psParallelCompact.hpp 57.8 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36
#ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
#define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

#include "gc_implementation/parallelScavenge/objectStartArray.hpp"
#include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
#include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
#include "gc_implementation/shared/collectorCounters.hpp"
#include "gc_implementation/shared/markSweep.hpp"
#include "gc_implementation/shared/mutableSpace.hpp"
#include "memory/sharedHeap.hpp"
#include "oops/oop.hpp"

D
duke 已提交
37 38 39 40 41 42 43 44 45 46 47 48
class ParallelScavengeHeap;
class PSAdaptiveSizePolicy;
class PSYoungGen;
class PSOldGen;
class ParCompactionManager;
class ParallelTaskTerminator;
class PSParallelCompact;
class GCTaskManager;
class GCTaskQueue;
class PreGCValues;
class MoveAndUpdateClosure;
class RefProcTaskExecutor;
S
sla 已提交
49 50
class ParallelOldTracer;
class STWGCTimer;
D
duke 已提交
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
// The SplitInfo class holds the information needed to 'split' a source region
// so that the live data can be copied to two destination *spaces*.  Normally,
// all the live data in a region is copied to a single destination space (e.g.,
// everything live in a region in eden is copied entirely into the old gen).
// However, when the heap is nearly full, all the live data in eden may not fit
// into the old gen.  Copying only some of the regions from eden to old gen
// requires finding a region that does not contain a partial object (i.e., no
// live object crosses the region boundary) somewhere near the last object that
// does fit into the old gen.  Since it's not always possible to find such a
// region, splitting is necessary for predictable behavior.
//
// A region is always split at the end of the partial object.  This avoids
// additional tests when calculating the new location of a pointer, which is a
// very hot code path.  The partial object and everything to its left will be
// copied to another space (call it dest_space_1).  The live data to the right
// of the partial object will be copied either within the space itself, or to a
// different destination space (distinct from dest_space_1).
//
// Split points are identified during the summary phase, when region
// destinations are computed:  data about the split, including the
// partial_object_size, is recorded in a SplitInfo record and the
// partial_object_size field in the summary data is set to zero.  The zeroing is
// possible (and necessary) since the partial object will move to a different
// destination space than anything to its right, thus the partial object should
// not affect the locations of any objects to its right.
//
// The recorded data is used during the compaction phase, but only rarely:  when
// the partial object on the split region will be copied across a destination
// region boundary.  This test is made once each time a region is filled, and is
// a simple address comparison, so the overhead is negligible (see
// PSParallelCompact::first_src_addr()).
//
// Notes:
//
// Only regions with partial objects are split; a region without a partial
// object does not need any extra bookkeeping.
//
// At most one region is split per space, so the amount of data required is
// constant.
//
// A region is split only when the destination space would overflow.  Once that
// happens, the destination space is abandoned and no other data (even from
// other source spaces) is targeted to that destination space.  Abandoning the
// destination space may leave a somewhat large unused area at the end, if a
// large object caused the overflow.
//
// Future work:
//
// More bookkeeping would be required to continue to use the destination space.
// The most general solution would allow data from regions in two different
// source spaces to be "joined" in a single destination region.  At the very
// least, additional code would be required in next_src_region() to detect the
// join and skip to an out-of-order source region.  If the join region was also
// the last destination region to which a split region was copied (the most
// likely case), then additional work would be needed to get fill_region() to
// stop iteration and switch to a new source region at the right point.  Basic
// idea would be to use a fake value for the top of the source space.  It is
// doable, if a bit tricky.
//
// A simpler (but less general) solution would fill the remainder of the
// destination region with a dummy object and continue filling the next
// destination region.

class SplitInfo
{
public:
  // Return true if this split info is valid (i.e., if a split has been
  // recorded).  The very first region cannot have a partial object and thus is
  // never split, so 0 is the 'invalid' value.
  bool is_valid() const { return _src_region_idx > 0; }

  // Return true if this split holds data for the specified source region.
  inline bool is_split(size_t source_region) const;

  // The index of the split region, the size of the partial object on that
  // region and the destination of the partial object.
  size_t    src_region_idx() const   { return _src_region_idx; }
  size_t    partial_obj_size() const { return _partial_obj_size; }
  HeapWord* destination() const      { return _destination; }

  // The destination count of the partial object referenced by this split
  // (either 1 or 2).  This must be added to the destination count of the
  // remainder of the source region.
  unsigned int destination_count() const { return _destination_count; }

  // If a word within the partial object will be written to the first word of a
  // destination region, this is the address of the destination region;
  // otherwise this is NULL.
  HeapWord* dest_region_addr() const     { return _dest_region_addr; }

  // If a word within the partial object will be written to the first word of a
  // destination region, this is the address of that word within the partial
  // object; otherwise this is NULL.
  HeapWord* first_src_addr() const       { return _first_src_addr; }

  // Record the data necessary to split the region src_region_idx.
  void record(size_t src_region_idx, size_t partial_obj_size,
              HeapWord* destination);

  void clear();

  DEBUG_ONLY(void verify_clear();)

private:
  size_t       _src_region_idx;
  size_t       _partial_obj_size;
  HeapWord*    _destination;
  unsigned int _destination_count;
  HeapWord*    _dest_region_addr;
  HeapWord*    _first_src_addr;
};

inline bool SplitInfo::is_split(size_t region_idx) const
{
  return _src_region_idx == region_idx && is_valid();
}

D
duke 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
class SpaceInfo
{
 public:
  MutableSpace* space() const { return _space; }

  // Where the free space will start after the collection.  Valid only after the
  // summary phase completes.
  HeapWord* new_top() const { return _new_top; }

  // Allows new_top to be set.
  HeapWord** new_top_addr() { return &_new_top; }

  // Where the smallest allowable dense prefix ends (used only for perm gen).
  HeapWord* min_dense_prefix() const { return _min_dense_prefix; }

  // Where the dense prefix ends, or the compacted region begins.
  HeapWord* dense_prefix() const { return _dense_prefix; }

  // The start array for the (generation containing the) space, or NULL if there
  // is no start array.
  ObjectStartArray* start_array() const { return _start_array; }

191 192
  SplitInfo& split_info() { return _split_info; }

D
duke 已提交
193 194 195 196 197 198
  void set_space(MutableSpace* s)           { _space = s; }
  void set_new_top(HeapWord* addr)          { _new_top = addr; }
  void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
  void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
  void set_start_array(ObjectStartArray* s) { _start_array = s; }

199 200
  void publish_new_top() const              { _space->set_top(_new_top); }

D
duke 已提交
201 202 203 204 205 206
 private:
  MutableSpace*     _space;
  HeapWord*         _new_top;
  HeapWord*         _min_dense_prefix;
  HeapWord*         _dense_prefix;
  ObjectStartArray* _start_array;
207
  SplitInfo         _split_info;
D
duke 已提交
208 209 210 211 212 213
};

class ParallelCompactData
{
public:
  // Sizes are in HeapWords, unless indicated otherwise.
214 215 216
  static const size_t Log2RegionSize;
  static const size_t RegionSize;
  static const size_t RegionSizeBytes;
D
duke 已提交
217

