g1CollectorPolicy.hpp 42.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

#include "gc_implementation/g1/collectionSetChooser.hpp"
#include "gc_implementation/g1/g1MMUTracker.hpp"
#include "memory/collectorPolicy.hpp"

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
// A G1CollectorPolicy makes policy decisions that determine the
// characteristics of the collector.  Examples include:
//   * choice of collection set.
//   * when to collect.

class HeapRegion;
class CollectionSetChooser;

// Yes, this is a bit unpleasant... but it saves replicating the same thing
// over and over again and introducing subtle problems through small typos and
// cutting and pasting mistakes. The macros below introduces a number
// sequnce into the following two classes and the methods that access it.

#define define_num_seq(name)                                                  \
private:                                                                      \
  NumberSeq _all_##name##_times_ms;                                           \
public:                                                                       \
  void record_##name##_time_ms(double ms) {                                   \
    _all_##name##_times_ms.add(ms);                                           \
  }                                                                           \
  NumberSeq* get_##name##_seq() {                                             \
    return &_all_##name##_times_ms;                                           \
  }

class MainBodySummary;

58
class PauseSummary: public CHeapObj {
59 60 61 62 63 64 65
  define_num_seq(total)
    define_num_seq(other)

public:
  virtual MainBodySummary*    main_body_summary()    { return NULL; }
};

66
class MainBodySummary: public CHeapObj {
67 68 69 70 71 72 73 74 75 76 77 78 79
  define_num_seq(satb_drain) // optional
  define_num_seq(parallel) // parallel only
    define_num_seq(ext_root_scan)
    define_num_seq(mark_stack_scan)
    define_num_seq(update_rs)
    define_num_seq(scan_rs)
    define_num_seq(obj_copy)
    define_num_seq(termination) // parallel only
    define_num_seq(parallel_other) // parallel only
  define_num_seq(mark_closure)
  define_num_seq(clear_ct)  // parallel only
};

80 81
class Summary: public PauseSummary,
               public MainBodySummary {
82 83 84 85 86 87 88 89 90 91 92 93 94 95
public:
  virtual MainBodySummary*    main_body_summary()    { return this; }
};

class G1CollectorPolicy: public CollectorPolicy {
protected:
  // The number of pauses during the execution.
  long _n_pauses;

  // either equal to the number of parallel threads, if ParallelGCThreads
  // has been set, or 1 otherwise
  int _parallel_gc_threads;

  enum SomePrivateConstants {
96
    NumPrevPausesForHeuristics = 10
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  };

  G1MMUTracker* _mmu_tracker;

  void initialize_flags();

  void initialize_all() {
    initialize_flags();
    initialize_size_info();
    initialize_perm_generation(PermGen::MarkSweepCompact);
  }

  virtual size_t default_init_heap_size() {
    // Pick some reasonable default.
    return 8*M;
  }

  double _cur_collection_start_sec;
  size_t _cur_collection_pause_used_at_start_bytes;
  size_t _cur_collection_pause_used_regions_at_start;
  size_t _prev_collection_pause_used_at_end_bytes;
  double _cur_collection_par_time_ms;
  double _cur_satb_drain_time_ms;
  double _cur_clear_ct_time_ms;
  bool   _satb_drain_time_set;

123 124 125 126 127 128 129 130 131
#ifndef PRODUCT
  // Card Table Count Cache stats
  double _min_clear_cc_time_ms;         // min
  double _max_clear_cc_time_ms;         // max
  double _cur_clear_cc_time_ms;         // clearing time during current pause
  double _cum_clear_cc_time_ms;         // cummulative clearing time
  jlong  _num_cc_clears;                // number of times the card count cache has been cleared
#endif

132
  // Statistics for recent GC pauses.  See below for how indexed.
133 134
  TruncatedSeq* _recent_rs_scan_times_ms;

135 136 137 138 139 140 141 142 143 144 145 146
  // These exclude marking times.
  TruncatedSeq* _recent_pause_times_ms;
  TruncatedSeq* _recent_gc_times_ms;

  TruncatedSeq* _recent_CS_bytes_used_before;
  TruncatedSeq* _recent_CS_bytes_surviving;

  TruncatedSeq* _recent_rs_sizes;

  TruncatedSeq* _concurrent_mark_remark_times_ms;
  TruncatedSeq* _concurrent_mark_cleanup_times_ms;

147
  Summary*           _summary;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

  NumberSeq* _all_pause_times_ms;
  NumberSeq* _all_full_gc_times_ms;
  double _stop_world_start;
  NumberSeq* _all_stop_world_times_ms;
  NumberSeq* _all_yield_times_ms;

  size_t     _region_num_young;
  size_t     _region_num_tenured;
  size_t     _prev_region_num_young;
  size_t     _prev_region_num_tenured;

  NumberSeq* _all_mod_union_times_ms;

  int        _aux_num;
  NumberSeq* _all_aux_times_ms;
  double*    _cur_aux_start_times_ms;
  double*    _cur_aux_times_ms;
  bool*      _cur_aux_times_set;

