key from SunJCE expanded decryption key
3487
    // Since we load original key buffer starting first element, 8-byte alignment is guaranteed
K
kvn 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
    for ( int i = 0;  i <= 3; i++ ) {
      __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
    }

    // 256-bit original key size
    __ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_expand256bit);

    // 192-bit original key size
    __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_expand192bit);

    // 128-bit original key size
    // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
    for ( int i = 0;  i <= 36; i += 4 ) {
      __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+2), i/4, as_FloatRegister(i+4));
      __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+4), as_FloatRegister(i+6));
    }

    // perform 128-bit key specific inverse cipher transformation
    __ fxor(FloatRegisterImpl::D, F42, F54, F54);
    __ fxor(FloatRegisterImpl::D, F40, F52, F52);
3508
    __ ba_short(L_common_transform);
K
kvn 已提交
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531

    __ BIND(L_expand192bit);

    // start loading rest of the 192-bit key
    __ ldf(FloatRegisterImpl::S, original_key, 16, F4);
    __ ldf(FloatRegisterImpl::S, original_key, 20, F5);

    // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
    for ( int i = 0;  i <= 36; i += 6 ) {
      __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+4), i/6, as_FloatRegister(i+6));
      __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+6), as_FloatRegister(i+8));
      __ aes_kexpand2(as_FloatRegister(i+4), as_FloatRegister(i+8), as_FloatRegister(i+10));
    }
    __ aes_kexpand1(F42, F46, 7, F48);
    __ aes_kexpand2(F44, F48, F50);

    // perform 192-bit key specific inverse cipher transformation
    __ fxor(FloatRegisterImpl::D, F50, F54, F54);
    __ fxor(FloatRegisterImpl::D, F48, F52, F52);
    __ aes_dround23(F46, F52, F54, F58);
    __ aes_dround01(F44, F52, F54, F56);
    __ aes_dround23(F42, F56, F58, F54);
    __ aes_dround01(F40, F56, F58, F52);
3532
    __ ba_short(L_common_transform);
K
kvn 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

    __ BIND(L_expand256bit);

    // load rest of the 256-bit key
    for ( int i = 4;  i <= 7; i++ ) {
      __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
    }

    // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
    for ( int i = 0;  i <= 40; i += 8 ) {
      __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+6), i/8, as_FloatRegister(i+8));
      __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+8), as_FloatRegister(i+10));
      __ aes_kexpand0(as_FloatRegister(i+4), as_FloatRegister(i+10), as_FloatRegister(i+12));
      __ aes_kexpand2(as_FloatRegister(i+6), as_FloatRegister(i+12), as_FloatRegister(i+14));
    }
    __ aes_kexpand1(F48, F54, 6, F56);
    __ aes_kexpand2(F50, F56, F58);

    for ( int i = 0;  i <= 6; i += 2 ) {
3552
      __ fsrc2(FloatRegisterImpl::D, as_FloatRegister(58-i), as_FloatRegister(i));
K
kvn 已提交
3553 3554
    }

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
    // reload original 'from' address
    __ mov(G1, from);

    // re-check 8-byte alignment
    __ andcc(from, 7, G0);
    __ br(Assembler::notZero, true, Assembler::pn, L_reload_misaligned_input);
    __ delayed()->alignaddr(from, G0, from);

    // aligned case: load input into F52-F54
    __ ldf(FloatRegisterImpl::D, from, 0, F52);
    __ ldf(FloatRegisterImpl::D, from, 8, F54);
    __ ba_short(L_256bit_transform);

    __ BIND(L_reload_misaligned_input);
K
kvn 已提交
3569 3570
    __ ldf(FloatRegisterImpl::D, from, 0, F52);
    __ ldf(FloatRegisterImpl::D, from, 8, F54);
3571 3572 3573
    __ ldf(FloatRegisterImpl::D, from, 16, F56);
    __ faligndata(F52, F54, F52);
    __ faligndata(F54, F56, F54);
K
kvn 已提交
3574 3575

    // perform 256-bit key specific inverse cipher transformation
3576
    __ BIND(L_256bit_transform);
K
kvn 已提交
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
    __ fxor(FloatRegisterImpl::D, F0, F54, F54);
    __ fxor(FloatRegisterImpl::D, F2, F52, F52);
    __ aes_dround23(F4, F52, F54, F58);
    __ aes_dround01(F6, F52, F54, F56);
    __ aes_dround23(F50, F56, F58, F54);
    __ aes_dround01(F48, F56, F58, F52);
    __ aes_dround23(F46, F52, F54, F58);
    __ aes_dround01(F44, F52, F54, F56);
    __ aes_dround23(F42, F56, F58, F54);
    __ aes_dround01(F40, F56, F58, F52);

    for ( int i = 0;  i <= 7; i++ ) {
      __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
    }

    // perform inverse cipher transformations common for all key sizes
    __ BIND(L_common_transform);
    for ( int i = 38;  i >= 6; i -= 8 ) {
      __ aes_dround23(as_FloatRegister(i), F52, F54, F58);
      __ aes_dround01(as_FloatRegister(i-2), F52, F54, F56);
      if ( i != 6) {
        __ aes_dround23(as_FloatRegister(i-4), F56, F58, F54);
        __ aes_dround01(as_FloatRegister(i-6), F56, F58, F52);
      } else {
        __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F54);
        __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F52);
      }
    }

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
    // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
    __ andcc(to, 7, O5);
    __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output);
    __ delayed()->edge8n(to, G0, O3);

    // aligned case: store output into the destination array
    __ stf(FloatRegisterImpl::D, F52, to, 0);
    __ retl();
    __ delayed()->stf(FloatRegisterImpl::D, F54, to, 8);

    __ BIND(L_store_misaligned_output);
    __ add(to, 8, O4);
    __ mov(8, O2);
    __ sub(O2, O5, O2);
    __ alignaddr(O2, G0, O2);
    __ faligndata(F52, F52, F52);
    __ faligndata(F54, F54, F54);
    __ and3(to, -8, to);
    __ and3(O4, -8, O4);
    __ stpartialf(to, O3, F52, Assembler::ASI_PST8_PRIMARY);
    __ stpartialf(O4, O3, F54, Assembler::ASI_PST8_PRIMARY);
    __ add(to, 8, to);
    __ add(O4, 8, O4);
    __ orn(G0, O3, O3);
    __ stpartialf(to, O3, F52, Assembler::ASI_PST8_PRIMARY);
K
kvn 已提交
3631
    __ retl();
3632
    __ delayed()->stpartialf(O4, O3, F54, Assembler::ASI_PST8_PRIMARY);
K
kvn 已提交
3633 3634 3635 3636 3637

    return start;
  }

  address generate_cipherBlockChaining_encryptAESCrypt() {
3638 3639 3640 3641
    assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
           "the following code assumes that first element of an int array is aligned to 8 bytes");
    assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0,
           "the following code assumes that first element of a byte array is aligned to 8 bytes");
K
kvn 已提交
3642 3643
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
3644 3645 3646 3647
    Label L_cbcenc128, L_load_misaligned_input_128bit, L_128bit_transform, L_store_misaligned_output_128bit;
    Label L_check_loop_end_128bit, L_cbcenc192, L_load_misaligned_input_192bit, L_192bit_transform;
    Label L_store_misaligned_output_192bit, L_check_loop_end_192bit, L_cbcenc256, L_load_misaligned_input_256bit;
    Label L_256bit_transform, L_store_misaligned_output_256bit, L_check_loop_end_256bit;
K
kvn 已提交
3648
    address start = __ pc();
3649 3650 3651 3652 3653 3654
    Register from = I0; // source byte array
    Register to = I1;   // destination byte array
    Register key = I2;  // expanded key array
    Register rvec = I3; // init vector
    const Register len_reg = I4; // cipher length
    const Register keylen = I5;  // reg for storing expanded key array length
K
kvn 已提交
3655