218 219 220 221 222 223
  // Mask for the bits in a size_t to get an offset within a region.
  static const size_t RegionSizeOffsetMask;
  // Mask for the bits in a pointer to get an offset within a region.
  static const size_t RegionAddrOffsetMask;
  // Mask for the bits in a pointer to get the address of the start of a region.
  static const size_t RegionAddrMask;
D
duke 已提交
224

225 226 227 228 229 230 231 232 233 234 235
  static const size_t Log2BlockSize;
  static const size_t BlockSize;
  static const size_t BlockSizeBytes;

  static const size_t BlockSizeOffsetMask;
  static const size_t BlockAddrOffsetMask;
  static const size_t BlockAddrMask;

  static const size_t BlocksPerRegion;
  static const size_t Log2BlocksPerRegion;

236
  class RegionData
D
duke 已提交
237 238
  {
  public:
239
    // Destination address of the region.
D
duke 已提交
240 241
    HeapWord* destination() const { return _destination; }

242 243
    // The first region containing data destined for this region.
    size_t source_region() const { return _source_region; }
D
duke 已提交
244

245 246
    // The object (if any) starting in this region and ending in a different
    // region that could not be updated during the main (parallel) compaction
D
duke 已提交
247
    // phase.  This is different from _partial_obj_addr, which is an object that
248
    // extends onto a source region.  However, the two uses do not overlap in
D
duke 已提交
249 250 251
    // time, so the same field is used to save space.
    HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }

252
    // The starting address of the partial object extending onto the region.
D
duke 已提交
253 254
    HeapWord* partial_obj_addr() const { return _partial_obj_addr; }

255
    // Size of the partial object extending onto the region (words).
D
duke 已提交
256 257
    size_t partial_obj_size() const { return _partial_obj_size; }

258 259 260 261
    // Size of live data that lies within this region due to objects that start
    // in this region (words).  This does not include the partial object
    // extending onto the region (if any), or the part of an object that extends
    // onto the next region (if any).
D
duke 已提交
262 263
    size_t live_obj_size() const { return _dc_and_los & los_mask; }

264
    // Total live data that lies within the region (words).
D
duke 已提交
265 266
    size_t data_size() const { return partial_obj_size() + live_obj_size(); }

267 268
    // The destination_count is the number of other regions to which data from
    // this region will be copied.  At the end of the summary phase, the valid
D
duke 已提交
269 270
    // values of destination_count are
    //
271 272 273 274 275
    // 0 - data from the region will be compacted completely into itself, or the
    //     region is empty.  The region can be claimed and then filled.
    // 1 - data from the region will be compacted into 1 other region; some
    //     data from the region may also be compacted into the region itself.
    // 2 - data from the region will be copied to 2 other regions.
D
duke 已提交
276
    //
277
    // During compaction as regions are emptied, the destination_count is
D
duke 已提交
278 279 280
    // decremented (atomically) and when it reaches 0, it can be claimed and
    // then filled.
    //
281 282
    // A region is claimed for processing by atomically changing the
    // destination_count to the claimed value (dc_claimed).  After a region has
D
duke 已提交
283 284 285 286 287
    // been filled, the destination_count should be set to the completed value
    // (dc_completed).
    inline uint destination_count() const;
    inline uint destination_count_raw() const;

288 289 290 291 292 293
    // Whether the block table for this region has been filled.
    inline bool blocks_filled() const;

    // Number of times the block table was filled.
    DEBUG_ONLY(inline size_t blocks_filled_count() const;)

294
    // The location of the java heap data that corresponds to this region.
D
duke 已提交
295 296
    inline HeapWord* data_location() const;

297
    // The highest address referenced by objects in this region.
D
duke 已提交
298 299
    inline HeapWord* highest_ref() const;

300
    // Whether this region is available to be claimed, has been claimed, or has
D
duke 已提交
301 302
    // been completed.
    //
303 304
    // Minor subtlety:  claimed() returns true if the region is marked
    // completed(), which is desirable since a region must be claimed before it
D
duke 已提交
305 306 307 308 309 310 311
    // can be completed.
    bool available() const { return _dc_and_los < dc_one; }
    bool claimed() const   { return _dc_and_los >= dc_claimed; }
    bool completed() const { return _dc_and_los >= dc_completed; }

    // These are not atomic.
    void set_destination(HeapWord* addr)       { _destination = addr; }
312
    void set_source_region(size_t region)      { _source_region = region; }
D
duke 已提交
313 314 315
    void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
    void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
    void set_partial_obj_size(size_t words)    {
316
      _partial_obj_size = (region_sz_t) words;
D
duke 已提交
317
    }
318
    inline void set_blocks_filled();
D
duke 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332

    inline void set_destination_count(uint count);
    inline void set_live_obj_size(size_t words);
    inline void set_data_location(HeapWord* addr);
    inline void set_completed();
    inline bool claim_unsafe();

    // These are atomic.
    inline void add_live_obj(size_t words);
    inline void set_highest_ref(HeapWord* addr);
    inline void decrement_destination_count();
    inline bool claim();

  private:
333 334
    // The type used to represent object sizes within a region.
    typedef uint region_sz_t;
D
duke 已提交
335 336 337 338

    // Constants for manipulating the _dc_and_los field, which holds both the
    // destination count and live obj size.  The live obj size lives at the
    // least significant end so no masking is necessary when adding.
339 340 341 342 343 344 345 346 347 348 349 350
    static const region_sz_t dc_shift;           // Shift amount.
    static const region_sz_t dc_mask;            // Mask for destination count.
    static const region_sz_t dc_one;             // 1, shifted appropriately.
    static const region_sz_t dc_claimed;         // Region has been claimed.
    static const region_sz_t dc_completed;       // Region has been completed.
    static const region_sz_t los_mask;           // Mask for live obj size.

    HeapWord*            _destination;
    size_t               _source_region;
    HeapWord*            _partial_obj_addr;
    region_sz_t          _partial_obj_size;
    region_sz_t volatile _dc_and_los;
351 352
    bool                 _blocks_filled;

D
duke 已提交
353
#ifdef ASSERT
354 355
    size_t               _blocks_filled_count;   // Number of block table fills.

D
duke 已提交
356 357
    // These enable optimizations that are only partially implemented.  Use
    // debug builds to prevent the code fragments from breaking.
358 359
    HeapWord*            _data_location;
    HeapWord*            _highest_ref;
D
duke 已提交
360 361 362 363
#endif  // #ifdef ASSERT

#ifdef ASSERT
   public:
364
    uint                 _pushed;   // 0 until region is pushed onto a stack
D
duke 已提交
365 366 367 368
   private:
#endif
  };

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
  // "Blocks" allow shorter sections of the bitmap to be searched.  Each Block
  // holds an offset, which is the amount of live data in the Region to the left
  // of the first live object that starts in the Block.
  class BlockData
  {
  public:
    typedef unsigned short int blk_ofs_t;

    blk_ofs_t offset() const    { return _offset; }
    void set_offset(size_t val) { _offset = (blk_ofs_t)val; }

  private:
    blk_ofs_t _offset;
  };

D
duke 已提交
384 385 386 387
public:
  ParallelCompactData();
  bool initialize(MemRegion covered_region);

388
  size_t region_count() const { return _region_count; }
389
  size_t reserved_byte_size() const { return _reserved_byte_size; }
D
duke 已提交
390

391 392 393
  // Convert region indices to/from RegionData pointers.
  inline RegionData* region(size_t region_idx) const;
  inline size_t     region(const RegionData* const region_ptr) const;
D
duke 已提交
394

395 396 397
  size_t block_count() const { return _block_count; }
  inline BlockData* block(size_t block_idx) const;
  inline size_t     block(const BlockData* block_ptr) const;
D
duke 已提交
398 399 400 401

  void add_obj(HeapWord* addr, size_t len);
  void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }

402 403 404
  // Fill in the regions covering [beg, end) so that no data moves; i.e., the
  // destination of region n is simply the start of region n.  The argument beg
  // must be region-aligned; end need not be.
D
duke 已提交
405 406
  void summarize_dense_prefix(HeapWord* beg, HeapWord* end);

407 408 409 410
  HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
                                  HeapWord* destination, HeapWord* target_end,
                                  HeapWord** target_next);
  bool summarize(SplitInfo& split_info,
D
duke 已提交
411
                 HeapWord* source_beg, HeapWord* source_end,
412 413 414
                 HeapWord** source_next,
                 HeapWord* target_beg, HeapWord* target_end,
                 HeapWord** target_next);
D
duke 已提交
415 416

  void clear();
417
  void clear_range(size_t beg_region, size_t end_region);
D
duke 已提交
418
  void clear_range(HeapWord* beg, HeapWord* end) {
419
    clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
D
duke 已提交
420 421
  }

422
  // Return the number of words between addr and the start of the region
D
duke 已提交
423
  // containing addr.
424
  inline size_t     region_offset(const HeapWord* addr) const;
D
duke 已提交
425

426 427 428 429 430 431
  // Convert addresses to/from a region index or region pointer.
  inline size_t     addr_to_region_idx(const HeapWord* addr) const;
  inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
  inline HeapWord*  region_to_addr(size_t region) const;
  inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
  inline HeapWord*  region_to_addr(const RegionData* region) const;
D
duke 已提交
432

433 434 435
  inline HeapWord*  region_align_down(HeapWord* addr) const;
  inline HeapWord*  region_align_up(HeapWord* addr) const;
  inline bool       is_region_aligned(HeapWord* addr) const;
D
duke 已提交
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450
  // Analogous to region_offset() for blocks.
  size_t     block_offset(const HeapWord* addr) const;
  size_t     addr_to_block_idx(const HeapWord* addr) const;
  size_t     addr_to_block_idx(const oop obj) const {
    return addr_to_block_idx((HeapWord*) obj);
  }
  inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
  inline HeapWord*  block_to_addr(size_t block) const;
  inline size_t     region_to_block_idx(size_t region) const;

  inline HeapWord*  block_align_down(HeapWord* addr) const;
  inline HeapWord*  block_align_up(HeapWord* addr) const;
  inline bool       is_block_aligned(HeapWord* addr) const;

D
duke 已提交
451
  // Return the address one past the end of the partial object.
452
  HeapWord* partial_obj_end(size_t region_idx) const;
D
duke 已提交
453

454
  // Return the location of the object after compaction.
D
duke 已提交
455 456 457 458 459 460 461 462 463 464 465 466
  HeapWord* calc_new_pointer(HeapWord* addr);

  HeapWord* calc_new_pointer(oop p) {
    return calc_new_pointer((HeapWord*) p);
  }

#ifdef  ASSERT
  void verify_clear(const PSVirtualSpace* vspace);
  void verify_clear();
#endif  // #ifdef ASSERT

private:
467
  bool initialize_block_data();
468
  bool initialize_region_data(size_t region_size);
D
duke 已提交
469 470 471 472 473 474 475 476
  PSVirtualSpace* create_vspace(size_t count, size_t element_size);

private:
  HeapWord*       _region_start;
#ifdef  ASSERT
  HeapWord*       _region_end;
#endif  // #ifdef ASSERT

477
  PSVirtualSpace* _region_vspace;
478
  size_t          _reserved_byte_size;
479 480
  RegionData*     _region_data;
  size_t          _region_count;
481 482 483 484

  PSVirtualSpace* _block_vspace;
  BlockData*      _block_data;
  size_t          _block_count;
D
duke 已提交
485 486 487
};

inline uint
488
ParallelCompactData::RegionData::destination_count_raw() const
D
duke 已提交
489 490 491 492 493
{
  return _dc_and_los & dc_mask;
}

inline uint
494
ParallelCompactData::RegionData::destination_count() const
D
duke 已提交
495 496 497 498
{
  return destination_count_raw() >> dc_shift;
}

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
inline bool
ParallelCompactData::RegionData::blocks_filled() const
{
  return _blocks_filled;
}

#ifdef ASSERT
inline size_t
ParallelCompactData::RegionData::blocks_filled_count() const
{
  return _blocks_filled_count;
}
#endif // #ifdef ASSERT

inline void
ParallelCompactData::RegionData::set_blocks_filled()
{
  _blocks_filled = true;
  // Debug builds count the number of times the table was filled.
  DEBUG_ONLY(Atomic::inc_ptr(&_blocks_filled_count));
}

D
duke 已提交
521
inline void
522
ParallelCompactData::RegionData::set_destination_count(uint count)
D
duke 已提交
523 524
{
  assert(count <= (dc_completed >> dc_shift), "count too large");
525
  const region_sz_t live_sz = (region_sz_t) live_obj_size();
D
duke 已提交
526 527 528
  _dc_and_los = (count << dc_shift) | live_sz;
}

529
inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
D
duke 已提交
530 531
{
  assert(words <= los_mask, "would overflow");
532
  _dc_and_los = destination_count_raw() | (region_sz_t)words;
D
duke 已提交
533 534
}

535
inline void ParallelCompactData::RegionData::decrement_destination_count()
D
duke 已提交
536 537 538 539 540 541
{
  assert(_dc_and_los < dc_claimed, "already claimed");
  assert(_dc_and_los >= dc_one, "count would go negative");
  Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
}

542
inline HeapWord* ParallelCompactData::RegionData::data_location() const
D
duke 已提交
543 544 545 546 547
{
  DEBUG_ONLY(return _data_location;)
  NOT_DEBUG(return NULL;)
}

548
inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
D
duke 已提交
549 550 551 552 553
{
  DEBUG_ONLY(return _highest_ref;)
  NOT_DEBUG(return NULL;)
}

554
inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
D
duke 已提交
555 556 557 558
{
  DEBUG_ONLY(_data_location = addr;)
}

559
inline void ParallelCompactData::RegionData::set_completed()
D
duke 已提交
560 561
{
  assert(claimed(), "must be claimed first");
562
  _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
D
duke 已提交
563 564
}

565
// MT-unsafe claiming of a region.  Should only be used during single threaded
D
duke 已提交
566
// execution.
567
inline bool ParallelCompactData::RegionData::claim_unsafe()
D
duke 已提交
568 569 570 571 572 573 574 575
{
  if (available()) {
    _dc_and_los |= dc_claimed;
    return true;
  }
  return false;
}

576
inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
D
duke 已提交
577 578 579 580 581
{
  assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
  Atomic::add((int) words, (volatile int*) &_dc_and_los);
}

582
inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
D
duke 已提交
583 584 585 586 587 588 589 590 591
{
#ifdef ASSERT
  HeapWord* tmp = _highest_ref;
  while (addr > tmp) {
    tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
  }
#endif  // #ifdef ASSERT
}

592
inline bool ParallelCompactData::RegionData::claim()
D
duke 已提交
593 594 595 596 597 598 599
{
  const int los = (int) live_obj_size();
  const int old = Atomic::cmpxchg(dc_claimed | los,
                                  (volatile int*) &_dc_and_los, los);
  return old == los;
}

600 601
inline ParallelCompactData::RegionData*
ParallelCompactData::region(size_t region_idx) const
D
duke 已提交
602
{
603 604
  assert(region_idx <= region_count(), "bad arg");
  return _region_data + region_idx;
D
duke 已提交
605 606 607
}

inline size_t
608
ParallelCompactData::region(const RegionData* const region_ptr) const
D
duke 已提交
609
{
610 611 612
  assert(region_ptr >= _region_data, "bad arg");
  assert(region_ptr <= _region_data + region_count(), "bad arg");
  return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
D
duke 已提交
613 614
}

615 616 617 618 619 620
inline ParallelCompactData::BlockData*
ParallelCompactData::block(size_t n) const {
  assert(n < block_count(), "bad arg");
  return _block_data + n;
}

D
duke 已提交
621
inline size_t
622
ParallelCompactData::region_offset(const HeapWord* addr) const
D
duke 已提交
623 624 625
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
626
  return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
D
duke 已提交
627 628 629
}

inline size_t
630
ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
D
duke 已提交
631 632 633
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
634
  return pointer_delta(addr, _region_start) >> Log2RegionSize;
D
duke 已提交
635 636
}

637 638
inline ParallelCompactData::RegionData*
ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
D
duke 已提交
639
{
640
  return region(addr_to_region_idx(addr));
D
duke 已提交
641 642 643
}

inline HeapWord*
644
ParallelCompactData::region_to_addr(size_t region) const
D
duke 已提交
645
{
646 647
  assert(region <= _region_count, "region out of range");
  return _region_start + (region << Log2RegionSize);
D
duke 已提交
648 649 650
}

inline HeapWord*
651
ParallelCompactData::region_to_addr(const RegionData* region) const
D
duke 已提交
652
{
653 654
  return region_to_addr(pointer_delta(region, _region_data,
                                      sizeof(RegionData)));
D
duke 已提交
655 656 657
}

inline HeapWord*
658
ParallelCompactData::region_to_addr(size_t region, size_t offset) const
D
duke 已提交
659
{
660 661 662
  assert(region <= _region_count, "region out of range");
  assert(offset < RegionSize, "offset too big");  // This may be too strict.
  return region_to_addr(region) + offset;
D
duke 已提交
663 664 665
}

inline HeapWord*
666
ParallelCompactData::region_align_down(HeapWord* addr) const
D
duke 已提交
667 668
{
  assert(addr >= _region_start, "bad addr");
669 670
  assert(addr < _region_end + RegionSize, "bad addr");
  return (HeapWord*)(size_t(addr) & RegionAddrMask);
D
duke 已提交
671 672 673
}

inline HeapWord*
674
ParallelCompactData::region_align_up(HeapWord* addr) const
D
duke 已提交
675 676 677
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
678
  return region_align_down(addr + RegionSizeOffsetMask);
D
duke 已提交
679 680 681
}

inline bool
682
ParallelCompactData::is_region_aligned(HeapWord* addr) const
D
duke 已提交
683
{
684
  return region_offset(addr) == 0;
D
duke 已提交
685 686
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
inline size_t
ParallelCompactData::block_offset(const HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
  return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize;
}

inline size_t
ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
  return pointer_delta(addr, _region_start) >> Log2BlockSize;
}

inline ParallelCompactData::BlockData*
ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
{
  return block(addr_to_block_idx(addr));
}

inline HeapWord*
ParallelCompactData::block_to_addr(size_t block) const
{
  assert(block < _block_count, "block out of range");
  return _region_start + (block << Log2BlockSize);
}

inline size_t
ParallelCompactData::region_to_block_idx(size_t region) const
{
  return region << Log2BlocksPerRegion;
}

inline HeapWord*
ParallelCompactData::block_align_down(HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr < _region_end + RegionSize, "bad addr");
  return (HeapWord*)(size_t(addr) & BlockAddrMask);
}

inline HeapWord*
ParallelCompactData::block_align_up(HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
  return block_align_down(addr + BlockSizeOffsetMask);
}

inline bool
ParallelCompactData::is_block_aligned(HeapWord* addr) const
{
  return block_offset(addr) == 0;
}

D
duke 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
// Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
// do_addr() method.
//
// The closure is initialized with the number of heap words to process
// (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
// methods in subclasses should update the total as words are processed.  Since
// only one subclass actually uses this mechanism to terminate iteration, the
// default initial value is > 0.  The implementation is here and not in the
// single subclass that uses it to avoid making is_full() virtual, and thus
// adding a virtual call per live object.

class ParMarkBitMapClosure: public StackObj {
 public:
  typedef ParMarkBitMap::idx_t idx_t;
  typedef ParMarkBitMap::IterationStatus IterationStatus;

 public:
  inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
                              size_t words = max_uintx);

  inline ParCompactionManager* compaction_manager() const;
  inline ParMarkBitMap*        bitmap() const;
  inline size_t                words_remaining() const;
  inline bool                  is_full() const;
  inline HeapWord*             source() const;

  inline void                  set_source(HeapWord* addr);

  virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;

 protected:
  inline void decrement_words_remaining(size_t words);

 private:
  ParMarkBitMap* const        _bitmap;
  ParCompactionManager* const _compaction_manager;
  DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
  size_t                      _words_remaining; // Words left to copy.

 protected:
  HeapWord*                   _source;          // Next addr that would be read.
};

inline
ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
                                           ParCompactionManager* cm,
                                           size_t words):
  _bitmap(bitmap), _compaction_manager(cm)
#ifdef  ASSERT
  , _initial_words_remaining(words)
#endif
{
  _words_remaining = words;
  _source = NULL;
}

inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
  return _compaction_manager;
}

inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
  return _bitmap;
}

inline size_t ParMarkBitMapClosure::words_remaining() const {
  return _words_remaining;
}

inline bool ParMarkBitMapClosure::is_full() const {
  return words_remaining() == 0;
}

inline HeapWord* ParMarkBitMapClosure::source() const {
  return _source;
}

inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
  _source = addr;
}

inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
  assert(_words_remaining >= words, "processed too many words");
  _words_remaining -= words;
}