168
  double* _par_last_gc_worker_start_times_ms;
169 170 171 172 173 174 175
  double* _par_last_ext_root_scan_times_ms;
  double* _par_last_mark_stack_scan_times_ms;
  double* _par_last_update_rs_times_ms;
  double* _par_last_update_rs_processed_buffers;
  double* _par_last_scan_rs_times_ms;
  double* _par_last_obj_copy_times_ms;
  double* _par_last_termination_times_ms;
176 177
  double* _par_last_termination_attempts;
  double* _par_last_gc_worker_end_times_ms;
178
  double* _par_last_gc_worker_times_ms;
179 180 181 182 183 184 185 186 187 188 189

  // indicates whether we are in full young or partially young GC mode
  bool _full_young_gcs;

  // if true, then it tries to dynamically adjust the length of the
  // young list
  bool _adaptive_young_list_length;
  size_t _young_list_min_length;
  size_t _young_list_target_length;
  size_t _young_list_fixed_length;

190 191 192 193
  // The max number of regions we can extend the eden by while the GC
  // locker is active. This should be >= _young_list_target_length;
  size_t _young_list_max_length;

194 195 196 197 198 199 200 201 202 203 204 205 206 207
  size_t _young_cset_length;
  bool   _last_young_gc_full;

  unsigned              _full_young_pause_num;
  unsigned              _partial_young_pause_num;

  bool                  _during_marking;
  bool                  _in_marking_window;
  bool                  _in_marking_window_im;

  SurvRateGroup*        _short_lived_surv_rate_group;
  SurvRateGroup*        _survivor_surv_rate_group;
  // add here any more surv rate groups

T
tonyp 已提交
208 209
  double                _gc_overhead_perc;

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  bool during_marking() {
    return _during_marking;
  }

  // <NEW PREDICTION>

private:
  enum PredictionConstants {
    TruncatedSeqLength = 10
  };

  TruncatedSeq* _alloc_rate_ms_seq;
  double        _prev_collection_pause_end_ms;

  TruncatedSeq* _pending_card_diff_seq;
  TruncatedSeq* _rs_length_diff_seq;
  TruncatedSeq* _cost_per_card_ms_seq;
  TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
  TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
  TruncatedSeq* _cost_per_entry_ms_seq;
  TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
  TruncatedSeq* _cost_per_byte_ms_seq;
  TruncatedSeq* _constant_other_time_ms_seq;
  TruncatedSeq* _young_other_cost_per_region_ms_seq;
  TruncatedSeq* _non_young_other_cost_per_region_ms_seq;

  TruncatedSeq* _pending_cards_seq;
  TruncatedSeq* _scanned_cards_seq;
  TruncatedSeq* _rs_lengths_seq;

  TruncatedSeq* _cost_per_byte_ms_during_cm_seq;

  TruncatedSeq* _young_gc_eff_seq;

  TruncatedSeq* _max_conc_overhead_seq;

  size_t _recorded_young_regions;
  size_t _recorded_non_young_regions;
  size_t _recorded_region_num;

  size_t _free_regions_at_end_of_collection;

  size_t _recorded_rs_lengths;
  size_t _max_rs_lengths;

  size_t _recorded_marked_bytes;
  size_t _recorded_young_bytes;

  size_t _predicted_pending_cards;
  size_t _predicted_cards_scanned;
  size_t _predicted_rs_lengths;
  size_t _predicted_bytes_to_copy;

  double _predicted_survival_ratio;
  double _predicted_rs_update_time_ms;
  double _predicted_rs_scan_time_ms;
  double _predicted_object_copy_time_ms;
  double _predicted_constant_other_time_ms;
  double _predicted_young_other_time_ms;
  double _predicted_non_young_other_time_ms;
  double _predicted_pause_time_ms;

  double _vtime_diff_ms;

  double _recorded_young_free_cset_time_ms;
  double _recorded_non_young_free_cset_time_ms;

  double _sigma;
  double _expensive_region_limit_ms;

  size_t _rs_lengths_prediction;

  size_t _known_garbage_bytes;
  double _known_garbage_ratio;

  double sigma() {
    return _sigma;
  }

  // A function that prevents us putting too much stock in small sample
  // sets.  Returns a number between 2.0 and 1.0, depending on the number
  // of samples.  5 or more samples yields one; fewer scales linearly from
  // 2.0 at 1 sample to 1.0 at 5.
  double confidence_factor(int samples) {
    if (samples > 4) return 1.0;
    else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
  }

  double get_new_neg_prediction(TruncatedSeq* seq) {
    return seq->davg() - sigma() * seq->dsd();
  }

#ifndef PRODUCT
  bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
#endif // PRODUCT

306 307 308 309
  void adjust_concurrent_refinement(double update_rs_time,
                                    double update_rs_processed_buffers,
                                    double goal_ms);

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
protected:
  double _pause_time_target_ms;
  double _recorded_young_cset_choice_time_ms;
  double _recorded_non_young_cset_choice_time_ms;
  bool   _within_target;
  size_t _pending_cards;
  size_t _max_pending_cards;

public:

  void set_region_short_lived(HeapRegion* hr) {
    hr->install_surv_rate_group(_short_lived_surv_rate_group);
  }

  void set_region_survivors(HeapRegion* hr) {
    hr->install_surv_rate_group(_survivor_surv_rate_group);
  }