3656
    __ save_frame(0);
3657 3658
    // save cipher len to return in the end
    __ mov(len_reg, L0);
K
kvn 已提交
3659 3660 3661 3662

    // read expanded key length
    __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);

3663
    // load initial vector, 8-byte alignment is guranteed
K
kvn 已提交
3664 3665
    __ ldf(FloatRegisterImpl::D, rvec, 0, F60);
    __ ldf(FloatRegisterImpl::D, rvec, 8, F62);
3666
    // load key, 8-byte alignment is guranteed
K
kvn 已提交
3667
    __ ldx(key,0,G1);
3668
    __ ldx(key,8,G5);
K
kvn 已提交
3669

3670
    // start loading expanded key, 8-byte alignment is guranteed
K
kvn 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
    for ( int i = 0, j = 16;  i <= 38; i += 2, j += 8 ) {
      __ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i));
    }

    // 128-bit original key size
    __ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pt, L_cbcenc128);

    for ( int i = 40, j = 176;  i <= 46; i += 2, j += 8 ) {
      __ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i));
    }

    // 192-bit original key size
    __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pt, L_cbcenc192);

    for ( int i = 48, j = 208;  i <= 54; i += 2, j += 8 ) {
      __ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i));
    }

    // 256-bit original key size
3690
    __ ba_short(L_cbcenc256);
K
kvn 已提交
3691 3692 3693

    __ align(OptoLoopAlignment);
    __ BIND(L_cbcenc128);
3694 3695 3696 3697 3698 3699
    // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
    __ andcc(from, 7, G0);
    __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_128bit);
    __ delayed()->mov(from, L1); // save original 'from' address before alignaddr

    // aligned case: load input into G3 and G4
K
kvn 已提交
3700 3701
    __ ldx(from,0,G3);
    __ ldx(from,8,G4);
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
    __ ba_short(L_128bit_transform);

    __ BIND(L_load_misaligned_input_128bit);
    // can clobber F48, F50 and F52 as they are not used in 128 and 192-bit key encryption
    __ alignaddr(from, G0, from);
    __ ldf(FloatRegisterImpl::D, from, 0, F48);
    __ ldf(FloatRegisterImpl::D, from, 8, F50);
    __ ldf(FloatRegisterImpl::D, from, 16, F52);
    __ faligndata(F48, F50, F48);
    __ faligndata(F50, F52, F50);
    __ movdtox(F48, G3);
    __ movdtox(F50, G4);
    __ mov(L1, from);

    __ BIND(L_128bit_transform);
K
kvn 已提交
3717
    __ xor3(G1,G3,G3);
3718
    __ xor3(G5,G4,G4);
K
kvn 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
    __ movxtod(G3,F56);
    __ movxtod(G4,F58);
    __ fxor(FloatRegisterImpl::D, F60, F56, F60);
    __ fxor(FloatRegisterImpl::D, F62, F58, F62);

    // TEN_EROUNDS
    for ( int i = 0;  i <= 32; i += 8 ) {
      __ aes_eround01(as_FloatRegister(i), F60, F62, F56);
      __ aes_eround23(as_FloatRegister(i+2), F60, F62, F58);
      if (i != 32 ) {
        __ aes_eround01(as_FloatRegister(i+4), F56, F58, F60);
        __ aes_eround23(as_FloatRegister(i+6), F56, F58, F62);
      } else {
        __ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60);
        __ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62);
      }
    }

3737 3738 3739 3740 3741 3742
    // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
    __ andcc(to, 7, L1);
    __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_128bit);
    __ delayed()->edge8n(to, G0, L2);

    // aligned case: store output into the destination array
K
kvn 已提交
3743 3744
    __ stf(FloatRegisterImpl::D, F60, to, 0);
    __ stf(FloatRegisterImpl::D, F62, to, 8);
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
    __ ba_short(L_check_loop_end_128bit);

    __ BIND(L_store_misaligned_output_128bit);
    __ add(to, 8, L3);
    __ mov(8, L4);
    __ sub(L4, L1, L4);
    __ alignaddr(L4, G0, L4);
    // save cipher text before circular right shift
    // as it needs to be stored as iv for next block (see code before next retl)
    __ movdtox(F60, L6);
    __ movdtox(F62, L7);
    __ faligndata(F60, F60, F60);
    __ faligndata(F62, F62, F62);
    __ mov(to, L5);
    __ and3(to, -8, to);
    __ and3(L3, -8, L3);
    __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
    __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
    __ add(to, 8, to);
    __ add(L3, 8, L3);
    __ orn(G0, L2, L2);
    __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
    __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
    __ mov(L5, to);
    __ movxtod(L6, F60);
    __ movxtod(L7, F62);

    __ BIND(L_check_loop_end_128bit);
K
kvn 已提交
3773 3774 3775 3776 3777
    __ add(from, 16, from);
    __ add(to, 16, to);
    __ subcc(len_reg, 16, len_reg);
    __ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc128);
    __ delayed()->nop();
3778
    // re-init intial vector for next block, 8-byte alignment is guaranteed
K
kvn 已提交
3779 3780
    __ stf(FloatRegisterImpl::D, F60, rvec, 0);
    __ stf(FloatRegisterImpl::D, F62, rvec, 8);
3781 3782 3783
    __ mov(L0, I0);
    __ ret();
    __ delayed()->restore();
K
kvn 已提交
3784 3785 3786

    __ align(OptoLoopAlignment);
    __ BIND(L_cbcenc192);
3787 3788 3789 3790 3791 3792
    // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
    __ andcc(from, 7, G0);
    __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_192bit);
    __ delayed()->mov(from, L1); // save original 'from' address before alignaddr

    // aligned case: load input into G3 and G4
K
kvn 已提交
3793 3794
    __ ldx(from,0,G3);
    __ ldx(from,8,G4);
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
    __ ba_short(L_192bit_transform);

    __ BIND(L_load_misaligned_input_192bit);
    // can clobber F48, F50 and F52 as they are not used in 128 and 192-bit key encryption
    __ alignaddr(from, G0, from);
    __ ldf(FloatRegisterImpl::D, from, 0, F48);
    __ ldf(FloatRegisterImpl::D, from, 8, F50);
    __ ldf(FloatRegisterImpl::D, from, 16, F52);
    __ faligndata(F48, F50, F48);
    __ faligndata(F50, F52, F50);
    __ movdtox(F48, G3);
    __ movdtox(F50, G4);
    __ mov(L1, from);

    __ BIND(L_192bit_transform);
K
kvn 已提交
3810
    __ xor3(G1,G3,G3);
3811
    __ xor3(G5,G4,G4);
K
kvn 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
    __ movxtod(G3,F56);
    __ movxtod(G4,F58);
    __ fxor(FloatRegisterImpl::D, F60, F56, F60);
    __ fxor(FloatRegisterImpl::D, F62, F58, F62);