829 830 831 832 833 834 835 836 837
// The UseParallelOldGC collector is a stop-the-world garbage collector that
// does parts of the collection using parallel threads.  The collection includes
// the tenured generation and the young generation.  The permanent generation is
// collected at the same time as the other two generations but the permanent
// generation is collect by a single GC thread.  The permanent generation is
// collected serially because of the requirement that during the processing of a
// klass AAA, any objects reference by AAA must already have been processed.
// This requirement is enforced by a left (lower address) to right (higher
// address) sliding compaction.
838 839 840 841 842 843 844 845 846 847 848 849 850 851
//
// There are four phases of the collection.
//
//      - marking phase
//      - summary phase
//      - compacting phase
//      - clean up phase
//
// Roughly speaking these phases correspond, respectively, to
//      - mark all the live objects
//      - calculate the destination of each object at the end of the collection
//      - move the objects to their destination
//      - update some references and reinitialize some variables
//
852 853 854 855 856
// These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
// marking phase is implemented in PSParallelCompact::marking_phase() and does a
// complete marking of the heap.  The summary phase is implemented in
// PSParallelCompact::summary_phase().  The move and update phase is implemented
// in PSParallelCompact::compact().
857
//
858 859 860 861
// A space that is being collected is divided into regions and with each region
// is associated an object of type ParallelCompactData.  Each region is of a
// fixed size and typically will contain more than 1 object and may have parts
// of objects at the front and back of the region.
862
//
863
// region            -----+---------------------+----------
864 865
// objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
//
866 867 868 869 870 871 872 873 874 875
// The marking phase does a complete marking of all live objects in the heap.
// The marking also compiles the size of the data for all live objects covered
// by the region.  This size includes the part of any live object spanning onto
// the region (part of AAA if it is live) from the front, all live objects
// contained in the region (BBB and/or CCC if they are live), and the part of
// any live objects covered by the region that extends off the region (part of
// DDD if it is live).  The marking phase uses multiple GC threads and marking
// is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
// done atomically as is the accumulation of the size of the live objects
// covered by a region.
876
//
877 878 879 880
// The summary phase calculates the total live data to the left of each region
// XXX.  Based on that total and the bottom of the space, it can calculate the
// starting location of the live data in XXX.  The summary phase calculates for
// each region XXX quantites such as
881
//
882 883 884 885
//      - the amount of live data at the beginning of a region from an object
//        entering the region.
//      - the location of the first live data on the region
//      - a count of the number of regions receiving live data from XXX.
886 887
//
// See ParallelCompactData for precise details.  The summary phase also
888 889 890 891
// calculates the dense prefix for the compaction.  The dense prefix is a
// portion at the beginning of the space that is not moved.  The objects in the
// dense prefix do need to have their object references updated.  See method
// summarize_dense_prefix().
892 893 894
//
// The summary phase is done using 1 GC thread.
//
895 896
// The compaction phase moves objects to their new location and updates all
// references in the object.
897
//
898 899 900 901 902 903 904
// A current exception is that objects that cross a region boundary are moved
// but do not have their references updated.  References are not updated because
// it cannot easily be determined if the klass pointer KKK for the object AAA
// has been updated.  KKK likely resides in a region to the left of the region
// containing AAA.  These AAA's have there references updated at the end in a
// clean up phase.  See the method PSParallelCompact::update_deferred_objects().
// An alternate strategy is being investigated for this deferral of updating.
905
//
906 907 908 909 910 911 912 913 914 915
// Compaction is done on a region basis.  A region that is ready to be filled is
// put on a ready list and GC threads take region off the list and fill them.  A
// region is ready to be filled if it empty of live objects.  Such a region may
// have been initially empty (only contained dead objects) or may have had all
// its live objects copied out already.  A region that compacts into itself is
// also ready for filling.  The ready list is initially filled with empty
// regions and regions compacting into themselves.  There is always at least 1
// region that can be put on the ready list.  The regions are atomically added
// and removed from the ready list.

D
duke 已提交
916 917 918 919
class PSParallelCompact : AllStatic {
 public:
  // Convenient access to type names.
  typedef ParMarkBitMap::idx_t idx_t;
920
  typedef ParallelCompactData::RegionData RegionData;
921
  typedef ParallelCompactData::BlockData BlockData;
D
duke 已提交
922 923

  typedef enum {
924
    old_space_id, eden_space_id,
D
duke 已提交
925 926 927 928
    from_space_id, to_space_id, last_space_id
  } SpaceId;

 public:
929
  // Inline closure decls
D
duke 已提交
930 931 932
  //
  class IsAliveClosure: public BoolObjectClosure {
   public:
933
    virtual bool do_object_b(oop p);
D
duke 已提交
934 935 936
  };

  class KeepAliveClosure: public OopClosure {
937
   private:
D
duke 已提交
938
    ParCompactionManager* _compaction_manager;
939 940
   protected:
    template <class T> inline void do_oop_work(T* p);
D
duke 已提交
941
   public:
942 943 944
    KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
    virtual void do_oop(oop* p);
    virtual void do_oop(narrowOop* p);
D
duke 已提交
945 946 947
  };

  class FollowStackClosure: public VoidClosure {
948
   private:
D
duke 已提交
949 950
    ParCompactionManager* _compaction_manager;
   public:
951 952
    FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
    virtual void do_void();
D
duke 已提交
953 954
  };

955
  class AdjustPointerClosure: public OopClosure {
D
duke 已提交
956
   public:
957 958
    virtual void do_oop(oop* p);
    virtual void do_oop(narrowOop* p);
959 960
    // do not walk from thread stacks to the code cache on this phase
    virtual void do_code_blob(CodeBlob* cb) const { }
D
duke 已提交
961 962
  };

963 964 965 966 967
  class AdjustKlassClosure : public KlassClosure {
   public:
    void do_klass(Klass* klass);
  };

D
duke 已提交
968 969 970
  friend class KeepAliveClosure;
  friend class FollowStackClosure;
  friend class AdjustPointerClosure;
971 972
  friend class AdjustKlassClosure;
  friend class FollowKlassClosure;
973
  friend class InstanceClassLoaderKlass;
D
duke 已提交
974 975 976
  friend class RefProcTaskProxy;

 private:
S
sla 已提交
977 978
  static STWGCTimer           _gc_timer;
  static ParallelOldTracer    _gc_tracer;
D
duke 已提交
979 980 981 982 983 984 985 986 987 988 989
  static elapsedTimer         _accumulated_time;
  static unsigned int         _total_invocations;
  static unsigned int         _maximum_compaction_gc_num;
  static jlong                _time_of_last_gc;   // ms
  static CollectorCounters*   _counters;
  static ParMarkBitMap        _mark_bitmap;
  static ParallelCompactData  _summary_data;
  static IsAliveClosure       _is_alive_closure;
  static SpaceInfo            _space_info[last_space_id];
  static bool                 _print_phases;
  static AdjustPointerClosure _adjust_pointer_closure;
990
  static AdjustKlassClosure   _adjust_klass_closure;
D
duke 已提交
991 992 993 994 995

  // Reference processing (used in ...follow_contents)
  static ReferenceProcessor*  _ref_processor;

  // Updated location of intArrayKlassObj.
996
  static Klass* _updated_int_array_klass_obj;
D
duke 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

  // Values computed at initialization and used by dead_wood_limiter().
  static double _dwl_mean;
  static double _dwl_std_dev;
  static double _dwl_first_term;
  static double _dwl_adjustment;
#ifdef  ASSERT
  static bool   _dwl_initialized;
#endif  // #ifdef ASSERT

 private:

  static void initialize_space_info();

  // Return true if details about individual phases should be printed.
  static inline bool print_phases();

  // Clear the marking bitmap and summary data that cover the specified space.
  static void clear_data_covering_space(SpaceId id);

  static void pre_compact(PreGCValues* pre_gc_values);
  static void post_compact();

  // Mark live objects
  static void marking_phase(ParCompactionManager* cm,
S
sla 已提交
1022 1023
                            bool maximum_heap_compaction,
                            ParallelOldTracer *gc_tracer);
D
duke 已提交
1024

1025 1026
  template <class T>
  static inline void follow_root(ParCompactionManager* cm, T* p);
D
duke 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

  // Compute the dense prefix for the designated space.  This is an experimental
  // implementation currently not used in production.
  static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
                                                    bool maximum_compaction);

  // Methods used to compute the dense prefix.

  // Compute the value of the normal distribution at x = density.  The mean and
  // standard deviation are values saved by initialize_dead_wood_limiter().
  static inline double normal_distribution(double density);

  // Initialize the static vars used by dead_wood_limiter().
  static void initialize_dead_wood_limiter();

  // Return the percentage of space that can be treated as "dead wood" (i.e.,
  // not reclaimed).
  static double dead_wood_limiter(double density, size_t min_percent);

1046
  // Find the first (left-most) region in the range [beg, end) that has at least
D
duke 已提交
1047
  // dead_words of dead space to the left.  The argument beg must be the first
1048 1049 1050 1051
  // region in the space that is not completely live.
  static RegionData* dead_wood_limit_region(const RegionData* beg,
                                            const RegionData* end,
                                            size_t dead_words);
D
duke 已提交
1052

1053
  // Return a pointer to the first region in the range [beg, end) that is not
D
duke 已提交
1054
  // completely full.
1055 1056
  static RegionData* first_dead_space_region(const RegionData* beg,
                                             const RegionData* end);
D
duke 已提交
1057 1058 1059

  // Return a value indicating the benefit or 'yield' if the compacted region
  // were to start (or equivalently if the dense prefix were to end) at the
1060
  // candidate region.  Higher values are better.
D
duke 已提交
1061 1062 1063 1064
  //
  // The value is based on the amount of space reclaimed vs. the costs of (a)
  // updating references in the dense prefix plus (b) copying objects and
  // updating references in the compacted region.
1065
  static inline double reclaimed_ratio(const RegionData* const candidate,
D
duke 已提交
1066 1067 1068 1069 1070 1071 1072 1073
                                       HeapWord* const bottom,
                                       HeapWord* const top,
                                       HeapWord* const new_top);

  // Compute the dense prefix for the designated space.
  static HeapWord* compute_dense_prefix(const SpaceId id,
                                        bool maximum_compaction);

1074 1075 1076
  // Return true if dead space crosses onto the specified Region; bit must be
  // the bit index corresponding to the first word of the Region.
  static inline bool dead_space_crosses_boundary(const RegionData* region,
D
duke 已提交
1077 1078 1079 1080 1081 1082 1083
                                                 idx_t bit);

  // Summary phase utility routine to fill dead space (if any) at the dense
  // prefix boundary.  Should only be called if the the dense prefix is
  // non-empty.
  static void fill_dense_prefix_end(SpaceId id);

1084 1085 1086
  // Clear the summary data source_region field for the specified addresses.
  static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
#ifndef PRODUCT
  // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).

  // Fill the region [start, start + words) with live object(s).  Only usable
  // for the old and permanent generations.
  static void fill_with_live_objects(SpaceId id, HeapWord* const start,
                                     size_t words);
  // Include the new objects in the summary data.
  static void summarize_new_objects(SpaceId id, HeapWord* start);

1097 1098 1099 1100
  // Add live objects to a survivor space since it's rare that both survivors
  // are non-empty.
  static void provoke_split_fill_survivor(SpaceId id);

1101 1102 1103 1104
  // Add live objects and/or choose the dense prefix to provoke splitting.
  static void provoke_split(bool & maximum_compaction);
#endif

D
duke 已提交
1105 1106 1107 1108 1109 1110 1111
  static void summarize_spaces_quick();
  static void summarize_space(SpaceId id, bool maximum_compaction);
  static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);

  // Adjust addresses in roots.  Does not adjust addresses in heap.
  static void adjust_roots();

1112 1113
  DEBUG_ONLY(static void write_block_fill_histogram(outputStream* const out);)

D
duke 已提交
1114 1115 1116 1117
  // Move objects to new locations.
  static void compact_perm(ParCompactionManager* cm);
  static void compact();

1118 1119 1120
  // Add available regions to the stack and draining tasks to the task queue.
  static void enqueue_region_draining_tasks(GCTaskQueue* q,
                                            uint parallel_gc_threads);
D
duke 已提交
1121 1122 1123 1124 1125

  // Add dense prefix update tasks to the task queue.
  static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
                                         uint parallel_gc_threads);

1126 1127
  // Add region stealing tasks to the task queue.
  static void enqueue_region_stealing_tasks(
D
duke 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
                                       GCTaskQueue* q,
                                       ParallelTaskTerminator* terminator_ptr,
                                       uint parallel_gc_threads);

  // If objects are left in eden after a collection, try to move the boundary
  // and absorb them into the old gen.  Returns true if eden was emptied.
  static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
                                         PSYoungGen* young_gen,
                                         PSOldGen* old_gen);

  // Reset time since last full gc
  static void reset_millis_since_last_gc();

 public:
  class MarkAndPushClosure: public OopClosure {
1143
   private:
D
duke 已提交
1144 1145
    ParCompactionManager* _compaction_manager;
   public:
1146 1147 1148
    MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
    virtual void do_oop(oop* p);
    virtual void do_oop(narrowOop* p);
D
duke 已提交
1149 1150
  };

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
  // The one and only place to start following the classes.
  // Should only be applied to the ClassLoaderData klasses list.
  class FollowKlassClosure : public KlassClosure {
   private:
    MarkAndPushClosure* _mark_and_push_closure;
   public:
    FollowKlassClosure(MarkAndPushClosure* mark_and_push_closure) :
        _mark_and_push_closure(mark_and_push_closure) { }
    void do_klass(Klass* klass);
  };

D
duke 已提交
1162 1163 1164 1165 1166 1167 1168 1169
  PSParallelCompact();

  // Convenient accessor for Universe::heap().
  static ParallelScavengeHeap* gc_heap() {
    return (ParallelScavengeHeap*)Universe::heap();
  }

  static void invoke(bool maximum_heap_compaction);
1170
  static bool invoke_no_policy(bool maximum_heap_compaction);
D
duke 已提交
1171 1172 1173 1174 1175 1176 1177 1178

  static void post_initialize();
  // Perform initialization for PSParallelCompact that requires
  // allocations.  This should be called during the VM initialization
  // at a pointer where it would be appropriate to return a JNI_ENOMEM
  // in the event of a failure.
  static bool initialize();

1179 1180 1181 1182 1183
  // Closure accessors
  static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
  static KlassClosure* adjust_klass_closure()      { return (KlassClosure*)&_adjust_klass_closure; }
  static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }

D
duke 已提交
1184 1185 1186 1187 1188 1189 1190
  // Public accessors
  static elapsedTimer* accumulated_time() { return &_accumulated_time; }
  static unsigned int total_invocations() { return _total_invocations; }
  static CollectorCounters* counters()    { return _counters; }

  // Used to add tasks
  static GCTaskManager* const gc_task_manager();
1191
  static Klass* updated_int_array_klass_obj() {
D
duke 已提交
1192 1193 1194 1195 1196
    return _updated_int_array_klass_obj;
  }

  // Marking support
  static inline bool mark_obj(oop obj);
1197
  static inline bool is_marked(oop obj);
1198 1199 1200
  // Check mark and maybe push on marking stack
  template <class T> static inline void mark_and_push(ParCompactionManager* cm,
                                                      T* p);
1201
  template <class T> static inline void adjust_pointer(T* p);
D
duke 已提交
1202

1203
  static inline void follow_klass(ParCompactionManager* cm, Klass* klass);
1204 1205 1206 1207

  static void follow_class_loader(ParCompactionManager* cm,
                                  ClassLoaderData* klass);

D
duke 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
  // Compaction support.
  // Return true if p is in the range [beg_addr, end_addr).
  static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
  static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);

  // Convenience wrappers for per-space data kept in _space_info.
  static inline MutableSpace*     space(SpaceId space_id);
  static inline HeapWord*         new_top(SpaceId space_id);
  static inline HeapWord*         dense_prefix(SpaceId space_id);
  static inline ObjectStartArray* start_array(SpaceId space_id);

  // Move and update the live objects in the specified space.
  static void move_and_update(ParCompactionManager* cm, SpaceId space_id);

1222
  // Process the end of the given region range in the dense prefix.
D
duke 已提交
1223
  // This includes saving any object not updated.
1224 1225 1226 1227 1228 1229 1230 1231 1232
  static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
                                            size_t region_start_index,
                                            size_t region_end_index,
                                            idx_t exiting_object_offset,
                                            idx_t region_offset_start,
                                            idx_t region_offset_end);

  // Update a region in the dense prefix.  For each live object
  // in the region, update it's interior references.  For each
D
duke 已提交
1233
  // dead object, fill it with deadwood. Dead space at the end
1234 1235
  // of a region range will be filled to the start of the next
  // live object regardless of the region_index_end.  None of the
D
duke 已提交
1236 1237 1238 1239 1240
  // objects in the dense prefix move and dead space is dead
  // (holds only dead objects that don't need any processing), so
  // dead space can be filled in any order.
  static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
                                                  SpaceId space_id,
1241 1242
                                                  size_t region_index_start,
                                                  size_t region_index_end);
D
duke 已提交
1243 1244 1245 1246 1247

  // Return the address of the count + 1st live word in the range [beg, end).
  static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);

  // Return the address of the word to be copied to dest_addr, which must be
1248
  // aligned to a region boundary.
D
duke 已提交
1249
  static HeapWord* first_src_addr(HeapWord* const dest_addr,
1250
                                  SpaceId src_space_id,
1251
                                  size_t src_region_idx);
D
duke 已提交
1252

1253 1254
  // Determine the next source region, set closure.source() to the start of the
  // new region return the region index.  Parameter end_addr is the address one
D
duke 已提交
1255 1256 1257
  // beyond the end of source range just processed.  If necessary, switch to a
  // new source space and set src_space_id (in-out parameter) and src_space_top
  // (out parameter) accordingly.
1258 1259 1260 1261
  static size_t next_src_region(MoveAndUpdateClosure& closure,
                                SpaceId& src_space_id,
                                HeapWord*& src_space_top,
                                HeapWord* end_addr);
D
duke 已提交
1262

1263
  // Decrement the destination count for each non-empty source region in the
1264 1265
  // range [beg_region, region(region_align_up(end_addr))).  If the destination
  // count for a region goes to 0 and it needs to be filled, enqueue it.
D
duke 已提交
1266
  static void decrement_destination_counts(ParCompactionManager* cm,
1267
                                           SpaceId src_space_id,
1268
                                           size_t beg_region,
D
duke 已提交
1269 1270
                                           HeapWord* end_addr);

1271 1272 1273 1274
  // Fill a region, copying objects from one or more source regions.
  static void fill_region(ParCompactionManager* cm, size_t region_idx);
  static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
    fill_region(cm, region);
D
duke 已提交
1275 1276
  }

1277 1278 1279
  // Fill in the block table for the specified region.
  static void fill_blocks(size_t region_idx);

D
duke 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288
  // Update the deferred objects in the space.
  static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);

  static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
  static ParallelCompactData& summary_data() { return _summary_data; }

  // Reference Processing
  static ReferenceProcessor* const ref_processor() { return _ref_processor; }

S
sla 已提交
1289 1290
  static STWGCTimer* gc_timer() { return &_gc_timer; }

D
duke 已提交
1291 1292 1293 1294 1295 1296
  // Return the SpaceId for the given address.
  static SpaceId space_id(HeapWord* addr);

  // Time since last full gc (in milliseconds).
  static jlong millis_since_last_gc();

1297 1298
  static void print_on_error(outputStream* st);

D
duke 已提交
1299 1300 1301
#ifndef PRODUCT
  // Debugging support.
  static const char* space_names[last_space_id];
1302
  static void print_region_ranges();
D
duke 已提交
1303 1304 1305 1306
  static void print_dense_prefix_stats(const char* const algorithm,
                                       const SpaceId id,
                                       const bool maximum_compaction,
                                       HeapWord* const addr);
1307 1308 1309 1310
  static void summary_phase_msg(SpaceId dst_space_id,
                                HeapWord* dst_beg, HeapWord* dst_end,
                                SpaceId src_space_id,
                                HeapWord* src_beg, HeapWord* src_end);
D
duke 已提交
1311 1312 1313
#endif  // #ifndef PRODUCT

#ifdef  ASSERT
1314 1315
  // Sanity check the new location of a word in the heap.
  static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
1316
  // Verify that all the regions have been emptied.
D
duke 已提交
1317 1318 1319 1320
  static void verify_complete(SpaceId space_id);
#endif  // #ifdef ASSERT
};

1321
inline bool PSParallelCompact::mark_obj(oop obj) {
D
duke 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330
  const int obj_size = obj->size();
  if (mark_bitmap()->mark_obj(obj, obj_size)) {
    _summary_data.add_obj(obj, obj_size);
    return true;
  } else {
    return false;
  }
}

1331 1332 1333 1334
inline bool PSParallelCompact::is_marked(oop obj) {
  return mark_bitmap()->is_marked(obj);
}

1335 1336 1337 1338
template <class T>
inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
  assert(!Universe::heap()->is_in_reserved(p),
         "roots shouldn't be things within the heap");
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
    if (mark_bitmap()->is_unmarked(obj)) {
      if (mark_obj(obj)) {
        obj->follow_contents(cm);
      }
    }
  }
1349
  cm->follow_marking_stacks();
1350 1351 1352 1353 1354 1355 1356
}

template <class T>
inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1357 1358
    if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
      cm->push(obj);
1359 1360 1361 1362 1363
    }
  }
}

template <class T>
1364
inline void PSParallelCompact::adjust_pointer(T* p) {
1365 1366 1367 1368
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
    oop new_obj = (oop)summary_data().calc_new_pointer(obj);
1369
    assert(new_obj != NULL,                    // is forwarding ptr?
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
           "should be forwarded");
    // Just always do the update unconditionally?
    if (new_obj != NULL) {
      assert(Universe::heap()->is_in_reserved(new_obj),
             "should be in object space");
      oopDesc::encode_store_heap_oop_not_null(p, new_obj);
    }
  }
}

1380 1381 1382 1383 1384
inline void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
  oop holder = klass->klass_holder();
  PSParallelCompact::mark_and_push(cm, &holder);
}

1385 1386 1387 1388 1389 1390
template <class T>
inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
  mark_and_push(_compaction_manager, p);
}

inline bool PSParallelCompact::print_phases() {
D
duke 已提交
1391 1392 1393
  return _print_phases;
}

1394
inline double PSParallelCompact::normal_distribution(double density) {
D
duke 已提交
1395 1396 1397 1398 1399 1400
  assert(_dwl_initialized, "uninitialized");
  const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
  return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
}

inline bool
1401
PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
D
duke 已提交
1402 1403
                                               idx_t bit)
{
1404 1405
  assert(bit > 0, "cannot call this for the first bit/region");
  assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
D
duke 已提交
1406 1407 1408
         "sanity check");

  // Dead space crosses the boundary if (1) a partial object does not extend
1409 1410 1411
  // onto the region, (2) an object does not start at the beginning of the
  // region, and (3) an object does not end at the end of the prior region.
  return region->partial_obj_size() == 0 &&
D
duke 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
    !_mark_bitmap.is_obj_beg(bit) &&
    !_mark_bitmap.is_obj_end(bit - 1);
}

inline bool
PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
  return p >= beg_addr && p < end_addr;
}

inline bool
PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
  return is_in((HeapWord*)p, beg_addr, end_addr);
}

inline MutableSpace* PSParallelCompact::space(SpaceId id) {
  assert(id < last_space_id, "id out of range");
  return _space_info[id].space();
}

inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
  assert(id < last_space_id, "id out of range");
  return _space_info[id].new_top();
}

inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
  assert(id < last_space_id, "id out of range");
  return _space_info[id].dense_prefix();
}

inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
  assert(id < last_space_id, "id out of range");
  return _space_info[id].start_array();
}

1446 1447 1448 1449 1450 1451
#ifdef ASSERT
inline void
PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
{
  assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
         "must move left or to a different space");
1452 1453
  assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
         "checking alignment");
1454 1455 1456
}
#endif // ASSERT

D
duke 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
class MoveAndUpdateClosure: public ParMarkBitMapClosure {
 public:
  inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
                              ObjectStartArray* start_array,
                              HeapWord* destination, size_t words);

  // Accessors.
  HeapWord* destination() const         { return _destination; }

  // If the object will fit (size <= words_remaining()), copy it to the current
  // destination, update the interior oops and the start array and return either
  // full (if the closure is full) or incomplete.  If the object will not fit,
  // return would_overflow.
  virtual IterationStatus do_addr(HeapWord* addr, size_t size);

  // Copy enough words to fill this closure, starting at source().  Interior
  // oops and the start array are not updated.  Return full.
  IterationStatus copy_until_full();

  // Copy enough words to fill this closure or to the end of an object,
  // whichever is smaller, starting at source().  Interior oops and the start
  // array are not updated.
  void copy_partial_obj();

 protected:
  // Update variables to indicate that word_count words were processed.
  inline void update_state(size_t word_count);

 protected:
  ObjectStartArray* const _start_array;
  HeapWord*               _destination;         // Next addr to be written.
};

inline
MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
                                           ParCompactionManager* cm,
                                           ObjectStartArray* start_array,
                                           HeapWord* destination,
                                           size_t words) :
  ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
{
  _destination = destination;
}

inline void MoveAndUpdateClosure::update_state(size_t words)
{
  decrement_words_remaining(words);
  _source += words;
  _destination += words;
}

class UpdateOnlyClosure: public ParMarkBitMapClosure {
 private:
  const PSParallelCompact::SpaceId _space_id;
  ObjectStartArray* const          _start_array;

 public:
  UpdateOnlyClosure(ParMarkBitMap* mbm,
                    ParCompactionManager* cm,
                    PSParallelCompact::SpaceId space_id);

  // Update the object.
  virtual IterationStatus do_addr(HeapWord* addr, size_t words);

  inline void do_addr(HeapWord* addr);
};

1524 1525
inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
{
D
duke 已提交
1526 1527 1528 1529
  _start_array->allocate_block(addr);
  oop(addr)->update_contents(compaction_manager());
}

1530 1531 1532
class FillClosure: public ParMarkBitMapClosure
{
public:
1533
  FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
D
duke 已提交
1534
    ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
1535 1536
    _start_array(PSParallelCompact::start_array(space_id))
  {
1537
    assert(space_id == PSParallelCompact::old_space_id,
D
duke 已提交
1538 1539 1540 1541
           "cannot use FillClosure in the young gen");
  }

  virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
1542 1543 1544 1545 1546 1547
    CollectedHeap::fill_with_objects(addr, size);
    HeapWord* const end = addr + size;
    do {
      _start_array->allocate_block(addr);
      addr += oop(addr)->size();
    } while (addr < end);
D
duke 已提交
1548 1549 1550 1551
    return ParMarkBitMap::incomplete;
  }

private:
1552
  ObjectStartArray* const _start_array;
D
duke 已提交
1553
};
1554 1555

#endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP