phaseX.hpp 22.9 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35
#ifndef SHARE_VM_OPTO_PHASEX_HPP
#define SHARE_VM_OPTO_PHASEX_HPP

#include "libadt/dict.hpp"
#include "libadt/vectset.hpp"
#include "memory/resourceArea.hpp"
#include "opto/memnode.hpp"
#include "opto/node.hpp"
#include "opto/phase.hpp"
#include "opto/type.hpp"

D
duke 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
class Compile;
class ConINode;
class ConLNode;
class Node;
class Type;
class PhaseTransform;
class   PhaseGVN;
class     PhaseIterGVN;
class       PhaseCCP;
class   PhasePeephole;
class   PhaseRegAlloc;


//-----------------------------------------------------------------------------
// Expandable closed hash-table of nodes, initialized to NULL.
// Note that the constructor just zeros things
// Storage is reclaimed when the Arena's lifetime is over.
class NodeHash : public StackObj {
protected:
  Arena *_a;                    // Arena to allocate in
  uint   _max;                  // Size of table (power of 2)
  uint   _inserts;              // For grow and debug, count of hash_inserts
  uint   _insert_limit;         // 'grow' when _inserts reaches _insert_limit
  Node **_table;                // Hash table of Node pointers
  Node  *_sentinel;             // Replaces deleted entries in hash table

public:
  NodeHash(uint est_max_size);
  NodeHash(Arena *arena, uint est_max_size);
  NodeHash(NodeHash *use_this_state);
#ifdef ASSERT
  ~NodeHash();                  // Unlock all nodes upon destruction of table.
  void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
#endif
  Node  *hash_find(const Node*);// Find an equivalent version in hash table
  Node  *hash_find_insert(Node*);// If not in table insert else return found node
  void   hash_insert(Node*);    // Insert into hash table
  bool   hash_delete(const Node*);// Replace with _sentinel in hash table
  void   check_grow() {
    _inserts++;
    if( _inserts == _insert_limit ) { grow(); }
    assert( _inserts <= _insert_limit, "hash table overflow");
    assert( _inserts < _max, "hash table overflow" );
  }
  static uint round_up(uint);   // Round up to nearest power of 2
  void   grow();                // Grow _table to next power of 2 and rehash
  // Return 75% of _max, rounded up.
  uint   insert_limit() const { return _max - (_max>>2); }

  void   clear();               // Set all entries to NULL, keep storage.
  // Size of hash table
  uint   size()         const { return _max; }
  // Return Node* at index in table
  Node  *at(uint table_index) {
    assert(table_index < _max, "Must be within table");
    return _table[table_index];
  }

  void   remove_useless_nodes(VectorSet &useful); // replace with sentinel

  Node  *sentinel() { return _sentinel; }

#ifndef PRODUCT
  Node  *find_index(uint idx);  // For debugging
  void   dump();                // For debugging, dump statistics
#endif
  uint   _grows;                // For debugging, count of table grow()s
  uint   _look_probes;          // For debugging, count of hash probes
  uint   _lookup_hits;          // For debugging, count of hash_finds
  uint   _lookup_misses;        // For debugging, count of hash_finds
  uint   _insert_probes;        // For debugging, count of hash probes
  uint   _delete_probes;        // For debugging, count of hash probes for deletes
  uint   _delete_hits;          // For debugging, count of hash probes for deletes
  uint   _delete_misses;        // For debugging, count of hash probes for deletes
  uint   _total_inserts;        // For debugging, total inserts into hash table
  uint   _total_insert_probes;  // For debugging, total probes while inserting
};


//-----------------------------------------------------------------------------
// Map dense integer indices to Types.  Uses classic doubling-array trick.
// Abstractly provides an infinite array of Type*'s, initialized to NULL.
// Note that the constructor just zeros things, and since I use Arena
// allocation I do not need a destructor to reclaim storage.
// Despite the general name, this class is customized for use by PhaseTransform.
class Type_Array : public StackObj {
  Arena *_a;                    // Arena to allocate in
  uint   _max;
  const Type **_types;
  void grow( uint i );          // Grow array node to fit
  const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  { return (i<_max) ? _types[i] : (Type*)NULL; }
  friend class PhaseTransform;
public:
  Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
  Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
  const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
  // Extend the mapping: index i maps to Type *n.
  void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
  uint Size() const { return _max; }
#ifndef PRODUCT
  void dump() const;
#endif
};


//------------------------------PhaseRemoveUseless-----------------------------
// Remove useless nodes from GVN hash-table, worklist, and graph
class PhaseRemoveUseless : public Phase {
protected:
  Unique_Node_List _useful;   // Nodes reachable from root
                              // list is allocated from current resource area
public:
  PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist );

  Unique_Node_List *get_useful() { return &_useful; }
};


//------------------------------PhaseTransform---------------------------------
// Phases that analyze, then transform.  Constructing the Phase object does any
// global or slow analysis.  The results are cached later for a fast
// transformation pass.  When the Phase object is deleted the cached analysis
// results are deleted.
class PhaseTransform : public Phase {
protected:
  Arena*     _arena;
  Node_Array _nodes;           // Map old node indices to new nodes.
  Type_Array _types;           // Map old node indices to Types.

  // ConNode caches:
  enum { _icon_min = -1 * HeapWordSize,
         _icon_max = 16 * HeapWordSize,
         _lcon_min = _icon_min,
         _lcon_max = _icon_max,
         _zcon_max = (uint)T_CONFLICT
  };
  ConINode* _icons[_icon_max - _icon_min + 1];   // cached jint constant nodes
  ConLNode* _lcons[_lcon_max - _lcon_min + 1];   // cached jlong constant nodes
  ConNode*  _zcons[_zcon_max + 1];               // cached is_zero_type nodes
  void init_con_caches();

  // Support both int and long caches because either might be an intptr_t,
  // so they show up frequently in address computations.

public:
  PhaseTransform( PhaseNumber pnum );
  PhaseTransform( Arena *arena, PhaseNumber pnum );
  PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );

  Arena*      arena()   { return _arena; }
  Type_Array& types()   { return _types; }
  // _nodes is used in varying ways by subclasses, which define local accessors

public:
  // Get a previously recorded type for the node n.
  // This type must already have been recorded.
  // If you want the type of a very new (untransformed) node,
  // you must use type_or_null, and test the result for NULL.
  const Type* type(const Node* n) const {
    const Type* t = _types.fast_lookup(n->_idx);
    assert(t != NULL, "must set before get");
    return t;
  }
  // Get a previously recorded type for the node n,
  // or else return NULL if there is none.
  const Type* type_or_null(const Node* n) const {
    return _types.fast_lookup(n->_idx);
  }
  // Record a type for a node.
  void    set_type(const Node* n, const Type *t) {
    assert(t != NULL, "type must not be null");
    _types.map(n->_idx, t);
  }
  // Record an initial type for a node, the node's bottom type.
  void    set_type_bottom(const Node* n) {
    // Use this for initialization when bottom_type() (or better) is not handy.
    // Usually the initialization shoudl be to n->Value(this) instead,
    // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
    assert(_types[n->_idx] == NULL, "must set the initial type just once");
    _types.map(n->_idx, n->bottom_type());
  }
  // Make sure the types array is big enough to record a size for the node n.
  // (In product builds, we never want to do range checks on the types array!)
  void ensure_type_or_null(const Node* n) {
    if (n->_idx >= _types.Size())
      _types.map(n->_idx, NULL);   // Grow the types array as needed.
  }

  // Utility functions:
  const TypeInt*  find_int_type( Node* n);
  const TypeLong* find_long_type(Node* n);
  jint  find_int_con( Node* n, jint  value_if_unknown) {
    const TypeInt* t = find_int_type(n);
    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
  }
  jlong find_long_con(Node* n, jlong value_if_unknown) {
    const TypeLong* t = find_long_type(n);
    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
  }

  // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
  // Same as transform(ConNode::make(t)).
  ConNode* makecon(const Type* t);
  virtual ConNode* uncached_makecon(const Type* t)  // override in PhaseValues
  { ShouldNotCallThis(); return NULL; }

  // Fast int or long constant.  Same as TypeInt::make(i) or TypeLong::make(l).
  ConINode* intcon(jint i);
  ConLNode* longcon(jlong l);

  // Fast zero or null constant.  Same as makecon(Type::get_zero_type(bt)).
  ConNode* zerocon(BasicType bt);

  // Return a node which computes the same function as this node, but
  // in a faster or cheaper fashion.
  virtual Node *transform( Node *n ) = 0;

  // Return whether two Nodes are equivalent.
  // Must not be recursive, since the recursive version is built from this.
  // For pessimistic optimizations this is simply pointer equivalence.
  bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }

  // For pessimistic passes, the return type must monotonically narrow.
  // For optimistic  passes, the return type must monotonically widen.
  // It is possible to get into a "death march" in either type of pass,
  // where the types are continually moving but it will take 2**31 or
  // more steps to converge.  This doesn't happen on most normal loops.
  //
  // Here is an example of a deadly loop for an optimistic pass, along
  // with a partial trace of inferred types:
  //    x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
  //    0                 1                join([0..max], 1)
  //    [0..1]            [1..2]           join([0..max], [1..2])
  //    [0..2]            [1..3]           join([0..max], [1..3])
  //      ... ... ...
  //    [0..max]          [min]u[1..max]   join([0..max], [min..max])
  //    [0..max] ==> fixpoint
  // We would have proven, the hard way, that the iteration space is all
  // non-negative ints, with the loop terminating due to 32-bit overflow.
  //
  // Here is the corresponding example for a pessimistic pass:
  //    x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
  //    int               int              join([0..max], int)
  //    [0..max]          [-1..max-1]      join([0..max], [-1..max-1])
  //    [0..max-1]        [-1..max-2]      join([0..max], [-1..max-2])
  //      ... ... ...
  //    [0..1]            [-1..0]          join([0..max], [-1..0])
  //    0                 -1               join([0..max], -1)
  //    0 == fixpoint
  // We would have proven, the hard way, that the iteration space is {0}.
  // (Usually, other optimizations will make the "if (x >= 0)" fold up
  // before we get into trouble.  But not always.)
  //
  // It's a pleasant thing to observe that the pessimistic pass
  // will make short work of the optimistic pass's deadly loop,
  // and vice versa.  That is a good example of the complementary
  // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
  //
  // In any case, only widen or narrow a few times before going to the
  // correct flavor of top or bottom.
  //
  // This call only needs to be made once as the data flows around any
  // given cycle.  We do it at Phis, and nowhere else.
  // The types presented are the new type of a phi (computed by PhiNode::Value)
  // and the previously computed type, last time the phi was visited.
  //
  // The third argument is upper limit for the saturated value,
  // if the phase wishes to widen the new_type.
  // If the phase is narrowing, the old type provides a lower limit.
  // Caller guarantees that old_type and new_type are no higher than limit_type.
  virtual const Type* saturate(const Type* new_type, const Type* old_type,
                               const Type* limit_type) const
  { ShouldNotCallThis(); return NULL; }

#ifndef PRODUCT
  void dump_old2new_map() const;
  void dump_new( uint new_lidx ) const;
  void dump_types() const;
  void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
  void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);

  uint   _count_progress;       // For profiling, count transforms that make progress
319
  void   set_progress()        { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
D
duke 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  void   clear_progress()      { _count_progress = 0; }
  uint   made_progress() const { return _count_progress; }

  uint   _count_transforms;     // For profiling, count transforms performed
  void   set_transforms()      { ++_count_transforms; }
  void   clear_transforms()    { _count_transforms = 0; }
  uint   made_transforms() const{ return _count_transforms; }

  bool   _allow_progress;      // progress not allowed during verification pass
  void   set_allow_progress(bool allow) { _allow_progress = allow; }
  bool   allow_progress()               { return _allow_progress; }
#endif
};

//------------------------------PhaseValues------------------------------------
// Phase infrastructure to support values
class PhaseValues : public PhaseTransform {
protected:
  NodeHash  _table;             // Hash table for value-numbering

public:
  PhaseValues( Arena *arena, uint est_max_size );
  PhaseValues( PhaseValues *pt );
  PhaseValues( PhaseValues *ptv, const char *dummy );
  NOT_PRODUCT( ~PhaseValues(); )
  virtual PhaseIterGVN *is_IterGVN() { return 0; }

  // Some Ideal and other transforms delete --> modify --> insert values
  bool   hash_delete(Node *n)     { return _table.hash_delete(n); }
  void   hash_insert(Node *n)     { _table.hash_insert(n); }
  Node  *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
  Node  *hash_find(const Node *n) { return _table.hash_find(n); }

  // Used after parsing to eliminate values that are no longer in program
354 355 356 357 358
  void   remove_useless_nodes(VectorSet &useful) {
    _table.remove_useless_nodes(useful);
    // this may invalidate cached cons so reset the cache
    init_con_caches();
  }
D
duke 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

  virtual ConNode* uncached_makecon(const Type* t);  // override from PhaseTransform

  virtual const Type* saturate(const Type* new_type, const Type* old_type,
                               const Type* limit_type) const
  { return new_type; }

#ifndef PRODUCT
  uint   _count_new_values;     // For profiling, count new values produced
  void    inc_new_values()        { ++_count_new_values; }
  void    clear_new_values()      { _count_new_values = 0; }
  uint    made_new_values() const { return _count_new_values; }
#endif
};


//------------------------------PhaseGVN---------------------------------------
// Phase for performing local, pessimistic GVN-style optimizations.
class PhaseGVN : public PhaseValues {
public:
  PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
  PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
  PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}

  // Return a node which computes the same function as this node, but
  // in a faster or cheaper fashion.
  Node  *transform( Node *n );
  Node  *transform_no_reclaim( Node *n );

  // Check for a simple dead loop when a data node references itself.
  DEBUG_ONLY(void dead_loop_check(Node *n);)
};

//------------------------------PhaseIterGVN-----------------------------------
// Phase for iteratively performing local, pessimistic GVN-style optimizations.
// and ideal transformations on the graph.
class PhaseIterGVN : public PhaseGVN {
396 397 398 399
 private:
  bool _delay_transform;  // When true simply register the node when calling transform
                          // instead of actually optimizing it

D
duke 已提交
400 401
  // Idealize old Node 'n' with respect to its inputs and its value
  virtual Node *transform_old( Node *a_node );
402 403 404 405

  // Subsume users of node 'old' into node 'nn'
  void subsume_node( Node *old, Node *nn );

406 407
  Node_Stack _stack;      // Stack used to avoid recursion

D
duke 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
protected:

  // Idealize new Node 'n' with respect to its inputs and its value
  virtual Node *transform( Node *a_node );

  // Warm up hash table, type table and initial worklist
  void init_worklist( Node *a_root );

  virtual const Type* saturate(const Type* new_type, const Type* old_type,
                               const Type* limit_type) const;
  // Usually returns new_type.  Returns old_type if new_type is only a slight
  // improvement, such that it would take many (>>10) steps to reach 2**32.

public:
  PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
  PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
  PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto

  virtual PhaseIterGVN *is_IterGVN() { return this; }

  Unique_Node_List _worklist;       // Iterative worklist

  // Given def-use info and an initial worklist, apply Node::Ideal,
  // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
  // and dominator info to a fixed point.
  void optimize();

  // Register a new node with the iter GVN pass without transforming it.
  // Used when we need to restructure a Region/Phi area and all the Regions
  // and Phis need to complete this one big transform before any other
  // transforms can be triggered on the region.
  // Optional 'orig' is an earlier version of this node.
  // It is significant only for debugging and profiling.
  Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);

443 444
  // Kill a globally dead Node.  All uses are also globally dead and are
  // aggressively trimmed.
D
duke 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457
  void remove_globally_dead_node( Node *dead );

  // Kill all inputs to a dead node, recursively making more dead nodes.
  // The Node must be dead locally, i.e., have no uses.
  void remove_dead_node( Node *dead ) {
    assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
    remove_globally_dead_node(dead);
  }

  // Add users of 'n' to worklist
  void add_users_to_worklist0( Node *n );
  void add_users_to_worklist ( Node *n );

458 459 460
  // Replace old node with new one.
  void replace_node( Node *old, Node *nn ) {
    add_users_to_worklist(old);
461
    hash_delete(old); // Yank from hash before hacking edges
462 463 464
    subsume_node(old, nn);
  }

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
  // Delayed node rehash: remove a node from the hash table and rehash it during
  // next optimizing pass
  void rehash_node_delayed(Node* n) {
    hash_delete(n);
    _worklist.push(n);
  }

  // Replace ith edge of "n" with "in"
  void replace_input_of(Node* n, int i, Node* in) {
    rehash_node_delayed(n);
    n->set_req(i, in);
  }

  // Delete ith edge of "n"
  void delete_input_of(Node* n, int i) {
    rehash_node_delayed(n);
    n->del_req(i);
  }

484 485
  bool delay_transform() const { return _delay_transform; }

486 487 488 489
  void set_delay_transform(bool delay) {
    _delay_transform = delay;
  }

490
  // Clone loop predicates. Defined in loopTransform.cpp.
491
  Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
492 493 494 495
  // Create a new if below new_entry for the predicate to be cloned
  ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
                                        Deoptimization::DeoptReason reason);

D
duke 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
#ifndef PRODUCT
protected:
  // Sub-quadratic implementation of VerifyIterativeGVN.
  unsigned long _verify_counter;
  unsigned long _verify_full_passes;
  enum { _verify_window_size = 30 };
  Node* _verify_window[_verify_window_size];
  void verify_step(Node* n);
#endif
};

//------------------------------PhaseCCP---------------------------------------
// Phase for performing global Conditional Constant Propagation.
// Should be replaced with combined CCP & GVN someday.
class PhaseCCP : public PhaseIterGVN {
  // Non-recursive.  Use analysis to transform single Node.
  virtual Node *transform_once( Node *n );

public:
  PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
  NOT_PRODUCT( ~PhaseCCP(); )

  // Worklist algorithm identifies constants
  void analyze();
  // Recursive traversal of program.  Used analysis to modify program.
  virtual Node *transform( Node *n );
  // Do any transformation after analysis
  void          do_transform();

  virtual const Type* saturate(const Type* new_type, const Type* old_type,
                               const Type* limit_type) const;
  // Returns new_type->widen(old_type), which increments the widen bits until
  // giving up with TypeInt::INT or TypeLong::LONG.
  // Result is clipped to limit_type if necessary.

#ifndef PRODUCT
  static uint _total_invokes;    // For profiling, count invocations
  void    inc_invokes()          { ++PhaseCCP::_total_invokes; }

  static uint _total_constants;  // For profiling, count constants found
  uint   _count_constants;
  void    clear_constants()      { _count_constants = 0; }
  void    inc_constants()        { ++_count_constants; }
  uint    count_constants() const { return _count_constants; }

  static void print_statistics();
#endif
};


//------------------------------PhasePeephole----------------------------------
// Phase for performing peephole optimizations on register allocated basic blocks.
class PhasePeephole : public PhaseTransform {
  PhaseRegAlloc *_regalloc;
  PhaseCFG     &_cfg;
  // Recursive traversal of program.  Pure function is unused in this phase
  virtual Node *transform( Node *n );

public:
  PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
  NOT_PRODUCT( ~PhasePeephole(); )

  // Do any transformation after analysis
  void          do_transform();

#ifndef PRODUCT
  static uint _total_peepholes;  // For profiling, count peephole rules applied
  uint   _count_peepholes;
  void    clear_peepholes()      { _count_peepholes = 0; }
  void    inc_peepholes()        { ++_count_peepholes; }
  uint    count_peepholes() const { return _count_peepholes; }

  static void print_statistics();
#endif
};
571 572

#endif // SHARE_VM_OPTO_PHASEX_HPP