    // TWELEVE_EROUNDS
    for ( int i = 0;  i <= 40; i += 8 ) {
      __ aes_eround01(as_FloatRegister(i), F60, F62, F56);
      __ aes_eround23(as_FloatRegister(i+2), F60, F62, F58);
      if (i != 40 ) {
        __ aes_eround01(as_FloatRegister(i+4), F56, F58, F60);
        __ aes_eround23(as_FloatRegister(i+6), F56, F58, F62);
      } else {
        __ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60);
        __ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62);
      }
    }

3830 3831 3832 3833 3834 3835
    // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
    __ andcc(to, 7, L1);
    __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_192bit);
    __ delayed()->edge8n(to, G0, L2);

    // aligned case: store output into the destination array
K
kvn 已提交
3836 3837
    __ stf(FloatRegisterImpl::D, F60, to, 0);
    __ stf(FloatRegisterImpl::D, F62, to, 8);
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
    __ ba_short(L_check_loop_end_192bit);

    __ BIND(L_store_misaligned_output_192bit);
    __ add(to, 8, L3);
    __ mov(8, L4);
    __ sub(L4, L1, L4);
    __ alignaddr(L4, G0, L4);
    __ movdtox(F60, L6);
    __ movdtox(F62, L7);
    __ faligndata(F60, F60, F60);
    __ faligndata(F62, F62, F62);
    __ mov(to, L5);
    __ and3(to, -8, to);
    __ and3(L3, -8, L3);
    __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
    __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
    __ add(to, 8, to);
    __ add(L3, 8, L3);
    __ orn(G0, L2, L2);
    __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
    __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
    __ mov(L5, to);
    __ movxtod(L6, F60);
    __ movxtod(L7, F62);

    __ BIND(L_check_loop_end_192bit);
K
kvn 已提交
3864 3865 3866 3867 3868
    __ add(from, 16, from);
    __ subcc(len_reg, 16, len_reg);
    __ add(to, 16, to);
    __ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc192);
    __ delayed()->nop();
3869
    // re-init intial vector for next block, 8-byte alignment is guaranteed
K
kvn 已提交
3870 3871
    __ stf(FloatRegisterImpl::D, F60, rvec, 0);
    __ stf(FloatRegisterImpl::D, F62, rvec, 8);
3872 3873 3874
    __ mov(L0, I0);
    __ ret();
    __ delayed()->restore();
K
kvn 已提交
3875 3876 3877

    __ align(OptoLoopAlignment);
    __ BIND(L_cbcenc256);
3878 3879 3880 3881 3882 3883
    // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
    __ andcc(from, 7, G0);
    __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_256bit);
    __ delayed()->mov(from, L1); // save original 'from' address before alignaddr

    // aligned case: load input into G3 and G4
K
kvn 已提交
3884 3885
    __ ldx(from,0,G3);
    __ ldx(from,8,G4);
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
    __ ba_short(L_256bit_transform);

    __ BIND(L_load_misaligned_input_256bit);
    // cannot clobber F48, F50 and F52. F56, F58 can be used though
    __ alignaddr(from, G0, from);
    __ movdtox(F60, L2); // save F60 before overwriting
    __ ldf(FloatRegisterImpl::D, from, 0, F56);
    __ ldf(FloatRegisterImpl::D, from, 8, F58);
    __ ldf(FloatRegisterImpl::D, from, 16, F60);
    __ faligndata(F56, F58, F56);
    __ faligndata(F58, F60, F58);
    __ movdtox(F56, G3);
    __ movdtox(F58, G4);
    __ mov(L1, from);
    __ movxtod(L2, F60);

    __ BIND(L_256bit_transform);
K
kvn 已提交
3903
    __ xor3(G1,G3,G3);
3904
    __ xor3(G5,G4,G4);
K
kvn 已提交
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
    __ movxtod(G3,F56);
    __ movxtod(G4,F58);
    __ fxor(FloatRegisterImpl::D, F60, F56, F60);
    __ fxor(FloatRegisterImpl::D, F62, F58, F62);

    // FOURTEEN_EROUNDS
    for ( int i = 0;  i <= 48; i += 8 ) {
      __ aes_eround01(as_FloatRegister(i), F60, F62, F56);
      __ aes_eround23(as_FloatRegister(i+2), F60, F62, F58);
      if (i != 48 ) {
        __ aes_eround01(as_FloatRegister(i+4), F56, F58, F60);
        __ aes_eround23(as_FloatRegister(i+6), F56, F58, F62);
      } else {
        __ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60);
        __ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62);
      }
    }

3923 3924 3925 3926 3927 3928
    // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
    __ andcc(to, 7, L1);
    __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_256bit);
    __ delayed()->edge8n(to, G0, L2);

    // aligned case: store output into the destination array
K
kvn 已提交
3929 3930
    __ stf(FloatRegisterImpl::D, F60, to, 0);
    __ stf(FloatRegisterImpl::D, F62, to, 8);
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
    __ ba_short(L_check_loop_end_256bit);

    __ BIND(L_store_misaligned_output_256bit);
    __ add(to, 8, L3);
    __ mov(8, L4);
    __ sub(L4, L1, L4);
    __ alignaddr(L4, G0, L4);
    __ movdtox(F60, L6);
    __ movdtox(F62, L7);
    __ faligndata(F60, F60, F60);
    __ faligndata(F62, F62, F62);
    __ mov(to, L5);
    __ and3(to, -8, to);
    __ and3(L3, -8, L3);
    __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
    __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
    __ add(to, 8, to);
    __ add(L3, 8, L3);
    __ orn(G0, L2, L2);
    __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
    __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
    __ mov(L5, to);
    __ movxtod(L6, F60);
    __ movxtod(L7, F62);

    __ BIND(L_check_loop_end_256bit);
K
kvn 已提交
3957 3958 3959 3960 3961
    __ add(from, 16, from);
    __ subcc(len_reg, 16, len_reg);
    __ add(to, 16, to);
    __ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc256);
    __ delayed()->nop();
3962
    // re-init intial vector for next block, 8-byte alignment is guaranteed
K
kvn 已提交
3963 3964
    __ stf(FloatRegisterImpl::D, F60, rvec, 0);
    __ stf(FloatRegisterImpl::D, F62, rvec, 8);
3965 3966 3967
    __ mov(L0, I0);
    __ ret();
    __ delayed()->restore();
K
kvn 已提交
3968 3969 3970 3971 3972

    return start;
  }

  address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
3973 3974 3975 3976
    assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
           "the following code assumes that first element of an int array is aligned to 8 bytes");
    assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0,
           "the following code assumes that first element of a byte array is aligned to 8 bytes");
K
kvn 已提交
3977 3978 3979 3980
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
    Label L_cbcdec_end, L_expand192bit, L_expand256bit, L_dec_first_block_start;
    Label L_dec_first_block128, L_dec_first_block192, L_dec_next2_blocks128, L_dec_next2_blocks192, L_dec_next2_blocks256;
3981 3982 3983 3984 3985
    Label L_load_misaligned_input_first_block, L_transform_first_block, L_load_misaligned_next2_blocks128, L_transform_next2_blocks128;
    Label L_load_misaligned_next2_blocks192, L_transform_next2_blocks192, L_load_misaligned_next2_blocks256, L_transform_next2_blocks256;
    Label L_store_misaligned_output_first_block, L_check_decrypt_end, L_store_misaligned_output_next2_blocks128;
    Label L_check_decrypt_loop_end128, L_store_misaligned_output_next2_blocks192, L_check_decrypt_loop_end192;
    Label L_store_misaligned_output_next2_blocks256, L_check_decrypt_loop_end256;
K
kvn 已提交
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
    address start = __ pc();
    Register from = I0; // source byte array
    Register to = I1;   // destination byte array
    Register key = I2;  // expanded key array
    Register rvec = I3; // init vector
    const Register len_reg = I4; // cipher length
    const Register original_key = I5;  // original key array only required during decryption
    const Register keylen = L6;  // reg for storing expanded key array length

    __ save_frame(0); //args are read from I* registers since we save the frame in the beginning
3996 3997
    // save cipher len to return in the end
    __ mov(len_reg, L7);
K
kvn 已提交
3998 3999

    // load original key from SunJCE expanded decryption key
4000
    // Since we load original key buffer starting first element, 8-byte alignment is guaranteed
K
kvn 已提交
4001 4002 4003 4004
    for ( int i = 0;  i <= 3; i++ ) {
      __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
    }

4005
    // load initial vector, 8-byte alignment is guaranteed
K
kvn 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
    __ ldx(rvec,0,L0);
    __ ldx(rvec,8,L1);

    // read expanded key array length
    __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);

    // 256-bit original key size
    __ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_expand256bit);

    // 192-bit original key size
    __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_expand192bit);

    // 128-bit original key size
    // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
    for ( int i = 0;  i <= 36; i += 4 ) {
      __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+2), i/4, as_FloatRegister(i+4));
      __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+4), as_FloatRegister(i+6));
    }

    // load expanded key[last-1] and key[last] elements
    __ movdtox(F40,L2);
    __ movdtox(F42,L3);

    __ and3(len_reg, 16, L4);
4030 4031
    __ br_null_short(L4, Assembler::pt, L_dec_next2_blocks128);
    __ nop();
K
kvn 已提交
4032

4033
    __ ba_short(L_dec_first_block_start);
K
kvn 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053

    __ BIND(L_expand192bit);
    // load rest of the 192-bit key
    __ ldf(FloatRegisterImpl::S, original_key, 16, F4);
    __ ldf(FloatRegisterImpl::S, original_key, 20, F5);

    // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
    for ( int i = 0;  i <= 36; i += 6 ) {
      __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+4), i/6, as_FloatRegister(i+6));
      __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+6), as_FloatRegister(i+8));
      __ aes_kexpand2(as_FloatRegister(i+4), as_FloatRegister(i+8), as_FloatRegister(i+10));
    }
    __ aes_kexpand1(F42, F46, 7, F48);
    __ aes_kexpand2(F44, F48, F50);

    // load expanded key[last-1] and key[last] elements
    __ movdtox(F48,L2);
    __ movdtox(F50,L3);

    __ and3(len_reg, 16, L4);
4054 4055
    __ br_null_short(L4, Assembler::pt, L_dec_next2_blocks192);
    __ nop();
K
kvn 已提交
4056

4057
    __ ba_short(L_dec_first_block_start);
K
kvn 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

    __ BIND(L_expand256bit);
    // load rest of the 256-bit key
    for ( int i = 4;  i <= 7; i++ ) {
      __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
    }

    // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
    for ( int i = 0;  i <= 40; i += 8 ) {
      __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+6), i/8, as_FloatRegister(i+8));
      __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+8), as_FloatRegister(i+10));
      __ aes_kexpand0(as_FloatRegister(i+4), as_FloatRegister(i+10), as_FloatRegister(i+12));
      __ aes_kexpand2(as_FloatRegister(i+6), as_FloatRegister(i+12), as_FloatRegister(i+14));
    }
    __ aes_kexpand1(F48, F54, 6, F56);
    __ aes_kexpand2(F50, F56, F58);

    // load expanded key[last-1] and key[last] elements
    __ movdtox(F56,L2);
    __ movdtox(F58,L3);

    __ and3(len_reg, 16, L4);
4080
    __ br_null_short(L4, Assembler::pt, L_dec_next2_blocks256);
K
kvn 已提交
4081 4082

    __ BIND(L_dec_first_block_start);
4083 4084 4085 4086 4087 4088
    // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
    __ andcc(from, 7, G0);
    __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_first_block);
    __ delayed()->mov(from, G1); // save original 'from' address before alignaddr

    // aligned case: load input into L4 and L5
K
kvn 已提交
4089 4090
    __ ldx(from,0,L4);
    __ ldx(from,8,L5);
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
    __ ba_short(L_transform_first_block);

    __ BIND(L_load_misaligned_input_first_block);
    __ alignaddr(from, G0, from);
    // F58, F60, F62 can be clobbered
    __ ldf(FloatRegisterImpl::D, from, 0, F58);
    __ ldf(FloatRegisterImpl::D, from, 8, F60);
    __ ldf(FloatRegisterImpl::D, from, 16, F62);
    __ faligndata(F58, F60, F58);
    __ faligndata(F60, F62, F60);
    __ movdtox(F58, L4);
    __ movdtox(F60, L5);
    __ mov(G1, from);

    __ BIND(L_transform_first_block);
K
kvn 已提交
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
    __ xor3(L2,L4,G1);
    __ movxtod(G1,F60);
    __ xor3(L3,L5,G1);
    __ movxtod(G1,F62);

    // 128-bit original key size
    __ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pn, L_dec_first_block128);

    // 192-bit original key size
    __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_dec_first_block192);

    __ aes_dround23(F54, F60, F62, F58);
    __ aes_dround01(F52, F60, F62, F56);
    __ aes_dround23(F50, F56, F58, F62);
    __ aes_dround01(F48, F56, F58, F60);

    __ BIND(L_dec_first_block192);
    __ aes_dround23(F46, F60, F62, F58);
    __ aes_dround01(F44, F60, F62, F56);
    __ aes_dround23(F42, F56, F58, F62);
    __ aes_dround01(F40, F56, F58, F60);

    __ BIND(L_dec_first_block128);
    for ( int i = 38;  i >= 6; i -= 8 ) {
      __ aes_dround23(as_FloatRegister(i), F60, F62, F58);
      __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
      if ( i != 6) {
        __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
        __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
      } else {
        __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62);
        __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60);
      }
    }

    __ movxtod(L0,F56);
    __ movxtod(L1,F58);
    __ mov(L4,L0);
    __ mov(L5,L1);
    __ fxor(FloatRegisterImpl::D, F56, F60, F60);
    __ fxor(FloatRegisterImpl::D, F58, F62, F62);

4148 4149 4150 4151 4152 4153
    // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
    __ andcc(to, 7, G1);
    __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_first_block);
    __ delayed()->edge8n(to, G0, G2);

    // aligned case: store output into the destination array
K
kvn 已提交
4154 4155
    __ stf(FloatRegisterImpl::D, F60, to, 0);
    __ stf(FloatRegisterImpl::D, F62, to, 8);
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
    __ ba_short(L_check_decrypt_end);

    __ BIND(L_store_misaligned_output_first_block);
    __ add(to, 8, G3);
    __ mov(8, G4);
    __ sub(G4, G1, G4);
    __ alignaddr(G4, G0, G4);
    __ faligndata(F60, F60, F60);
    __ faligndata(F62, F62, F62);
    __ mov(to, G1);
    __ and3(to, -8, to);
    __ and3(G3, -8, G3);
    __ stpartialf(to, G2, F60, Assembler::ASI_PST8_PRIMARY);
    __ stpartialf(G3, G2, F62, Assembler::ASI_PST8_PRIMARY);
    __ add(to, 8, to);
    __ add(G3, 8, G3);
    __ orn(G0, G2, G2);
    __ stpartialf(to, G2, F60, Assembler::ASI_PST8_PRIMARY);
    __ stpartialf(G3, G2, F62, Assembler::ASI_PST8_PRIMARY);
    __ mov(G1, to);

    __ BIND(L_check_decrypt_end);
K
kvn 已提交
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
    __ add(from, 16, from);
    __ add(to, 16, to);
    __ subcc(len_reg, 16, len_reg);
    __ br(Assembler::equal, false, Assembler::pt, L_cbcdec_end);
    __ delayed()->nop();

    // 256-bit original key size
    __ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_dec_next2_blocks256);

    // 192-bit original key size
    __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_dec_next2_blocks192);

    __ align(OptoLoopAlignment);
    __ BIND(L_dec_next2_blocks128);
    __ nop();

4194 4195 4196 4197 4198 4199
    // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
    __ andcc(from, 7, G0);
    __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks128);
    __ delayed()->mov(from, G1); // save original 'from' address before alignaddr

    // aligned case: load input into G4, G5, L4 and L5
K
kvn 已提交
4200 4201
    __ ldx(from,0,G4);
    __ ldx(from,8,G5);
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
    __ ldx(from,16,L4);
    __ ldx(from,24,L5);
    __ ba_short(L_transform_next2_blocks128);

    __ BIND(L_load_misaligned_next2_blocks128);
    __ alignaddr(from, G0, from);
    // F40, F42, F58, F60, F62 can be clobbered
    __ ldf(FloatRegisterImpl::D, from, 0, F40);
    __ ldf(FloatRegisterImpl::D, from, 8, F42);
    __ ldf(FloatRegisterImpl::D, from, 16, F60);
    __ ldf(FloatRegisterImpl::D, from, 24, F62);
    __ ldf(FloatRegisterImpl::D, from, 32, F58);
    __ faligndata(F40, F42, F40);
    __ faligndata(F42, F60, F42);
    __ faligndata(F60, F62, F60);
    __ faligndata(F62, F58, F62);
    __ movdtox(F40, G4);
    __ movdtox(F42, G5);
    __ movdtox(F60, L4);
    __ movdtox(F62, L5);
    __ mov(G1, from);

    __ BIND(L_transform_next2_blocks128);
    // F40:F42 used for first 16-bytes
K
kvn 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
    __ xor3(L2,G4,G1);
    __ movxtod(G1,F40);
    __ xor3(L3,G5,G1);
    __ movxtod(G1,F42);

    // F60:F62 used for next 16-bytes
    __ xor3(L2,L4,G1);
    __ movxtod(G1,F60);
    __ xor3(L3,L5,G1);
    __ movxtod(G1,F62);

    for ( int i = 38;  i >= 6; i -= 8 ) {
      __ aes_dround23(as_FloatRegister(i), F40, F42, F44);
      __ aes_dround01(as_FloatRegister(i-2), F40, F42, F46);
      __ aes_dround23(as_FloatRegister(i), F60, F62, F58);
      __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
      if (i != 6 ) {
        __ aes_dround23(as_FloatRegister(i-4), F46, F44, F42);
        __ aes_dround01(as_FloatRegister(i-6), F46, F44, F40);
        __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
        __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
      } else {
        __ aes_dround23_l(as_FloatRegister(i-4), F46, F44, F42);
        __ aes_dround01_l(as_FloatRegister(i-6), F46, F44, F40);
        __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62);
        __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60);
      }
    }

    __ movxtod(L0,F46);
    __ movxtod(L1,F44);
    __ fxor(FloatRegisterImpl::D, F46, F40, F40);
    __ fxor(FloatRegisterImpl::D, F44, F42, F42);

    __ movxtod(G4,F56);
    __ movxtod(G5,F58);
    __ mov(L4,L0);
    __ mov(L5,L1);
    __ fxor(FloatRegisterImpl::D, F56, F60, F60);
    __ fxor(FloatRegisterImpl::D, F58, F62, F62);

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
    // For mis-aligned store of 32 bytes of result we can do:
    // Circular right-shift all 4 FP registers so that 'head' and 'tail'
    // parts that need to be stored starting at mis-aligned address are in a FP reg
    // the other 3 FP regs can thus be stored using regular store
    // we then use the edge + partial-store mechanism to store the 'head' and 'tail' parts

    // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
    __ andcc(to, 7, G1);
    __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks128);
    __ delayed()->edge8n(to, G0, G2);

    // aligned case: store output into the destination array
    __ stf(FloatRegisterImpl::D, F40, to, 0);
    __ stf(FloatRegisterImpl::D, F42, to, 8);
K
kvn 已提交
4281 4282
    __ stf(FloatRegisterImpl::D, F60, to, 16);
    __ stf(FloatRegisterImpl::D, F62, to, 24);
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
    __ ba_short(L_check_decrypt_loop_end128);

    __ BIND(L_store_misaligned_output_next2_blocks128);
    __ mov(8, G4);
    __ sub(G4, G1, G4);
    __ alignaddr(G4, G0, G4);
    __ faligndata(F40, F42, F56); // F56 can be clobbered
    __ faligndata(F42, F60, F42);
    __ faligndata(F60, F62, F60);
    __ faligndata(F62, F40, F40);
    __ mov(to, G1);
    __ and3(to, -8, to);
    __ stpartialf(to, G2, F40, Assembler::ASI_PST8_PRIMARY);
    __ stf(FloatRegisterImpl::D, F56, to, 8);
    __ stf(FloatRegisterImpl::D, F42, to, 16);
    __ stf(FloatRegisterImpl::D, F60, to, 24);
    __ add(to, 32, to);
    __ orn(G0, G2, G2);
    __ stpartialf(to, G2, F40, Assembler::ASI_PST8_PRIMARY);
    __ mov(G1, to);
K
kvn 已提交
4303

4304
    __ BIND(L_check_decrypt_loop_end128);
K
kvn 已提交
4305 4306 4307 4308 4309
    __ add(from, 32, from);
    __ add(to, 32, to);
    __ subcc(len_reg, 32, len_reg);
    __ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks128);
    __ delayed()->nop();
4310
    __ ba_short(L_cbcdec_end);
K
kvn 已提交
4311 4312 4313 4314 4315

    __ align(OptoLoopAlignment);
    __ BIND(L_dec_next2_blocks192);
    __ nop();

4316 4317 4318 4319 4320 4321
    // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
    __ andcc(from, 7, G0);
    __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks192);
    __ delayed()->mov(from, G1); // save original 'from' address before alignaddr

    // aligned case: load input into G4, G5, L4 and L5
K
kvn 已提交
4322 4323
    __ ldx(from,0,G4);
    __ ldx(from,8,G5);
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
    __ ldx(from,16,L4);
    __ ldx(from,24,L5);
    __ ba_short(L_transform_next2_blocks192);

    __ BIND(L_load_misaligned_next2_blocks192);
    __ alignaddr(from, G0, from);
    // F48, F50, F52, F60, F62 can be clobbered
    __ ldf(FloatRegisterImpl::D, from, 0, F48);
    __ ldf(FloatRegisterImpl::D, from, 8, F50);
    __ ldf(FloatRegisterImpl::D, from, 16, F60);
    __ ldf(FloatRegisterImpl::D, from, 24, F62);
    __ ldf(FloatRegisterImpl::D, from, 32, F52);
    __ faligndata(F48, F50, F48);
    __ faligndata(F50, F60, F50);
    __ faligndata(F60, F62, F60);
    __ faligndata(F62, F52, F62);
    __ movdtox(F48, G4);
    __ movdtox(F50, G5);
    __ movdtox(F60, L4);
    __ movdtox(F62, L5);
    __ mov(G1, from);

    __ BIND(L_transform_next2_blocks192);
    // F48:F50 used for first 16-bytes
K
kvn 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
    __ xor3(L2,G4,G1);
    __ movxtod(G1,F48);
    __ xor3(L3,G5,G1);
    __ movxtod(G1,F50);

    // F60:F62 used for next 16-bytes
    __ xor3(L2,L4,G1);
    __ movxtod(G1,F60);
    __ xor3(L3,L5,G1);
    __ movxtod(G1,F62);

    for ( int i = 46;  i >= 6; i -= 8 ) {
      __ aes_dround23(as_FloatRegister(i), F48, F50, F52);
      __ aes_dround01(as_FloatRegister(i-2), F48, F50, F54);
      __ aes_dround23(as_FloatRegister(i), F60, F62, F58);
      __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
      if (i != 6 ) {
        __ aes_dround23(as_FloatRegister(i-4), F54, F52, F50);
        __ aes_dround01(as_FloatRegister(i-6), F54, F52, F48);
        __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
        __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
      } else {
        __ aes_dround23_l(as_FloatRegister(i-4), F54, F52, F50);
        __ aes_dround01_l(as_FloatRegister(i-6), F54, F52, F48);
        __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62);
        __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60);
      }
    }

    __ movxtod(L0,F54);
    __ movxtod(L1,F52);
    __ fxor(FloatRegisterImpl::D, F54, F48, F48);
    __ fxor(FloatRegisterImpl::D, F52, F50, F50);

    __ movxtod(G4,F56);
    __ movxtod(G5,F58);
    __ mov(L4,L0);
    __ mov(L5,L1);
    __ fxor(FloatRegisterImpl::D, F56, F60, F60);
    __ fxor(FloatRegisterImpl::D, F58, F62, F62);

4389 4390 4391 4392 4393 4394 4395 4396
    // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
    __ andcc(to, 7, G1);
    __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks192);
    __ delayed()->edge8n(to, G0, G2);

    // aligned case: store output into the destination array
    __ stf(FloatRegisterImpl::D, F48, to, 0);
    __ stf(FloatRegisterImpl::D, F50, to, 8);
K
kvn 已提交
4397 4398
    __ stf(FloatRegisterImpl::D, F60, to, 16);
    __ stf(FloatRegisterImpl::D, F62, to, 24);
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
    __ ba_short(L_check_decrypt_loop_end192);

    __ BIND(L_store_misaligned_output_next2_blocks192);
    __ mov(8, G4);
    __ sub(G4, G1, G4);
    __ alignaddr(G4, G0, G4);
    __ faligndata(F48, F50, F56); // F56 can be clobbered
    __ faligndata(F50, F60, F50);
    __ faligndata(F60, F62, F60);
    __ faligndata(F62, F48, F48);
    __ mov(to, G1);
    __ and3(to, -8, to);
    __ stpartialf(to, G2, F48, Assembler::ASI_PST8_PRIMARY);
    __ stf(FloatRegisterImpl::D, F56, to, 8);
    __ stf(FloatRegisterImpl::D, F50, to, 16);
    __ stf(FloatRegisterImpl::D, F60, to, 24);
    __ add(to, 32, to);
    __ orn(G0, G2, G2);
    __ stpartialf(to, G2, F48, Assembler::ASI_PST8_PRIMARY);
    __ mov(G1, to);
K
kvn 已提交
4419

4420
    __ BIND(L_check_decrypt_loop_end192);
K
kvn 已提交
4421 4422 4423 4424 4425
    __ add(from, 32, from);
    __ add(to, 32, to);
    __ subcc(len_reg, 32, len_reg);
    __ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks192);
    __ delayed()->nop();
4426
    __ ba_short(L_cbcdec_end);
K
kvn 已提交
4427 4428 4429 4430 4431

    __ align(OptoLoopAlignment);
    __ BIND(L_dec_next2_blocks256);
    __ nop();

4432 4433 4434 4435 4436 4437
    // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
    __ andcc(from, 7, G0);
    __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks256);
    __ delayed()->mov(from, G1); // save original 'from' address before alignaddr

    // aligned case: load input into G4, G5, L4 and L5
K
kvn 已提交
4438 4439
    __ ldx(from,0,G4);
    __ ldx(from,8,G5);
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
    __ ldx(from,16,L4);
    __ ldx(from,24,L5);
    __ ba_short(L_transform_next2_blocks256);

    __ BIND(L_load_misaligned_next2_blocks256);
    __ alignaddr(from, G0, from);
    // F0, F2, F4, F60, F62 can be clobbered
    __ ldf(FloatRegisterImpl::D, from, 0, F0);
    __ ldf(FloatRegisterImpl::D, from, 8, F2);
    __ ldf(FloatRegisterImpl::D, from, 16, F60);
    __ ldf(FloatRegisterImpl::D, from, 24, F62);
    __ ldf(FloatRegisterImpl::D, from, 32, F4);
    __ faligndata(F0, F2, F0);
    __ faligndata(F2, F60, F2);
    __ faligndata(F60, F62, F60);
    __ faligndata(F62, F4, F62);
    __ movdtox(F0, G4);
    __ movdtox(F2, G5);
    __ movdtox(F60, L4);
    __ movdtox(F62, L5);
    __ mov(G1, from);

    __ BIND(L_transform_next2_blocks256);
    // F0:F2 used for first 16-bytes
K
kvn 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
    __ xor3(L2,G4,G1);
    __ movxtod(G1,F0);
    __ xor3(L3,G5,G1);
    __ movxtod(G1,F2);

    // F60:F62 used for next 16-bytes
    __ xor3(L2,L4,G1);
    __ movxtod(G1,F60);
    __ xor3(L3,L5,G1);
    __ movxtod(G1,F62);

    __ aes_dround23(F54, F0, F2, F4);
    __ aes_dround01(F52, F0, F2, F6);
    __ aes_dround23(F54, F60, F62, F58);
    __ aes_dround01(F52, F60, F62, F56);
    __ aes_dround23(F50, F6, F4, F2);
    __ aes_dround01(F48, F6, F4, F0);
    __ aes_dround23(F50, F56, F58, F62);
    __ aes_dround01(F48, F56, F58, F60);
    // save F48:F54 in temp registers
    __ movdtox(F54,G2);
    __ movdtox(F52,G3);
4486
    __ movdtox(F50,L6);
K
kvn 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
    __ movdtox(F48,G1);
    for ( int i = 46;  i >= 14; i -= 8 ) {
      __ aes_dround23(as_FloatRegister(i), F0, F2, F4);
      __ aes_dround01(as_FloatRegister(i-2), F0, F2, F6);
      __ aes_dround23(as_FloatRegister(i), F60, F62, F58);
      __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
      __ aes_dround23(as_FloatRegister(i-4), F6, F4, F2);
      __ aes_dround01(as_FloatRegister(i-6), F6, F4, F0);
      __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
      __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
    }
    // init F48:F54 with F0:F6 values (original key)
    __ ldf(FloatRegisterImpl::D, original_key, 0, F48);
    __ ldf(FloatRegisterImpl::D, original_key, 8, F50);
    __ ldf(FloatRegisterImpl::D, original_key, 16, F52);
    __ ldf(FloatRegisterImpl::D, original_key, 24, F54);
    __ aes_dround23(F54, F0, F2, F4);
    __ aes_dround01(F52, F0, F2, F6);
    __ aes_dround23(F54, F60, F62, F58);
    __ aes_dround01(F52, F60, F62, F56);
    __ aes_dround23_l(F50, F6, F4, F2);
    __ aes_dround01_l(F48, F6, F4, F0);
    __ aes_dround23_l(F50, F56, F58, F62);
    __ aes_dround01_l(F48, F56, F58, F60);
    // re-init F48:F54 with their original values
    __ movxtod(G2,F54);
    __ movxtod(G3,F52);
4514
    __ movxtod(L6,F50);
K
kvn 已提交
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
    __ movxtod(G1,F48);

    __ movxtod(L0,F6);
    __ movxtod(L1,F4);
    __ fxor(FloatRegisterImpl::D, F6, F0, F0);
    __ fxor(FloatRegisterImpl::D, F4, F2, F2);

    __ movxtod(G4,F56);
    __ movxtod(G5,F58);
    __ mov(L4,L0);
    __ mov(L5,L1);
    __ fxor(FloatRegisterImpl::D, F56, F60, F60);
    __ fxor(FloatRegisterImpl::D, F58, F62, F62);

4529 4530 4531 4532 4533 4534 4535 4536
    // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
    __ andcc(to, 7, G1);
    __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks256);
    __ delayed()->edge8n(to, G0, G2);

    // aligned case: store output into the destination array
    __ stf(FloatRegisterImpl::D, F0, to, 0);
    __ stf(FloatRegisterImpl::D, F2, to, 8);
K
kvn 已提交
4537 4538
    __ stf(FloatRegisterImpl::D, F60, to, 16);
    __ stf(FloatRegisterImpl::D, F62, to, 24);
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
    __ ba_short(L_check_decrypt_loop_end256);

    __ BIND(L_store_misaligned_output_next2_blocks256);
    __ mov(8, G4);
    __ sub(G4, G1, G4);
    __ alignaddr(G4, G0, G4);
    __ faligndata(F0, F2, F56); // F56 can be clobbered
    __ faligndata(F2, F60, F2);
    __ faligndata(F60, F62, F60);
    __ faligndata(F62, F0, F0);
    __ mov(to, G1);
    __ and3(to, -8, to);
    __ stpartialf(to, G2, F0, Assembler::ASI_PST8_PRIMARY);
    __ stf(FloatRegisterImpl::D, F56, to, 8);
    __ stf(FloatRegisterImpl::D, F2, to, 16);
    __ stf(FloatRegisterImpl::D, F60, to, 24);
    __ add(to, 32, to);
    __ orn(G0, G2, G2);
    __ stpartialf(to, G2, F0, Assembler::ASI_PST8_PRIMARY);
    __ mov(G1, to);
K
kvn 已提交
4559

4560
    __ BIND(L_check_decrypt_loop_end256);
K
kvn 已提交
4561 4562 4563 4564 4565 4566 4567
    __ add(from, 32, from);
    __ add(to, 32, to);
    __ subcc(len_reg, 32, len_reg);
    __ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks256);
    __ delayed()->nop();

    __ BIND(L_cbcdec_end);
4568
    // re-init intial vector for next block, 8-byte alignment is guaranteed
K
kvn 已提交
4569 4570
    __ stx(L0, rvec, 0);
    __ stx(L1, rvec, 8);
4571 4572 4573
    __ mov(L7, I0);
    __ ret();
    __ delayed()->restore();
K
kvn 已提交
4574 4575 4576 4577

    return start;
  }

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
  address generate_sha1_implCompress(bool multi_block, const char *name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_sha1_loop, L_sha1_unaligned_input, L_sha1_unaligned_input_loop;
    int i;

    Register buf   = O0; // byte[] source+offset
    Register state = O1; // int[]  SHA.state
    Register ofs   = O2; // int    offset
    Register limit = O3; // int    limit

    // load state into F0-F4
    for (i = 0; i < 5; i++) {
      __ ldf(FloatRegisterImpl::S, state, i*4, as_FloatRegister(i));
    }

    __ andcc(buf, 7, G0);
    __ br(Assembler::notZero, false, Assembler::pn, L_sha1_unaligned_input);
    __ delayed()->nop();

    __ BIND(L_sha1_loop);
    // load buf into F8-F22
    for (i = 0; i < 8; i++) {
      __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
    }
    __ sha1();
    if (multi_block) {
      __ add(ofs, 64, ofs);
      __ add(buf, 64, buf);
      __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha1_loop);
      __ mov(ofs, O0); // to be returned
    }

    // store F0-F4 into state and return
    for (i = 0; i < 4; i++) {
      __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
    }
    __ retl();
    __ delayed()->stf(FloatRegisterImpl::S, F4, state, 0x10);

    __ BIND(L_sha1_unaligned_input);
    __ alignaddr(buf, G0, buf);

    __ BIND(L_sha1_unaligned_input_loop);
    // load buf into F8-F22
    for (i = 0; i < 9; i++) {
      __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
    }
    for (i = 0; i < 8; i++) {
      __ faligndata(as_FloatRegister(i*2 + 8), as_FloatRegister(i*2 + 10), as_FloatRegister(i*2 + 8));
    }
    __ sha1();
    if (multi_block) {
      __ add(ofs, 64, ofs);
      __ add(buf, 64, buf);
      __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha1_unaligned_input_loop);
      __ mov(ofs, O0); // to be returned
    }

    // store F0-F4 into state and return
    for (i = 0; i < 4; i++) {
      __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
    }
    __ retl();
    __ delayed()->stf(FloatRegisterImpl::S, F4, state, 0x10);

    return start;
  }

  address generate_sha256_implCompress(bool multi_block, const char *name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_sha256_loop, L_sha256_unaligned_input, L_sha256_unaligned_input_loop;
    int i;

    Register buf   = O0; // byte[] source+offset
    Register state = O1; // int[]  SHA2.state
    Register ofs   = O2; // int    offset
    Register limit = O3; // int    limit

    // load state into F0-F7
    for (i = 0; i < 8; i++) {
      __ ldf(FloatRegisterImpl::S, state, i*4, as_FloatRegister(i));
    }

    __ andcc(buf, 7, G0);
    __ br(Assembler::notZero, false, Assembler::pn, L_sha256_unaligned_input);
    __ delayed()->nop();

    __ BIND(L_sha256_loop);
    // load buf into F8-F22
    for (i = 0; i < 8; i++) {
      __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
    }
    __ sha256();
    if (multi_block) {
      __ add(ofs, 64, ofs);
      __ add(buf, 64, buf);
      __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha256_loop);
      __ mov(ofs, O0); // to be returned
    }

    // store F0-F7 into state and return
    for (i = 0; i < 7; i++) {
      __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
    }
    __ retl();
    __ delayed()->stf(FloatRegisterImpl::S, F7, state, 0x1c);

    __ BIND(L_sha256_unaligned_input);
    __ alignaddr(buf, G0, buf);

    __ BIND(L_sha256_unaligned_input_loop);
    // load buf into F8-F22
    for (i = 0; i < 9; i++) {
      __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
    }
    for (i = 0; i < 8; i++) {
      __ faligndata(as_FloatRegister(i*2 + 8), as_FloatRegister(i*2 + 10), as_FloatRegister(i*2 + 8));
    }
    __ sha256();
    if (multi_block) {
      __ add(ofs, 64, ofs);
      __ add(buf, 64, buf);
      __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha256_unaligned_input_loop);
      __ mov(ofs, O0); // to be returned
    }

    // store F0-F7 into state and return
    for (i = 0; i < 7; i++) {
      __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
    }
    __ retl();
    __ delayed()->stf(FloatRegisterImpl::S, F7, state, 0x1c);

    return start;
  }

  address generate_sha512_implCompress(bool multi_block, const char *name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_sha512_loop, L_sha512_unaligned_input, L_sha512_unaligned_input_loop;
    int i;

    Register buf   = O0; // byte[] source+offset
    Register state = O1; // long[] SHA5.state
    Register ofs   = O2; // int    offset
    Register limit = O3; // int    limit

    // load state into F0-F14
    for (i = 0; i < 8; i++) {
      __ ldf(FloatRegisterImpl::D, state, i*8, as_FloatRegister(i*2));
    }

    __ andcc(buf, 7, G0);
    __ br(Assembler::notZero, false, Assembler::pn, L_sha512_unaligned_input);
    __ delayed()->nop();

    __ BIND(L_sha512_loop);
    // load buf into F16-F46
    for (i = 0; i < 16; i++) {
      __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 16));
    }
    __ sha512();
    if (multi_block) {
      __ add(ofs, 128, ofs);
      __ add(buf, 128, buf);
      __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha512_loop);
      __ mov(ofs, O0); // to be returned
    }

    // store F0-F14 into state and return
    for (i = 0; i < 7; i++) {
      __ stf(FloatRegisterImpl::D, as_FloatRegister(i*2), state, i*8);
    }
    __ retl();
    __ delayed()->stf(FloatRegisterImpl::D, F14, state, 0x38);

    __ BIND(L_sha512_unaligned_input);
    __ alignaddr(buf, G0, buf);

    __ BIND(L_sha512_unaligned_input_loop);
    // load buf into F16-F46
    for (i = 0; i < 17; i++) {
      __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 16));
    }
    for (i = 0; i < 16; i++) {
      __ faligndata(as_FloatRegister(i*2 + 16), as_FloatRegister(i*2 + 18), as_FloatRegister(i*2 + 16));
    }
    __ sha512();
    if (multi_block) {
      __ add(ofs, 128, ofs);
      __ add(buf, 128, buf);
      __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha512_unaligned_input_loop);
      __ mov(ofs, O0); // to be returned
    }

    // store F0-F14 into state and return
    for (i = 0; i < 7; i++) {
      __ stf(FloatRegisterImpl::D, as_FloatRegister(i*2), state, i*8);
    }
    __ retl();
    __ delayed()->stf(FloatRegisterImpl::D, F14, state, 0x38);

    return start;
  }

D
duke 已提交
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
  void generate_initial() {
    // Generates all stubs and initializes the entry points

    //------------------------------------------------------------------------------------------------------------------------
    // entry points that exist in all platforms
    // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
    //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
    StubRoutines::_forward_exception_entry                 = generate_forward_exception();

    StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
    StubRoutines::_catch_exception_entry                   = generate_catch_exception();

    //------------------------------------------------------------------------------------------------------------------------
    // entry points that are platform specific
    StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();

    StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
    StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();

#if !defined(COMPILER2) && !defined(_LP64)
    StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
    StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
    StubRoutines::_atomic_add_entry          = generate_atomic_add();
    StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
    StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
    StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
    StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
#endif  // COMPILER2 !=> _LP64
4819

B
bdelsart 已提交
4820 4821
    // Build this early so it's available for the interpreter.
    StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
D
duke 已提交
4822 4823 4824 4825 4826 4827
  }


  void generate_all() {
    // Generates all stubs and initializes the entry points

4828 4829 4830
    // Generate partial_subtype_check first here since its code depends on
    // UseZeroBaseCompressedOops which is defined after heap initialization.
    StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
D
duke 已提交
4831
    // These entry points require SharedInfo::stack0 to be set up in non-core builds
4832 4833 4834
    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
    StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
D
duke 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843

    StubRoutines::_handler_for_unsafe_access_entry =
      generate_handler_for_unsafe_access();

    // support for verify_oop (must happen after universe_init)
    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();

    // arraycopy stubs used by compilers
    generate_arraycopy_stubs();
4844 4845 4846

    // Don't initialize the platform math functions since sparc
    // doesn't have intrinsics for these operations.
4847 4848 4849 4850 4851 4852 4853 4854

    // Safefetch stubs.
    generate_safefetch("SafeFetch32", sizeof(int),     &StubRoutines::_safefetch32_entry,
                                                       &StubRoutines::_safefetch32_fault_pc,
                                                       &StubRoutines::_safefetch32_continuation_pc);
    generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
                                                       &StubRoutines::_safefetchN_fault_pc,
                                                       &StubRoutines::_safefetchN_continuation_pc);
K
kvn 已提交
4855 4856 4857 4858 4859 4860 4861 4862

    // generate AES intrinsics code
    if (UseAESIntrinsics) {
      StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
      StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
      StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
      StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
    }
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876

    // generate SHA1/SHA256/SHA512 intrinsics code
    if (UseSHA1Intrinsics) {
      StubRoutines::_sha1_implCompress     = generate_sha1_implCompress(false,   "sha1_implCompress");
      StubRoutines::_sha1_implCompressMB   = generate_sha1_implCompress(true,    "sha1_implCompressMB");
    }
    if (UseSHA256Intrinsics) {
      StubRoutines::_sha256_implCompress   = generate_sha256_implCompress(false, "sha256_implCompress");
      StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true,  "sha256_implCompressMB");
    }
    if (UseSHA512Intrinsics) {
      StubRoutines::_sha512_implCompress   = generate_sha512_implCompress(false, "sha512_implCompress");
      StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true,  "sha512_implCompressMB");
    }
D
duke 已提交
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
  }


 public:
  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
    // replace the standard masm with a special one:
    _masm = new MacroAssembler(code);

    _stub_count = !all ? 0x100 : 0x200;
    if (all) {
      generate_all();
    } else {
      generate_initial();
    }

    // make sure this stub is available for all local calls
    if (_atomic_add_stub.is_unbound()) {
      // generate a second time, if necessary
      (void) generate_atomic_add();
    }
  }


 private:
  int _stub_count;
  void stub_prolog(StubCodeDesc* cdesc) {
    # ifdef ASSERT
      // put extra information in the stub code, to make it more readable
#ifdef _LP64
// Write the high part of the address
// [RGV] Check if there is a dependency on the size of this prolog
      __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
#endif
      __ emit_data((intptr_t)cdesc,    relocInfo::none);
      __ emit_data(++_stub_count, relocInfo::none);
    # endif
    align(true);
  }

  void align(bool at_header = false) {
    // %%%%% move this constant somewhere else
    // UltraSPARC cache line size is 8 instructions:
    const unsigned int icache_line_size = 32;
    const unsigned int icache_half_line_size = 16;

    if (at_header) {
      while ((intptr_t)(__ pc()) % icache_line_size != 0) {
        __ emit_data(0, relocInfo::none);
      }
    } else {
      while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
        __ nop();
      }
    }
  }

}; // end class declaration

void StubGenerator_generate(CodeBuffer* code, bool all) {
  StubGenerator g(code, all);
}