#ifndef PRODUCT
  bool verify_young_ages();
#endif // PRODUCT

  double get_new_prediction(TruncatedSeq* seq) {
    return MAX2(seq->davg() + sigma() * seq->dsd(),
                seq->davg() * confidence_factor(seq->num()));
  }

  size_t young_cset_length() {
    return _young_cset_length;
  }

  void record_max_rs_lengths(size_t rs_lengths) {
    _max_rs_lengths = rs_lengths;
  }

  size_t predict_pending_card_diff() {
    double prediction = get_new_neg_prediction(_pending_card_diff_seq);
    if (prediction < 0.00001)
      return 0;
    else
      return (size_t) prediction;
  }

  size_t predict_pending_cards() {
    size_t max_pending_card_num = _g1->max_pending_card_num();
    size_t diff = predict_pending_card_diff();
    size_t prediction;
    if (diff > max_pending_card_num)
      prediction = max_pending_card_num;
    else
      prediction = max_pending_card_num - diff;

    return prediction;
  }

  size_t predict_rs_length_diff() {
    return (size_t) get_new_prediction(_rs_length_diff_seq);
  }

  double predict_alloc_rate_ms() {
    return get_new_prediction(_alloc_rate_ms_seq);
  }

  double predict_cost_per_card_ms() {
    return get_new_prediction(_cost_per_card_ms_seq);
  }

  double predict_rs_update_time_ms(size_t pending_cards) {
    return (double) pending_cards * predict_cost_per_card_ms();
  }

  double predict_fully_young_cards_per_entry_ratio() {
    return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
  }

  double predict_partially_young_cards_per_entry_ratio() {
    if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
      return predict_fully_young_cards_per_entry_ratio();
    else
      return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
  }

  size_t predict_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
                     predict_fully_young_cards_per_entry_ratio());
  }

  size_t predict_non_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
                     predict_partially_young_cards_per_entry_ratio());
  }

  double predict_rs_scan_time_ms(size_t card_num) {
    if (full_young_gcs())
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
    else
      return predict_partially_young_rs_scan_time_ms(card_num);
  }

  double predict_partially_young_rs_scan_time_ms(size_t card_num) {
    if (_partially_young_cost_per_entry_ms_seq->num() < 3)
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
    else
      return (double) card_num *
        get_new_prediction(_partially_young_cost_per_entry_ms_seq);
  }

  double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
    if (_cost_per_byte_ms_during_cm_seq->num() < 3)
      return 1.1 * (double) bytes_to_copy *
        get_new_prediction(_cost_per_byte_ms_seq);
    else
      return (double) bytes_to_copy *
        get_new_prediction(_cost_per_byte_ms_during_cm_seq);
  }

  double predict_object_copy_time_ms(size_t bytes_to_copy) {
    if (_in_marking_window && !_in_marking_window_im)
      return predict_object_copy_time_ms_during_cm(bytes_to_copy);
    else
      return (double) bytes_to_copy *
        get_new_prediction(_cost_per_byte_ms_seq);
  }

  double predict_constant_other_time_ms() {
    return get_new_prediction(_constant_other_time_ms_seq);
  }

  double predict_young_other_time_ms(size_t young_num) {
    return
      (double) young_num *
      get_new_prediction(_young_other_cost_per_region_ms_seq);
  }

  double predict_non_young_other_time_ms(size_t non_young_num) {
    return
      (double) non_young_num *
      get_new_prediction(_non_young_other_cost_per_region_ms_seq);
  }

  void check_if_region_is_too_expensive(double predicted_time_ms);

  double predict_young_collection_elapsed_time_ms(size_t adjustment);
  double predict_base_elapsed_time_ms(size_t pending_cards);
  double predict_base_elapsed_time_ms(size_t pending_cards,
                                      size_t scanned_cards);
  size_t predict_bytes_to_copy(HeapRegion* hr);
  double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);

459 460 461 462 463
    // for use by: calculate_young_list_target_length(rs_length)
  bool predict_will_fit(size_t young_region_num,
                        double base_time_ms,
                        size_t init_free_regions,
                        double target_pause_time_ms);
464 465

  void start_recording_regions();
466 467 468 469 470 471 472 473
  void record_cset_region_info(HeapRegion* hr, bool young);
  void record_non_young_cset_region(HeapRegion* hr);

  void set_recorded_young_regions(size_t n_regions);
  void set_recorded_young_bytes(size_t bytes);
  void set_recorded_rs_lengths(size_t rs_lengths);
  void set_predicted_bytes_to_copy(size_t bytes);

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
  void end_recording_regions();

  void record_vtime_diff_ms(double vtime_diff_ms) {
    _vtime_diff_ms = vtime_diff_ms;
  }

  void record_young_free_cset_time_ms(double time_ms) {
    _recorded_young_free_cset_time_ms = time_ms;
  }

  void record_non_young_free_cset_time_ms(double time_ms) {
    _recorded_non_young_free_cset_time_ms = time_ms;
  }

  double predict_young_gc_eff() {
    return get_new_neg_prediction(_young_gc_eff_seq);
  }

492 493
  double predict_survivor_regions_evac_time();

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
  // </NEW PREDICTION>

public:
  void cset_regions_freed() {
    bool propagate = _last_young_gc_full && !_in_marking_window;
    _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
    _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
    // also call it on any more surv rate groups
  }

  void set_known_garbage_bytes(size_t known_garbage_bytes) {
    _known_garbage_bytes = known_garbage_bytes;
    size_t heap_bytes = _g1->capacity();
    _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
  }

  void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
    guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );

    _known_garbage_bytes -= known_garbage_bytes;
    size_t heap_bytes = _g1->capacity();
    _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
  }

  G1MMUTracker* mmu_tracker() {
    return _mmu_tracker;
  }

522 523 524 525
  double max_pause_time_ms() {
    return _mmu_tracker->max_gc_time() * 1000.0;
  }

526 527 528 529 530 531 532 533 534 535
  double predict_remark_time_ms() {
    return get_new_prediction(_concurrent_mark_remark_times_ms);
  }

  double predict_cleanup_time_ms() {
    return get_new_prediction(_concurrent_mark_cleanup_times_ms);
  }

  // Returns an estimate of the survival rate of the region at yg-age
  // "yg_age".
536 537
  double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
    TruncatedSeq* seq = surv_rate_group->get_seq(age);
538 539 540 541 542 543 544 545 546
    if (seq->num() == 0)
      gclog_or_tty->print("BARF! age is %d", age);
    guarantee( seq->num() > 0, "invariant" );
    double pred = get_new_prediction(seq);
    if (pred > 1.0)
      pred = 1.0;
    return pred;
  }

547 548 549 550
  double predict_yg_surv_rate(int age) {
    return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
  }

551 552 553 554 555
  double accum_yg_surv_rate_pred(int age) {
    return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
  }

protected:
556 557 558
  void print_stats(int level, const char* str, double value);
  void print_stats(int level, const char* str, int value);

559 560
  void print_par_stats(int level, const char* str, double* data);
  void print_par_sizes(int level, const char* str, double* data);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

  void check_other_times(int level,
                         NumberSeq* other_times_ms,
                         NumberSeq* calc_other_times_ms) const;

  void print_summary (PauseSummary* stats) const;

  void print_summary (int level, const char* str, NumberSeq* seq) const;
  void print_summary_sd (int level, const char* str, NumberSeq* seq) const;

  double avg_value (double* data);
  double max_value (double* data);
  double sum_of_values (double* data);
  double max_sum (double* data1, double* data2);

  int _last_satb_drain_processed_buffers;
  int _last_update_rs_processed_buffers;
  double _last_pause_time_ms;

  size_t _bytes_in_collection_set_before_gc;
581 582
  size_t _bytes_copied_during_gc;

583 584 585 586 587 588 589 590 591 592 593 594 595 596
  // Used to count used bytes in CS.
  friend class CountCSClosure;

  // Statistics kept per GC stoppage, pause or full.
  TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;

  // We track markings.
  int _num_markings;
  double _mark_thread_startup_sec;       // Time at startup of marking thread

  // Add a new GC of the given duration and end time to the record.
  void update_recent_gc_times(double end_time_sec, double elapsed_ms);

  // The head of the list (via "next_in_collection_set()") representing the
597 598
  // current collection set. Set from the incrementally built collection
  // set at the start of the pause.
599
  HeapRegion* _collection_set;
600 601 602

  // The number of regions in the collection set. Set from the incrementally
  // built collection set at the start of an evacuation pause.
603
  size_t _collection_set_size;
604 605 606 607

  // The number of bytes in the collection set before the pause. Set from
  // the incrementally built collection set at the start of an evacuation
  // pause.
608 609
  size_t _collection_set_bytes_used_before;

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
  // The associated information that is maintained while the incremental
  // collection set is being built with young regions. Used to populate
  // the recorded info for the evacuation pause.

  enum CSetBuildType {
    Active,             // We are actively building the collection set
    Inactive            // We are not actively building the collection set
  };

  CSetBuildType _inc_cset_build_state;

  // The head of the incrementally built collection set.
  HeapRegion* _inc_cset_head;

  // The tail of the incrementally built collection set.
  HeapRegion* _inc_cset_tail;

  // The number of regions in the incrementally built collection set.
  // Used to set _collection_set_size at the start of an evacuation
  // pause.
  size_t _inc_cset_size;

  // Used as the index in the surving young words structure
  // which tracks the amount of space, for each young region,
  // that survives the pause.
  size_t _inc_cset_young_index;

  // The number of bytes in the incrementally built collection set.
  // Used to set _collection_set_bytes_used_before at the start of
  // an evacuation pause.
  size_t _inc_cset_bytes_used_before;

  // Used to record the highest end of heap region in collection set
  HeapWord* _inc_cset_max_finger;

  // The number of recorded used bytes in the young regions
  // of the collection set. This is the sum of the used() bytes
  // of retired young regions in the collection set.
  size_t _inc_cset_recorded_young_bytes;

  // The RSet lengths recorded for regions in the collection set
  // (updated by the periodic sampling of the regions in the
  // young list/collection set).
  size_t _inc_cset_recorded_rs_lengths;

  // The predicted elapsed time it will take to collect the regions
  // in the collection set (updated by the periodic sampling of the
  // regions in the young list/collection set).
  double _inc_cset_predicted_elapsed_time_ms;

  // The predicted bytes to copy for the regions in the collection
  // set (updated by the periodic sampling of the regions in the
  // young list/collection set).
  size_t _inc_cset_predicted_bytes_to_copy;

665 666 667 668 669 670 671 672 673 674 675 676
  // Info about marking.
  int _n_marks; // Sticky at 2, so we know when we've done at least 2.

  // The number of collection pauses at the end of the last mark.
  size_t _n_pauses_at_mark_end;

  // Stash a pointer to the g1 heap.
  G1CollectedHeap* _g1;

  // The average time in ms per collection pause, averaged over recent pauses.
  double recent_avg_time_for_pauses_ms();

677 678 679 680 681
  // The average time in ms for RS scanning, per pause, averaged
  // over recent pauses. (Note the RS scanning time for a pause
  // is itself an average of the RS scanning time for each worker
  // thread.)
  double recent_avg_time_for_rs_scan_ms();
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

  // The number of "recent" GCs recorded in the number sequences
  int number_of_recent_gcs();

  // The average survival ratio, computed by the total number of bytes
  // suriviving / total number of bytes before collection over the last
  // several recent pauses.
  double recent_avg_survival_fraction();
  // The survival fraction of the most recent pause; if there have been no
  // pauses, returns 1.0.
  double last_survival_fraction();

  // Returns a "conservative" estimate of the recent survival rate, i.e.,
  // one that may be higher than "recent_avg_survival_fraction".
  // This is conservative in several ways:
  //   If there have been few pauses, it will assume a potential high
  //     variance, and err on the side of caution.
  //   It puts a lower bound (currently 0.1) on the value it will return.
  //   To try to detect phase changes, if the most recent pause ("latest") has a
  //     higher-than average ("avg") survival rate, it returns that rate.
  // "work" version is a utility function; young is restricted to young regions.
  double conservative_avg_survival_fraction_work(double avg,
                                                 double latest);

  // The arguments are the two sequences that keep track of the number of bytes
  //   surviving and the total number of bytes before collection, resp.,
  //   over the last evereal recent pauses
  // Returns the survival rate for the category in the most recent pause.
  // If there have been no pauses, returns 1.0.
  double last_survival_fraction_work(TruncatedSeq* surviving,
                                     TruncatedSeq* before);

  // The arguments are the two sequences that keep track of the number of bytes
  //   surviving and the total number of bytes before collection, resp.,
  //   over the last several recent pauses
  // Returns the average survival ration over the last several recent pauses
  // If there have been no pauses, return 1.0
  double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
                                           TruncatedSeq* before);

  double conservative_avg_survival_fraction() {
    double avg = recent_avg_survival_fraction();
    double latest = last_survival_fraction();
    return conservative_avg_survival_fraction_work(avg, latest);
  }

  // The ratio of gc time to elapsed time, computed over recent pauses.
  double _recent_avg_pause_time_ratio;

  double recent_avg_pause_time_ratio() {
    return _recent_avg_pause_time_ratio;
  }

  // Number of pauses between concurrent marking.
  size_t _pauses_btwn_concurrent_mark;

  size_t _n_marks_since_last_pause;

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
  // At the end of a pause we check the heap occupancy and we decide
  // whether we will start a marking cycle during the next pause. If
  // we decide that we want to do that, we will set this parameter to
  // true. So, this parameter will stay true between the end of a
  // pause and the beginning of a subsequent pause (not necessarily
  // the next one, see the comments on the next field) when we decide
  // that we will indeed start a marking cycle and do the initial-mark
  // work.
  volatile bool _initiate_conc_mark_if_possible;

  // If initiate_conc_mark_if_possible() is set at the beginning of a
  // pause, it is a suggestion that the pause should start a marking
  // cycle by doing the initial-mark work. However, it is possible
  // that the concurrent marking thread is still finishing up the
  // previous marking cycle (e.g., clearing the next marking
  // bitmap). If that is the case we cannot start a new cycle and
  // we'll have to wait for the concurrent marking thread to finish
  // what it is doing. In this case we will postpone the marking cycle
  // initiation decision for the next pause. When we eventually decide
  // to start a cycle, we will set _during_initial_mark_pause which
  // will stay true until the end of the initial-mark pause and it's
  // the condition that indicates that a pause is doing the
  // initial-mark work.
  volatile bool _during_initial_mark_pause;
764 765 766 767 768 769 770 771 772 773 774 775

  bool _should_revert_to_full_young_gcs;
  bool _last_full_young_gc;

  // This set of variables tracks the collector efficiency, in order to
  // determine whether we should initiate a new marking.
  double _cur_mark_stop_world_time_ms;
  double _mark_remark_start_sec;
  double _mark_cleanup_start_sec;
  double _mark_closure_time_ms;

  void   calculate_young_list_min_length();
776 777
  void   calculate_young_list_target_length();
  void   calculate_young_list_target_length(size_t rs_lengths);
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

public:

  G1CollectorPolicy();

  virtual G1CollectorPolicy* as_g1_policy() { return this; }

  virtual CollectorPolicy::Name kind() {
    return CollectorPolicy::G1CollectorPolicyKind;
  }

  void check_prediction_validity();

  size_t bytes_in_collection_set() {
    return _bytes_in_collection_set_before_gc;
  }

  unsigned calc_gc_alloc_time_stamp() {
    return _all_pause_times_ms->num() + 1;
  }

protected:

  // Count the number of bytes used in the CS.
  void count_CS_bytes_used();

  // Together these do the base cleanup-recording work.  Subclasses might
  // want to put something between them.
  void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
                                                size_t max_live_bytes);
  void record_concurrent_mark_cleanup_end_work2();

public:

  virtual void init();

814 815 816
  // Create jstat counters for the policy.
  virtual void initialize_gc_policy_counters();

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
  virtual HeapWord* mem_allocate_work(size_t size,
                                      bool is_tlab,
                                      bool* gc_overhead_limit_was_exceeded);

  // This method controls how a collector handles one or more
  // of its generations being fully allocated.
  virtual HeapWord* satisfy_failed_allocation(size_t size,
                                              bool is_tlab);

  BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }

  GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }

  // The number of collection pauses so far.
  long n_pauses() const { return _n_pauses; }

  // Update the heuristic info to record a collection pause of the given
  // start time, where the given number of bytes were used at the start.
  // This may involve changing the desired size of a collection set.

  virtual void record_stop_world_start();

  virtual void record_collection_pause_start(double start_time_sec,
                                             size_t start_used);

  // Must currently be called while the world is stopped.
843
  void record_concurrent_mark_init_end(double
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
                                           mark_init_elapsed_time_ms);

  void record_mark_closure_time(double mark_closure_time_ms);

  virtual void record_concurrent_mark_remark_start();
  virtual void record_concurrent_mark_remark_end();

  virtual void record_concurrent_mark_cleanup_start();
  virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
                                                  size_t max_live_bytes);
  virtual void record_concurrent_mark_cleanup_completed();

  virtual void record_concurrent_pause();
  virtual void record_concurrent_pause_end();

859
  virtual void record_collection_pause_end();
860
  void print_heap_transition();
861 862 863 864 865

  // Record the fact that a full collection occurred.
  virtual void record_full_collection_start();
  virtual void record_full_collection_end();

866 867 868 869
  void record_gc_worker_start_time(int worker_i, double ms) {
    _par_last_gc_worker_start_times_ms[worker_i] = ms;
  }

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
  void record_ext_root_scan_time(int worker_i, double ms) {
    _par_last_ext_root_scan_times_ms[worker_i] = ms;
  }

  void record_mark_stack_scan_time(int worker_i, double ms) {
    _par_last_mark_stack_scan_times_ms[worker_i] = ms;
  }

  void record_satb_drain_time(double ms) {
    _cur_satb_drain_time_ms = ms;
    _satb_drain_time_set    = true;
  }

  void record_satb_drain_processed_buffers (int processed_buffers) {
    _last_satb_drain_processed_buffers = processed_buffers;
  }

  void record_mod_union_time(double ms) {
    _all_mod_union_times_ms->add(ms);
  }

  void record_update_rs_time(int thread, double ms) {
    _par_last_update_rs_times_ms[thread] = ms;
  }

  void record_update_rs_processed_buffers (int thread,
                                           double processed_buffers) {
    _par_last_update_rs_processed_buffers[thread] = processed_buffers;
  }

  void record_scan_rs_time(int thread, double ms) {
    _par_last_scan_rs_times_ms[thread] = ms;
  }

  void reset_obj_copy_time(int thread) {
    _par_last_obj_copy_times_ms[thread] = 0.0;
  }

  void reset_obj_copy_time() {
    reset_obj_copy_time(0);
  }

  void record_obj_copy_time(int thread, double ms) {
    _par_last_obj_copy_times_ms[thread] += ms;
  }

916
  void record_termination(int thread, double ms, size_t attempts) {
917
    _par_last_termination_times_ms[thread] = ms;
918
    _par_last_termination_attempts[thread] = (double) attempts;
919 920
  }

921 922
  void record_gc_worker_end_time(int worker_i, double ms) {
    _par_last_gc_worker_end_times_ms[worker_i] = ms;
923 924
  }

925
  void record_pause_time_ms(double ms) {
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    _last_pause_time_ms = ms;
  }

  void record_clear_ct_time(double ms) {
    _cur_clear_ct_time_ms = ms;
  }

  void record_par_time(double ms) {
    _cur_collection_par_time_ms = ms;
  }

  void record_aux_start_time(int i) {
    guarantee(i < _aux_num, "should be within range");
    _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
  }

  void record_aux_end_time(int i) {
    guarantee(i < _aux_num, "should be within range");
    double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
    _cur_aux_times_set[i] = true;
    _cur_aux_times_ms[i] += ms;
  }

949 950 951 952 953 954 955 956 957 958 959 960
#ifndef PRODUCT
  void record_cc_clear_time(double ms) {
    if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
      _min_clear_cc_time_ms = ms;
    if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
      _max_clear_cc_time_ms = ms;
    _cur_clear_cc_time_ms = ms;
    _cum_clear_cc_time_ms += ms;
    _num_cc_clears++;
  }
#endif

961 962 963 964 965 966 967 968 969 970
  // Record how much space we copied during a GC. This is typically
  // called when a GC alloc region is being retired.
  void record_bytes_copied_during_gc(size_t bytes) {
    _bytes_copied_during_gc += bytes;
  }

  // The amount of space we copied during a GC.
  size_t bytes_copied_during_gc() {
    return _bytes_copied_during_gc;
  }
971 972 973 974

  // Choose a new collection set.  Marks the chosen regions as being
  // "in_collection_set", and links them together.  The head and number of
  // the collection set are available via access methods.
975
  virtual void choose_collection_set(double target_pause_time_ms) = 0;
976 977 978 979 980

  // The head of the list (via "next_in_collection_set()") representing the
  // current collection set.
  HeapRegion* collection_set() { return _collection_set; }

981 982
  void clear_collection_set() { _collection_set = NULL; }

983 984 985 986 987 988
  // The number of elements in the current collection set.
  size_t collection_set_size() { return _collection_set_size; }

  // Add "hr" to the CS.
  void add_to_collection_set(HeapRegion* hr);

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
  // Incremental CSet Support

  // The head of the incrementally built collection set.
  HeapRegion* inc_cset_head() { return _inc_cset_head; }

  // The tail of the incrementally built collection set.
  HeapRegion* inc_set_tail() { return _inc_cset_tail; }

  // The number of elements in the incrementally built collection set.
  size_t inc_cset_size() { return _inc_cset_size; }

  // Initialize incremental collection set info.
  void start_incremental_cset_building();

  void clear_incremental_cset() {
    _inc_cset_head = NULL;
    _inc_cset_tail = NULL;
  }

  // Stop adding regions to the incremental collection set
  void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }

  // Add/remove information about hr to the aggregated information
  // for the incrementally built collection set.
  void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  void remove_from_incremental_cset_info(HeapRegion* hr);

  // Update information about hr in the aggregated information for
  // the incrementally built collection set.
  void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);

private:
  // Update the incremental cset information when adding a region
  // (should not be called directly).
  void add_region_to_incremental_cset_common(HeapRegion* hr);

public:
  // Add hr to the LHS of the incremental collection set.
  void add_region_to_incremental_cset_lhs(HeapRegion* hr);

  // Add hr to the RHS of the incremental collection set.
  void add_region_to_incremental_cset_rhs(HeapRegion* hr);

#ifndef PRODUCT
  void print_collection_set(HeapRegion* list_head, outputStream* st);
#endif // !PRODUCT

1036 1037 1038 1039 1040 1041 1042 1043
  bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }

  bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }

1044 1045 1046 1047 1048 1049
  // This sets the initiate_conc_mark_if_possible() flag to start a
  // new cycle, as long as we are not already in one. It's best if it
  // is called during a safepoint when the test whether a cycle is in
  // progress or not is stable.
  bool force_initial_mark_if_outside_cycle();

1050 1051 1052 1053 1054 1055 1056
  // This is called at the very beginning of an evacuation pause (it
  // has to be the first thing that the pause does). If
  // initiate_conc_mark_if_possible() is true, and the concurrent
  // marking thread has completed its work during the previous cycle,
  // it will set during_initial_mark_pause() to so that the pause does
  // the initial-mark work and start a marking cycle.
  void decide_on_conc_mark_initiation();
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

  // If an expansion would be appropriate, because recent GC overhead had
  // exceeded the desired limit, return an amount to expand by.
  virtual size_t expansion_amount();

  // note start of mark thread
  void note_start_of_mark_thread();

  // The marked bytes of the "r" has changed; reclassify it's desirability
  // for marking.  Also asserts that "r" is eligible for a CS.
  virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;

#ifndef PRODUCT
  // Check any appropriate marked bytes info, asserting false if
  // something's wrong, else returning "true".
  virtual bool assertMarkedBytesDataOK() = 0;
#endif

  // Print tracing information.
  void print_tracing_info() const;

  // Print stats on young survival ratio
  void print_yg_surv_rate_info() const;

1081 1082 1083 1084 1085 1086
  void finished_recalculating_age_indexes(bool is_survivors) {
    if (is_survivors) {
      _survivor_surv_rate_group->finished_recalculating_age_indexes();
    } else {
      _short_lived_surv_rate_group->finished_recalculating_age_indexes();
    }
1087 1088 1089
    // do that for any other surv rate groups
  }

1090 1091
  bool is_young_list_full() {
    size_t young_list_length = _g1->young_list()->length();
1092 1093 1094
    size_t young_list_target_length = _young_list_target_length;
    return young_list_length >= young_list_target_length;
  }
1095

1096 1097 1098 1099
  bool can_expand_young_list() {
    size_t young_list_length = _g1->young_list()->length();
    size_t young_list_max_length = _young_list_max_length;
    return young_list_length < young_list_max_length;
1100
  }
1101

1102
  void update_region_num(bool young);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

  bool full_young_gcs() {
    return _full_young_gcs;
  }
  void set_full_young_gcs(bool full_young_gcs) {
    _full_young_gcs = full_young_gcs;
  }

  bool adaptive_young_list_length() {
    return _adaptive_young_list_length;
  }
  void set_adaptive_young_list_length(bool adaptive_young_list_length) {
    _adaptive_young_list_length = adaptive_young_list_length;
  }

  inline double get_gc_eff_factor() {
    double ratio = _known_garbage_ratio;

    double square = ratio * ratio;
    // square = square * square;
    double ret = square * 9.0 + 1.0;
#if 0
    gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
#endif // 0
    guarantee(0.0 <= ret && ret < 10.0, "invariant!");
    return ret;
  }

  //
  // Survivor regions policy.
  //
protected:

  // Current tenuring threshold, set to 0 if the collector reaches the
  // maximum amount of suvivors regions.
  int _tenuring_threshold;

1140 1141 1142
  // The limit on the number of regions allocated for survivors.
  size_t _max_survivor_regions;

1143 1144 1145 1146 1147
  // For reporting purposes.
  size_t _eden_bytes_before_gc;
  size_t _survivor_bytes_before_gc;
  size_t _capacity_before_gc;

1148 1149 1150 1151 1152 1153 1154 1155
  // The amount of survor regions after a collection.
  size_t _recorded_survivor_regions;
  // List of survivor regions.
  HeapRegion* _recorded_survivor_head;
  HeapRegion* _recorded_survivor_tail;

  ageTable _survivors_age_table;

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
public:

  inline GCAllocPurpose
    evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
      if (age < _tenuring_threshold && src_region->is_young()) {
        return GCAllocForSurvived;
      } else {
        return GCAllocForTenured;
      }
  }

  inline bool track_object_age(GCAllocPurpose purpose) {
    return purpose == GCAllocForSurvived;
  }

1171 1172 1173
  static const size_t REGIONS_UNLIMITED = ~(size_t)0;

  size_t max_regions(int purpose);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

  // The limit on regions for a particular purpose is reached.
  void note_alloc_region_limit_reached(int purpose) {
    if (purpose == GCAllocForSurvived) {
      _tenuring_threshold = 0;
    }
  }

  void note_start_adding_survivor_regions() {
    _survivor_surv_rate_group->start_adding_regions();
  }

  void note_stop_adding_survivor_regions() {
    _survivor_surv_rate_group->stop_adding_regions();
  }
1189 1190 1191 1192 1193 1194 1195 1196 1197

  void record_survivor_regions(size_t      regions,
                               HeapRegion* head,
                               HeapRegion* tail) {
    _recorded_survivor_regions = regions;
    _recorded_survivor_head    = head;
    _recorded_survivor_tail    = tail;
  }

1198 1199 1200 1201
  size_t recorded_survivor_regions() {
    return _recorded_survivor_regions;
  }

1202 1203 1204 1205 1206
  void record_thread_age_table(ageTable* age_table)
  {
    _survivors_age_table.merge_par(age_table);
  }

1207 1208
  void calculate_max_gc_locker_expansion();

1209 1210 1211
  // Calculates survivor space parameters.
  void calculate_survivors_policy();

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
};

// This encapsulates a particular strategy for a g1 Collector.
//
//      Start a concurrent mark when our heap size is n bytes
//            greater then our heap size was at the last concurrent
//            mark.  Where n is a function of the CMSTriggerRatio
//            and the MinHeapFreeRatio.
//
//      Start a g1 collection pause when we have allocated the
//            average number of bytes currently being freed in
//            a collection, but only if it is at least one region
//            full
//
//      Resize Heap based on desired
//      allocation space, where desired allocation space is
//      a function of survival rate and desired future to size.
//
//      Choose collection set by first picking all older regions
//      which have a survival rate which beats our projected young
//      survival rate.  Then fill out the number of needed regions
//      with young regions.

class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  CollectionSetChooser* _collectionSetChooser;
  // If the estimated is less then desirable, resize if possible.
  void expand_if_possible(size_t numRegions);

1240
  virtual void choose_collection_set(double target_pause_time_ms);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
  virtual void record_collection_pause_start(double start_time_sec,
                                             size_t start_used);
  virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
                                                  size_t max_live_bytes);
  virtual void record_full_collection_end();

public:
  G1CollectorPolicy_BestRegionsFirst() {
    _collectionSetChooser = new CollectionSetChooser();
  }
1251
  void record_collection_pause_end();
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
  // This is not needed any more, after the CSet choosing code was
  // changed to use the pause prediction work. But let's leave the
  // hook in just in case.
  void note_change_in_marked_bytes(HeapRegion* r) { }
#ifndef PRODUCT
  bool assertMarkedBytesDataOK();
#endif
};

// This should move to some place more general...

// If we have "n" measurements, and we've kept track of their "sum" and the
// "sum_of_squares" of the measurements, this returns the variance of the
// sequence.
inline double variance(int n, double sum_of_squares, double sum) {
  double n_d = (double)n;
  double avg = sum/n_d;
  return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
}

// Local Variables: ***
// c-indentation-style: gnu ***
// End: ***
1275 1276

#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP