x86_32.ad 438.8 KB
Newer Older
D
duke 已提交
1
//
2
// Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
// CA 95054 USA or visit www.sun.com if you need additional information or
// have any questions.
//
//

// X86 Architecture Description File

//----------REGISTER DEFINITION BLOCK------------------------------------------
// This information is used by the matcher and the register allocator to
// describe individual registers and classes of registers within the target
// archtecture.

register %{
//----------Architecture Description Register Definitions----------------------
// General Registers
// "reg_def"  name ( register save type, C convention save type,
//                   ideal register type, encoding );
// Register Save Types:
//
// NS  = No-Save:       The register allocator assumes that these registers
//                      can be used without saving upon entry to the method, &
//                      that they do not need to be saved at call sites.
//
// SOC = Save-On-Call:  The register allocator assumes that these registers
//                      can be used without saving upon entry to the method,
//                      but that they must be saved at call sites.
//
// SOE = Save-On-Entry: The register allocator assumes that these registers
//                      must be saved before using them upon entry to the
//                      method, but they do not need to be saved at call
//                      sites.
//
// AS  = Always-Save:   The register allocator assumes that these registers
//                      must be saved before using them upon entry to the
//                      method, & that they must be saved at call sites.
//
// Ideal Register Type is used to determine how to save & restore a
// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
//
// The encoding number is the actual bit-pattern placed into the opcodes.

// General Registers
// Previously set EBX, ESI, and EDI as save-on-entry for java code
// Turn off SOE in java-code due to frequent use of uncommon-traps.
// Now that allocator is better, turn on ESI and EDI as SOE registers.

reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
// now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());

// Special Registers
reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());

// Float registers.  We treat TOS/FPR0 special.  It is invisible to the
// allocator, and only shows up in the encodings.
reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
// Ok so here's the trick FPR1 is really st(0) except in the midst
// of emission of assembly for a machnode. During the emission the fpu stack
// is pushed making FPR1 == st(1) temporarily. However at any safepoint
// the stack will not have this element so FPR1 == st(0) from the
// oopMap viewpoint. This same weirdness with numbering causes
// instruction encoding to have to play games with the register
// encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
// where it does flt->flt moves to see an example
//
reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());

// XMM registers.  128-bit registers or 4 words each, labeled a-d.
// Word a in each register holds a Float, words ab hold a Double.
// We currently do not use the SIMD capabilities, so registers cd
// are unused at the moment.
reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());

// Specify priority of register selection within phases of register
// allocation.  Highest priority is first.  A useful heuristic is to
// give registers a low priority when they are required by machine
// instructions, like EAX and EDX.  Registers which are used as
T
twisti 已提交
133
// pairs must fall on an even boundary (witness the FPR#L's in this list).
D
duke 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
// For the Intel integer registers, the equivalent Long pairs are
// EDX:EAX, EBX:ECX, and EDI:EBP.
alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
                    FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
                    FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
                    FPR6L, FPR6H, FPR7L, FPR7H );

alloc_class chunk1( XMM0a, XMM0b,
                    XMM1a, XMM1b,
                    XMM2a, XMM2b,
                    XMM3a, XMM3b,
                    XMM4a, XMM4b,
                    XMM5a, XMM5b,
                    XMM6a, XMM6b,
                    XMM7a, XMM7b, EFLAGS);


//----------Architecture Description Register Classes--------------------------
// Several register classes are automatically defined based upon information in
// this architecture description.
// 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
// 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
//
// Class for all registers
reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
// Class for general registers
reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
// Class for general registers which may be used for implicit null checks on win95
// Also safe for use by tailjump. We don't want to allocate in rbp,
reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
// Class of "X" registers
reg_class x_reg(EBX, ECX, EDX, EAX);
// Class of registers that can appear in an address with no offset.
// EBP and ESP require an extra instruction byte for zero offset.
// Used in fast-unlock
reg_class p_reg(EDX, EDI, ESI, EBX);
// Class for general registers not including ECX
reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
// Class for general registers not including EAX
reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
// Class for general registers not including EAX or EBX.
reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
// Class of EAX (for multiply and divide operations)
reg_class eax_reg(EAX);
// Class of EBX (for atomic add)
reg_class ebx_reg(EBX);
// Class of ECX (for shift and JCXZ operations and cmpLTMask)
reg_class ecx_reg(ECX);
// Class of EDX (for multiply and divide operations)
reg_class edx_reg(EDX);
// Class of EDI (for synchronization)
reg_class edi_reg(EDI);
// Class of ESI (for synchronization)
reg_class esi_reg(ESI);
// Singleton class for interpreter's stack pointer
reg_class ebp_reg(EBP);
// Singleton class for stack pointer
reg_class sp_reg(ESP);
// Singleton class for instruction pointer
// reg_class ip_reg(EIP);
// Singleton class for condition codes
reg_class int_flags(EFLAGS);
// Class of integer register pairs
reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
// Class of integer register pairs that aligns with calling convention
reg_class eadx_reg( EAX,EDX );
reg_class ebcx_reg( ECX,EBX );
// Not AX or DX, used in divides
reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );

// Floating point registers.  Notice FPR0 is not a choice.
// FPR0 is not ever allocated; we use clever encodings to fake
// a 2-address instructions out of Intels FP stack.
reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );

// make a register class for SSE registers
reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);

// make a double register class for SSE2 registers
reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
                  XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );

reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
                   FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
                   FPR7L,FPR7H );

reg_class flt_reg0( FPR1L );
reg_class dbl_reg0( FPR1L,FPR1H );
reg_class dbl_reg1( FPR2L,FPR2H );
reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
                       FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );

// XMM6 and XMM7 could be used as temporary registers for long, float and
// double values for SSE2.
reg_class xdb_reg6( XMM6a,XMM6b );
reg_class xdb_reg7( XMM7a,XMM7b );
%}


//----------SOURCE BLOCK-------------------------------------------------------
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description
source %{
239
#define   RELOC_IMM32    Assembler::imm_operand
D
duke 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
#define   RELOC_DISP32   Assembler::disp32_operand

#define __ _masm.

// How to find the high register of a Long pair, given the low register
#define   HIGH_FROM_LOW(x) ((x)+2)

// These masks are used to provide 128-bit aligned bitmasks to the XMM
// instructions, to allow sign-masking or sign-bit flipping.  They allow
// fast versions of NegF/NegD and AbsF/AbsD.

// Note: 'double' and 'long long' have 32-bits alignment on x86.
static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  // of 128-bits operands for SSE instructions.
  jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
  // Store the value to a 128-bits operand.
  operand[0] = lo;
  operand[1] = hi;
  return operand;
}

// Buffer for 128-bits masks used by SSE instructions.
static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)

// Static initialization during VM startup.
static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));

271 272 273 274 275 276 277 278 279 280 281
// Offset hacking within calls.
static int pre_call_FPU_size() {
  if (Compile::current()->in_24_bit_fp_mode())
    return 6; // fldcw
  return 0;
}

static int preserve_SP_size() {
  return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
}

D
duke 已提交
282 283 284 285
// !!!!! Special hack to get all type of calls to specify the byte offset
//       from the start of the call to the point where the return address
//       will point.
int MachCallStaticJavaNode::ret_addr_offset() {
286 287 288 289
  int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
  if (_method_handle_invoke)
    offset += preserve_SP_size();
  return offset;
D
duke 已提交
290 291 292
}

int MachCallDynamicJavaNode::ret_addr_offset() {
293
  return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
D
duke 已提交
294 295 296 297 298 299
}

static int sizeof_FFree_Float_Stack_All = -1;

int MachCallRuntimeNode::ret_addr_offset() {
  assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
300
  return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
D
duke 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

// Indicate if the safepoint node needs the polling page as an input.
// Since x86 does have absolute addressing, it doesn't.
bool SafePointNode::needs_polling_address_input() {
  return false;
}

//
// Compute padding required for nodes which need alignment
//

// The address of the call instruction needs to be 4-byte aligned to
// ensure that it does not span a cache line so that it can be patched.
int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
316 317 318 319 320 321 322 323 324 325
  current_offset += pre_call_FPU_size();  // skip fldcw, if any
  current_offset += 1;      // skip call opcode byte
  return round_to(current_offset, alignment_required()) - current_offset;
}

// The address of the call instruction needs to be 4-byte aligned to
// ensure that it does not span a cache line so that it can be patched.
int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
  current_offset += pre_call_FPU_size();  // skip fldcw, if any
  current_offset += preserve_SP_size();   // skip mov rbp, rsp
D
duke 已提交
326 327 328 329 330 331 332
  current_offset += 1;      // skip call opcode byte
  return round_to(current_offset, alignment_required()) - current_offset;
}

// The address of the call instruction needs to be 4-byte aligned to
// ensure that it does not span a cache line so that it can be patched.
int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
333
  current_offset += pre_call_FPU_size();  // skip fldcw, if any
D
duke 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  current_offset += 5;      // skip MOV instruction
  current_offset += 1;      // skip call opcode byte
  return round_to(current_offset, alignment_required()) - current_offset;
}

#ifndef PRODUCT
void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
  st->print("INT3");
}
#endif

// EMIT_RM()
void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
  unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
  *(cbuf.code_end()) = c;
  cbuf.set_code_end(cbuf.code_end() + 1);
}

// EMIT_CC()
void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
  unsigned char c = (unsigned char)( f1 | f2 );
  *(cbuf.code_end()) = c;
  cbuf.set_code_end(cbuf.code_end() + 1);
}

// EMIT_OPCODE()
void emit_opcode(CodeBuffer &cbuf, int code) {
  *(cbuf.code_end()) = (unsigned char)code;
  cbuf.set_code_end(cbuf.code_end() + 1);
}

// EMIT_OPCODE() w/ relocation information
void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
  cbuf.relocate(cbuf.inst_mark() + offset, reloc);
  emit_opcode(cbuf, code);
}

// EMIT_D8()
void emit_d8(CodeBuffer &cbuf, int d8) {
  *(cbuf.code_end()) = (unsigned char)d8;
  cbuf.set_code_end(cbuf.code_end() + 1);
}

// EMIT_D16()
void emit_d16(CodeBuffer &cbuf, int d16) {
  *((short *)(cbuf.code_end())) = d16;
  cbuf.set_code_end(cbuf.code_end() + 2);
}

// EMIT_D32()
void emit_d32(CodeBuffer &cbuf, int d32) {
  *((int *)(cbuf.code_end())) = d32;
  cbuf.set_code_end(cbuf.code_end() + 4);
}

// emit 32 bit value and construct relocation entry from relocInfo::relocType
void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
        int format) {
  cbuf.relocate(cbuf.inst_mark(), reloc, format);

  *((int *)(cbuf.code_end())) = d32;
  cbuf.set_code_end(cbuf.code_end() + 4);
}

// emit 32 bit value and construct relocation entry from RelocationHolder
void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
        int format) {
#ifdef ASSERT
  if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
403
    assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
D
duke 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  }
#endif
  cbuf.relocate(cbuf.inst_mark(), rspec, format);

  *((int *)(cbuf.code_end())) = d32;
  cbuf.set_code_end(cbuf.code_end() + 4);
}

// Access stack slot for load or store
void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
  emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
  if( -128 <= disp && disp <= 127 ) {
    emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
    emit_d8 (cbuf, disp);     // Displacement  // R/M byte
  } else {
    emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
    emit_d32(cbuf, disp);     // Displacement  // R/M byte
  }
}

   // eRegI ereg, memory mem) %{    // emit_reg_mem
void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
  // There is no index & no scale, use form without SIB byte
  if ((index == 0x4) &&
      (scale == 0) && (base != ESP_enc)) {
    // If no displacement, mode is 0x0; unless base is [EBP]
    if ( (displace == 0) && (base != EBP_enc) ) {
      emit_rm(cbuf, 0x0, reg_encoding, base);
    }
    else {                    // If 8-bit displacement, mode 0x1
      if ((displace >= -128) && (displace <= 127)
          && !(displace_is_oop) ) {
        emit_rm(cbuf, 0x1, reg_encoding, base);
        emit_d8(cbuf, displace);
      }
      else {                  // If 32-bit displacement
        if (base == -1) { // Special flag for absolute address
          emit_rm(cbuf, 0x0, reg_encoding, 0x5);
          // (manual lies; no SIB needed here)
          if ( displace_is_oop ) {
            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
          } else {
            emit_d32      (cbuf, displace);
          }
        }
        else {                // Normal base + offset
          emit_rm(cbuf, 0x2, reg_encoding, base);
          if ( displace_is_oop ) {
            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
          } else {
            emit_d32      (cbuf, displace);
          }
        }
      }
    }
  }
  else {                      // Else, encode with the SIB byte
    // If no displacement, mode is 0x0; unless base is [EBP]
    if (displace == 0 && (base != EBP_enc)) {  // If no displacement
      emit_rm(cbuf, 0x0, reg_encoding, 0x4);
      emit_rm(cbuf, scale, index, base);
    }
    else {                    // If 8-bit displacement, mode 0x1
      if ((displace >= -128) && (displace <= 127)
          && !(displace_is_oop) ) {
        emit_rm(cbuf, 0x1, reg_encoding, 0x4);
        emit_rm(cbuf, scale, index, base);
        emit_d8(cbuf, displace);
      }
      else {                  // If 32-bit displacement
        if (base == 0x04 ) {
          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
          emit_rm(cbuf, scale, index, 0x04);
        } else {
          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
          emit_rm(cbuf, scale, index, base);
        }
        if ( displace_is_oop ) {
          emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
        } else {
          emit_d32      (cbuf, displace);
        }
      }
    }
  }
}


void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
  if( dst_encoding == src_encoding ) {
    // reg-reg copy, use an empty encoding
  } else {
    emit_opcode( cbuf, 0x8B );
    emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
  }
}

void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
  if( dst_encoding == src_encoding ) {
    // reg-reg copy, use an empty encoding
  } else {
    MacroAssembler _masm(&cbuf);

    __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
  }
}


//=============================================================================
#ifndef PRODUCT
void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  Compile* C = ra_->C;
  if( C->in_24_bit_fp_mode() ) {
519 520
    st->print("FLDCW  24 bit fpu control word");
    st->print_cr(""); st->print("\t");
D
duke 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533
  }

  int framesize = C->frame_slots() << LogBytesPerInt;
  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  // Remove two words for return addr and rbp,
  framesize -= 2*wordSize;

  // Calls to C2R adapters often do not accept exceptional returns.
  // We require that their callers must bang for them.  But be careful, because
  // some VM calls (such as call site linkage) can use several kilobytes of
  // stack.  But the stack safety zone should account for that.
  // See bugs 4446381, 4468289, 4497237.
  if (C->need_stack_bang(framesize)) {
534
    st->print_cr("# stack bang"); st->print("\t");
D
duke 已提交
535
  }
536
  st->print_cr("PUSHL  EBP"); st->print("\t");
D
duke 已提交
537 538

  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
539 540
    st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
    st->print_cr(""); st->print("\t");
D
duke 已提交
541 542 543 544 545
    framesize -= wordSize;
  }

  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
    if (framesize) {
546
      st->print("SUB    ESP,%d\t# Create frame",framesize);
D
duke 已提交
547 548
    }
  } else {
549
    st->print("SUB    ESP,%d\t# Create frame",framesize);
D
duke 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
  }
}
#endif


void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  Compile* C = ra_->C;

  if (UseSSE >= 2 && VerifyFPU) {
    MacroAssembler masm(&cbuf);
    masm.verify_FPU(0, "FPU stack must be clean on entry");
  }

  // WARNING: Initial instruction MUST be 5 bytes or longer so that
  // NativeJump::patch_verified_entry will be able to patch out the entry
  // code safely. The fldcw is ok at 6 bytes, the push to verify stack
  // depth is ok at 5 bytes, the frame allocation can be either 3 or
  // 6 bytes. So if we don't do the fldcw or the push then we must
  // use the 6 byte frame allocation even if we have no frame. :-(
  // If method sets FPU control word do it now
  if( C->in_24_bit_fp_mode() ) {
    MacroAssembler masm(&cbuf);
    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  }

  int framesize = C->frame_slots() << LogBytesPerInt;
  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  // Remove two words for return addr and rbp,
  framesize -= 2*wordSize;

  // Calls to C2R adapters often do not accept exceptional returns.
  // We require that their callers must bang for them.  But be careful, because
  // some VM calls (such as call site linkage) can use several kilobytes of
  // stack.  But the stack safety zone should account for that.
  // See bugs 4446381, 4468289, 4497237.
  if (C->need_stack_bang(framesize)) {
    MacroAssembler masm(&cbuf);
    masm.generate_stack_overflow_check(framesize);
  }

  // We always push rbp, so that on return to interpreter rbp, will be
  // restored correctly and we can correct the stack.
  emit_opcode(cbuf, 0x50 | EBP_enc);

  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
    emit_opcode(cbuf, 0x68); // push 0xbadb100d
    emit_d32(cbuf, 0xbadb100d);
    framesize -= wordSize;
  }

  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
    if (framesize) {
      emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
      emit_rm(cbuf, 0x3, 0x05, ESP_enc);
      emit_d8(cbuf, framesize);
    }
  } else {
    emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
    emit_rm(cbuf, 0x3, 0x05, ESP_enc);
    emit_d32(cbuf, framesize);
  }
  C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());

#ifdef ASSERT
  if (VerifyStackAtCalls) {
    Label L;
    MacroAssembler masm(&cbuf);
617 618 619 620 621
    masm.push(rax);
    masm.mov(rax, rsp);
    masm.andptr(rax, StackAlignmentInBytes-1);
    masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
    masm.pop(rax);
D
duke 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    masm.jcc(Assembler::equal, L);
    masm.stop("Stack is not properly aligned!");
    masm.bind(L);
  }
#endif

}

uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  return MachNode::size(ra_); // too many variables; just compute it the hard way
}

int MachPrologNode::reloc() const {
  return 0; // a large enough number
}

//=============================================================================
#ifndef PRODUCT
void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  Compile *C = ra_->C;
  int framesize = C->frame_slots() << LogBytesPerInt;
  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  // Remove two words for return addr and rbp,
  framesize -= 2*wordSize;

  if( C->in_24_bit_fp_mode() ) {
    st->print("FLDCW  standard control word");
    st->cr(); st->print("\t");
  }
  if( framesize ) {
    st->print("ADD    ESP,%d\t# Destroy frame",framesize);
    st->cr(); st->print("\t");
  }
  st->print_cr("POPL   EBP"); st->print("\t");
  if( do_polling() && C->is_method_compilation() ) {
    st->print("TEST   PollPage,EAX\t! Poll Safepoint");
    st->cr(); st->print("\t");
  }
}
#endif

void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  Compile *C = ra_->C;

  // If method set FPU control word, restore to standard control word
  if( C->in_24_bit_fp_mode() ) {
    MacroAssembler masm(&cbuf);
    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  }

  int framesize = C->frame_slots() << LogBytesPerInt;
  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  // Remove two words for return addr and rbp,
  framesize -= 2*wordSize;

  // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here

  if( framesize >= 128 ) {
    emit_opcode(cbuf, 0x81); // add  SP, #framesize
    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
    emit_d32(cbuf, framesize);
  }
  else if( framesize ) {
    emit_opcode(cbuf, 0x83); // add  SP, #framesize
    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
    emit_d8(cbuf, framesize);
  }

  emit_opcode(cbuf, 0x58 | EBP_enc);

  if( do_polling() && C->is_method_compilation() ) {
    cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
    emit_opcode(cbuf,0x85);
    emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
    emit_d32(cbuf, (intptr_t)os::get_polling_page());
  }
}

uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  Compile *C = ra_->C;
  // If method set FPU control word, restore to standard control word
  int size = C->in_24_bit_fp_mode() ? 6 : 0;
  if( do_polling() && C->is_method_compilation() ) size += 6;

  int framesize = C->frame_slots() << LogBytesPerInt;
  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  // Remove two words for return addr and rbp,
  framesize -= 2*wordSize;

  size++; // popl rbp,

  if( framesize >= 128 ) {
    size += 6;
  } else {
    size += framesize ? 3 : 0;
  }
  return size;
}

int MachEpilogNode::reloc() const {
  return 0; // a large enough number
}

const Pipeline * MachEpilogNode::pipeline() const {
  return MachNode::pipeline_class();
}

int MachEpilogNode::safepoint_offset() const { return 0; }

//=============================================================================

enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
static enum RC rc_class( OptoReg::Name reg ) {

  if( !OptoReg::is_valid(reg)  ) return rc_bad;
  if (OptoReg::is_stack(reg)) return rc_stack;

  VMReg r = OptoReg::as_VMReg(reg);
  if (r->is_Register()) return rc_int;
  if (r->is_FloatRegister()) {
    assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
    return rc_float;
  }
  assert(r->is_XMMRegister(), "must be");
  return rc_xmm;
}

749 750
static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
                        int opcode, const char *op_str, int size, outputStream* st ) {
D
duke 已提交
751 752 753 754 755
  if( cbuf ) {
    emit_opcode  (*cbuf, opcode );
    encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
#ifndef PRODUCT
  } else if( !do_size ) {
756
    if( size != 0 ) st->print("\n\t");
D
duke 已提交
757
    if( opcode == 0x8B || opcode == 0x89 ) { // MOV
758 759
      if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
      else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
D
duke 已提交
760
    } else { // FLD, FST, PUSH, POP
761
      st->print("%s [ESP + #%d]",op_str,offset);
D
duke 已提交
762 763 764 765 766 767 768 769 770
    }
#endif
  }
  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  return size+3+offset_size;
}

// Helper for XMM registers.  Extra opcode bits, limited syntax.
static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
771
                         int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
D
duke 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
  if( cbuf ) {
    if( reg_lo+1 == reg_hi ) { // double move?
      if( is_load && !UseXmmLoadAndClearUpper )
        emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
      else
        emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
    } else {
      emit_opcode(*cbuf, 0xF3 );
    }
    emit_opcode(*cbuf, 0x0F );
    if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
      emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
    else
      emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
    encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
#ifndef PRODUCT
  } else if( !do_size ) {
789
    if( size != 0 ) st->print("\n\t");
D
duke 已提交
790
    if( reg_lo+1 == reg_hi ) { // double move?
791
      if( is_load ) st->print("%s %s,[ESP + #%d]",
D
duke 已提交
792 793
                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
                               Matcher::regName[reg_lo], offset);
794
      else          st->print("MOVSD  [ESP + #%d],%s",
D
duke 已提交
795 796
                               offset, Matcher::regName[reg_lo]);
    } else {
797
      if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
D
duke 已提交
798
                               Matcher::regName[reg_lo], offset);
799
      else          st->print("MOVSS  [ESP + #%d],%s",
D
duke 已提交
800 801 802 803 804 805 806 807 808 809
                               offset, Matcher::regName[reg_lo]);
    }
#endif
  }
  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  return size+5+offset_size;
}


static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
810
                            int src_hi, int dst_hi, int size, outputStream* st ) {
D
duke 已提交
811 812 813 814 815 816 817 818 819 820
  if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
    if( cbuf ) {
      if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
        emit_opcode(*cbuf, 0x66 );
      }
      emit_opcode(*cbuf, 0x0F );
      emit_opcode(*cbuf, 0x28 );
      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
#ifndef PRODUCT
    } else if( !do_size ) {
821
      if( size != 0 ) st->print("\n\t");
D
duke 已提交
822
      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
823
        st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
D
duke 已提交
824
      } else {
825
        st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
D
duke 已提交
826 827 828 829 830 831 832 833 834 835 836 837
      }
#endif
    }
    return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
  } else {
    if( cbuf ) {
      emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
      emit_opcode(*cbuf, 0x0F );
      emit_opcode(*cbuf, 0x10 );
      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
#ifndef PRODUCT
    } else if( !do_size ) {
838
      if( size != 0 ) st->print("\n\t");
D
duke 已提交
839
      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
840
        st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
D
duke 已提交
841
      } else {
842
        st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
D
duke 已提交
843 844 845 846 847 848 849
      }
#endif
    }
    return size+4;
  }
}

850
static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
D
duke 已提交
851 852 853 854 855
  if( cbuf ) {
    emit_opcode(*cbuf, 0x8B );
    emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
#ifndef PRODUCT
  } else if( !do_size ) {
856 857
    if( size != 0 ) st->print("\n\t");
    st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
D
duke 已提交
858 859 860 861 862
#endif
  }
  return size+2;
}

863 864
static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
                                 int offset, int size, outputStream* st ) {
D
duke 已提交
865 866 867 868 869 870
  if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
    if( cbuf ) {
      emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
      emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
#ifndef PRODUCT
    } else if( !do_size ) {
871 872
      if( size != 0 ) st->print("\n\t");
      st->print("FLD    %s",Matcher::regName[src_lo]);
D
duke 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
#endif
    }
    size += 2;
  }

  int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
  const char *op_str;
  int op;
  if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
    op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
    op = 0xDD;
  } else {                   // 32-bit store
    op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
    op = 0xD9;
    assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
  }

890
  return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
D
duke 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
}

uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
  // Get registers to move
  OptoReg::Name src_second = ra_->get_reg_second(in(1));
  OptoReg::Name src_first = ra_->get_reg_first(in(1));
  OptoReg::Name dst_second = ra_->get_reg_second(this );
  OptoReg::Name dst_first = ra_->get_reg_first(this );

  enum RC src_second_rc = rc_class(src_second);
  enum RC src_first_rc = rc_class(src_first);
  enum RC dst_second_rc = rc_class(dst_second);
  enum RC dst_first_rc = rc_class(dst_first);

  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );

  // Generate spill code!
  int size = 0;

  if( src_first == dst_first && src_second == dst_second )
    return size;            // Self copy, no move

  // --------------------------------------
  // Check for mem-mem move.  push/pop to move.
  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
    if( src_second == dst_first ) { // overlapping stack copy ranges
      assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
918 919
      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
D
duke 已提交
920 921 922
      src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
    }
    // move low bits
923 924
    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
D
duke 已提交
925
    if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
926 927
      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
D
duke 已提交
928 929 930 931 932 933 934
    }
    return size;
  }

  // --------------------------------------
  // Check for integer reg-reg copy
  if( src_first_rc == rc_int && dst_first_rc == rc_int )
935
    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
D
duke 已提交
936 937 938

  // Check for integer store
  if( src_first_rc == rc_int && dst_first_rc == rc_stack )
939
    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
D
duke 已提交
940 941 942

  // Check for integer load
  if( dst_first_rc == rc_int && src_first_rc == rc_stack )
943
    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
D
duke 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

  // --------------------------------------
  // Check for float reg-reg copy
  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
            (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
    if( cbuf ) {

      // Note the mucking with the register encode to compensate for the 0/1
      // indexing issue mentioned in a comment in the reg_def sections
      // for FPR registers many lines above here.

      if( src_first != FPR1L_num ) {
        emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
        emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
        emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
        emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
     } else {
        emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
        emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
     }
#ifndef PRODUCT
    } else if( !do_size ) {
      if( size != 0 ) st->print("\n\t");
      if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
      else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
#endif
    }
    return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  }

  // Check for float store
  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
977
    return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
D
duke 已提交
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
  }

  // Check for float load
  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
    int offset = ra_->reg2offset(src_first);
    const char *op_str;
    int op;
    if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
      op_str = "FLD_D";
      op = 0xDD;
    } else {                   // 32-bit load
      op_str = "FLD_S";
      op = 0xD9;
      assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
    }
    if( cbuf ) {
      emit_opcode  (*cbuf, op );
      encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
      emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
      emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
#ifndef PRODUCT
    } else if( !do_size ) {
      if( size != 0 ) st->print("\n\t");
      st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
#endif
    }
    int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
    return size + 3+offset_size+2;
  }

  // Check for xmm reg-reg copy
  if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
            (src_first+1 == src_second && dst_first+1 == dst_second),
            "no non-adjacent float-moves" );
1013
    return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
D
duke 已提交
1014 1015 1016 1017
  }

  // Check for xmm store
  if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1018
    return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
D
duke 已提交
1019 1020 1021 1022
  }

  // Check for float xmm load
  if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1023
    return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
D
duke 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
  }

  // Copy from float reg to xmm reg
  if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
    // copy to the top of stack from floating point reg
    // and use LEA to preserve flags
    if( cbuf ) {
      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
      emit_d8(*cbuf,0xF8);
#ifndef PRODUCT
    } else if( !do_size ) {
      if( size != 0 ) st->print("\n\t");
      st->print("LEA    ESP,[ESP-8]");
#endif
    }
    size += 4;

1043
    size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
D
duke 已提交
1044 1045

    // Copy from the temp memory to the xmm reg.
1046
    size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
D
duke 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

    if( cbuf ) {
      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
      emit_d8(*cbuf,0x08);
#ifndef PRODUCT
    } else if( !do_size ) {
      if( size != 0 ) st->print("\n\t");
      st->print("LEA    ESP,[ESP+8]");
#endif
    }
    size += 4;
    return size;
  }

  assert( size > 0, "missed a case" );

  // --------------------------------------------------------------------
  // Check for second bits still needing moving.
  if( src_second == dst_second )
    return size;               // Self copy; no move
  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );

  // Check for second word int-int move
  if( src_second_rc == rc_int && dst_second_rc == rc_int )
1073
    return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
D
duke 已提交
1074 1075 1076

  // Check for second word integer store
  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1077
    return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
D
duke 已提交
1078 1079 1080

  // Check for second word integer load
  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1081
    return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
D
duke 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175


  Unimplemented();
}

#ifndef PRODUCT
void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  implementation( NULL, ra_, false, st );
}
#endif

void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  implementation( &cbuf, ra_, false, NULL );
}

uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  return implementation( NULL, ra_, true, NULL );
}

//=============================================================================
#ifndef PRODUCT
void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  st->print("NOP \t# %d bytes pad for loops and calls", _count);
}
#endif

void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  MacroAssembler _masm(&cbuf);
  __ nop(_count);
}

uint MachNopNode::size(PhaseRegAlloc *) const {
  return _count;
}


//=============================================================================
#ifndef PRODUCT
void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  int reg = ra_->get_reg_first(this);
  st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
}
#endif

void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  int reg = ra_->get_encode(this);
  if( offset >= 128 ) {
    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
    emit_rm(cbuf, 0x2, reg, 0x04);
    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
    emit_d32(cbuf, offset);
  }
  else {
    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
    emit_rm(cbuf, 0x1, reg, 0x04);
    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
    emit_d8(cbuf, offset);
  }
}

uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  if( offset >= 128 ) {
    return 7;
  }
  else {
    return 4;
  }
}

//=============================================================================

// emit call stub, compiled java to interpreter
void emit_java_to_interp(CodeBuffer &cbuf ) {
  // Stub is fixed up when the corresponding call is converted from calling
  // compiled code to calling interpreted code.
  // mov rbx,0
  // jmp -1

  address mark = cbuf.inst_mark();  // get mark within main instrs section

  // Note that the code buffer's inst_mark is always relative to insts.
  // That's why we must use the macroassembler to generate a stub.
  MacroAssembler _masm(&cbuf);

  address base =
  __ start_a_stub(Compile::MAX_stubs_size);
  if (base == NULL)  return;  // CodeBuffer::expand failed
  // static stub relocation stores the instruction address of the call
  __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  // static stub relocation also tags the methodOop in the code-stream.
  __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1176 1177
  // This is recognized as unresolved by relocs/nativeInst/ic code
  __ jump(RuntimeAddress(__ pc()));
D
duke 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

  __ end_a_stub();
  // Update current stubs pointer and restore code_end.
}
// size of call stub, compiled java to interpretor
uint size_java_to_interp() {
  return 10;  // movl; jmp
}
// relocation entries for call stub, compiled java to interpretor
uint reloc_java_to_interp() {
  return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
}

//=============================================================================
#ifndef PRODUCT
void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  st->print_cr("\tNOP");
  st->print_cr("\tNOP");
  if( !OptoBreakpoint )
    st->print_cr("\tNOP");
}
#endif

void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  MacroAssembler masm(&cbuf);
#ifdef ASSERT
  uint code_size = cbuf.code_size();
#endif
1208
  masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
D
duke 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
  masm.jump_cc(Assembler::notEqual,
               RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  /* WARNING these NOPs are critical so that verified entry point is properly
     aligned for patching by NativeJump::patch_verified_entry() */
  int nops_cnt = 2;
  if( !OptoBreakpoint ) // Leave space for int3
     nops_cnt += 1;
  masm.nop(nops_cnt);

  assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
}

uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  return OptoBreakpoint ? 11 : 12;
}


//=============================================================================
uint size_exception_handler() {
  // NativeCall instruction size is the same as NativeJump.
  // exception handler starts out as jump and can be patched to
  // a call be deoptimization.  (4932387)
  // Note that this value is also credited (in output.cpp) to
  // the size of the code section.
  return NativeJump::instruction_size;
}

// Emit exception handler code.  Stuff framesize into a register
// and call a VM stub routine.
int emit_exception_handler(CodeBuffer& cbuf) {

  // Note that the code buffer's inst_mark is always relative to insts.
  // That's why we must use the macroassembler to generate a handler.
  MacroAssembler _masm(&cbuf);
  address base =
  __ start_a_stub(size_exception_handler());
  if (base == NULL)  return 0;  // CodeBuffer::expand failed
  int offset = __ offset();
  __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  __ end_a_stub();
  return offset;
}

uint size_deopt_handler() {
  // NativeCall instruction size is the same as NativeJump.
  // exception handler starts out as jump and can be patched to
  // a call be deoptimization.  (4932387)
  // Note that this value is also credited (in output.cpp) to
  // the size of the code section.
  return 5 + NativeJump::instruction_size; // pushl(); jmp;
}

// Emit deopt handler code.
int emit_deopt_handler(CodeBuffer& cbuf) {

  // Note that the code buffer's inst_mark is always relative to insts.
  // That's why we must use the macroassembler to generate a handler.
  MacroAssembler _masm(&cbuf);
  address base =
  __ start_a_stub(size_exception_handler());
  if (base == NULL)  return 0;  // CodeBuffer::expand failed
  int offset = __ offset();
  InternalAddress here(__ pc());
  __ pushptr(here.addr());

  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  __ end_a_stub();
  return offset;
}


static void emit_double_constant(CodeBuffer& cbuf, double x) {
  int mark = cbuf.insts()->mark_off();
  MacroAssembler _masm(&cbuf);
  address double_address = __ double_constant(x);
  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  emit_d32_reloc(cbuf,
                 (int)double_address,
                 internal_word_Relocation::spec(double_address),
                 RELOC_DISP32);
}

static void emit_float_constant(CodeBuffer& cbuf, float x) {
  int mark = cbuf.insts()->mark_off();
  MacroAssembler _masm(&cbuf);
  address float_address = __ float_constant(x);
  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  emit_d32_reloc(cbuf,
                 (int)float_address,
                 internal_word_Relocation::spec(float_address),
                 RELOC_DISP32);
}


1305 1306 1307 1308 1309 1310 1311
const bool Matcher::match_rule_supported(int opcode) {
  if (!has_match_rule(opcode))
    return false;

  return true;  // Per default match rules are supported.
}

D
duke 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
int Matcher::regnum_to_fpu_offset(int regnum) {
  return regnum - 32; // The FP registers are in the second chunk
}

bool is_positive_zero_float(jfloat f) {
  return jint_cast(f) == jint_cast(0.0F);
}

bool is_positive_one_float(jfloat f) {
  return jint_cast(f) == jint_cast(1.0F);
}

bool is_positive_zero_double(jdouble d) {
  return jlong_cast(d) == jlong_cast(0.0);
}

bool is_positive_one_double(jdouble d) {
  return jlong_cast(d) == jlong_cast(1.0);
}

// This is UltraSparc specific, true just means we have fast l2f conversion
const bool Matcher::convL2FSupported(void) {
  return true;
}

// Vector width in bytes
const uint Matcher::vector_width_in_bytes(void) {
  return UseSSE >= 2 ? 8 : 0;
}

// Vector ideal reg
const uint Matcher::vector_ideal_reg(void) {
  return Op_RegD;
}

// Is this branch offset short enough that a short branch can be used?
//
// NOTE: If the platform does not provide any short branch variants, then
//       this method should return false for offset 0.
1351 1352 1353 1354 1355
bool Matcher::is_short_branch_offset(int rule, int offset) {
  // the short version of jmpConUCF2 contains multiple branches,
  // making the reach slightly less
  if (rule == jmpConUCF2_rule)
    return (-126 <= offset && offset <= 125);
D
duke 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
  return (-128 <= offset && offset <= 127);
}

const bool Matcher::isSimpleConstant64(jlong value) {
  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  return false;
}

// The ecx parameter to rep stos for the ClearArray node is in dwords.
const bool Matcher::init_array_count_is_in_bytes = false;

// Threshold size for cleararray.
const int Matcher::init_array_short_size = 8 * BytesPerLong;

// Should the Matcher clone shifts on addressing modes, expecting them to
// be subsumed into complex addressing expressions or compute them into
// registers?  True for Intel but false for most RISCs
const bool Matcher::clone_shift_expressions = true;

// Is it better to copy float constants, or load them directly from memory?
// Intel can load a float constant from a direct address, requiring no
// extra registers.  Most RISCs will have to materialize an address into a
// register first, so they would do better to copy the constant from stack.
const bool Matcher::rematerialize_float_constants = true;

// If CPU can load and store mis-aligned doubles directly then no fixup is
// needed.  Else we split the double into 2 integer pieces and move it
// piece-by-piece.  Only happens when passing doubles into C code as the
// Java calling convention forces doubles to be aligned.
const bool Matcher::misaligned_doubles_ok = true;


void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  // Get the memory operand from the node
  uint numopnds = node->num_opnds();        // Virtual call for number of operands
  uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  uint opcnt     = 1;                 // First operand
  uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  while( idx >= skipped+num_edges ) {
    skipped += num_edges;
    opcnt++;                          // Bump operand count
    assert( opcnt < numopnds, "Accessing non-existent operand" );
    num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  }

  MachOper *memory = node->_opnds[opcnt];
  MachOper *new_memory = NULL;
  switch (memory->opcode()) {
  case DIRECT:
  case INDOFFSET32X:
    // No transformation necessary.
    return;
  case INDIRECT:
    new_memory = new (C) indirect_win95_safeOper( );
    break;
  case INDOFFSET8:
    new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
    break;
  case INDOFFSET32:
    new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
    break;
  case INDINDEXOFFSET:
    new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
    break;
  case INDINDEXSCALE:
    new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
    break;
  case INDINDEXSCALEOFFSET:
    new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
    break;
  case LOAD_LONG_INDIRECT:
  case LOAD_LONG_INDOFFSET32:
    // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
    return;
  default:
    assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
    return;
  }
  node->_opnds[opcnt] = new_memory;
}

// Advertise here if the CPU requires explicit rounding operations
// to implement the UseStrictFP mode.
const bool Matcher::strict_fp_requires_explicit_rounding = true;

// Do floats take an entire double register or just half?
const bool Matcher::float_in_double = true;
// Do ints take an entire long register or just half?
const bool Matcher::int_in_long = false;

// Return whether or not this register is ever used as an argument.  This
// function is used on startup to build the trampoline stubs in generateOptoStub.
// Registers not mentioned will be killed by the VM call in the trampoline, and
// arguments in those registers not be available to the callee.
bool Matcher::can_be_java_arg( int reg ) {
  if(  reg == ECX_num   || reg == EDX_num   ) return true;
  if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  return false;
}

bool Matcher::is_spillable_arg( int reg ) {
  return can_be_java_arg(reg);
}

// Register for DIVI projection of divmodI
RegMask Matcher::divI_proj_mask() {
  return EAX_REG_mask;
}

// Register for MODI projection of divmodI
RegMask Matcher::modI_proj_mask() {
  return EDX_REG_mask;
}

// Register for DIVL projection of divmodL
RegMask Matcher::divL_proj_mask() {
  ShouldNotReachHere();
  return RegMask();
}

// Register for MODL projection of divmodL
RegMask Matcher::modL_proj_mask() {
  ShouldNotReachHere();
  return RegMask();
}

1484 1485 1486 1487
const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  return EBP_REG_mask;
}

D
duke 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
%}

//----------ENCODING BLOCK-----------------------------------------------------
// This block specifies the encoding classes used by the compiler to output
// byte streams.  Encoding classes generate functions which are called by
// Machine Instruction Nodes in order to generate the bit encoding of the
// instruction.  Operands specify their base encoding interface with the
// interface keyword.  There are currently supported four interfaces,
// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
// operand to generate a function which returns its register number when
// queried.   CONST_INTER causes an operand to generate a function which
// returns the value of the constant when queried.  MEMORY_INTER causes an
// operand to generate four functions which return the Base Register, the
// Index Register, the Scale Value, and the Offset Value of the operand when
// queried.  COND_INTER causes an operand to generate six functions which
// return the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional instruction.
// Instructions specify two basic values for encoding.  They use the
// ins_encode keyword to specify their encoding class (which must be one of
// the class names specified in the encoding block), and they use the
// opcode keyword to specify, in order, their primary, secondary, and
// tertiary opcode.  Only the opcode sections which a particular instruction
// needs for encoding need to be specified.
encode %{
  // Build emit functions for each basic byte or larger field in the intel
  // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  // code in the enc_class source block.  Emit functions will live in the
  // main source block for now.  In future, we can generalize this by
  // adding a syntax that specifies the sizes of fields in an order,
  // so that the adlc can build the emit functions automagically
1518 1519 1520 1521

  // Emit primary opcode
  enc_class OpcP %{
    emit_opcode(cbuf, $primary);
D
duke 已提交
1522 1523
  %}

1524 1525 1526
  // Emit secondary opcode
  enc_class OpcS %{
    emit_opcode(cbuf, $secondary);
D
duke 已提交
1527 1528
  %}

1529 1530 1531
  // Emit opcode directly
  enc_class Opcode(immI d8) %{
    emit_opcode(cbuf, $d8$$constant);
D
duke 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
  %}

  enc_class SizePrefix %{
    emit_opcode(cbuf,0x66);
  %}

  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  %}

  enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
    emit_opcode(cbuf,$opcode$$constant);
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  %}

  enc_class mov_r32_imm0( eRegI dst ) %{
    emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
    emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  %}

  enc_class cdq_enc %{
    // Full implementation of Java idiv and irem; checks for
    // special case as described in JVM spec., p.243 & p.271.
    //
    //         normal case                           special case
    //
    // input : rax,: dividend                         min_int
    //         reg: divisor                          -1
    //
    // output: rax,: quotient  (= rax, idiv reg)       min_int
    //         rdx: remainder (= rax, irem reg)       0
    //
    //  Code sequnce:
    //
    //  81 F8 00 00 00 80    cmp         rax,80000000h
    //  0F 85 0B 00 00 00    jne         normal_case
    //  33 D2                xor         rdx,edx
    //  83 F9 FF             cmp         rcx,0FFh
    //  0F 84 03 00 00 00    je          done
    //                  normal_case:
    //  99                   cdq
    //  F7 F9                idiv        rax,ecx
    //                  done:
    //
    emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
    emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
    emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
    emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
    emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
    // normal_case:
    emit_opcode(cbuf,0x99);                                         // cdq
    // idiv (note: must be emitted by the user of this rule)
    // normal:
  %}

  // Dense encoding for older common ops
  enc_class Opc_plus(immI opcode, eRegI reg) %{
    emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  %}


  // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
    // Check for 8-bit immediate, and set sign extend bit in opcode
    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
      emit_opcode(cbuf, $primary | 0x02);
    }
    else {                          // If 32-bit immediate
      emit_opcode(cbuf, $primary);
    }
  %}

  enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
    // Emit primary opcode and set sign-extend bit
    // Check for 8-bit immediate, and set sign extend bit in opcode
    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
      emit_opcode(cbuf, $primary | 0x02);    }
    else {                          // If 32-bit immediate
      emit_opcode(cbuf, $primary);
    }
    // Emit r/m byte with secondary opcode, after primary opcode.
    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  %}

  enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
    // Check for 8-bit immediate, and set sign extend bit in opcode
    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
      $$$emit8$imm$$constant;
    }
    else {                          // If 32-bit immediate
      // Output immediate
      $$$emit32$imm$$constant;
    }
  %}

  enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
    // Emit primary opcode and set sign-extend bit
    // Check for 8-bit immediate, and set sign extend bit in opcode
    int con = (int)$imm$$constant; // Throw away top bits
    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
    // Emit r/m byte with secondary opcode, after primary opcode.
    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
    else                               emit_d32(cbuf,con);
  %}

  enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
    // Emit primary opcode and set sign-extend bit
    // Check for 8-bit immediate, and set sign extend bit in opcode
    int con = (int)($imm$$constant >> 32); // Throw away bottom bits
    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
    // Emit r/m byte with tertiary opcode, after primary opcode.
    emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
    else                               emit_d32(cbuf,con);
  %}

  enc_class Lbl (label labl) %{ // JMP, CALL
    Label *l = $labl$$label;
    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  %}

  enc_class LblShort (label labl) %{ // JMP, CALL
    Label *l = $labl$$label;
    int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
    emit_d8(cbuf, disp);
  %}

  enc_class OpcSReg (eRegI dst) %{    // BSWAP
    emit_cc(cbuf, $secondary, $dst$$reg );
  %}

  enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
    int destlo = $dst$$reg;
    int desthi = HIGH_FROM_LOW(destlo);
    // bswap lo
    emit_opcode(cbuf, 0x0F);
    emit_cc(cbuf, 0xC8, destlo);
    // bswap hi
    emit_opcode(cbuf, 0x0F);
    emit_cc(cbuf, 0xC8, desthi);
    // xchg lo and hi
    emit_opcode(cbuf, 0x87);
    emit_rm(cbuf, 0x3, destlo, desthi);
  %}

  enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
    emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  %}

  enc_class Jcc (cmpOp cop, label labl) %{    // JCC
    Label *l = $labl$$label;
    $$$emit8$primary;
    emit_cc(cbuf, $secondary, $cop$$cmpcode);
    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  %}

  enc_class JccShort (cmpOp cop, label labl) %{    // JCC
    Label *l = $labl$$label;
    emit_cc(cbuf, $primary, $cop$$cmpcode);
    int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
    emit_d8(cbuf, disp);
  %}

  enc_class enc_cmov(cmpOp cop ) %{ // CMOV
    $$$emit8$primary;
    emit_cc(cbuf, $secondary, $cop$$cmpcode);
  %}

  enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
    int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
    emit_d8(cbuf, op >> 8 );
    emit_d8(cbuf, op & 255);
  %}

  // emulate a CMOV with a conditional branch around a MOV
  enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
    // Invert sense of branch from sense of CMOV
    emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
    emit_d8( cbuf, $brOffs$$constant );
  %}

  enc_class enc_PartialSubtypeCheck( ) %{
    Register Redi = as_Register(EDI_enc); // result register
    Register Reax = as_Register(EAX_enc); // super class
    Register Recx = as_Register(ECX_enc); // killed
    Register Resi = as_Register(ESI_enc); // sub class
1727
    Label miss;
D
duke 已提交
1728 1729

    MacroAssembler _masm(&cbuf);
1730 1731 1732 1733 1734 1735
    __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
                                     NULL, &miss,
                                     /*set_cond_codes:*/ true);
    if ($primary) {
      __ xorptr(Redi, Redi);
    }
D
duke 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
    __ bind(miss);
  %}

  enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
    MacroAssembler masm(&cbuf);
    int start = masm.offset();
    if (UseSSE >= 2) {
      if (VerifyFPU) {
        masm.verify_FPU(0, "must be empty in SSE2+ mode");
      }
    } else {
      // External c_calling_convention expects the FPU stack to be 'clean'.
      // Compiled code leaves it dirty.  Do cleanup now.
      masm.empty_FPU_stack();
    }
    if (sizeof_FFree_Float_Stack_All == -1) {
      sizeof_FFree_Float_Stack_All = masm.offset() - start;
    } else {
      assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
    }
  %}

  enc_class Verify_FPU_For_Leaf %{
    if( VerifyFPU ) {
      MacroAssembler masm(&cbuf);
      masm.verify_FPU( -3, "Returning from Runtime Leaf call");
    }
  %}

  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
    // This is the instruction starting address for relocation info.
    cbuf.set_inst_mark();
    $$$emit8$primary;
    // CALL directly to the runtime
    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
                runtime_call_Relocation::spec(), RELOC_IMM32 );

    if (UseSSE >= 2) {
      MacroAssembler _masm(&cbuf);
      BasicType rt = tf()->return_type();

      if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
        // A C runtime call where the return value is unused.  In SSE2+
        // mode the result needs to be removed from the FPU stack.  It's
        // likely that this function call could be removed by the
        // optimizer if the C function is a pure function.
        __ ffree(0);
      } else if (rt == T_FLOAT) {
1784
        __ lea(rsp, Address(rsp, -4));
D
duke 已提交
1785 1786
        __ fstp_s(Address(rsp, 0));
        __ movflt(xmm0, Address(rsp, 0));
1787
        __ lea(rsp, Address(rsp,  4));
D
duke 已提交
1788
      } else if (rt == T_DOUBLE) {
1789
        __ lea(rsp, Address(rsp, -8));
D
duke 已提交
1790 1791
        __ fstp_d(Address(rsp, 0));
        __ movdbl(xmm0, Address(rsp, 0));
1792
        __ lea(rsp, Address(rsp,  8));
D
duke 已提交
1793 1794 1795 1796 1797 1798 1799
      }
    }
  %}


  enc_class pre_call_FPU %{
    // If method sets FPU control word restore it here
1800
    debug_only(int off0 = cbuf.code_size());
D
duke 已提交
1801 1802 1803 1804
    if( Compile::current()->in_24_bit_fp_mode() ) {
      MacroAssembler masm(&cbuf);
      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
    }
1805 1806
    debug_only(int off1 = cbuf.code_size());
    assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
D
duke 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
  %}

  enc_class post_call_FPU %{
    // If method sets FPU control word do it here also
    if( Compile::current()->in_24_bit_fp_mode() ) {
      MacroAssembler masm(&cbuf);
      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
    }
  %}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
  enc_class preserve_SP %{
    debug_only(int off0 = cbuf.code_size());
    MacroAssembler _masm(&cbuf);
    // RBP is preserved across all calls, even compiled calls.
    // Use it to preserve RSP in places where the callee might change the SP.
    __ movptr(rbp, rsp);
    debug_only(int off1 = cbuf.code_size());
    assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  %}

  enc_class restore_SP %{
    MacroAssembler _masm(&cbuf);
    __ movptr(rsp, rbp);
  %}

D
duke 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
    // who we intended to call.
    cbuf.set_inst_mark();
    $$$emit8$primary;
    if ( !_method ) {
      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
                     runtime_call_Relocation::spec(), RELOC_IMM32 );
    } else if(_optimized_virtual) {
      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
                     opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
    } else {
      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
                     static_call_Relocation::spec(), RELOC_IMM32 );
    }
    if( _method ) {  // Emit stub for static call
      emit_java_to_interp(cbuf);
    }
  %}

  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
    // !!!!!
    // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
    // emit_call_dynamic_prologue( cbuf );
    cbuf.set_inst_mark();
    emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
    emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
    address  virtual_call_oop_addr = cbuf.inst_mark();
    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
    // who we intended to call.
    cbuf.set_inst_mark();
    $$$emit8$primary;
    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
                virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  %}

  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
    int disp = in_bytes(methodOopDesc::from_compiled_offset());
    assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");

    // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
    cbuf.set_inst_mark();
    $$$emit8$primary;
    emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
    emit_d8(cbuf, disp);             // Displacement

  %}

  enc_class Xor_Reg (eRegI dst) %{
    emit_opcode(cbuf, 0x33);
    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  %}

//   Following encoding is no longer used, but may be restored if calling
//   convention changes significantly.
//   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
//
//   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
//     // int ic_reg     = Matcher::inline_cache_reg();
//     // int ic_encode  = Matcher::_regEncode[ic_reg];
//     // int imo_reg    = Matcher::interpreter_method_oop_reg();
//     // int imo_encode = Matcher::_regEncode[imo_reg];
//
//     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
//     // // so we load it immediately before the call
//     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
//     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
//
//     // xor rbp,ebp
//     emit_opcode(cbuf, 0x33);
//     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
//
//     // CALL to interpreter.
//     cbuf.set_inst_mark();
//     $$$emit8$primary;
//     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
//                 runtime_call_Relocation::spec(), RELOC_IMM32 );
//   %}

  enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
    $$$emit8$primary;
    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
    $$$emit8$shift$$constant;
  %}

  enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
    // Load immediate does not have a zero or sign extended version
    // for 8-bit immediates
    emit_opcode(cbuf, 0xB8 + $dst$$reg);
    $$$emit32$src$$constant;
  %}

  enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
    // Load immediate does not have a zero or sign extended version
    // for 8-bit immediates
    emit_opcode(cbuf, $primary + $dst$$reg);
    $$$emit32$src$$constant;
  %}

  enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
    // Load immediate does not have a zero or sign extended version
    // for 8-bit immediates
    int dst_enc = $dst$$reg;
    int src_con = $src$$constant & 0x0FFFFFFFFL;
    if (src_con == 0) {
      // xor dst, dst
      emit_opcode(cbuf, 0x33);
      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
    } else {
      emit_opcode(cbuf, $primary + dst_enc);
      emit_d32(cbuf, src_con);
    }
  %}

  enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
    // Load immediate does not have a zero or sign extended version
    // for 8-bit immediates
    int dst_enc = $dst$$reg + 2;
    int src_con = ((julong)($src$$constant)) >> 32;
    if (src_con == 0) {
      // xor dst, dst
      emit_opcode(cbuf, 0x33);
      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
    } else {
      emit_opcode(cbuf, $primary + dst_enc);
      emit_d32(cbuf, src_con);
    }
  %}


  enc_class LdImmD (immD src) %{    // Load Immediate
    if( is_positive_zero_double($src$$constant)) {
      // FLDZ
      emit_opcode(cbuf,0xD9);
      emit_opcode(cbuf,0xEE);
    } else if( is_positive_one_double($src$$constant)) {
      // FLD1
      emit_opcode(cbuf,0xD9);
      emit_opcode(cbuf,0xE8);
    } else {
      emit_opcode(cbuf,0xDD);
      emit_rm(cbuf, 0x0, 0x0, 0x5);
      emit_double_constant(cbuf, $src$$constant);
    }
  %}


  enc_class LdImmF (immF src) %{    // Load Immediate
    if( is_positive_zero_float($src$$constant)) {
      emit_opcode(cbuf,0xD9);
      emit_opcode(cbuf,0xEE);
    } else if( is_positive_one_float($src$$constant)) {
      emit_opcode(cbuf,0xD9);
      emit_opcode(cbuf,0xE8);
    } else {
      $$$emit8$primary;
      // Load immediate does not have a zero or sign extended version
      // for 8-bit immediates
      // First load to TOS, then move to dst
      emit_rm(cbuf, 0x0, 0x0, 0x5);
      emit_float_constant(cbuf, $src$$constant);
    }
  %}

  enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
    emit_float_constant(cbuf, $con$$constant);
  %}

  enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
    emit_double_constant(cbuf, $con$$constant);
  %}

  enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
    // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
    emit_opcode(cbuf, 0x0F);
    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
    emit_double_constant(cbuf, $con$$constant);
  %}

  enc_class Opc_MemImm_F(immF src) %{
    cbuf.set_inst_mark();
    $$$emit8$primary;
    emit_rm(cbuf, 0x0, $secondary, 0x5);
    emit_float_constant(cbuf, $src$$constant);
  %}


  enc_class MovI2X_reg(regX dst, eRegI src) %{
    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
    emit_opcode(cbuf, 0x0F );
    emit_opcode(cbuf, 0x6E );
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  %}

  enc_class MovX2I_reg(eRegI dst, regX src) %{
    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
    emit_opcode(cbuf, 0x0F );
    emit_opcode(cbuf, 0x7E );
    emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  %}

  enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
    { // MOVD $dst,$src.lo
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x6E);
      emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
    }
    { // MOVD $tmp,$src.hi
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x6E);
      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
    }
    { // PUNPCKLDQ $dst,$tmp
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x62);
      emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
     }
  %}

  enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
    { // MOVD $dst.lo,$src
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x7E);
      emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
    }
    { // PSHUFLW $tmp,$src,0x4E  (01001110b)
      emit_opcode(cbuf,0xF2);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x70);
      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
      emit_d8(cbuf, 0x4E);
    }
    { // MOVD $dst.hi,$tmp
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x7E);
      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
    }
  %}


  // Encode a reg-reg copy.  If it is useless, then empty encoding.
  enc_class enc_Copy( eRegI dst, eRegI src ) %{
    encode_Copy( cbuf, $dst$$reg, $src$$reg );
  %}

  enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
    encode_Copy( cbuf, $dst$$reg, $src$$reg );
  %}

  // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
    encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  %}

  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  %}

  enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
    $$$emit8$primary;
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  %}

  enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
    $$$emit8$secondary;
    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  %}

  enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  %}

  enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  %}

  enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  %}

  enc_class Con32 (immI src) %{    // Con32(storeImmI)
    // Output immediate
    $$$emit32$src$$constant;
  %}

  enc_class Con32F_as_bits(immF src) %{        // storeF_imm
    // Output Float immediate bits
    jfloat jf = $src$$constant;
    int    jf_as_bits = jint_cast( jf );
    emit_d32(cbuf, jf_as_bits);
  %}

  enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
    // Output Float immediate bits
    jfloat jf = $src$$constant;
    int    jf_as_bits = jint_cast( jf );
    emit_d32(cbuf, jf_as_bits);
  %}

  enc_class Con16 (immI src) %{    // Con16(storeImmI)
    // Output immediate
    $$$emit16$src$$constant;
  %}

  enc_class Con_d32(immI src) %{
    emit_d32(cbuf,$src$$constant);
  %}

  enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
    // Output immediate memory reference
    emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
    emit_d32(cbuf, 0x00);
  %}

  enc_class lock_prefix( ) %{
    if( os::is_MP() )
      emit_opcode(cbuf,0xF0);         // [Lock]
  %}

  // Cmp-xchg long value.
  // Note: we need to swap rbx, and rcx before and after the
  //       cmpxchg8 instruction because the instruction uses
  //       rcx as the high order word of the new value to store but
  //       our register encoding uses rbx,.
  enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{

    // XCHG  rbx,ecx
    emit_opcode(cbuf,0x87);
    emit_opcode(cbuf,0xD9);
    // [Lock]
    if( os::is_MP() )
      emit_opcode(cbuf,0xF0);
    // CMPXCHG8 [Eptr]
    emit_opcode(cbuf,0x0F);
    emit_opcode(cbuf,0xC7);
    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
    // XCHG  rbx,ecx
    emit_opcode(cbuf,0x87);
    emit_opcode(cbuf,0xD9);
  %}

  enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
    // [Lock]
    if( os::is_MP() )
      emit_opcode(cbuf,0xF0);

    // CMPXCHG [Eptr]
    emit_opcode(cbuf,0x0F);
    emit_opcode(cbuf,0xB1);
    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  %}

  enc_class enc_flags_ne_to_boolean( iRegI res ) %{
    int res_encoding = $res$$reg;

    // MOV  res,0
    emit_opcode( cbuf, 0xB8 + res_encoding);
    emit_d32( cbuf, 0 );
    // JNE,s  fail
    emit_opcode(cbuf,0x75);
    emit_d8(cbuf, 5 );
    // MOV  res,1
    emit_opcode( cbuf, 0xB8 + res_encoding);
    emit_d32( cbuf, 1 );
    // fail:
  %}

  enc_class set_instruction_start( ) %{
    cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
  %}

  enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
    int reg_encoding = $ereg$$reg;
    int base  = $mem$$base;
    int index = $mem$$index;
    int scale = $mem$$scale;
    int displace = $mem$$disp;
    bool disp_is_oop = $mem->disp_is_oop();
    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  %}

  enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
    int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
    int base  = $mem$$base;
    int index = $mem$$index;
    int scale = $mem$$scale;
    int displace = $mem$$disp + 4;      // Offset is 4 further in memory
    assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  %}

  enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
    int r1, r2;
    if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
    emit_opcode(cbuf,0x0F);
    emit_opcode(cbuf,$tertiary);
    emit_rm(cbuf, 0x3, r1, r2);
    emit_d8(cbuf,$cnt$$constant);
    emit_d8(cbuf,$primary);
    emit_rm(cbuf, 0x3, $secondary, r1);
    emit_d8(cbuf,$cnt$$constant);
  %}

  enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
    emit_opcode( cbuf, 0x8B ); // Move
    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
    emit_d8(cbuf,$primary);
    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
    emit_d8(cbuf,$cnt$$constant-32);
    emit_d8(cbuf,$primary);
    emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
    emit_d8(cbuf,31);
  %}

  enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
    int r1, r2;
    if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }

    emit_opcode( cbuf, 0x8B ); // Move r1,r2
    emit_rm(cbuf, 0x3, r1, r2);
    if( $cnt$$constant > 32 ) { // Shift, if not by zero
      emit_opcode(cbuf,$primary);
      emit_rm(cbuf, 0x3, $secondary, r1);
      emit_d8(cbuf,$cnt$$constant-32);
    }
    emit_opcode(cbuf,0x33);  // XOR r2,r2
    emit_rm(cbuf, 0x3, r2, r2);
  %}

  // Clone of RegMem but accepts an extra parameter to access each
  // half of a double in memory; it never needs relocation info.
  enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
    emit_opcode(cbuf,$opcode$$constant);
    int reg_encoding = $rm_reg$$reg;
    int base     = $mem$$base;
    int index    = $mem$$index;
    int scale    = $mem$$scale;
    int displace = $mem$$disp + $disp_for_half$$constant;
    bool disp_is_oop = false;
    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  %}

  // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  //
  // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  // and it never needs relocation information.
  // Frequently used to move data between FPU's Stack Top and memory.
  enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
    int rm_byte_opcode = $rm_opcode$$constant;
    int base     = $mem$$base;
    int index    = $mem$$index;
    int scale    = $mem$$scale;
    int displace = $mem$$disp;
    assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  %}

  enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
    int rm_byte_opcode = $rm_opcode$$constant;
    int base     = $mem$$base;
    int index    = $mem$$index;
    int scale    = $mem$$scale;
    int displace = $mem$$disp;
    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  %}

  enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
    int reg_encoding = $dst$$reg;
    int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
    int index        = 0x04;            // 0x04 indicates no index
    int scale        = 0x00;            // 0x00 indicates no scale
    int displace     = $src1$$constant; // 0x00 indicates no displacement
    bool disp_is_oop = false;
    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  %}

  enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
    // Compare dst,src
    emit_opcode(cbuf,0x3B);
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
    // jmp dst < src around move
    emit_opcode(cbuf,0x7C);
    emit_d8(cbuf,2);
    // move dst,src
    emit_opcode(cbuf,0x8B);
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  %}

  enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
    // Compare dst,src
    emit_opcode(cbuf,0x3B);
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
    // jmp dst > src around move
    emit_opcode(cbuf,0x7F);
    emit_d8(cbuf,2);
    // move dst,src
    emit_opcode(cbuf,0x8B);
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  %}

  enc_class enc_FP_store(memory mem, regD src) %{
    // If src is FPR1, we can just FST to store it.
    // Else we need to FLD it to FPR1, then FSTP to store/pop it.
    int reg_encoding = 0x2; // Just store
    int base  = $mem$$base;
    int index = $mem$$index;
    int scale = $mem$$scale;
    int displace = $mem$$disp;
    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
    if( $src$$reg != FPR1L_enc ) {
      reg_encoding = 0x3;  // Store & pop
      emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
      emit_d8( cbuf, 0xC0-1+$src$$reg );
    }
    cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
    emit_opcode(cbuf,$primary);
    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  %}

  enc_class neg_reg(eRegI dst) %{
    // NEG $dst
    emit_opcode(cbuf,0xF7);
    emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  %}

  enc_class setLT_reg(eCXRegI dst) %{
    // SETLT $dst
    emit_opcode(cbuf,0x0F);
    emit_opcode(cbuf,0x9C);
    emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  %}

  enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
    int tmpReg = $tmp$$reg;

    // SUB $p,$q
    emit_opcode(cbuf,0x2B);
    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
    // SBB $tmp,$tmp
    emit_opcode(cbuf,0x1B);
    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
    // AND $tmp,$y
    emit_opcode(cbuf,0x23);
    emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
    // ADD $p,$tmp
    emit_opcode(cbuf,0x03);
    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  %}

  enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
    int tmpReg = $tmp$$reg;

    // SUB $p,$q
    emit_opcode(cbuf,0x2B);
    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
    // SBB $tmp,$tmp
    emit_opcode(cbuf,0x1B);
    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
    // AND $tmp,$y
    cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
    emit_opcode(cbuf,0x23);
    int reg_encoding = tmpReg;
    int base  = $mem$$base;
    int index = $mem$$index;
    int scale = $mem$$scale;
    int displace = $mem$$disp;
    bool disp_is_oop = $mem->disp_is_oop();
    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
    // ADD $p,$tmp
    emit_opcode(cbuf,0x03);
    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  %}

  enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
    // TEST shift,32
    emit_opcode(cbuf,0xF7);
    emit_rm(cbuf, 0x3, 0, ECX_enc);
    emit_d32(cbuf,0x20);
    // JEQ,s small
    emit_opcode(cbuf, 0x74);
    emit_d8(cbuf, 0x04);
    // MOV    $dst.hi,$dst.lo
    emit_opcode( cbuf, 0x8B );
    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
    // CLR    $dst.lo
    emit_opcode(cbuf, 0x33);
    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
// small:
    // SHLD   $dst.hi,$dst.lo,$shift
    emit_opcode(cbuf,0x0F);
    emit_opcode(cbuf,0xA5);
    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
    // SHL    $dst.lo,$shift"
    emit_opcode(cbuf,0xD3);
    emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  %}

  enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
    // TEST shift,32
    emit_opcode(cbuf,0xF7);
    emit_rm(cbuf, 0x3, 0, ECX_enc);
    emit_d32(cbuf,0x20);
    // JEQ,s small
    emit_opcode(cbuf, 0x74);
    emit_d8(cbuf, 0x04);
    // MOV    $dst.lo,$dst.hi
    emit_opcode( cbuf, 0x8B );
    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
    // CLR    $dst.hi
    emit_opcode(cbuf, 0x33);
    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
// small:
    // SHRD   $dst.lo,$dst.hi,$shift
    emit_opcode(cbuf,0x0F);
    emit_opcode(cbuf,0xAD);
    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
    // SHR    $dst.hi,$shift"
    emit_opcode(cbuf,0xD3);
    emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  %}

  enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
    // TEST shift,32
    emit_opcode(cbuf,0xF7);
    emit_rm(cbuf, 0x3, 0, ECX_enc);
    emit_d32(cbuf,0x20);
    // JEQ,s small
    emit_opcode(cbuf, 0x74);
    emit_d8(cbuf, 0x05);
    // MOV    $dst.lo,$dst.hi
    emit_opcode( cbuf, 0x8B );
    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
    // SAR    $dst.hi,31
    emit_opcode(cbuf, 0xC1);
    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
    emit_d8(cbuf, 0x1F );
// small:
    // SHRD   $dst.lo,$dst.hi,$shift
    emit_opcode(cbuf,0x0F);
    emit_opcode(cbuf,0xAD);
    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
    // SAR    $dst.hi,$shift"
    emit_opcode(cbuf,0xD3);
    emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  %}


  // ----------------- Encodings for floating point unit -----------------
  // May leave result in FPU-TOS or FPU reg depending on opcodes
  enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
    $$$emit8$primary;
    emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  %}

  // Pop argument in FPR0 with FSTP ST(0)
  enc_class PopFPU() %{
    emit_opcode( cbuf, 0xDD );
    emit_d8( cbuf, 0xD8 );
  %}

  // !!!!! equivalent to Pop_Reg_F
  enc_class Pop_Reg_D( regD dst ) %{
    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
    emit_d8( cbuf, 0xD8+$dst$$reg );
  %}

  enc_class Push_Reg_D( regD dst ) %{
    emit_opcode( cbuf, 0xD9 );
    emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  %}

  enc_class strictfp_bias1( regD dst ) %{
    emit_opcode( cbuf, 0xDB );           // FLD m80real
    emit_opcode( cbuf, 0x2D );
    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
    emit_opcode( cbuf, 0xC8+$dst$$reg );
  %}

  enc_class strictfp_bias2( regD dst ) %{
    emit_opcode( cbuf, 0xDB );           // FLD m80real
    emit_opcode( cbuf, 0x2D );
    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
    emit_opcode( cbuf, 0xC8+$dst$$reg );
  %}

  // Special case for moving an integer register to a stack slot.
  enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
    store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  %}

  // Special case for moving a register to a stack slot.
  enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
    // Opcode already emitted
    emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
    emit_d32(cbuf, $dst$$disp);   // Displacement
  %}

  // Push the integer in stackSlot 'src' onto FP-stack
  enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
    store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  %}

  // Push the float in stackSlot 'src' onto FP-stack
  enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
    store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  %}

  // Push the double in stackSlot 'src' onto FP-stack
  enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
    store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  %}

  // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
    store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  %}

  // Same as Pop_Mem_F except for opcode
  // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
    store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  %}

  enc_class Pop_Reg_F( regF dst ) %{
    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
    emit_d8( cbuf, 0xD8+$dst$$reg );
  %}

  enc_class Push_Reg_F( regF dst ) %{
    emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
    emit_d8( cbuf, 0xC0-1+$dst$$reg );
  %}

  // Push FPU's float to a stack-slot, and pop FPU-stack
  enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
    int pop = 0x02;
    if ($src$$reg != FPR1L_enc) {
      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
      emit_d8( cbuf, 0xC0-1+$src$$reg );
      pop = 0x03;
    }
    store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  %}

  // Push FPU's double to a stack-slot, and pop FPU-stack
  enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
    int pop = 0x02;
    if ($src$$reg != FPR1L_enc) {
      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
      emit_d8( cbuf, 0xC0-1+$src$$reg );
      pop = 0x03;
    }
    store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  %}

  // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
    int pop = 0xD0 - 1; // -1 since we skip FLD
    if ($src$$reg != FPR1L_enc) {
      emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
      emit_d8( cbuf, 0xC0-1+$src$$reg );
      pop = 0xD8;
    }
    emit_opcode( cbuf, 0xDD );
    emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  %}


  enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
    MacroAssembler masm(&cbuf);
    masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
    masm.fmul(   $src2$$reg+0);   // value at TOS
    masm.fadd(   $src$$reg+0);    // value at TOS
    masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  %}


  enc_class Push_Reg_Mod_D( regD dst, regD src) %{
    // load dst in FPR0
    emit_opcode( cbuf, 0xD9 );
    emit_d8( cbuf, 0xC0-1+$dst$$reg );
    if ($src$$reg != FPR1L_enc) {
      // fincstp
      emit_opcode (cbuf, 0xD9);
      emit_opcode (cbuf, 0xF7);
      // swap src with FPR1:
      // FXCH FPR1 with src
      emit_opcode(cbuf, 0xD9);
      emit_d8(cbuf, 0xC8-1+$src$$reg );
      // fdecstp
      emit_opcode (cbuf, 0xD9);
      emit_opcode (cbuf, 0xF6);
    }
  %}

  enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
    // Allocate a word
    emit_opcode(cbuf,0x83);            // SUB ESP,8
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x08);

    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);

    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);

  %}

  enc_class Push_ModX_encoding( regX src0, regX src1) %{
    // Allocate a word
    emit_opcode(cbuf,0x83);            // SUB ESP,4
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x04);

    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);

    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);

  %}

  enc_class Push_ResultXD(regXD dst) %{
    store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]

    // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0x83);    // ADD ESP,8
    emit_opcode(cbuf,0xC4);
    emit_d8(cbuf,0x08);
  %}

  enc_class Push_ResultX(regX dst, immI d8) %{
    store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]

    emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x10 );
    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
    emit_opcode(cbuf,0xC4);
    emit_d8(cbuf,$d8$$constant);
  %}

  enc_class Push_SrcXD(regXD src) %{
    // Allocate a word
    emit_opcode(cbuf,0x83);            // SUB ESP,8
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x08);

    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  %}

  enc_class push_stack_temp_qword() %{
    emit_opcode(cbuf,0x83);     // SUB ESP,8
    emit_opcode(cbuf,0xEC);
    emit_d8    (cbuf,0x08);
  %}

  enc_class pop_stack_temp_qword() %{
    emit_opcode(cbuf,0x83);     // ADD ESP,8
    emit_opcode(cbuf,0xC4);
    emit_d8    (cbuf,0x08);
  %}

  enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  %}

  // Compute X^Y using Intel's fast hardware instructions, if possible.
  // Otherwise return a NaN.
  enc_class pow_exp_core_encoding %{
    // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
    emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
    emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
    emit_opcode(cbuf,0x1C);
    emit_d8(cbuf,0x24);
    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
    emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
    emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
    emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
    emit_rm(cbuf, 0x3, 0x0, ECX_enc);
    emit_d32(cbuf,0xFFFFF800);
    emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
    emit_rm(cbuf, 0x3, 0x0, EAX_enc);
    emit_d32(cbuf,1023);
    emit_opcode(cbuf,0x8B);                          // mov rbx,eax
    emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
    emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
    emit_rm(cbuf,0x3,0x4,EAX_enc);
    emit_d8(cbuf,20);
    emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
    emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
    emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
    emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
    emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
    emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
    emit_d32(cbuf,0);
    emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
    encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  %}

//   enc_class Pop_Reg_Mod_D( regD dst, regD src)
//   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()

  enc_class Push_Result_Mod_D( regD src) %{
    if ($src$$reg != FPR1L_enc) {
      // fincstp
      emit_opcode (cbuf, 0xD9);
      emit_opcode (cbuf, 0xF7);
      // FXCH FPR1 with src
      emit_opcode(cbuf, 0xD9);
      emit_d8(cbuf, 0xC8-1+$src$$reg );
      // fdecstp
      emit_opcode (cbuf, 0xD9);
      emit_opcode (cbuf, 0xF6);
    }
    // // following asm replaced with Pop_Reg_F or Pop_Mem_F
    // // FSTP   FPR$dst$$reg
    // emit_opcode( cbuf, 0xDD );
    // emit_d8( cbuf, 0xD8+$dst$$reg );
  %}

  enc_class fnstsw_sahf_skip_parity() %{
    // fnstsw ax
    emit_opcode( cbuf, 0xDF );
    emit_opcode( cbuf, 0xE0 );
    // sahf
    emit_opcode( cbuf, 0x9E );
    // jnp  ::skip
    emit_opcode( cbuf, 0x7B );
    emit_opcode( cbuf, 0x05 );
  %}

  enc_class emitModD() %{
    // fprem must be iterative
    // :: loop
    // fprem
    emit_opcode( cbuf, 0xD9 );
    emit_opcode( cbuf, 0xF8 );
    // wait
    emit_opcode( cbuf, 0x9b );
    // fnstsw ax
    emit_opcode( cbuf, 0xDF );
    emit_opcode( cbuf, 0xE0 );
    // sahf
    emit_opcode( cbuf, 0x9E );
    // jp  ::loop
    emit_opcode( cbuf, 0x0F );
    emit_opcode( cbuf, 0x8A );
    emit_opcode( cbuf, 0xF4 );
    emit_opcode( cbuf, 0xFF );
    emit_opcode( cbuf, 0xFF );
    emit_opcode( cbuf, 0xFF );
  %}

  enc_class fpu_flags() %{
    // fnstsw_ax
    emit_opcode( cbuf, 0xDF);
    emit_opcode( cbuf, 0xE0);
    // test ax,0x0400
    emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
    emit_opcode( cbuf, 0xA9 );
    emit_d16   ( cbuf, 0x0400 );
    // // // This sequence works, but stalls for 12-16 cycles on PPro
    // // test rax,0x0400
    // emit_opcode( cbuf, 0xA9 );
    // emit_d32   ( cbuf, 0x00000400 );
    //
    // jz exit (no unordered comparison)
    emit_opcode( cbuf, 0x74 );
    emit_d8    ( cbuf, 0x02 );
    // mov ah,1 - treat as LT case (set carry flag)
    emit_opcode( cbuf, 0xB4 );
    emit_d8    ( cbuf, 0x01 );
    // sahf
    emit_opcode( cbuf, 0x9E);
  %}

  enc_class cmpF_P6_fixup() %{
    // Fixup the integer flags in case comparison involved a NaN
    //
    // JNP exit (no unordered comparison, P-flag is set by NaN)
    emit_opcode( cbuf, 0x7B );
    emit_d8    ( cbuf, 0x03 );
    // MOV AH,1 - treat as LT case (set carry flag)
    emit_opcode( cbuf, 0xB4 );
    emit_d8    ( cbuf, 0x01 );
    // SAHF
    emit_opcode( cbuf, 0x9E);
    // NOP     // target for branch to avoid branch to branch
    emit_opcode( cbuf, 0x90);
  %}

//     fnstsw_ax();
//     sahf();
//     movl(dst, nan_result);
//     jcc(Assembler::parity, exit);
//     movl(dst, less_result);
//     jcc(Assembler::below, exit);
//     movl(dst, equal_result);
//     jcc(Assembler::equal, exit);
//     movl(dst, greater_result);

// less_result     =  1;
// greater_result  = -1;
// equal_result    = 0;
// nan_result      = -1;

  enc_class CmpF_Result(eRegI dst) %{
    // fnstsw_ax();
    emit_opcode( cbuf, 0xDF);
    emit_opcode( cbuf, 0xE0);
    // sahf
    emit_opcode( cbuf, 0x9E);
    // movl(dst, nan_result);
    emit_opcode( cbuf, 0xB8 + $dst$$reg);
    emit_d32( cbuf, -1 );
    // jcc(Assembler::parity, exit);
    emit_opcode( cbuf, 0x7A );
    emit_d8    ( cbuf, 0x13 );
    // movl(dst, less_result);
    emit_opcode( cbuf, 0xB8 + $dst$$reg);
    emit_d32( cbuf, -1 );
    // jcc(Assembler::below, exit);
    emit_opcode( cbuf, 0x72 );
    emit_d8    ( cbuf, 0x0C );
    // movl(dst, equal_result);
    emit_opcode( cbuf, 0xB8 + $dst$$reg);
    emit_d32( cbuf, 0 );
    // jcc(Assembler::equal, exit);
    emit_opcode( cbuf, 0x74 );
    emit_d8    ( cbuf, 0x05 );
    // movl(dst, greater_result);
    emit_opcode( cbuf, 0xB8 + $dst$$reg);
    emit_d32( cbuf, 1 );
  %}


  // XMM version of CmpF_Result. Because the XMM compare
  // instructions set the EFLAGS directly. It becomes simpler than
  // the float version above.
  enc_class CmpX_Result(eRegI dst) %{
    MacroAssembler _masm(&cbuf);
    Label nan, inc, done;

    __ jccb(Assembler::parity, nan);
    __ jccb(Assembler::equal,  done);
    __ jccb(Assembler::above,  inc);
    __ bind(nan);
2941
    __ decrement(as_Register($dst$$reg)); // NO L qqq
D
duke 已提交
2942 2943
    __ jmpb(done);
    __ bind(inc);
2944
    __ increment(as_Register($dst$$reg)); // NO L qqq
D
duke 已提交
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
    __ bind(done);
  %}

  // Compare the longs and set flags
  // BROKEN!  Do Not use as-is
  enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
    // CMP    $src1.hi,$src2.hi
    emit_opcode( cbuf, 0x3B );
    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
    // JNE,s  done
    emit_opcode(cbuf,0x75);
    emit_d8(cbuf, 2 );
    // CMP    $src1.lo,$src2.lo
    emit_opcode( cbuf, 0x3B );
    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
// done:
  %}

  enc_class convert_int_long( regL dst, eRegI src ) %{
    // mov $dst.lo,$src
    int dst_encoding = $dst$$reg;
    int src_encoding = $src$$reg;
    encode_Copy( cbuf, dst_encoding  , src_encoding );
    // mov $dst.hi,$src
    encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
    // sar $dst.hi,31
    emit_opcode( cbuf, 0xC1 );
    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
    emit_d8(cbuf, 0x1F );
  %}

  enc_class convert_long_double( eRegL src ) %{
    // push $src.hi
    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
    // push $src.lo
    emit_opcode(cbuf, 0x50+$src$$reg  );
    // fild 64-bits at [SP]
    emit_opcode(cbuf,0xdf);
    emit_d8(cbuf, 0x6C);
    emit_d8(cbuf, 0x24);
    emit_d8(cbuf, 0x00);
    // pop stack
    emit_opcode(cbuf, 0x83); // add  SP, #8
    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
    emit_d8(cbuf, 0x8);
  %}

  enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
    // IMUL   EDX:EAX,$src1
    emit_opcode( cbuf, 0xF7 );
    emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
    // SAR    EDX,$cnt-32
    int shift_count = ((int)$cnt$$constant) - 32;
    if (shift_count > 0) {
      emit_opcode(cbuf, 0xC1);
      emit_rm(cbuf, 0x3, 7, $dst$$reg );
      emit_d8(cbuf, shift_count);
    }
  %}

  // this version doesn't have add sp, 8
  enc_class convert_long_double2( eRegL src ) %{
    // push $src.hi
    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
    // push $src.lo
    emit_opcode(cbuf, 0x50+$src$$reg  );
    // fild 64-bits at [SP]
    emit_opcode(cbuf,0xdf);
    emit_d8(cbuf, 0x6C);
    emit_d8(cbuf, 0x24);
    emit_d8(cbuf, 0x00);
  %}

  enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
    // Basic idea: long = (long)int * (long)int
    // IMUL EDX:EAX, src
    emit_opcode( cbuf, 0xF7 );
    emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  %}

  enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
    // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
    // MUL EDX:EAX, src
    emit_opcode( cbuf, 0xF7 );
    emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  %}

  enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
    // Basic idea: lo(result) = lo(x_lo * y_lo)
    //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
    // MOV    $tmp,$src.lo
    encode_Copy( cbuf, $tmp$$reg, $src$$reg );
    // IMUL   $tmp,EDX
    emit_opcode( cbuf, 0x0F );
    emit_opcode( cbuf, 0xAF );
    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
    // MOV    EDX,$src.hi
    encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
    // IMUL   EDX,EAX
    emit_opcode( cbuf, 0x0F );
    emit_opcode( cbuf, 0xAF );
    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
    // ADD    $tmp,EDX
    emit_opcode( cbuf, 0x03 );
    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
    // MUL   EDX:EAX,$src.lo
    emit_opcode( cbuf, 0xF7 );
    emit_rm( cbuf, 0x3, 0x4, $src$$reg );
    // ADD    EDX,ESI
    emit_opcode( cbuf, 0x03 );
    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  %}

  enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
    // Basic idea: lo(result) = lo(src * y_lo)
    //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
    // IMUL   $tmp,EDX,$src
    emit_opcode( cbuf, 0x6B );
    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
    emit_d8( cbuf, (int)$src$$constant );
    // MOV    EDX,$src
    emit_opcode(cbuf, 0xB8 + EDX_enc);
    emit_d32( cbuf, (int)$src$$constant );
    // MUL   EDX:EAX,EDX
    emit_opcode( cbuf, 0xF7 );
    emit_rm( cbuf, 0x3, 0x4, EDX_enc );
    // ADD    EDX,ESI
    emit_opcode( cbuf, 0x03 );
    emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  %}

  enc_class long_div( eRegL src1, eRegL src2 ) %{
    // PUSH src1.hi
    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
    // PUSH src1.lo
    emit_opcode(cbuf,               0x50+$src1$$reg  );
    // PUSH src2.hi
    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
    // PUSH src2.lo
    emit_opcode(cbuf,               0x50+$src2$$reg  );
    // CALL directly to the runtime
    cbuf.set_inst_mark();
    emit_opcode(cbuf,0xE8);       // Call into runtime
    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
    // Restore stack
    emit_opcode(cbuf, 0x83); // add  SP, #framesize
    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
    emit_d8(cbuf, 4*4);
  %}

  enc_class long_mod( eRegL src1, eRegL src2 ) %{
    // PUSH src1.hi
    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
    // PUSH src1.lo
    emit_opcode(cbuf,               0x50+$src1$$reg  );
    // PUSH src2.hi
    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
    // PUSH src2.lo
    emit_opcode(cbuf,               0x50+$src2$$reg  );
    // CALL directly to the runtime
    cbuf.set_inst_mark();
    emit_opcode(cbuf,0xE8);       // Call into runtime
    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
    // Restore stack
    emit_opcode(cbuf, 0x83); // add  SP, #framesize
    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
    emit_d8(cbuf, 4*4);
  %}

  enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
    // MOV   $tmp,$src.lo
    emit_opcode(cbuf, 0x8B);
    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
    // OR    $tmp,$src.hi
    emit_opcode(cbuf, 0x0B);
    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  %}

  enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
    // CMP    $src1.lo,$src2.lo
    emit_opcode( cbuf, 0x3B );
    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
    // JNE,s  skip
    emit_cc(cbuf, 0x70, 0x5);
    emit_d8(cbuf,2);
    // CMP    $src1.hi,$src2.hi
    emit_opcode( cbuf, 0x3B );
    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  %}

  enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
    // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
    emit_opcode( cbuf, 0x3B );
    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
    // MOV    $tmp,$src1.hi
    emit_opcode( cbuf, 0x8B );
    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
    // SBB   $tmp,$src2.hi\t! Compute flags for long compare
    emit_opcode( cbuf, 0x1B );
    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  %}

  enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
    // XOR    $tmp,$tmp
    emit_opcode(cbuf,0x33);  // XOR
    emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
    // CMP    $tmp,$src.lo
    emit_opcode( cbuf, 0x3B );
    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
    // SBB    $tmp,$src.hi
    emit_opcode( cbuf, 0x1B );
    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  %}

 // Sniff, sniff... smells like Gnu Superoptimizer
  enc_class neg_long( eRegL dst ) %{
    emit_opcode(cbuf,0xF7);    // NEG hi
    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
    emit_opcode(cbuf,0xF7);    // NEG lo
    emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
    emit_opcode(cbuf,0x83);    // SBB hi,0
    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
    emit_d8    (cbuf,0 );
  %}

  enc_class movq_ld(regXD dst, memory mem) %{
    MacroAssembler _masm(&cbuf);
3172
    __ movq($dst$$XMMRegister, $mem$$Address);
D
duke 已提交
3173 3174 3175 3176
  %}

  enc_class movq_st(memory mem, regXD src) %{
    MacroAssembler _masm(&cbuf);
3177
    __ movq($mem$$Address, $src$$XMMRegister);
D
duke 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
  %}

  enc_class pshufd_8x8(regX dst, regX src) %{
    MacroAssembler _masm(&cbuf);

    encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
    __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  %}

  enc_class pshufd_4x16(regX dst, regX src) %{
    MacroAssembler _masm(&cbuf);

    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  %}

  enc_class pshufd(regXD dst, regXD src, int mode) %{
    MacroAssembler _masm(&cbuf);

    __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  %}

  enc_class pxor(regXD dst, regXD src) %{
    MacroAssembler _masm(&cbuf);

    __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  %}

  enc_class mov_i2x(regXD dst, eRegI src) %{
    MacroAssembler _masm(&cbuf);

3209
    __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
D
duke 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
  %}


  // Because the transitions from emitted code to the runtime
  // monitorenter/exit helper stubs are so slow it's critical that
  // we inline both the stack-locking fast-path and the inflated fast path.
  //
  // See also: cmpFastLock and cmpFastUnlock.
  //
  // What follows is a specialized inline transliteration of the code
  // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  // another option would be to emit TrySlowEnter and TrySlowExit methods
  // at startup-time.  These methods would accept arguments as
  // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  // In practice, however, the # of lock sites is bounded and is usually small.
  // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  // if the processor uses simple bimodal branch predictors keyed by EIP
  // Since the helper routines would be called from multiple synchronization
  // sites.
  //
  // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  // to those specialized methods.  That'd give us a mostly platform-independent
  // implementation that the JITs could optimize and inline at their pleasure.
  // Done correctly, the only time we'd need to cross to native could would be
  // to park() or unpark() threads.  We'd also need a few more unsafe operators
  // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  // (b) explicit barriers or fence operations.
  //
  // TODO:
  //
  // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  //    the lock operators would typically be faster than reifying Self.
  //
  // *  Ideally I'd define the primitives as:
  //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  //    Furthermore the register assignments are overconstrained, possibly resulting in
  //    sub-optimal code near the synchronization site.
  //
  // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  //    Alternately, use a better sp-proximity test.
  //
  // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  //    Either one is sufficient to uniquely identify a thread.
  //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  //
  // *  Intrinsify notify() and notifyAll() for the common cases where the
  //    object is locked by the calling thread but the waitlist is empty.
  //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  //
  // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  //    But beware of excessive branch density on AMD Opterons.
  //
  // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  //    or failure of the fast-path.  If the fast-path fails then we pass
  //    control to the slow-path, typically in C.  In Fast_Lock and
  //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  //    will emit a conditional branch immediately after the node.
  //    So we have branches to branches and lots of ICC.ZF games.
  //    Instead, it might be better to have C2 pass a "FailureLabel"
  //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  //    will drop through the node.  ICC.ZF is undefined at exit.
  //    In the case of failure, the node will branch directly to the
  //    FailureLabel


  // obj: object to lock
  // box: on-stack box address (displaced header location) - KILLED
  // rax,: tmp -- KILLED
  // scr: tmp -- KILLED
  enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{

    Register objReg = as_Register($obj$$reg);
    Register boxReg = as_Register($box$$reg);
    Register tmpReg = as_Register($tmp$$reg);
    Register scrReg = as_Register($scr$$reg);

    // Ensure the register assignents are disjoint
    guarantee (objReg != boxReg, "") ;
    guarantee (objReg != tmpReg, "") ;
    guarantee (objReg != scrReg, "") ;
    guarantee (boxReg != tmpReg, "") ;
    guarantee (boxReg != scrReg, "") ;
    guarantee (tmpReg == as_Register(EAX_enc), "") ;

    MacroAssembler masm(&cbuf);

    if (_counters != NULL) {
      masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
    }
    if (EmitSync & 1) {
        // set box->dhw = unused_mark (3)
3309 3310 3311 3312 3313 3314
        // Force all sync thru slow-path: slow_enter() and slow_exit() 
        masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
        masm.cmpptr (rsp, (int32_t)0) ;                        
    } else 
    if (EmitSync & 2) { 
        Label DONE_LABEL ;           
D
duke 已提交
3315 3316 3317 3318 3319
        if (UseBiasedLocking) {
           // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
        }

3320 3321 3322
        masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
        masm.orptr (tmpReg, 0x1);
        masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
D
duke 已提交
3323
        if (os::is_MP()) { masm.lock();  }
3324
        masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
D
duke 已提交
3325 3326
        masm.jcc(Assembler::equal, DONE_LABEL);
        // Recursive locking
3327 3328 3329 3330 3331 3332
        masm.subptr(tmpReg, rsp);
        masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
        masm.movptr(Address(boxReg, 0), tmpReg);
        masm.bind(DONE_LABEL) ; 
    } else {  
      // Possible cases that we'll encounter in fast_lock 
D
duke 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
      // ------------------------------------------------
      // * Inflated
      //    -- unlocked
      //    -- Locked
      //       = by self
      //       = by other
      // * biased
      //    -- by Self
      //    -- by other
      // * neutral
      // * stack-locked
      //    -- by self
      //       = sp-proximity test hits
      //       = sp-proximity test generates false-negative
      //    -- by other
      //

      Label IsInflated, DONE_LABEL, PopDone ;

      // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
      // order to reduce the number of conditional branches in the most common cases.
      // Beware -- there's a subtle invariant that fetch of the markword
      // at [FETCH], below, will never observe a biased encoding (*101b).
      // If this invariant is not held we risk exclusion (safety) failure.
3357
      if (UseBiasedLocking && !UseOptoBiasInlining) {
D
duke 已提交
3358 3359 3360
        masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
      }

3361 3362
      masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
      masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
D
duke 已提交
3363 3364 3365
      masm.jccb  (Assembler::notZero, IsInflated) ;

      // Attempt stack-locking ...
3366 3367
      masm.orptr (tmpReg, 0x1);
      masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
D
duke 已提交
3368
      if (os::is_MP()) { masm.lock();  }
3369
      masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
D
duke 已提交
3370 3371 3372 3373 3374 3375 3376
      if (_counters != NULL) {
        masm.cond_inc32(Assembler::equal,
                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
      }
      masm.jccb (Assembler::equal, DONE_LABEL);

      // Recursive locking
3377 3378 3379
      masm.subptr(tmpReg, rsp);
      masm.andptr(tmpReg, 0xFFFFF003 );
      masm.movptr(Address(boxReg, 0), tmpReg);
D
duke 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
      if (_counters != NULL) {
        masm.cond_inc32(Assembler::equal,
                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
      }
      masm.jmp  (DONE_LABEL) ;

      masm.bind (IsInflated) ;

      // The object is inflated.
      //
      // TODO-FIXME: eliminate the ugly use of manifest constants:
      //   Use markOopDesc::monitor_value instead of "2".
      //   use markOop::unused_mark() instead of "3".
      // The tmpReg value is an objectMonitor reference ORed with
      // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
      // objectmonitor pointer by masking off the "2" bit or we can just
      // use tmpReg as an objectmonitor pointer but bias the objectmonitor
      // field offsets with "-2" to compensate for and annul the low-order tag bit.
      //
      // I use the latter as it avoids AGI stalls.
      // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
      // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
      //
      #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)

      // boxReg refers to the on-stack BasicLock in the current frame.
      // We'd like to write:
      //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
      // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
      // additional latency as we have another ST in the store buffer that must drain.

3411 3412 3413 3414
      if (EmitSync & 8192) { 
         masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
         masm.get_thread (scrReg) ; 
         masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3415
         masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3416 3417 3418
         if (os::is_MP()) { masm.lock(); } 
         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
      } else 
D
duke 已提交
3419
      if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3420 3421
         masm.movptr(scrReg, boxReg) ; 
         masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
D
duke 已提交
3422 3423 3424 3425

         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
            // prefetchw [eax + Offset(_owner)-2]
3426
            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
D
duke 已提交
3427 3428 3429 3430
         }

         if ((EmitSync & 64) == 0) {
           // Optimistic form: consider XORL tmpReg,tmpReg
3431
           masm.movptr(tmpReg, NULL_WORD) ; 
3432
         } else { 
D
duke 已提交
3433 3434
           // Can suffer RTS->RTO upgrades on shared or cold $ lines
           // Test-And-CAS instead of CAS
3435 3436 3437
           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
D
duke 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
         }

         // Appears unlocked - try to swing _owner from null to non-null.
         // Ideally, I'd manifest "Self" with get_thread and then attempt
         // to CAS the register containing Self into m->Owner.
         // But we don't have enough registers, so instead we can either try to CAS
         // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
         // we later store "Self" into m->Owner.  Transiently storing a stack address
         // (rsp or the address of the box) into  m->owner is harmless.
         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
         if (os::is_MP()) { masm.lock();  }
3449 3450 3451
         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
         masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
D
duke 已提交
3452
         masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3453 3454 3455 3456 3457
         masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
         masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
                       
         // If the CAS fails we can either retry or pass control to the slow-path.  
         // We use the latter tactic.  
D
duke 已提交
3458 3459 3460 3461 3462 3463
         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
         // If the CAS was successful ...
         //   Self has acquired the lock
         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
         // Intentional fall-through into DONE_LABEL ...
      } else {
3464 3465
         masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
         masm.movptr(boxReg, tmpReg) ; 
D
duke 已提交
3466 3467 3468 3469

         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
            // prefetchw [eax + Offset(_owner)-2]
3470
            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
D
duke 已提交
3471 3472 3473 3474
         }

         if ((EmitSync & 64) == 0) {
           // Optimistic form
3475 3476
           masm.xorptr  (tmpReg, tmpReg) ; 
         } else { 
D
duke 已提交
3477
           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3478 3479 3480
           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
D
duke 已提交
3481 3482 3483 3484 3485 3486 3487
         }

         // Appears unlocked - try to swing _owner from null to non-null.
         // Use either "Self" (in scr) or rsp as thread identity in _owner.
         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
         masm.get_thread (scrReg) ;
         if (os::is_MP()) { masm.lock(); }
3488
         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
D
duke 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558

         // If the CAS fails we can either retry or pass control to the slow-path.
         // We use the latter tactic.
         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
         // If the CAS was successful ...
         //   Self has acquired the lock
         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
         // Intentional fall-through into DONE_LABEL ...
      }

      // DONE_LABEL is a hot target - we'd really like to place it at the
      // start of cache line by padding with NOPs.
      // See the AMD and Intel software optimization manuals for the
      // most efficient "long" NOP encodings.
      // Unfortunately none of our alignment mechanisms suffice.
      masm.bind(DONE_LABEL);

      // Avoid branch-to-branch on AMD processors
      // This appears to be superstition.
      if (EmitSync & 32) masm.nop() ;


      // At DONE_LABEL the icc ZFlag is set as follows ...
      // Fast_Unlock uses the same protocol.
      // ZFlag == 1 -> Success
      // ZFlag == 0 -> Failure - force control through the slow-path
    }
  %}

  // obj: object to unlock
  // box: box address (displaced header location), killed.  Must be EAX.
  // rbx,: killed tmp; cannot be obj nor box.
  //
  // Some commentary on balanced locking:
  //
  // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  // Methods that don't have provably balanced locking are forced to run in the
  // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  // The interpreter provides two properties:
  // I1:  At return-time the interpreter automatically and quietly unlocks any
  //      objects acquired the current activation (frame).  Recall that the
  //      interpreter maintains an on-stack list of locks currently held by
  //      a frame.
  // I2:  If a method attempts to unlock an object that is not held by the
  //      the frame the interpreter throws IMSX.
  //
  // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  // B() doesn't have provably balanced locking so it runs in the interpreter.
  // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  // is still locked by A().
  //
  // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  // doesn't specify what will occur if a program engages in such mixed-mode locking, however.

  enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{

    Register objReg = as_Register($obj$$reg);
    Register boxReg = as_Register($box$$reg);
    Register tmpReg = as_Register($tmp$$reg);

    guarantee (objReg != boxReg, "") ;
    guarantee (objReg != tmpReg, "") ;
    guarantee (boxReg != tmpReg, "") ;
    guarantee (boxReg == as_Register(EAX_enc), "") ;
    MacroAssembler masm(&cbuf);

    if (EmitSync & 4) {
      // Disable - inhibit all inlining.  Force control through the slow-path
3559 3560
      masm.cmpptr (rsp, 0) ; 
    } else 
D
duke 已提交
3561 3562 3563 3564 3565 3566
    if (EmitSync & 8) {
      Label DONE_LABEL ;
      if (UseBiasedLocking) {
         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
      }
      // classic stack-locking code ...
3567 3568
      masm.movptr(tmpReg, Address(boxReg, 0)) ;
      masm.testptr(tmpReg, tmpReg) ;
D
duke 已提交
3569 3570
      masm.jcc   (Assembler::zero, DONE_LABEL) ;
      if (os::is_MP()) { masm.lock(); }
3571
      masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
D
duke 已提交
3572 3573 3574 3575 3576 3577
      masm.bind(DONE_LABEL);
    } else {
      Label DONE_LABEL, Stacked, CheckSucc, Inflated ;

      // Critically, the biased locking test must have precedence over
      // and appear before the (box->dhw == 0) recursive stack-lock test.
3578
      if (UseBiasedLocking && !UseOptoBiasInlining) {
D
duke 已提交
3579 3580
         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
      }
3581 3582 3583
      
      masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
      masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
D
duke 已提交
3584 3585
      masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock

3586
      masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
D
duke 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
      masm.jccb  (Assembler::zero, Stacked) ;

      masm.bind  (Inflated) ;
      // It's inflated.
      // Despite our balanced locking property we still check that m->_owner == Self
      // as java routines or native JNI code called by this thread might
      // have released the lock.
      // Refer to the comments in synchronizer.cpp for how we might encode extra
      // state in _succ so we can avoid fetching EntryList|cxq.
      //
      // I'd like to add more cases in fast_lock() and fast_unlock() --
      // such as recursive enter and exit -- but we have to be wary of
      // I$ bloat, T$ effects and BP$ effects.
      //
      // If there's no contention try a 1-0 exit.  That is, exit without
      // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
      // we detect and recover from the race that the 1-0 exit admits.
      //
      // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
      // before it STs null into _owner, releasing the lock.  Updates
      // to data protected by the critical section must be visible before
      // we drop the lock (and thus before any other thread could acquire
      // the lock and observe the fields protected by the lock).
      // IA32's memory-model is SPO, so STs are ordered with respect to
      // each other and there's no need for an explicit barrier (fence).
      // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.

      masm.get_thread (boxReg) ;
      if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
3616 3617
        // prefetchw [ebx + Offset(_owner)-2]
        masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
D
duke 已提交
3618 3619 3620 3621 3622 3623 3624 3625
      }

      // Note that we could employ various encoding schemes to reduce
      // the number of loads below (currently 4) to just 2 or 3.
      // Refer to the comments in synchronizer.cpp.
      // In practice the chain of fetches doesn't seem to impact performance, however.
      if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
         // Attempt to reduce branch density - AMD's branch predictor.
3626 3627 3628 3629 3630
         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3631
         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3632 3633 3634 3635 3636 3637 3638 3639
         masm.jmpb  (DONE_LABEL) ; 
      } else { 
         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
         masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
         masm.jccb  (Assembler::notZero, CheckSucc) ; 
3640
         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3641
         masm.jmpb  (DONE_LABEL) ; 
D
duke 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
      }

      // The Following code fragment (EmitSync & 65536) improves the performance of
      // contended applications and contended synchronization microbenchmarks.
      // Unfortunately the emission of the code - even though not executed - causes regressions
      // in scimark and jetstream, evidently because of $ effects.  Replacing the code
      // with an equal number of never-executed NOPs results in the same regression.
      // We leave it off by default.

      if ((EmitSync & 65536) != 0) {
         Label LSuccess, LGoSlowPath ;

         masm.bind  (CheckSucc) ;

         // Optional pre-test ... it's safe to elide this
3657 3658 3659
         if ((EmitSync & 16) == 0) { 
            masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
            masm.jccb  (Assembler::zero, LGoSlowPath) ; 
D
duke 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
         }

         // We have a classic Dekker-style idiom:
         //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
         // There are a number of ways to implement the barrier:
         // (1) lock:andl &m->_owner, 0
         //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
         //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
         //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
         // (2) If supported, an explicit MFENCE is appealing.
         //     In older IA32 processors MFENCE is slower than lock:add or xchg
         //     particularly if the write-buffer is full as might be the case if
         //     if stores closely precede the fence or fence-equivalent instruction.
         //     In more modern implementations MFENCE appears faster, however.
         // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
         //     The $lines underlying the top-of-stack should be in M-state.
         //     The locked add instruction is serializing, of course.
         // (4) Use xchg, which is serializing
         //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
         // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
         //     The integer condition codes will tell us if succ was 0.
         //     Since _succ and _owner should reside in the same $line and
         //     we just stored into _owner, it's likely that the $line
         //     remains in M-state for the lock:orl.
         //
         // We currently use (3), although it's likely that switching to (2)
         // is correct for the future.
3687
            
3688
         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3689 3690 3691 3692 3693
         if (os::is_MP()) { 
            if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
              masm.mfence();
            } else { 
              masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
D
duke 已提交
3694 3695 3696
            }
         }
         // Ratify _succ remains non-null
3697 3698
         masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
         masm.jccb  (Assembler::notZero, LSuccess) ; 
D
duke 已提交
3699

3700
         masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
D
duke 已提交
3701
         if (os::is_MP()) { masm.lock(); }
3702
         masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
D
duke 已提交
3703 3704 3705 3706 3707
         masm.jccb  (Assembler::notEqual, LSuccess) ;
         // Since we're low on registers we installed rsp as a placeholding in _owner.
         // Now install Self over rsp.  This is safe as we're transitioning from
         // non-null to non=null
         masm.get_thread (boxReg) ;
3708
         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
D
duke 已提交
3709 3710
         // Intentional fall-through into LGoSlowPath ...

3711 3712 3713
         masm.bind  (LGoSlowPath) ; 
         masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
         masm.jmpb  (DONE_LABEL) ; 
D
duke 已提交
3714

3715 3716 3717
         masm.bind  (LSuccess) ; 
         masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
         masm.jmpb  (DONE_LABEL) ; 
D
duke 已提交
3718 3719 3720 3721 3722 3723 3724 3725
      }

      masm.bind (Stacked) ;
      // It's not inflated and it's not recursively stack-locked and it's not biased.
      // It must be stack-locked.
      // Try to reset the header to displaced header.
      // The "box" value on the stack is stable, so we can reload
      // and be assured we observe the same value as above.
3726
      masm.movptr(tmpReg, Address(boxReg, 0)) ;
D
duke 已提交
3727
      if (os::is_MP()) {   masm.lock();    }
3728
      masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
D
duke 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
      // Intention fall-thru into DONE_LABEL


      // DONE_LABEL is a hot target - we'd really like to place it at the
      // start of cache line by padding with NOPs.
      // See the AMD and Intel software optimization manuals for the
      // most efficient "long" NOP encodings.
      // Unfortunately none of our alignment mechanisms suffice.
      if ((EmitSync & 65536) == 0) {
         masm.bind (CheckSucc) ;
      }
      masm.bind(DONE_LABEL);

      // Avoid branch to branch on AMD processors
      if (EmitSync & 32768) { masm.nop() ; }
    }
  %}

3747

D
duke 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
  enc_class enc_pop_rdx() %{
    emit_opcode(cbuf,0x5A);
  %}

  enc_class enc_rethrow() %{
    cbuf.set_inst_mark();
    emit_opcode(cbuf, 0xE9);        // jmp    entry
    emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
                   runtime_call_Relocation::spec(), RELOC_IMM32 );
  %}


  // Convert a double to an int.  Java semantics require we do complex
  // manglelations in the corner cases.  So we set the rounding mode to
  // 'zero', store the darned double down as an int, and reset the
  // rounding mode to 'nearest'.  The hardware throws an exception which
  // patches up the correct value directly to the stack.
  enc_class D2I_encoding( regD src ) %{
    // Flip to round-to-zero mode.  We attempted to allow invalid-op
    // exceptions here, so that a NAN or other corner-case value will
    // thrown an exception (but normal values get converted at full speed).
    // However, I2C adapters and other float-stack manglers leave pending
    // invalid-op exceptions hanging.  We would have to clear them before
    // enabling them and that is more expensive than just testing for the
    // invalid value Intel stores down in the corner cases.
    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
    emit_opcode(cbuf,0x2D);
    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
    // Allocate a word
    emit_opcode(cbuf,0x83);            // SUB ESP,4
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x04);
    // Encoding assumes a double has been pushed into FPR0.
    // Store down the double as an int, popping the FPU stack
    emit_opcode(cbuf,0xDB);            // FISTP [ESP]
    emit_opcode(cbuf,0x1C);
    emit_d8(cbuf,0x24);
    // Restore the rounding mode; mask the exception
    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
    emit_opcode(cbuf,0x2D);
    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());

    // Load the converted int; adjust CPU stack
    emit_opcode(cbuf,0x58);       // POP EAX
    emit_opcode(cbuf,0x3D);       // CMP EAX,imm
    emit_d32   (cbuf,0x80000000); //         0x80000000
    emit_opcode(cbuf,0x75);       // JNE around_slow_call
    emit_d8    (cbuf,0x07);       // Size of slow_call
    // Push src onto stack slow-path
    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
    emit_d8    (cbuf,0xC0-1+$src$$reg );
    // CALL directly to the runtime
    cbuf.set_inst_mark();
    emit_opcode(cbuf,0xE8);       // Call into runtime
    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
    // Carry on here...
  %}

  enc_class D2L_encoding( regD src ) %{
    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
    emit_opcode(cbuf,0x2D);
    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
    // Allocate a word
    emit_opcode(cbuf,0x83);            // SUB ESP,8
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x08);
    // Encoding assumes a double has been pushed into FPR0.
    // Store down the double as a long, popping the FPU stack
    emit_opcode(cbuf,0xDF);            // FISTP [ESP]
    emit_opcode(cbuf,0x3C);
    emit_d8(cbuf,0x24);
    // Restore the rounding mode; mask the exception
    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
    emit_opcode(cbuf,0x2D);
    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());

    // Load the converted int; adjust CPU stack
    emit_opcode(cbuf,0x58);       // POP EAX
    emit_opcode(cbuf,0x5A);       // POP EDX
    emit_opcode(cbuf,0x81);       // CMP EDX,imm
    emit_d8    (cbuf,0xFA);       // rdx
    emit_d32   (cbuf,0x80000000); //         0x80000000
    emit_opcode(cbuf,0x75);       // JNE around_slow_call
    emit_d8    (cbuf,0x07+4);     // Size of slow_call
    emit_opcode(cbuf,0x85);       // TEST EAX,EAX
    emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
    emit_opcode(cbuf,0x75);       // JNE around_slow_call
    emit_d8    (cbuf,0x07);       // Size of slow_call
    // Push src onto stack slow-path
    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
    emit_d8    (cbuf,0xC0-1+$src$$reg );
    // CALL directly to the runtime
    cbuf.set_inst_mark();
    emit_opcode(cbuf,0xE8);       // Call into runtime
    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
    // Carry on here...
  %}

  enc_class X2L_encoding( regX src ) %{
    // Allocate a word
    emit_opcode(cbuf,0x83);      // SUB ESP,8
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x08);

    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
    emit_opcode(cbuf,0x2D);
    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());

    // Encoding assumes a double has been pushed into FPR0.
    // Store down the double as a long, popping the FPU stack
    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
    emit_opcode(cbuf,0x3C);
    emit_d8(cbuf,0x24);

    // Restore the rounding mode; mask the exception
    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
    emit_opcode(cbuf,0x2D);
    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());

    // Load the converted int; adjust CPU stack
    emit_opcode(cbuf,0x58);      // POP EAX

    emit_opcode(cbuf,0x5A);      // POP EDX

    emit_opcode(cbuf,0x81);      // CMP EDX,imm
    emit_d8    (cbuf,0xFA);      // rdx
    emit_d32   (cbuf,0x80000000);//         0x80000000

    emit_opcode(cbuf,0x75);      // JNE around_slow_call
    emit_d8    (cbuf,0x13+4);    // Size of slow_call

    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,

    emit_opcode(cbuf,0x75);      // JNE around_slow_call
    emit_d8    (cbuf,0x13);      // Size of slow_call

    // Allocate a word
    emit_opcode(cbuf,0x83);      // SUB ESP,4
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x04);

    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0x83);      // ADD ESP,4
    emit_opcode(cbuf,0xC4);
    emit_d8(cbuf,0x04);

    // CALL directly to the runtime
    cbuf.set_inst_mark();
    emit_opcode(cbuf,0xE8);       // Call into runtime
    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
    // Carry on here...
  %}

  enc_class XD2L_encoding( regXD src ) %{
    // Allocate a word
    emit_opcode(cbuf,0x83);      // SUB ESP,8
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x08);

    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
    emit_opcode(cbuf,0x2D);
    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());

    // Encoding assumes a double has been pushed into FPR0.
    // Store down the double as a long, popping the FPU stack
    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
    emit_opcode(cbuf,0x3C);
    emit_d8(cbuf,0x24);

    // Restore the rounding mode; mask the exception
    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
    emit_opcode(cbuf,0x2D);
    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());

    // Load the converted int; adjust CPU stack
    emit_opcode(cbuf,0x58);      // POP EAX

    emit_opcode(cbuf,0x5A);      // POP EDX

    emit_opcode(cbuf,0x81);      // CMP EDX,imm
    emit_d8    (cbuf,0xFA);      // rdx
    emit_d32   (cbuf,0x80000000); //         0x80000000

    emit_opcode(cbuf,0x75);      // JNE around_slow_call
    emit_d8    (cbuf,0x13+4);    // Size of slow_call

    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,

    emit_opcode(cbuf,0x75);      // JNE around_slow_call
    emit_d8    (cbuf,0x13);      // Size of slow_call

    // Push src onto stack slow-path
    // Allocate a word
    emit_opcode(cbuf,0x83);      // SUB ESP,8
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x08);

    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0x83);      // ADD ESP,8
    emit_opcode(cbuf,0xC4);
    emit_d8(cbuf,0x08);

    // CALL directly to the runtime
    cbuf.set_inst_mark();
    emit_opcode(cbuf,0xE8);      // Call into runtime
    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
    // Carry on here...
  %}

  enc_class D2X_encoding( regX dst, regD src ) %{
    // Allocate a word
    emit_opcode(cbuf,0x83);            // SUB ESP,4
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x04);
    int pop = 0x02;
    if ($src$$reg != FPR1L_enc) {
      emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
      emit_d8( cbuf, 0xC0-1+$src$$reg );
      pop = 0x03;
    }
    store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]

    emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x10 );
    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0x83);            // ADD ESP,4
    emit_opcode(cbuf,0xC4);
    emit_d8(cbuf,0x04);
    // Carry on here...
  %}

  enc_class FX2I_encoding( regX src, eRegI dst ) %{
    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);

    // Compare the result to see if we need to go to the slow path
    emit_opcode(cbuf,0x81);       // CMP dst,imm
    emit_rm    (cbuf,0x3,0x7,$dst$$reg);
    emit_d32   (cbuf,0x80000000); //         0x80000000

    emit_opcode(cbuf,0x75);       // JNE around_slow_call
    emit_d8    (cbuf,0x13);       // Size of slow_call
    // Store xmm to a temp memory
    // location and push it onto stack.

    emit_opcode(cbuf,0x83);  // SUB ESP,4
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf, $primary ? 0x8 : 0x4);

    emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0x83);    // ADD ESP,4
    emit_opcode(cbuf,0xC4);
    emit_d8(cbuf, $primary ? 0x8 : 0x4);

    // CALL directly to the runtime
    cbuf.set_inst_mark();
    emit_opcode(cbuf,0xE8);       // Call into runtime
    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );

    // Carry on here...
  %}

  enc_class X2D_encoding( regD dst, regX src ) %{
    // Allocate a word
    emit_opcode(cbuf,0x83);     // SUB ESP,4
    emit_opcode(cbuf,0xEC);
    emit_d8(cbuf,0x04);

    emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
    emit_opcode  (cbuf, 0x0F );
    emit_opcode  (cbuf, 0x11 );
    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);

    emit_opcode(cbuf,0x83);     // ADD ESP,4
    emit_opcode(cbuf,0xC4);
    emit_d8(cbuf,0x04);

    // Carry on here...
  %}

  enc_class AbsXF_encoding(regX dst) %{
    address signmask_address=(address)float_signmask_pool;
    // andpd:\tANDPS  $dst,[signconst]
    emit_opcode(cbuf, 0x0F);
    emit_opcode(cbuf, 0x54);
    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
    emit_d32(cbuf, (int)signmask_address);
  %}

  enc_class AbsXD_encoding(regXD dst) %{
    address signmask_address=(address)double_signmask_pool;
    // andpd:\tANDPD  $dst,[signconst]
    emit_opcode(cbuf, 0x66);
    emit_opcode(cbuf, 0x0F);
    emit_opcode(cbuf, 0x54);
    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
    emit_d32(cbuf, (int)signmask_address);
  %}

  enc_class NegXF_encoding(regX dst) %{
    address signmask_address=(address)float_signflip_pool;
    // andpd:\tXORPS  $dst,[signconst]
    emit_opcode(cbuf, 0x0F);
    emit_opcode(cbuf, 0x57);
    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
    emit_d32(cbuf, (int)signmask_address);
  %}

  enc_class NegXD_encoding(regXD dst) %{
    address signmask_address=(address)double_signflip_pool;
    // andpd:\tXORPD  $dst,[signconst]
    emit_opcode(cbuf, 0x66);
    emit_opcode(cbuf, 0x0F);
    emit_opcode(cbuf, 0x57);
    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
    emit_d32(cbuf, (int)signmask_address);
  %}

  enc_class FMul_ST_reg( eRegF src1 ) %{
    // Operand was loaded from memory into fp ST (stack top)
    // FMUL   ST,$src  /* D8 C8+i */
    emit_opcode(cbuf, 0xD8);
    emit_opcode(cbuf, 0xC8 + $src1$$reg);
  %}

  enc_class FAdd_ST_reg( eRegF src2 ) %{
    // FADDP  ST,src2  /* D8 C0+i */
    emit_opcode(cbuf, 0xD8);
    emit_opcode(cbuf, 0xC0 + $src2$$reg);
    //could use FADDP  src2,fpST  /* DE C0+i */
  %}

  enc_class FAddP_reg_ST( eRegF src2 ) %{
    // FADDP  src2,ST  /* DE C0+i */
    emit_opcode(cbuf, 0xDE);
    emit_opcode(cbuf, 0xC0 + $src2$$reg);
  %}

  enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
    // Operand has been loaded into fp ST (stack top)
      // FSUB   ST,$src1
      emit_opcode(cbuf, 0xD8);
      emit_opcode(cbuf, 0xE0 + $src1$$reg);

      // FDIV
      emit_opcode(cbuf, 0xD8);
      emit_opcode(cbuf, 0xF0 + $src2$$reg);
  %}

  enc_class MulFAddF (eRegF src1, eRegF src2) %{
    // Operand was loaded from memory into fp ST (stack top)
    // FADD   ST,$src  /* D8 C0+i */
    emit_opcode(cbuf, 0xD8);
    emit_opcode(cbuf, 0xC0 + $src1$$reg);

    // FMUL  ST,src2  /* D8 C*+i */
    emit_opcode(cbuf, 0xD8);
    emit_opcode(cbuf, 0xC8 + $src2$$reg);
  %}


  enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
    // Operand was loaded from memory into fp ST (stack top)
    // FADD   ST,$src  /* D8 C0+i */
    emit_opcode(cbuf, 0xD8);
    emit_opcode(cbuf, 0xC0 + $src1$$reg);

    // FMULP  src2,ST  /* DE C8+i */
    emit_opcode(cbuf, 0xDE);
    emit_opcode(cbuf, 0xC8 + $src2$$reg);
  %}

  // Atomically load the volatile long
  enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
    emit_opcode(cbuf,0xDF);
    int rm_byte_opcode = 0x05;
    int base     = $mem$$base;
    int index    = $mem$$index;
    int scale    = $mem$$scale;
    int displace = $mem$$disp;
    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
    store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  %}

  enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
    { // Atomic long load
      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
      int base     = $mem$$base;
      int index    = $mem$$index;
      int scale    = $mem$$scale;
      int displace = $mem$$disp;
      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
    }
    { // MOVSD $dst,$tmp ! atomic long store
      emit_opcode(cbuf,0xF2);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x11);
      int base     = $dst$$base;
      int index    = $dst$$index;
      int scale    = $dst$$scale;
      int displace = $dst$$disp;
      bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
    }
  %}

  enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
    { // Atomic long load
      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
      int base     = $mem$$base;
      int index    = $mem$$index;
      int scale    = $mem$$scale;
      int displace = $mem$$disp;
      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
    }
    { // MOVD $dst.lo,$tmp
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x7E);
      emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
    }
    { // PSRLQ $tmp,32
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x73);
      emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
      emit_d8(cbuf, 0x20);
    }
    { // MOVD $dst.hi,$tmp
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x7E);
      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
    }
  %}

  // Volatile Store Long.  Must be atomic, so move it into
  // the FP TOS and then do a 64-bit FIST.  Has to probe the
  // target address before the store (for null-ptr checks)
  // so the memory operand is used twice in the encoding.
  enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
    store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
    cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
    emit_opcode(cbuf,0xDF);
    int rm_byte_opcode = 0x07;
    int base     = $mem$$base;
    int index    = $mem$$index;
    int scale    = $mem$$scale;
    int displace = $mem$$disp;
    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  %}

  enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
    { // Atomic long load
      // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
      int base     = $src$$base;
      int index    = $src$$index;
      int scale    = $src$$scale;
      int displace = $src$$disp;
      bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
    }
    cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
    { // MOVSD $mem,$tmp ! atomic long store
      emit_opcode(cbuf,0xF2);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x11);
      int base     = $mem$$base;
      int index    = $mem$$index;
      int scale    = $mem$$scale;
      int displace = $mem$$disp;
      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
    }
  %}

  enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
    { // MOVD $tmp,$src.lo
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x6E);
      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
    }
    { // MOVD $tmp2,$src.hi
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x6E);
      emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
    }
    { // PUNPCKLDQ $tmp,$tmp2
      emit_opcode(cbuf,0x66);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x62);
      emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
    }
    cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
    { // MOVSD $mem,$tmp ! atomic long store
      emit_opcode(cbuf,0xF2);
      emit_opcode(cbuf,0x0F);
      emit_opcode(cbuf,0x11);
      int base     = $mem$$base;
      int index    = $mem$$index;
      int scale    = $mem$$scale;
      int displace = $mem$$disp;
      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
    }
  %}

  // Safepoint Poll.  This polls the safepoint page, and causes an
  // exception if it is not readable. Unfortunately, it kills the condition code
  // in the process
  // We current use TESTL [spp],EDI
  // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0

  enc_class Safepoint_Poll() %{
    cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
    emit_opcode(cbuf,0x85);
    emit_rm (cbuf, 0x0, 0x7, 0x5);
    emit_d32(cbuf, (intptr_t)os::get_polling_page());
  %}
%}


//----------FRAME--------------------------------------------------------------
// Definition of frame structure and management information.
//
//  S T A C K   L A Y O U T    Allocators stack-slot number
//                             |   (to get allocators register number
//  G  Owned by    |        |  v    add OptoReg::stack0())
//  r   CALLER     |        |
//  o     |        +--------+      pad to even-align allocators stack-slot
//  w     V        |  pad0  |        numbers; owned by CALLER
//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
//  h     ^        |   in   |  5
//        |        |  args  |  4   Holes in incoming args owned by SELF
//  |     |        |        |  3
//  |     |        +--------+
//  V     |        | old out|      Empty on Intel, window on Sparc
//        |    old |preserve|      Must be even aligned.
//        |     SP-+--------+----> Matcher::_old_SP, even aligned
//        |        |   in   |  3   area for Intel ret address
//     Owned by    |preserve|      Empty on Sparc.
//       SELF      +--------+
//        |        |  pad2  |  2   pad to align old SP
//        |        +--------+  1
//        |        | locks  |  0
//        |        +--------+----> OptoReg::stack0(), even aligned
//        |        |  pad1  | 11   pad to align new SP
//        |        +--------+
//        |        |        | 10
//        |        | spills |  9   spills
//        V        |        |  8   (pad0 slot for callee)
//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
//        ^        |  out   |  7
//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
//     Owned by    +--------+
//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
//        |    new |preserve|      Must be even-aligned.
//        |     SP-+--------+----> Matcher::_new_SP, even aligned
//        |        |        |
//
// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
//         known from SELF's arguments and the Java calling convention.
//         Region 6-7 is determined per call site.
// Note 2: If the calling convention leaves holes in the incoming argument
//         area, those holes are owned by SELF.  Holes in the outgoing area
//         are owned by the CALLEE.  Holes should not be nessecary in the
//         incoming area, as the Java calling convention is completely under
//         the control of the AD file.  Doubles can be sorted and packed to
//         avoid holes.  Holes in the outgoing arguments may be nessecary for
//         varargs C calling conventions.
// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
//         even aligned with pad0 as needed.
//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
//         region 6-11 is even aligned; it may be padded out more so that
//         the region from SP to FP meets the minimum stack alignment.

frame %{
  // What direction does stack grow in (assumed to be same for C & Java)
  stack_direction(TOWARDS_LOW);

  // These three registers define part of the calling convention
  // between compiled code and the interpreter.
  inline_cache_reg(EAX);                // Inline Cache Register
  interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter

  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  cisc_spilling_operand_name(indOffset32);

  // Number of stack slots consumed by locking an object
  sync_stack_slots(1);

  // Compiled code's Frame Pointer
  frame_pointer(ESP);
  // Interpreter stores its frame pointer in a register which is
  // stored to the stack by I2CAdaptors.
  // I2CAdaptors convert from interpreted java to compiled java.
  interpreter_frame_pointer(EBP);

  // Stack alignment requirement
  // Alignment size in bytes (128-bit -> 16 bytes)
  stack_alignment(StackAlignmentInBytes);

  // Number of stack slots between incoming argument block and the start of
  // a new frame.  The PROLOG must add this many slots to the stack.  The
  // EPILOG must remove this many slots.  Intel needs one slot for
  // return address and one for rbp, (must save rbp)
  in_preserve_stack_slots(2+VerifyStackAtCalls);

  // Number of outgoing stack slots killed above the out_preserve_stack_slots
  // for calls to C.  Supports the var-args backing area for register parms.
  varargs_C_out_slots_killed(0);

  // The after-PROLOG location of the return address.  Location of
  // return address specifies a type (REG or STACK) and a number
  // representing the register number (i.e. - use a register name) or
  // stack slot.
  // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  // Otherwise, it is above the locks and verification slot and alignment word
  return_addr(STACK - 1 +
              round_to(1+VerifyStackAtCalls+
              Compile::current()->fixed_slots(),
              (StackAlignmentInBytes/wordSize)));

  // Body of function which returns an integer array locating
  // arguments either in registers or in stack slots.  Passed an array
  // of ideal registers called "sig" and a "length" count.  Stack-slot
  // offsets are based on outgoing arguments, i.e. a CALLER setting up
  // arguments for a CALLEE.  Incoming stack arguments are
  // automatically biased by the preserve_stack_slots field above.
  calling_convention %{
    // No difference between ingoing/outgoing just pass false
    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  %}


  // Body of function which returns an integer array locating
  // arguments either in registers or in stack slots.  Passed an array
  // of ideal registers called "sig" and a "length" count.  Stack-slot
  // offsets are based on outgoing arguments, i.e. a CALLER setting up
  // arguments for a CALLEE.  Incoming stack arguments are
  // automatically biased by the preserve_stack_slots field above.
  c_calling_convention %{
    // This is obviously always outgoing
    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  %}

  // Location of C & interpreter return values
  c_return_value %{
    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4463 4464
    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
D
duke 已提交
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478

    // in SSE2+ mode we want to keep the FPU stack clean so pretend
    // that C functions return float and double results in XMM0.
    if( ideal_reg == Op_RegD && UseSSE>=2 )
      return OptoRegPair(XMM0b_num,XMM0a_num);
    if( ideal_reg == Op_RegF && UseSSE>=2 )
      return OptoRegPair(OptoReg::Bad,XMM0a_num);

    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  %}

  // Location of return values
  return_value %{
    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4479 4480
    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
D
duke 已提交
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
    if( ideal_reg == Op_RegD && UseSSE>=2 )
      return OptoRegPair(XMM0b_num,XMM0a_num);
    if( ideal_reg == Op_RegF && UseSSE>=1 )
      return OptoRegPair(OptoReg::Bad,XMM0a_num);
    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  %}

%}

//----------ATTRIBUTES---------------------------------------------------------
//----------Operand Attributes-------------------------------------------------
op_attrib op_cost(0);        // Required cost attribute

//----------Instruction Attributes---------------------------------------------
ins_attrib ins_cost(100);       // Required cost attribute
ins_attrib ins_size(8);         // Required size attribute (in bits)
ins_attrib ins_pc_relative(0);  // Required PC Relative flag
ins_attrib ins_short_branch(0); // Required flag: is this instruction a
                                // non-matching short branch variant of some
                                                            // long branch?
ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
                                // specifies the alignment that some part of the instruction (not
                                // necessarily the start) requires.  If > 1, a compute_padding()
                                // function must be provided for the instruction

//----------OPERANDS-----------------------------------------------------------
// Operand definitions must precede instruction definitions for correct parsing
// in the ADLC because operands constitute user defined types which are used in
// instruction definitions.

//----------Simple Operands----------------------------------------------------
// Immediate Operands
// Integer Immediate
operand immI() %{
  match(ConI);

  op_cost(10);
  format %{ %}
  interface(CONST_INTER);
%}

// Constant for test vs zero
operand immI0() %{
  predicate(n->get_int() == 0);
  match(ConI);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Constant for increment
operand immI1() %{
  predicate(n->get_int() == 1);
  match(ConI);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Constant for decrement
operand immI_M1() %{
  predicate(n->get_int() == -1);
  match(ConI);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Valid scale values for addressing modes
operand immI2() %{
  predicate(0 <= n->get_int() && (n->get_int() <= 3));
  match(ConI);

  format %{ %}
  interface(CONST_INTER);
%}

operand immI8() %{
  predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  match(ConI);

  op_cost(5);
  format %{ %}
  interface(CONST_INTER);
%}

operand immI16() %{
  predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  match(ConI);

  op_cost(10);
  format %{ %}
  interface(CONST_INTER);
%}

// Constant for long shifts
operand immI_32() %{
  predicate( n->get_int() == 32 );
  match(ConI);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

operand immI_1_31() %{
  predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  match(ConI);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

operand immI_32_63() %{
  predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
operand immI_1() %{
  predicate( n->get_int() == 1 );
  match(ConI);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

operand immI_2() %{
  predicate( n->get_int() == 2 );
  match(ConI);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

operand immI_3() %{
  predicate( n->get_int() == 3 );
  match(ConI);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
// Pointer Immediate
operand immP() %{
  match(ConP);

  op_cost(10);
  format %{ %}
  interface(CONST_INTER);
%}

// NULL Pointer Immediate
operand immP0() %{
  predicate( n->get_ptr() == 0 );
  match(ConP);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate
operand immL() %{
  match(ConL);

  op_cost(20);
  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate zero
operand immL0() %{
  predicate( n->get_long() == 0L );
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
// Long Immediate zero
operand immL_M1() %{
  predicate( n->get_long() == -1L );
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
// Long immediate from 0 to 127.
// Used for a shorter form of long mul by 10.
operand immL_127() %{
  predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate: low 32-bit mask
operand immL_32bits() %{
  predicate(n->get_long() == 0xFFFFFFFFL);
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate: low 32-bit mask
operand immL32() %{
  predicate(n->get_long() == (int)(n->get_long()));
  match(ConL);
  op_cost(20);

  format %{ %}
  interface(CONST_INTER);
%}

//Double Immediate zero
operand immD0() %{
  // Do additional (and counter-intuitive) test against NaN to work around VC++
  // bug that generates code such that NaNs compare equal to 0.0
  predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  match(ConD);

  op_cost(5);
  format %{ %}
  interface(CONST_INTER);
%}

// Double Immediate
operand immD1() %{
  predicate( UseSSE<=1 && n->getd() == 1.0 );
  match(ConD);

  op_cost(5);
  format %{ %}
  interface(CONST_INTER);
%}

// Double Immediate
operand immD() %{
  predicate(UseSSE<=1);
  match(ConD);

  op_cost(5);
  format %{ %}
  interface(CONST_INTER);
%}

operand immXD() %{
  predicate(UseSSE>=2);
  match(ConD);

  op_cost(5);
  format %{ %}
  interface(CONST_INTER);
%}

// Double Immediate zero
operand immXD0() %{
  // Do additional (and counter-intuitive) test against NaN to work around VC++
  // bug that generates code such that NaNs compare equal to 0.0 AND do not
  // compare equal to -0.0.
  predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  match(ConD);

  format %{ %}
  interface(CONST_INTER);
%}

// Float Immediate zero
operand immF0() %{
  predicate( UseSSE == 0 && n->getf() == 0.0 );
  match(ConF);

  op_cost(5);
  format %{ %}
  interface(CONST_INTER);
%}

// Float Immediate
operand immF() %{
  predicate( UseSSE == 0 );
  match(ConF);

  op_cost(5);
  format %{ %}
  interface(CONST_INTER);
%}

// Float Immediate
operand immXF() %{
  predicate(UseSSE >= 1);
  match(ConF);

  op_cost(5);
  format %{ %}
  interface(CONST_INTER);
%}

// Float Immediate zero.  Zero and not -0.0
operand immXF0() %{
  predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  match(ConF);

  op_cost(5);
  format %{ %}
  interface(CONST_INTER);
%}

// Immediates for special shifts (sign extend)

// Constants for increment
operand immI_16() %{
  predicate( n->get_int() == 16 );
  match(ConI);

  format %{ %}
  interface(CONST_INTER);
%}

operand immI_24() %{
  predicate( n->get_int() == 24 );
  match(ConI);

  format %{ %}
  interface(CONST_INTER);
%}

// Constant for byte-wide masking
operand immI_255() %{
  predicate( n->get_int() == 255 );
  match(ConI);

  format %{ %}
  interface(CONST_INTER);
%}

T
twisti 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842
// Constant for short-wide masking
operand immI_65535() %{
  predicate(n->get_int() == 65535);
  match(ConI);

  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
// Register Operands
// Integer Register
operand eRegI() %{
  constraint(ALLOC_IN_RC(e_reg));
  match(RegI);
  match(xRegI);
  match(eAXRegI);
  match(eBXRegI);
  match(eCXRegI);
  match(eDXRegI);
  match(eDIRegI);
  match(eSIRegI);

  format %{ %}
  interface(REG_INTER);
%}

// Subset of Integer Register
operand xRegI(eRegI reg) %{
  constraint(ALLOC_IN_RC(x_reg));
  match(reg);
  match(eAXRegI);
  match(eBXRegI);
  match(eCXRegI);
  match(eDXRegI);

  format %{ %}
  interface(REG_INTER);
%}

// Special Registers
operand eAXRegI(xRegI reg) %{
  constraint(ALLOC_IN_RC(eax_reg));
  match(reg);
  match(eRegI);

  format %{ "EAX" %}
  interface(REG_INTER);
%}

// Special Registers
operand eBXRegI(xRegI reg) %{
  constraint(ALLOC_IN_RC(ebx_reg));
  match(reg);
  match(eRegI);

  format %{ "EBX" %}
  interface(REG_INTER);
%}

operand eCXRegI(xRegI reg) %{
  constraint(ALLOC_IN_RC(ecx_reg));
  match(reg);
  match(eRegI);

  format %{ "ECX" %}
  interface(REG_INTER);
%}

operand eDXRegI(xRegI reg) %{
  constraint(ALLOC_IN_RC(edx_reg));
  match(reg);
  match(eRegI);

  format %{ "EDX" %}
  interface(REG_INTER);
%}

operand eDIRegI(xRegI reg) %{
  constraint(ALLOC_IN_RC(edi_reg));
  match(reg);
  match(eRegI);

  format %{ "EDI" %}
  interface(REG_INTER);
%}

operand naxRegI() %{
  constraint(ALLOC_IN_RC(nax_reg));
  match(RegI);
  match(eCXRegI);
  match(eDXRegI);
  match(eSIRegI);
  match(eDIRegI);

  format %{ %}
  interface(REG_INTER);
%}

operand nadxRegI() %{
  constraint(ALLOC_IN_RC(nadx_reg));
  match(RegI);
  match(eBXRegI);
  match(eCXRegI);
  match(eSIRegI);
  match(eDIRegI);

  format %{ %}
  interface(REG_INTER);
%}

operand ncxRegI() %{
  constraint(ALLOC_IN_RC(ncx_reg));
  match(RegI);
  match(eAXRegI);
  match(eDXRegI);
  match(eSIRegI);
  match(eDIRegI);

  format %{ %}
  interface(REG_INTER);
%}

// // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
// //
operand eSIRegI(xRegI reg) %{
   constraint(ALLOC_IN_RC(esi_reg));
   match(reg);
   match(eRegI);

   format %{ "ESI" %}
   interface(REG_INTER);
%}

// Pointer Register
operand anyRegP() %{
  constraint(ALLOC_IN_RC(any_reg));
  match(RegP);
  match(eAXRegP);
  match(eBXRegP);
  match(eCXRegP);
  match(eDIRegP);
  match(eRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand eRegP() %{
  constraint(ALLOC_IN_RC(e_reg));
  match(RegP);
  match(eAXRegP);
  match(eBXRegP);
  match(eCXRegP);
  match(eDIRegP);

  format %{ %}
  interface(REG_INTER);
%}

// On windows95, EBP is not safe to use for implicit null tests.
operand eRegP_no_EBP() %{
  constraint(ALLOC_IN_RC(e_reg_no_rbp));
  match(RegP);
  match(eAXRegP);
  match(eBXRegP);
  match(eCXRegP);
  match(eDIRegP);

  op_cost(100);
  format %{ %}
  interface(REG_INTER);
%}

operand naxRegP() %{
  constraint(ALLOC_IN_RC(nax_reg));
  match(RegP);
  match(eBXRegP);
  match(eDXRegP);
  match(eCXRegP);
  match(eSIRegP);
  match(eDIRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand nabxRegP() %{
  constraint(ALLOC_IN_RC(nabx_reg));
  match(RegP);
  match(eCXRegP);
  match(eDXRegP);
  match(eSIRegP);
  match(eDIRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand pRegP() %{
  constraint(ALLOC_IN_RC(p_reg));
  match(RegP);
  match(eBXRegP);
  match(eDXRegP);
  match(eSIRegP);
  match(eDIRegP);

  format %{ %}
  interface(REG_INTER);
%}

// Special Registers
// Return a pointer value
operand eAXRegP(eRegP reg) %{
  constraint(ALLOC_IN_RC(eax_reg));
  match(reg);
  format %{ "EAX" %}
  interface(REG_INTER);
%}

// Used in AtomicAdd
operand eBXRegP(eRegP reg) %{
  constraint(ALLOC_IN_RC(ebx_reg));
  match(reg);
  format %{ "EBX" %}
  interface(REG_INTER);
%}

// Tail-call (interprocedural jump) to interpreter
operand eCXRegP(eRegP reg) %{
  constraint(ALLOC_IN_RC(ecx_reg));
  match(reg);
  format %{ "ECX" %}
  interface(REG_INTER);
%}

operand eSIRegP(eRegP reg) %{
  constraint(ALLOC_IN_RC(esi_reg));
  match(reg);
  format %{ "ESI" %}
  interface(REG_INTER);
%}

// Used in rep stosw
operand eDIRegP(eRegP reg) %{
  constraint(ALLOC_IN_RC(edi_reg));
  match(reg);
  format %{ "EDI" %}
  interface(REG_INTER);
%}

operand eBPRegP() %{
  constraint(ALLOC_IN_RC(ebp_reg));
  match(RegP);
  format %{ "EBP" %}
  interface(REG_INTER);
%}

operand eRegL() %{
  constraint(ALLOC_IN_RC(long_reg));
  match(RegL);
  match(eADXRegL);

  format %{ %}
  interface(REG_INTER);
%}

operand eADXRegL( eRegL reg ) %{
  constraint(ALLOC_IN_RC(eadx_reg));
  match(reg);

  format %{ "EDX:EAX" %}
  interface(REG_INTER);
%}

operand eBCXRegL( eRegL reg ) %{
  constraint(ALLOC_IN_RC(ebcx_reg));
  match(reg);

  format %{ "EBX:ECX" %}
  interface(REG_INTER);
%}

// Special case for integer high multiply
operand eADXRegL_low_only() %{
  constraint(ALLOC_IN_RC(eadx_reg));
  match(RegL);

  format %{ "EAX" %}
  interface(REG_INTER);
%}

// Flags register, used as output of compare instructions
operand eFlagsReg() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);

  format %{ "EFLAGS" %}
  interface(REG_INTER);
%}

// Flags register, used as output of FLOATING POINT compare instructions
operand eFlagsRegU() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);

  format %{ "EFLAGS_U" %}
  interface(REG_INTER);
%}

5143 5144 5145 5146 5147 5148 5149 5150 5151
operand eFlagsRegUCF() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);
  predicate(false);

  format %{ "EFLAGS_U_CF" %}
  interface(REG_INTER);
%}

D
duke 已提交
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
// Condition Code Register used by long compare
operand flagsReg_long_LTGE() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);
  format %{ "FLAGS_LTGE" %}
  interface(REG_INTER);
%}
operand flagsReg_long_EQNE() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);
  format %{ "FLAGS_EQNE" %}
  interface(REG_INTER);
%}
operand flagsReg_long_LEGT() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);
  format %{ "FLAGS_LEGT" %}
  interface(REG_INTER);
%}

// Float register operands
operand regD() %{
  predicate( UseSSE < 2 );
  constraint(ALLOC_IN_RC(dbl_reg));
  match(RegD);
  match(regDPR1);
  match(regDPR2);
  format %{ %}
  interface(REG_INTER);
%}

operand regDPR1(regD reg) %{
  predicate( UseSSE < 2 );
  constraint(ALLOC_IN_RC(dbl_reg0));
  match(reg);
  format %{ "FPR1" %}
  interface(REG_INTER);
%}

operand regDPR2(regD reg) %{
  predicate( UseSSE < 2 );
  constraint(ALLOC_IN_RC(dbl_reg1));
  match(reg);
  format %{ "FPR2" %}
  interface(REG_INTER);
%}

operand regnotDPR1(regD reg) %{
  predicate( UseSSE < 2 );
  constraint(ALLOC_IN_RC(dbl_notreg0));
  match(reg);
  format %{ %}
  interface(REG_INTER);
%}

// XMM Double register operands
operand regXD() %{
  predicate( UseSSE>=2 );
  constraint(ALLOC_IN_RC(xdb_reg));
  match(RegD);
  match(regXD6);
  match(regXD7);
  format %{ %}
  interface(REG_INTER);
%}

// XMM6 double register operands
operand regXD6(regXD reg) %{
  predicate( UseSSE>=2 );
  constraint(ALLOC_IN_RC(xdb_reg6));
  match(reg);
  format %{ "XMM6" %}
  interface(REG_INTER);
%}

// XMM7 double register operands
operand regXD7(regXD reg) %{
  predicate( UseSSE>=2 );
  constraint(ALLOC_IN_RC(xdb_reg7));
  match(reg);
  format %{ "XMM7" %}
  interface(REG_INTER);
%}

// Float register operands
operand regF() %{
  predicate( UseSSE < 2 );
  constraint(ALLOC_IN_RC(flt_reg));
  match(RegF);
  match(regFPR1);
  format %{ %}
  interface(REG_INTER);
%}

// Float register operands
operand regFPR1(regF reg) %{
  predicate( UseSSE < 2 );
  constraint(ALLOC_IN_RC(flt_reg0));
  match(reg);
  format %{ "FPR1" %}
  interface(REG_INTER);
%}

// XMM register operands
operand regX() %{
  predicate( UseSSE>=1 );
  constraint(ALLOC_IN_RC(xmm_reg));
  match(RegF);
  format %{ %}
  interface(REG_INTER);
%}


//----------Memory Operands----------------------------------------------------
// Direct Memory Operand
operand direct(immP addr) %{
  match(addr);

  format %{ "[$addr]" %}
  interface(MEMORY_INTER) %{
    base(0xFFFFFFFF);
    index(0x4);
    scale(0x0);
    disp($addr);
  %}
%}

// Indirect Memory Operand
operand indirect(eRegP reg) %{
  constraint(ALLOC_IN_RC(e_reg));
  match(reg);

  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x4);
    scale(0x0);
    disp(0x0);
  %}
%}

// Indirect Memory Plus Short Offset Operand
operand indOffset8(eRegP reg, immI8 off) %{
  match(AddP reg off);

  format %{ "[$reg + $off]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x4);
    scale(0x0);
    disp($off);
  %}
%}

// Indirect Memory Plus Long Offset Operand
operand indOffset32(eRegP reg, immI off) %{
  match(AddP reg off);

  format %{ "[$reg + $off]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x4);
    scale(0x0);
    disp($off);
  %}
%}

// Indirect Memory Plus Long Offset Operand
operand indOffset32X(eRegI reg, immP off) %{
  match(AddP off reg);

  format %{ "[$reg + $off]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x4);
    scale(0x0);
    disp($off);
  %}
%}

// Indirect Memory Plus Index Register Plus Offset Operand
operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  match(AddP (AddP reg ireg) off);

  op_cost(10);
  format %{"[$reg + $off + $ireg]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index($ireg);
    scale(0x0);
    disp($off);
  %}
%}

// Indirect Memory Plus Index Register Plus Offset Operand
operand indIndex(eRegP reg, eRegI ireg) %{
  match(AddP reg ireg);

  op_cost(10);
  format %{"[$reg + $ireg]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index($ireg);
    scale(0x0);
    disp(0x0);
  %}
%}

// // -------------------------------------------------------------------------
// // 486 architecture doesn't support "scale * index + offset" with out a base
// // -------------------------------------------------------------------------
// // Scaled Memory Operands
// // Indirect Memory Times Scale Plus Offset Operand
// operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
//   match(AddP off (LShiftI ireg scale));
//
//   op_cost(10);
//   format %{"[$off + $ireg << $scale]" %}
//   interface(MEMORY_INTER) %{
//     base(0x4);
//     index($ireg);
//     scale($scale);
//     disp($off);
//   %}
// %}

// Indirect Memory Times Scale Plus Index Register
operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  match(AddP reg (LShiftI ireg scale));

  op_cost(10);
  format %{"[$reg + $ireg << $scale]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index($ireg);
    scale($scale);
    disp(0x0);
  %}
%}

// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  match(AddP (AddP reg (LShiftI ireg scale)) off);

  op_cost(10);
  format %{"[$reg + $off + $ireg << $scale]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index($ireg);
    scale($scale);
    disp($off);
  %}
%}

//----------Load Long Memory Operands------------------------------------------
// The load-long idiom will use it's address expression again after loading
// the first word of the long.  If the load-long destination overlaps with
// registers used in the addressing expression, the 2nd half will be loaded
// from a clobbered address.  Fix this by requiring that load-long use
// address registers that do not overlap with the load-long target.

// load-long support
operand load_long_RegP() %{
  constraint(ALLOC_IN_RC(esi_reg));
  match(RegP);
  match(eSIRegP);
  op_cost(100);
  format %{  %}
  interface(REG_INTER);
%}

// Indirect Memory Operand Long
operand load_long_indirect(load_long_RegP reg) %{
  constraint(ALLOC_IN_RC(esi_reg));
  match(reg);

  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x4);
    scale(0x0);
    disp(0x0);
  %}
%}

// Indirect Memory Plus Long Offset Operand
operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  match(AddP reg off);

  format %{ "[$reg + $off]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x4);
    scale(0x0);
    disp($off);
  %}
%}

opclass load_long_memory(load_long_indirect, load_long_indOffset32);


//----------Special Memory Operands--------------------------------------------
// Stack Slot Operand - This operand is used for loading and storing temporary
//                      values on the stack where a match requires a value to
//                      flow through memory.
operand stackSlotP(sRegP reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  // No match rule because this operand is only generated in matching
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base(0x4);   // ESP
    index(0x4);  // No Index
    scale(0x0);  // No Scale
    disp($reg);  // Stack Offset
  %}
%}

operand stackSlotI(sRegI reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  // No match rule because this operand is only generated in matching
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base(0x4);   // ESP
    index(0x4);  // No Index
    scale(0x0);  // No Scale
    disp($reg);  // Stack Offset
  %}
%}

operand stackSlotF(sRegF reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  // No match rule because this operand is only generated in matching
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base(0x4);   // ESP
    index(0x4);  // No Index
    scale(0x0);  // No Scale
    disp($reg);  // Stack Offset
  %}
%}

operand stackSlotD(sRegD reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  // No match rule because this operand is only generated in matching
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base(0x4);   // ESP
    index(0x4);  // No Index
    scale(0x0);  // No Scale
    disp($reg);  // Stack Offset
  %}
%}

operand stackSlotL(sRegL reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  // No match rule because this operand is only generated in matching
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base(0x4);   // ESP
    index(0x4);  // No Index
    scale(0x0);  // No Scale
    disp($reg);  // Stack Offset
  %}
%}

//----------Memory Operands - Win95 Implicit Null Variants----------------
// Indirect Memory Operand
operand indirect_win95_safe(eRegP_no_EBP reg)
%{
  constraint(ALLOC_IN_RC(e_reg));
  match(reg);

  op_cost(100);
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x4);
    scale(0x0);
    disp(0x0);
  %}
%}

// Indirect Memory Plus Short Offset Operand
operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
%{
  match(AddP reg off);

  op_cost(100);
  format %{ "[$reg + $off]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x4);
    scale(0x0);
    disp($off);
  %}
%}

// Indirect Memory Plus Long Offset Operand
operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
%{
  match(AddP reg off);

  op_cost(100);
  format %{ "[$reg + $off]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x4);
    scale(0x0);
    disp($off);
  %}
%}

// Indirect Memory Plus Index Register Plus Offset Operand
operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
%{
  match(AddP (AddP reg ireg) off);

  op_cost(100);
  format %{"[$reg + $off + $ireg]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index($ireg);
    scale(0x0);
    disp($off);
  %}
%}

// Indirect Memory Times Scale Plus Index Register
operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
%{
  match(AddP reg (LShiftI ireg scale));

  op_cost(100);
  format %{"[$reg + $ireg << $scale]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index($ireg);
    scale($scale);
    disp(0x0);
  %}
%}

// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
%{
  match(AddP (AddP reg (LShiftI ireg scale)) off);

  op_cost(100);
  format %{"[$reg + $off + $ireg << $scale]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index($ireg);
    scale($scale);
    disp($off);
  %}
%}

//----------Conditional Branch Operands----------------------------------------
// Comparison Op  - This is the operation of the comparison, and is limited to
//                  the following set of codes:
//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
//
// Other attributes of the comparison, such as unsignedness, are specified
// by the comparison instruction that sets a condition code flags register.
// That result is represented by a flags operand whose subtype is appropriate
// to the unsignedness (etc.) of the comparison.
//
// Later, the instruction which matches both the Comparison Op (a Bool) and
// the flags (produced by the Cmp) specifies the coding of the comparison op
// by matching a specific subtype of Bool operand below, such as cmpOpU.

// Comparision Code
operand cmpOp() %{
  match(Bool);

  format %{ "" %}
  interface(COND_INTER) %{
5629 5630 5631 5632 5633 5634
    equal(0x4, "e");
    not_equal(0x5, "ne");
    less(0xC, "l");
    greater_equal(0xD, "ge");
    less_equal(0xE, "le");
    greater(0xF, "g");
D
duke 已提交
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
  %}
%}

// Comparison Code, unsigned compare.  Used by FP also, with
// C2 (unordered) turned into GT or LT already.  The other bits
// C0 and C3 are turned into Carry & Zero flags.
operand cmpOpU() %{
  match(Bool);

  format %{ "" %}
  interface(COND_INTER) %{
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
    equal(0x4, "e");
    not_equal(0x5, "ne");
    less(0x2, "b");
    greater_equal(0x3, "nb");
    less_equal(0x6, "be");
    greater(0x7, "nbe");
  %}
%}

// Floating comparisons that don't require any fixup for the unordered case
operand cmpOpUCF() %{
  match(Bool);
  predicate(n->as_Bool()->_test._test == BoolTest::lt ||
            n->as_Bool()->_test._test == BoolTest::ge ||
            n->as_Bool()->_test._test == BoolTest::le ||
            n->as_Bool()->_test._test == BoolTest::gt);
  format %{ "" %}
  interface(COND_INTER) %{
    equal(0x4, "e");
    not_equal(0x5, "ne");
    less(0x2, "b");
    greater_equal(0x3, "nb");
    less_equal(0x6, "be");
    greater(0x7, "nbe");
  %}
%}


// Floating comparisons that can be fixed up with extra conditional jumps
operand cmpOpUCF2() %{
  match(Bool);
  predicate(n->as_Bool()->_test._test == BoolTest::ne ||
            n->as_Bool()->_test._test == BoolTest::eq);
  format %{ "" %}
  interface(COND_INTER) %{
    equal(0x4, "e");
    not_equal(0x5, "ne");
    less(0x2, "b");
    greater_equal(0x3, "nb");
    less_equal(0x6, "be");
    greater(0x7, "nbe");
D
duke 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
  %}
%}

// Comparison Code for FP conditional move
operand cmpOp_fcmov() %{
  match(Bool);

  format %{ "" %}
  interface(COND_INTER) %{
    equal        (0x0C8);
    not_equal    (0x1C8);
    less         (0x0C0);
    greater_equal(0x1C0);
    less_equal   (0x0D0);
    greater      (0x1D0);
  %}
%}

// Comparision Code used in long compares
operand cmpOp_commute() %{
  match(Bool);

  format %{ "" %}
  interface(COND_INTER) %{
5711 5712 5713 5714 5715 5716
    equal(0x4, "e");
    not_equal(0x5, "ne");
    less(0xF, "g");
    greater_equal(0xE, "le");
    less_equal(0xD, "ge");
    greater(0xC, "l");
D
duke 已提交
5717 5718 5719 5720 5721
  %}
%}

//----------OPERAND CLASSES----------------------------------------------------
// Operand Classes are groups of operands that are used as to simplify
T
twisti 已提交
5722
// instruction definitions by not requiring the AD writer to specify separate
D
duke 已提交
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
// instructions for every form of operand when the instruction accepts
// multiple operand types with the same basic encoding and format.  The classic
// case of this is memory operands.

opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
               indIndex, indIndexScale, indIndexScaleOffset);

// Long memory operations are encoded in 2 instructions and a +4 offset.
// This means some kind of offset is always required and you cannot use
// an oop as the offset (done when working on static globals).
opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
                    indIndex, indIndexScale, indIndexScaleOffset);


//----------PIPELINE-----------------------------------------------------------
// Rules which define the behavior of the target architectures pipeline.
pipeline %{

//----------ATTRIBUTES---------------------------------------------------------
attributes %{
  variable_size_instructions;        // Fixed size instructions
  max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  instruction_unit_size = 1;         // An instruction is 1 bytes long
  instruction_fetch_unit_size = 16;  // The processor fetches one line
  instruction_fetch_units = 1;       // of 16 bytes

  // List of nop instructions
  nops( MachNop );
%}

//----------RESOURCES----------------------------------------------------------
// Resources are the functional units available to the machine

// Generic P2/P3 pipeline
// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
// 3 instructions decoded per cycle.
// 2 load/store ops per cycle, 1 branch, 1 FPU,
// 2 ALU op, only ALU0 handles mul/div instructions.
resources( D0, D1, D2, DECODE = D0 | D1 | D2,
           MS0, MS1, MEM = MS0 | MS1,
           BR, FPU,
           ALU0, ALU1, ALU = ALU0 | ALU1 );

//----------PIPELINE DESCRIPTION-----------------------------------------------
// Pipeline Description specifies the stages in the machine's pipeline

// Generic P2/P3 pipeline
pipe_desc(S0, S1, S2, S3, S4, S5);

//----------PIPELINE CLASSES---------------------------------------------------
// Pipeline Classes describe the stages in which input and output are
// referenced by the hardware pipeline.

// Naming convention: ialu or fpu
// Then: _reg
// Then: _reg if there is a 2nd register
// Then: _long if it's a pair of instructions implementing a long
// Then: _fat if it requires the big decoder
//   Or: _mem if it requires the big decoder and a memory unit.

// Integer ALU reg operation
pipe_class ialu_reg(eRegI dst) %{
    single_instruction;
    dst    : S4(write);
    dst    : S3(read);
    DECODE : S0;        // any decoder
    ALU    : S3;        // any alu
%}

// Long ALU reg operation
pipe_class ialu_reg_long(eRegL dst) %{
    instruction_count(2);
    dst    : S4(write);
    dst    : S3(read);
    DECODE : S0(2);     // any 2 decoders
    ALU    : S3(2);     // both alus
%}

// Integer ALU reg operation using big decoder
pipe_class ialu_reg_fat(eRegI dst) %{
    single_instruction;
    dst    : S4(write);
    dst    : S3(read);
    D0     : S0;        // big decoder only
    ALU    : S3;        // any alu
%}

// Long ALU reg operation using big decoder
pipe_class ialu_reg_long_fat(eRegL dst) %{
    instruction_count(2);
    dst    : S4(write);
    dst    : S3(read);
    D0     : S0(2);     // big decoder only; twice
    ALU    : S3(2);     // any 2 alus
%}

// Integer ALU reg-reg operation
pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
    single_instruction;
    dst    : S4(write);
    src    : S3(read);
    DECODE : S0;        // any decoder
    ALU    : S3;        // any alu
%}

// Long ALU reg-reg operation
pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
    instruction_count(2);
    dst    : S4(write);
    src    : S3(read);
    DECODE : S0(2);     // any 2 decoders
    ALU    : S3(2);     // both alus
%}

// Integer ALU reg-reg operation
pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
    single_instruction;
    dst    : S4(write);
    src    : S3(read);
    D0     : S0;        // big decoder only
    ALU    : S3;        // any alu
%}

// Long ALU reg-reg operation
pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
    instruction_count(2);
    dst    : S4(write);
    src    : S3(read);
    D0     : S0(2);     // big decoder only; twice
    ALU    : S3(2);     // both alus
%}

// Integer ALU reg-mem operation
pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
    single_instruction;
    dst    : S5(write);
    mem    : S3(read);
    D0     : S0;        // big decoder only
    ALU    : S4;        // any alu
    MEM    : S3;        // any mem
%}

// Long ALU reg-mem operation
pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
    instruction_count(2);
    dst    : S5(write);
    mem    : S3(read);
    D0     : S0(2);     // big decoder only; twice
    ALU    : S4(2);     // any 2 alus
    MEM    : S3(2);     // both mems
%}

// Integer mem operation (prefetch)
pipe_class ialu_mem(memory mem)
%{
    single_instruction;
    mem    : S3(read);
    D0     : S0;        // big decoder only
    MEM    : S3;        // any mem
%}

// Integer Store to Memory
pipe_class ialu_mem_reg(memory mem, eRegI src) %{
    single_instruction;
    mem    : S3(read);
    src    : S5(read);
    D0     : S0;        // big decoder only
    ALU    : S4;        // any alu
    MEM    : S3;
%}

// Long Store to Memory
pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
    instruction_count(2);
    mem    : S3(read);
    src    : S5(read);
    D0     : S0(2);     // big decoder only; twice
    ALU    : S4(2);     // any 2 alus
    MEM    : S3(2);     // Both mems
%}

// Integer Store to Memory
pipe_class ialu_mem_imm(memory mem) %{
    single_instruction;
    mem    : S3(read);
    D0     : S0;        // big decoder only
    ALU    : S4;        // any alu
    MEM    : S3;
%}

// Integer ALU0 reg-reg operation
pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
    single_instruction;
    dst    : S4(write);
    src    : S3(read);
    D0     : S0;        // Big decoder only
    ALU0   : S3;        // only alu0
%}

// Integer ALU0 reg-mem operation
pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
    single_instruction;
    dst    : S5(write);
    mem    : S3(read);
    D0     : S0;        // big decoder only
    ALU0   : S4;        // ALU0 only
    MEM    : S3;        // any mem
%}

// Integer ALU reg-reg operation
pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
    single_instruction;
    cr     : S4(write);
    src1   : S3(read);
    src2   : S3(read);
    DECODE : S0;        // any decoder
    ALU    : S3;        // any alu
%}

// Integer ALU reg-imm operation
pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
    single_instruction;
    cr     : S4(write);
    src1   : S3(read);
    DECODE : S0;        // any decoder
    ALU    : S3;        // any alu
%}

// Integer ALU reg-mem operation
pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
    single_instruction;
    cr     : S4(write);
    src1   : S3(read);
    src2   : S3(read);
    D0     : S0;        // big decoder only
    ALU    : S4;        // any alu
    MEM    : S3;
%}

// Conditional move reg-reg
pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
    instruction_count(4);
    y      : S4(read);
    q      : S3(read);
    p      : S3(read);
    DECODE : S0(4);     // any decoder
%}

// Conditional move reg-reg
pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
    single_instruction;
    dst    : S4(write);
    src    : S3(read);
    cr     : S3(read);
    DECODE : S0;        // any decoder
%}

// Conditional move reg-mem
pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
    single_instruction;
    dst    : S4(write);
    src    : S3(read);
    cr     : S3(read);
    DECODE : S0;        // any decoder
    MEM    : S3;
%}

// Conditional move reg-reg long
pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
    single_instruction;
    dst    : S4(write);
    src    : S3(read);
    cr     : S3(read);
    DECODE : S0(2);     // any 2 decoders
%}

// Conditional move double reg-reg
pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
    single_instruction;
    dst    : S4(write);
    src    : S3(read);
    cr     : S3(read);
    DECODE : S0;        // any decoder
%}

// Float reg-reg operation
pipe_class fpu_reg(regD dst) %{
    instruction_count(2);
    dst    : S3(read);
    DECODE : S0(2);     // any 2 decoders
    FPU    : S3;
%}

// Float reg-reg operation
pipe_class fpu_reg_reg(regD dst, regD src) %{
    instruction_count(2);
    dst    : S4(write);
    src    : S3(read);
    DECODE : S0(2);     // any 2 decoders
    FPU    : S3;
%}

// Float reg-reg operation
pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
    instruction_count(3);
    dst    : S4(write);
    src1   : S3(read);
    src2   : S3(read);
    DECODE : S0(3);     // any 3 decoders
    FPU    : S3(2);
%}

// Float reg-reg operation
pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
    instruction_count(4);
    dst    : S4(write);
    src1   : S3(read);
    src2   : S3(read);
    src3   : S3(read);
    DECODE : S0(4);     // any 3 decoders
    FPU    : S3(2);
%}

// Float reg-reg operation
pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
    instruction_count(4);
    dst    : S4(write);
    src1   : S3(read);
    src2   : S3(read);
    src3   : S3(read);
    DECODE : S1(3);     // any 3 decoders
    D0     : S0;        // Big decoder only
    FPU    : S3(2);
    MEM    : S3;
%}

// Float reg-mem operation
pipe_class fpu_reg_mem(regD dst, memory mem) %{
    instruction_count(2);
    dst    : S5(write);
    mem    : S3(read);
    D0     : S0;        // big decoder only
    DECODE : S1;        // any decoder for FPU POP
    FPU    : S4;
    MEM    : S3;        // any mem
%}

// Float reg-mem operation
pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
    instruction_count(3);
    dst    : S5(write);
    src1   : S3(read);
    mem    : S3(read);
    D0     : S0;        // big decoder only
    DECODE : S1(2);     // any decoder for FPU POP
    FPU    : S4;
    MEM    : S3;        // any mem
%}

// Float mem-reg operation
pipe_class fpu_mem_reg(memory mem, regD src) %{
    instruction_count(2);
    src    : S5(read);
    mem    : S3(read);
    DECODE : S0;        // any decoder for FPU PUSH
    D0     : S1;        // big decoder only
    FPU    : S4;
    MEM    : S3;        // any mem
%}

pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
    instruction_count(3);
    src1   : S3(read);
    src2   : S3(read);
    mem    : S3(read);
    DECODE : S0(2);     // any decoder for FPU PUSH
    D0     : S1;        // big decoder only
    FPU    : S4;
    MEM    : S3;        // any mem
%}

pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
    instruction_count(3);
    src1   : S3(read);
    src2   : S3(read);
    mem    : S4(read);
    DECODE : S0;        // any decoder for FPU PUSH
    D0     : S0(2);     // big decoder only
    FPU    : S4;
    MEM    : S3(2);     // any mem
%}

pipe_class fpu_mem_mem(memory dst, memory src1) %{
    instruction_count(2);
    src1   : S3(read);
    dst    : S4(read);
    D0     : S0(2);     // big decoder only
    MEM    : S3(2);     // any mem
%}

pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
    instruction_count(3);
    src1   : S3(read);
    src2   : S3(read);
    dst    : S4(read);
    D0     : S0(3);     // big decoder only
    FPU    : S4;
    MEM    : S3(3);     // any mem
%}

pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
    instruction_count(3);
    src1   : S4(read);
    mem    : S4(read);
    DECODE : S0;        // any decoder for FPU PUSH
    D0     : S0(2);     // big decoder only
    FPU    : S4;
    MEM    : S3(2);     // any mem
%}

// Float load constant
pipe_class fpu_reg_con(regD dst) %{
    instruction_count(2);
    dst    : S5(write);
    D0     : S0;        // big decoder only for the load
    DECODE : S1;        // any decoder for FPU POP
    FPU    : S4;
    MEM    : S3;        // any mem
%}

// Float load constant
pipe_class fpu_reg_reg_con(regD dst, regD src) %{
    instruction_count(3);
    dst    : S5(write);
    src    : S3(read);
    D0     : S0;        // big decoder only for the load
    DECODE : S1(2);     // any decoder for FPU POP
    FPU    : S4;
    MEM    : S3;        // any mem
%}

// UnConditional branch
pipe_class pipe_jmp( label labl ) %{
    single_instruction;
    BR   : S3;
%}

// Conditional branch
pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
    single_instruction;
    cr    : S1(read);
    BR    : S3;
%}

// Allocation idiom
pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
    instruction_count(1); force_serialization;
    fixed_latency(6);
    heap_ptr : S3(read);
    DECODE   : S0(3);
    D0       : S2;
    MEM      : S3;
    ALU      : S3(2);
    dst      : S5(write);
    BR       : S5;
%}

// Generic big/slow expanded idiom
pipe_class pipe_slow(  ) %{
    instruction_count(10); multiple_bundles; force_serialization;
    fixed_latency(100);
    D0  : S0(2);
    MEM : S3(2);
%}

// The real do-nothing guy
pipe_class empty( ) %{
    instruction_count(0);
%}

// Define the class for the Nop node
define %{
   MachNop = empty;
%}

%}

//----------INSTRUCTIONS-------------------------------------------------------
//
// match      -- States which machine-independent subtree may be replaced
//               by this instruction.
// ins_cost   -- The estimated cost of this instruction is used by instruction
//               selection to identify a minimum cost tree of machine
//               instructions that matches a tree of machine-independent
//               instructions.
// format     -- A string providing the disassembly for this instruction.
//               The value of an instruction's operand may be inserted
//               by referring to it with a '$' prefix.
// opcode     -- Three instruction opcodes may be provided.  These are referred
//               to within an encode class as $primary, $secondary, and $tertiary
//               respectively.  The primary opcode is commonly used to
//               indicate the type of machine instruction, while secondary
//               and tertiary are often used for prefix options or addressing
//               modes.
// ins_encode -- A list of encode classes with parameters. The encode class
//               name must have been defined in an 'enc_class' specification
//               in the encode section of the architecture description.

//----------BSWAP-Instruction--------------------------------------------------
instruct bytes_reverse_int(eRegI dst) %{
  match(Set dst (ReverseBytesI dst));

  format %{ "BSWAP  $dst" %}
  opcode(0x0F, 0xC8);
  ins_encode( OpcP, OpcSReg(dst) );
  ins_pipe( ialu_reg );
%}

instruct bytes_reverse_long(eRegL dst) %{
  match(Set dst (ReverseBytesL dst));

  format %{ "BSWAP  $dst.lo\n\t"
            "BSWAP  $dst.hi\n\t"
            "XCHG   $dst.lo $dst.hi" %}

  ins_cost(125);
  ins_encode( bswap_long_bytes(dst) );
  ins_pipe( ialu_reg_reg);
%}


6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
//---------- Zeros Count Instructions ------------------------------------------

instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  predicate(UseCountLeadingZerosInstruction);
  match(Set dst (CountLeadingZerosI src));
  effect(KILL cr);

  format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  ins_encode %{
    __ lzcntl($dst$$Register, $src$$Register);
  %}
  ins_pipe(ialu_reg);
%}

instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  predicate(!UseCountLeadingZerosInstruction);
  match(Set dst (CountLeadingZerosI src));
  effect(KILL cr);

  format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
            "JNZ    skip\n\t"
            "MOV    $dst, -1\n"
      "skip:\n\t"
            "NEG    $dst\n\t"
            "ADD    $dst, 31" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    Register Rsrc = $src$$Register;
    Label skip;
    __ bsrl(Rdst, Rsrc);
    __ jccb(Assembler::notZero, skip);
    __ movl(Rdst, -1);
    __ bind(skip);
    __ negl(Rdst);
    __ addl(Rdst, BitsPerInt - 1);
  %}
  ins_pipe(ialu_reg);
%}

instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  predicate(UseCountLeadingZerosInstruction);
  match(Set dst (CountLeadingZerosL src));
  effect(TEMP dst, KILL cr);

  format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
            "JNC    done\n\t"
            "LZCNT  $dst, $src.lo\n\t"
            "ADD    $dst, 32\n"
      "done:" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    Register Rsrc = $src$$Register;
    Label done;
    __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
    __ jccb(Assembler::carryClear, done);
    __ lzcntl(Rdst, Rsrc);
    __ addl(Rdst, BitsPerInt);
    __ bind(done);
  %}
  ins_pipe(ialu_reg);
%}

instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  predicate(!UseCountLeadingZerosInstruction);
  match(Set dst (CountLeadingZerosL src));
  effect(TEMP dst, KILL cr);

  format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
            "JZ     msw_is_zero\n\t"
            "ADD    $dst, 32\n\t"
            "JMP    not_zero\n"
      "msw_is_zero:\n\t"
            "BSR    $dst, $src.lo\n\t"
            "JNZ    not_zero\n\t"
            "MOV    $dst, -1\n"
      "not_zero:\n\t"
            "NEG    $dst\n\t"
            "ADD    $dst, 63\n" %}
 ins_encode %{
    Register Rdst = $dst$$Register;
    Register Rsrc = $src$$Register;
    Label msw_is_zero;
    Label not_zero;
    __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
    __ jccb(Assembler::zero, msw_is_zero);
    __ addl(Rdst, BitsPerInt);
    __ jmpb(not_zero);
    __ bind(msw_is_zero);
    __ bsrl(Rdst, Rsrc);
    __ jccb(Assembler::notZero, not_zero);
    __ movl(Rdst, -1);
    __ bind(not_zero);
    __ negl(Rdst);
    __ addl(Rdst, BitsPerLong - 1);
  %}
  ins_pipe(ialu_reg);
%}

instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (CountTrailingZerosI src));
  effect(KILL cr);

  format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
            "JNZ    done\n\t"
            "MOV    $dst, 32\n"
      "done:" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    Label done;
    __ bsfl(Rdst, $src$$Register);
    __ jccb(Assembler::notZero, done);
    __ movl(Rdst, BitsPerInt);
    __ bind(done);
  %}
  ins_pipe(ialu_reg);
%}

instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  match(Set dst (CountTrailingZerosL src));
  effect(TEMP dst, KILL cr);

  format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
            "JNZ    done\n\t"
            "BSF    $dst, $src.hi\n\t"
            "JNZ    msw_not_zero\n\t"
            "MOV    $dst, 32\n"
      "msw_not_zero:\n\t"
            "ADD    $dst, 32\n"
      "done:" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    Register Rsrc = $src$$Register;
    Label msw_not_zero;
    Label done;
    __ bsfl(Rdst, Rsrc);
    __ jccb(Assembler::notZero, done);
    __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
    __ jccb(Assembler::notZero, msw_not_zero);
    __ movl(Rdst, BitsPerInt);
    __ bind(msw_not_zero);
    __ addl(Rdst, BitsPerInt);
    __ bind(done);
  %}
  ins_pipe(ialu_reg);
%}


6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
//---------- Population Count Instructions -------------------------------------

instruct popCountI(eRegI dst, eRegI src) %{
  predicate(UsePopCountInstruction);
  match(Set dst (PopCountI src));

  format %{ "POPCNT $dst, $src" %}
  ins_encode %{
    __ popcntl($dst$$Register, $src$$Register);
  %}
  ins_pipe(ialu_reg);
%}

instruct popCountI_mem(eRegI dst, memory mem) %{
  predicate(UsePopCountInstruction);
  match(Set dst (PopCountI (LoadI mem)));

  format %{ "POPCNT $dst, $mem" %}
  ins_encode %{
    __ popcntl($dst$$Register, $mem$$Address);
  %}
  ins_pipe(ialu_reg);
%}

// Note: Long.bitCount(long) returns an int.
instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  predicate(UsePopCountInstruction);
  match(Set dst (PopCountL src));
  effect(KILL cr, TEMP tmp, TEMP dst);

  format %{ "POPCNT $dst, $src.lo\n\t"
            "POPCNT $tmp, $src.hi\n\t"
            "ADD    $dst, $tmp" %}
  ins_encode %{
    __ popcntl($dst$$Register, $src$$Register);
    __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
    __ addl($dst$$Register, $tmp$$Register);
  %}
  ins_pipe(ialu_reg);
%}

// Note: Long.bitCount(long) returns an int.
instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  predicate(UsePopCountInstruction);
  match(Set dst (PopCountL (LoadL mem)));
  effect(KILL cr, TEMP tmp, TEMP dst);

  format %{ "POPCNT $dst, $mem\n\t"
            "POPCNT $tmp, $mem+4\n\t"
            "ADD    $dst, $tmp" %}
  ins_encode %{
    //__ popcntl($dst$$Register, $mem$$Address$$first);
    //__ popcntl($tmp$$Register, $mem$$Address$$second);
    __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
    __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
    __ addl($dst$$Register, $tmp$$Register);
  %}
  ins_pipe(ialu_reg);
%}


D
duke 已提交
6462 6463 6464 6465 6466 6467 6468
//----------Load/Store/Move Instructions---------------------------------------
//----------Load Instructions--------------------------------------------------
// Load Byte (8bit signed)
instruct loadB(xRegI dst, memory mem) %{
  match(Set dst (LoadB mem));

  ins_cost(125);
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
  format %{ "MOVSX8 $dst,$mem\t# byte" %}

  ins_encode %{
    __ movsbl($dst$$Register, $mem$$Address);
  %}

  ins_pipe(ialu_reg_mem);
%}

// Load Byte (8bit signed) into Long Register
T
twisti 已提交
6479
instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6480
  match(Set dst (ConvI2L (LoadB mem)));
T
twisti 已提交
6481
  effect(KILL cr);
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494

  ins_cost(375);
  format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
            "MOV    $dst.hi,$dst.lo\n\t"
            "SAR    $dst.hi,7" %}

  ins_encode %{
    __ movsbl($dst$$Register, $mem$$Address);
    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
    __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  %}

  ins_pipe(ialu_reg_mem);
D
duke 已提交
6495 6496
%}

6497 6498 6499
// Load Unsigned Byte (8bit UNsigned)
instruct loadUB(xRegI dst, memory mem) %{
  match(Set dst (LoadUB mem));
D
duke 已提交
6500 6501

  ins_cost(125);
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
  format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}

  ins_encode %{
    __ movzbl($dst$$Register, $mem$$Address);
  %}

  ins_pipe(ialu_reg_mem);
%}

// Load Unsigned Byte (8 bit UNsigned) into Long Register
T
twisti 已提交
6512
instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6513
  match(Set dst (ConvI2L (LoadUB mem)));
T
twisti 已提交
6514
  effect(KILL cr);
6515 6516 6517 6518 6519 6520

  ins_cost(250);
  format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
            "XOR    $dst.hi,$dst.hi" %}

  ins_encode %{
T
twisti 已提交
6521 6522 6523
    Register Rdst = $dst$$Register;
    __ movzbl(Rdst, $mem$$Address);
    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6524 6525 6526 6527 6528
  %}

  ins_pipe(ialu_reg_mem);
%}

T
twisti 已提交
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
// Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  effect(KILL cr);

  format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
            "XOR    $dst.hi,$dst.hi\n\t"
            "AND    $dst.lo,$mask" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    __ movzbl(Rdst, $mem$$Address);
    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
    __ andl(Rdst, $mask$$constant);
  %}
  ins_pipe(ialu_reg_mem);
%}

6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
// Load Short (16bit signed)
instruct loadS(eRegI dst, memory mem) %{
  match(Set dst (LoadS mem));

  ins_cost(125);
  format %{ "MOVSX  $dst,$mem\t# short" %}

  ins_encode %{
    __ movswl($dst$$Register, $mem$$Address);
  %}

  ins_pipe(ialu_reg_mem);
%}

T
twisti 已提交
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
// Load Short (16 bit signed) to Byte (8 bit signed)
instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));

  ins_cost(125);
  format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  ins_encode %{
    __ movsbl($dst$$Register, $mem$$Address);
  %}
  ins_pipe(ialu_reg_mem);
%}

6572
// Load Short (16bit signed) into Long Register
T
twisti 已提交
6573
instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6574
  match(Set dst (ConvI2L (LoadS mem)));
T
twisti 已提交
6575
  effect(KILL cr);
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588

  ins_cost(375);
  format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
            "MOV    $dst.hi,$dst.lo\n\t"
            "SAR    $dst.hi,15" %}

  ins_encode %{
    __ movswl($dst$$Register, $mem$$Address);
    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
    __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  %}

  ins_pipe(ialu_reg_mem);
D
duke 已提交
6589 6590
%}

6591 6592 6593
// Load Unsigned Short/Char (16bit unsigned)
instruct loadUS(eRegI dst, memory mem) %{
  match(Set dst (LoadUS mem));
D
duke 已提交
6594 6595

  ins_cost(125);
6596 6597 6598 6599 6600 6601 6602 6603 6604
  format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}

  ins_encode %{
    __ movzwl($dst$$Register, $mem$$Address);
  %}

  ins_pipe(ialu_reg_mem);
%}

T
twisti 已提交
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
// Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));

  ins_cost(125);
  format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  ins_encode %{
    __ movsbl($dst$$Register, $mem$$Address);
  %}
  ins_pipe(ialu_reg_mem);
%}

6617
// Load Unsigned Short/Char (16 bit UNsigned) into Long Register
T
twisti 已提交
6618
instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6619
  match(Set dst (ConvI2L (LoadUS mem)));
T
twisti 已提交
6620
  effect(KILL cr);
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631

  ins_cost(250);
  format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
            "XOR    $dst.hi,$dst.hi" %}

  ins_encode %{
    __ movzwl($dst$$Register, $mem$$Address);
    __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  %}

  ins_pipe(ialu_reg_mem);
D
duke 已提交
6632 6633
%}

T
twisti 已提交
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
// Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  effect(KILL cr);

  format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
            "XOR    $dst.hi,$dst.hi" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    __ movzbl(Rdst, $mem$$Address);
    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  %}
  ins_pipe(ialu_reg_mem);
%}

// Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  effect(KILL cr);

  format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
            "XOR    $dst.hi,$dst.hi\n\t"
            "AND    $dst.lo,$mask" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    __ movzwl(Rdst, $mem$$Address);
    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
    __ andl(Rdst, $mask$$constant);
  %}
  ins_pipe(ialu_reg_mem);
%}

D
duke 已提交
6666 6667 6668 6669 6670
// Load Integer
instruct loadI(eRegI dst, memory mem) %{
  match(Set dst (LoadI mem));

  ins_cost(125);
6671 6672 6673 6674 6675 6676 6677 6678 6679
  format %{ "MOV    $dst,$mem\t# int" %}

  ins_encode %{
    __ movl($dst$$Register, $mem$$Address);
  %}

  ins_pipe(ialu_reg_mem);
%}

T
twisti 已提交
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
// Load Integer (32 bit signed) to Byte (8 bit signed)
instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));

  ins_cost(125);
  format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  ins_encode %{
    __ movsbl($dst$$Register, $mem$$Address);
  %}
  ins_pipe(ialu_reg_mem);
%}

// Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  match(Set dst (AndI (LoadI mem) mask));

  ins_cost(125);
  format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  ins_encode %{
    __ movzbl($dst$$Register, $mem$$Address);
  %}
  ins_pipe(ialu_reg_mem);
%}

// Load Integer (32 bit signed) to Short (16 bit signed)
instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));

  ins_cost(125);
  format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  ins_encode %{
    __ movswl($dst$$Register, $mem$$Address);
  %}
  ins_pipe(ialu_reg_mem);
%}

// Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  match(Set dst (AndI (LoadI mem) mask));

  ins_cost(125);
  format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  ins_encode %{
    __ movzwl($dst$$Register, $mem$$Address);
  %}
  ins_pipe(ialu_reg_mem);
%}

6728
// Load Integer into Long Register
T
twisti 已提交
6729
instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6730
  match(Set dst (ConvI2L (LoadI mem)));
T
twisti 已提交
6731
  effect(KILL cr);
6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746

  ins_cost(375);
  format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
            "MOV    $dst.hi,$dst.lo\n\t"
            "SAR    $dst.hi,31" %}

  ins_encode %{
    __ movl($dst$$Register, $mem$$Address);
    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
    __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  %}

  ins_pipe(ialu_reg_mem);
%}

T
twisti 已提交
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
// Load Integer with mask 0xFF into Long Register
instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  effect(KILL cr);

  format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
            "XOR    $dst.hi,$dst.hi" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    __ movzbl(Rdst, $mem$$Address);
    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  %}
  ins_pipe(ialu_reg_mem);
%}

// Load Integer with mask 0xFFFF into Long Register
instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  effect(KILL cr);

  format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
            "XOR    $dst.hi,$dst.hi" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    __ movzwl(Rdst, $mem$$Address);
    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  %}
  ins_pipe(ialu_reg_mem);
%}

// Load Integer with 32-bit mask into Long Register
instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  effect(KILL cr);

  format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
            "XOR    $dst.hi,$dst.hi\n\t"
            "AND    $dst.lo,$mask" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    __ movl(Rdst, $mem$$Address);
    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
    __ andl(Rdst, $mask$$constant);
  %}
  ins_pipe(ialu_reg_mem);
%}

6794
// Load Unsigned Integer into Long Register
T
twisti 已提交
6795
instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6796
  match(Set dst (LoadUI2L mem));
T
twisti 已提交
6797
  effect(KILL cr);
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808

  ins_cost(250);
  format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
            "XOR    $dst.hi,$dst.hi" %}

  ins_encode %{
    __ movl($dst$$Register, $mem$$Address);
    __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  %}

  ins_pipe(ialu_reg_mem);
D
duke 已提交
6809 6810 6811 6812 6813 6814 6815 6816 6817
%}

// Load Long.  Cannot clobber address while loading, so restrict address
// register to ESI
instruct loadL(eRegL dst, load_long_memory mem) %{
  predicate(!((LoadLNode*)n)->require_atomic_access());
  match(Set dst (LoadL mem));

  ins_cost(250);
6818
  format %{ "MOV    $dst.lo,$mem\t# long\n\t"
D
duke 已提交
6819
            "MOV    $dst.hi,$mem+4" %}
6820 6821 6822 6823 6824 6825 6826 6827 6828

  ins_encode %{
    Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
    Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
    __ movl($dst$$Register, Amemlo);
    __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  %}

  ins_pipe(ialu_reg_long_mem);
D
duke 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
%}

// Volatile Load Long.  Must be atomic, so do 64-bit FILD
// then store it down to the stack and reload on the int
// side.
instruct loadL_volatile(stackSlotL dst, memory mem) %{
  predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  match(Set dst (LoadL mem));

  ins_cost(200);
  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
            "FISTp  $dst" %}
  ins_encode(enc_loadL_volatile(mem,dst));
  ins_pipe( fpu_reg_mem );
%}

instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  match(Set dst (LoadL mem));
  effect(TEMP tmp);
  ins_cost(180);
  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
            "MOVSD  $dst,$tmp" %}
  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  ins_pipe( pipe_slow );
%}

instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  match(Set dst (LoadL mem));
  effect(TEMP tmp);
  ins_cost(160);
  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
            "MOVD   $dst.lo,$tmp\n\t"
            "PSRLQ  $tmp,32\n\t"
            "MOVD   $dst.hi,$tmp" %}
  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  ins_pipe( pipe_slow );
%}

// Load Range
instruct loadRange(eRegI dst, memory mem) %{
  match(Set dst (LoadRange mem));

  ins_cost(125);
  format %{ "MOV    $dst,$mem" %}
  opcode(0x8B);
  ins_encode( OpcP, RegMem(dst,mem));
  ins_pipe( ialu_reg_mem );
%}


// Load Pointer
instruct loadP(eRegP dst, memory mem) %{
  match(Set dst (LoadP mem));

  ins_cost(125);
  format %{ "MOV    $dst,$mem" %}
  opcode(0x8B);
  ins_encode( OpcP, RegMem(dst,mem));
  ins_pipe( ialu_reg_mem );
%}

// Load Klass Pointer
instruct loadKlass(eRegP dst, memory mem) %{
  match(Set dst (LoadKlass mem));

  ins_cost(125);
  format %{ "MOV    $dst,$mem" %}
  opcode(0x8B);
  ins_encode( OpcP, RegMem(dst,mem));
  ins_pipe( ialu_reg_mem );
%}

// Load Double
instruct loadD(regD dst, memory mem) %{
  predicate(UseSSE<=1);
  match(Set dst (LoadD mem));

  ins_cost(150);
  format %{ "FLD_D  ST,$mem\n\t"
            "FSTP   $dst" %}
  opcode(0xDD);               /* DD /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),
              Pop_Reg_D(dst) );
  ins_pipe( fpu_reg_mem );
%}

// Load Double to XMM
instruct loadXD(regXD dst, memory mem) %{
  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  match(Set dst (LoadD mem));
  ins_cost(145);
  format %{ "MOVSD  $dst,$mem" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  ins_pipe( pipe_slow );
%}

instruct loadXD_partial(regXD dst, memory mem) %{
  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  match(Set dst (LoadD mem));
  ins_cost(145);
  format %{ "MOVLPD $dst,$mem" %}
  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  ins_pipe( pipe_slow );
%}

// Load to XMM register (single-precision floating point)
// MOVSS instruction
instruct loadX(regX dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (LoadF mem));
  ins_cost(145);
  format %{ "MOVSS  $dst,$mem" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  ins_pipe( pipe_slow );
%}

// Load Float
instruct loadF(regF dst, memory mem) %{
  predicate(UseSSE==0);
  match(Set dst (LoadF mem));

  ins_cost(150);
  format %{ "FLD_S  ST,$mem\n\t"
            "FSTP   $dst" %}
  opcode(0xD9);               /* D9 /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),
              Pop_Reg_F(dst) );
  ins_pipe( fpu_reg_mem );
%}

// Load Aligned Packed Byte to XMM register
instruct loadA8B(regXD dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (Load8B mem));
  ins_cost(125);
  format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  ins_encode( movq_ld(dst, mem));
  ins_pipe( pipe_slow );
%}

// Load Aligned Packed Short to XMM register
instruct loadA4S(regXD dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (Load4S mem));
  ins_cost(125);
  format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  ins_encode( movq_ld(dst, mem));
  ins_pipe( pipe_slow );
%}

// Load Aligned Packed Char to XMM register
instruct loadA4C(regXD dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (Load4C mem));
  ins_cost(125);
  format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  ins_encode( movq_ld(dst, mem));
  ins_pipe( pipe_slow );
%}

// Load Aligned Packed Integer to XMM register
instruct load2IU(regXD dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (Load2I mem));
  ins_cost(125);
  format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  ins_encode( movq_ld(dst, mem));
  ins_pipe( pipe_slow );
%}

// Load Aligned Packed Single to XMM
instruct loadA2F(regXD dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (Load2F mem));
  ins_cost(145);
  format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  ins_encode( movq_ld(dst, mem));
  ins_pipe( pipe_slow );
%}

// Load Effective Address
instruct leaP8(eRegP dst, indOffset8 mem) %{
  match(Set dst mem);

  ins_cost(110);
  format %{ "LEA    $dst,$mem" %}
  opcode(0x8D);
  ins_encode( OpcP, RegMem(dst,mem));
  ins_pipe( ialu_reg_reg_fat );
%}

instruct leaP32(eRegP dst, indOffset32 mem) %{
  match(Set dst mem);

  ins_cost(110);
  format %{ "LEA    $dst,$mem" %}
  opcode(0x8D);
  ins_encode( OpcP, RegMem(dst,mem));
  ins_pipe( ialu_reg_reg_fat );
%}

instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  match(Set dst mem);

  ins_cost(110);
  format %{ "LEA    $dst,$mem" %}
  opcode(0x8D);
  ins_encode( OpcP, RegMem(dst,mem));
  ins_pipe( ialu_reg_reg_fat );
%}

instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  match(Set dst mem);

  ins_cost(110);
  format %{ "LEA    $dst,$mem" %}
  opcode(0x8D);
  ins_encode( OpcP, RegMem(dst,mem));
  ins_pipe( ialu_reg_reg_fat );
%}

instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  match(Set dst mem);

  ins_cost(110);
  format %{ "LEA    $dst,$mem" %}
  opcode(0x8D);
  ins_encode( OpcP, RegMem(dst,mem));
  ins_pipe( ialu_reg_reg_fat );
%}

// Load Constant
instruct loadConI(eRegI dst, immI src) %{
  match(Set dst src);

  format %{ "MOV    $dst,$src" %}
  ins_encode( LdImmI(dst, src) );
  ins_pipe( ialu_reg_fat );
%}

// Load Constant zero
instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  match(Set dst src);
  effect(KILL cr);

  ins_cost(50);
  format %{ "XOR    $dst,$dst" %}
  opcode(0x33);  /* + rd */
  ins_encode( OpcP, RegReg( dst, dst ) );
  ins_pipe( ialu_reg );
%}

instruct loadConP(eRegP dst, immP src) %{
  match(Set dst src);

  format %{ "MOV    $dst,$src" %}
  opcode(0xB8);  /* + rd */
  ins_encode( LdImmP(dst, src) );
  ins_pipe( ialu_reg_fat );
%}

instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  match(Set dst src);
  effect(KILL cr);
  ins_cost(200);
  format %{ "MOV    $dst.lo,$src.lo\n\t"
            "MOV    $dst.hi,$src.hi" %}
  opcode(0xB8);
  ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  ins_pipe( ialu_reg_long_fat );
%}

instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  match(Set dst src);
  effect(KILL cr);
  ins_cost(150);
  format %{ "XOR    $dst.lo,$dst.lo\n\t"
            "XOR    $dst.hi,$dst.hi" %}
  opcode(0x33,0x33);
  ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  ins_pipe( ialu_reg_long );
%}

// The instruction usage is guarded by predicate in operand immF().
instruct loadConF(regF dst, immF src) %{
  match(Set dst src);
  ins_cost(125);

  format %{ "FLD_S  ST,$src\n\t"
            "FSTP   $dst" %}
  opcode(0xD9, 0x00);       /* D9 /0 */
  ins_encode(LdImmF(src), Pop_Reg_F(dst) );
  ins_pipe( fpu_reg_con );
%}

// The instruction usage is guarded by predicate in operand immXF().
instruct loadConX(regX dst, immXF con) %{
  match(Set dst con);
  ins_cost(125);
  format %{ "MOVSS  $dst,[$con]" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
  ins_pipe( pipe_slow );
%}

// The instruction usage is guarded by predicate in operand immXF0().
instruct loadConX0(regX dst, immXF0 src) %{
  match(Set dst src);
  ins_cost(100);
  format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  ins_pipe( pipe_slow );
%}

// The instruction usage is guarded by predicate in operand immD().
instruct loadConD(regD dst, immD src) %{
  match(Set dst src);
  ins_cost(125);

  format %{ "FLD_D  ST,$src\n\t"
            "FSTP   $dst" %}
  ins_encode(LdImmD(src), Pop_Reg_D(dst) );
  ins_pipe( fpu_reg_con );
%}

// The instruction usage is guarded by predicate in operand immXD().
instruct loadConXD(regXD dst, immXD con) %{
  match(Set dst con);
  ins_cost(125);
  format %{ "MOVSD  $dst,[$con]" %}
  ins_encode(load_conXD(dst, con));
  ins_pipe( pipe_slow );
%}

// The instruction usage is guarded by predicate in operand immXD0().
instruct loadConXD0(regXD dst, immXD0 src) %{
  match(Set dst src);
  ins_cost(100);
  format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  ins_pipe( pipe_slow );
%}

// Load Stack Slot
instruct loadSSI(eRegI dst, stackSlotI src) %{
  match(Set dst src);
  ins_cost(125);

  format %{ "MOV    $dst,$src" %}
  opcode(0x8B);
  ins_encode( OpcP, RegMem(dst,src));
  ins_pipe( ialu_reg_mem );
%}

instruct loadSSL(eRegL dst, stackSlotL src) %{
  match(Set dst src);

  ins_cost(200);
  format %{ "MOV    $dst,$src.lo\n\t"
            "MOV    $dst+4,$src.hi" %}
  opcode(0x8B, 0x8B);
  ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  ins_pipe( ialu_mem_long_reg );
%}

// Load Stack Slot
instruct loadSSP(eRegP dst, stackSlotP src) %{
  match(Set dst src);
  ins_cost(125);

  format %{ "MOV    $dst,$src" %}
  opcode(0x8B);
  ins_encode( OpcP, RegMem(dst,src));
  ins_pipe( ialu_reg_mem );
%}

// Load Stack Slot
instruct loadSSF(regF dst, stackSlotF src) %{
  match(Set dst src);
  ins_cost(125);

  format %{ "FLD_S  $src\n\t"
            "FSTP   $dst" %}
  opcode(0xD9);               /* D9 /0, FLD m32real */
  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
              Pop_Reg_F(dst) );
  ins_pipe( fpu_reg_mem );
%}

// Load Stack Slot
instruct loadSSD(regD dst, stackSlotD src) %{
  match(Set dst src);
  ins_cost(125);

  format %{ "FLD_D  $src\n\t"
            "FSTP   $dst" %}
  opcode(0xDD);               /* DD /0, FLD m64real */
  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
              Pop_Reg_D(dst) );
  ins_pipe( fpu_reg_mem );
%}

// Prefetch instructions.
// Must be safe to execute with invalid address (cannot fault).

instruct prefetchr0( memory mem ) %{
  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  match(PrefetchRead mem);
  ins_cost(0);
  size(0);
  format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  ins_encode();
  ins_pipe(empty);
%}

instruct prefetchr( memory mem ) %{
  predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
  match(PrefetchRead mem);
  ins_cost(100);

  format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  ins_pipe(ialu_mem);
%}

instruct prefetchrNTA( memory mem ) %{
  predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  match(PrefetchRead mem);
  ins_cost(100);

  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  ins_pipe(ialu_mem);
%}

instruct prefetchrT0( memory mem ) %{
  predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  match(PrefetchRead mem);
  ins_cost(100);

  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  ins_pipe(ialu_mem);
%}

instruct prefetchrT2( memory mem ) %{
  predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  match(PrefetchRead mem);
  ins_cost(100);

  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  ins_pipe(ialu_mem);
%}

instruct prefetchw0( memory mem ) %{
  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  match(PrefetchWrite mem);
  ins_cost(0);
  size(0);
  format %{ "Prefetch (non-SSE is empty encoding)" %}
  ins_encode();
  ins_pipe(empty);
%}

instruct prefetchw( memory mem ) %{
  predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
  match( PrefetchWrite mem );
  ins_cost(100);

  format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  ins_pipe(ialu_mem);
%}

instruct prefetchwNTA( memory mem ) %{
  predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  match(PrefetchWrite mem);
  ins_cost(100);

  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  ins_pipe(ialu_mem);
%}

instruct prefetchwT0( memory mem ) %{
  predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  match(PrefetchWrite mem);
  ins_cost(100);

  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  ins_pipe(ialu_mem);
%}

instruct prefetchwT2( memory mem ) %{
  predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  match(PrefetchWrite mem);
  ins_cost(100);

  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  ins_pipe(ialu_mem);
%}

//----------Store Instructions-------------------------------------------------

// Store Byte
instruct storeB(memory mem, xRegI src) %{
  match(Set mem (StoreB mem src));

  ins_cost(125);
  format %{ "MOV8   $mem,$src" %}
  opcode(0x88);
  ins_encode( OpcP, RegMem( src, mem ) );
  ins_pipe( ialu_mem_reg );
%}

// Store Char/Short
instruct storeC(memory mem, eRegI src) %{
  match(Set mem (StoreC mem src));

  ins_cost(125);
  format %{ "MOV16  $mem,$src" %}
  opcode(0x89, 0x66);
  ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  ins_pipe( ialu_mem_reg );
%}

// Store Integer
instruct storeI(memory mem, eRegI src) %{
  match(Set mem (StoreI mem src));

  ins_cost(125);
  format %{ "MOV    $mem,$src" %}
  opcode(0x89);
  ins_encode( OpcP, RegMem( src, mem ) );
  ins_pipe( ialu_mem_reg );
%}

// Store Long
instruct storeL(long_memory mem, eRegL src) %{
  predicate(!((StoreLNode*)n)->require_atomic_access());
  match(Set mem (StoreL mem src));

  ins_cost(200);
  format %{ "MOV    $mem,$src.lo\n\t"
            "MOV    $mem+4,$src.hi" %}
  opcode(0x89, 0x89);
  ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  ins_pipe( ialu_mem_long_reg );
%}

T
twisti 已提交
7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401
// Store Long to Integer
instruct storeL2I(memory mem, eRegL src) %{
  match(Set mem (StoreI mem (ConvL2I src)));

  format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  ins_encode %{
    __ movl($mem$$Address, $src$$Register);
  %}
  ins_pipe(ialu_mem_reg);
%}

D
duke 已提交
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
// Volatile Store Long.  Must be atomic, so move it into
// the FP TOS and then do a 64-bit FIST.  Has to probe the
// target address before the store (for null-ptr checks)
// so the memory operand is used twice in the encoding.
instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  match(Set mem (StoreL mem src));
  effect( KILL cr );
  ins_cost(400);
  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
            "FILD   $src\n\t"
            "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  opcode(0x3B);
  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  ins_pipe( fpu_reg_mem );
%}

instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  match(Set mem (StoreL mem src));
  effect( TEMP tmp, KILL cr );
  ins_cost(380);
  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
            "MOVSD  $tmp,$src\n\t"
            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  opcode(0x3B);
  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  ins_pipe( pipe_slow );
%}

instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  match(Set mem (StoreL mem src));
  effect( TEMP tmp2 , TEMP tmp, KILL cr );
  ins_cost(360);
  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
            "MOVD   $tmp,$src.lo\n\t"
            "MOVD   $tmp2,$src.hi\n\t"
            "PUNPCKLDQ $tmp,$tmp2\n\t"
            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  opcode(0x3B);
  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  ins_pipe( pipe_slow );
%}

// Store Pointer; for storing unknown oops and raw pointers
instruct storeP(memory mem, anyRegP src) %{
  match(Set mem (StoreP mem src));

  ins_cost(125);
  format %{ "MOV    $mem,$src" %}
  opcode(0x89);
  ins_encode( OpcP, RegMem( src, mem ) );
  ins_pipe( ialu_mem_reg );
%}

// Store Integer Immediate
instruct storeImmI(memory mem, immI src) %{
  match(Set mem (StoreI mem src));

  ins_cost(150);
  format %{ "MOV    $mem,$src" %}
  opcode(0xC7);               /* C7 /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  ins_pipe( ialu_mem_imm );
%}

// Store Short/Char Immediate
instruct storeImmI16(memory mem, immI16 src) %{
  predicate(UseStoreImmI16);
  match(Set mem (StoreC mem src));

  ins_cost(150);
  format %{ "MOV16  $mem,$src" %}
  opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  ins_pipe( ialu_mem_imm );
%}

// Store Pointer Immediate; null pointers or constant oops that do not
// need card-mark barriers.
instruct storeImmP(memory mem, immP src) %{
  match(Set mem (StoreP mem src));

  ins_cost(150);
  format %{ "MOV    $mem,$src" %}
  opcode(0xC7);               /* C7 /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  ins_pipe( ialu_mem_imm );
%}

// Store Byte Immediate
instruct storeImmB(memory mem, immI8 src) %{
  match(Set mem (StoreB mem src));

  ins_cost(150);
  format %{ "MOV8   $mem,$src" %}
  opcode(0xC6);               /* C6 /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  ins_pipe( ialu_mem_imm );
%}

// Store Aligned Packed Byte XMM register to memory
instruct storeA8B(memory mem, regXD src) %{
  predicate(UseSSE>=1);
  match(Set mem (Store8B mem src));
  ins_cost(145);
  format %{ "MOVQ  $mem,$src\t! packed8B" %}
  ins_encode( movq_st(mem, src));
  ins_pipe( pipe_slow );
%}

// Store Aligned Packed Char/Short XMM register to memory
instruct storeA4C(memory mem, regXD src) %{
  predicate(UseSSE>=1);
  match(Set mem (Store4C mem src));
  ins_cost(145);
  format %{ "MOVQ  $mem,$src\t! packed4C" %}
  ins_encode( movq_st(mem, src));
  ins_pipe( pipe_slow );
%}

// Store Aligned Packed Integer XMM register to memory
instruct storeA2I(memory mem, regXD src) %{
  predicate(UseSSE>=1);
  match(Set mem (Store2I mem src));
  ins_cost(145);
  format %{ "MOVQ  $mem,$src\t! packed2I" %}
  ins_encode( movq_st(mem, src));
  ins_pipe( pipe_slow );
%}

// Store CMS card-mark Immediate
instruct storeImmCM(memory mem, immI8 src) %{
  match(Set mem (StoreCM mem src));

  ins_cost(150);
  format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  opcode(0xC6);               /* C6 /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  ins_pipe( ialu_mem_imm );
%}

// Store Double
instruct storeD( memory mem, regDPR1 src) %{
  predicate(UseSSE<=1);
  match(Set mem (StoreD mem src));

  ins_cost(100);
  format %{ "FST_D  $mem,$src" %}
  opcode(0xDD);       /* DD /2 */
  ins_encode( enc_FP_store(mem,src) );
  ins_pipe( fpu_mem_reg );
%}

// Store double does rounding on x86
instruct storeD_rounded( memory mem, regDPR1 src) %{
  predicate(UseSSE<=1);
  match(Set mem (StoreD mem (RoundDouble src)));

  ins_cost(100);
  format %{ "FST_D  $mem,$src\t# round" %}
  opcode(0xDD);       /* DD /2 */
  ins_encode( enc_FP_store(mem,src) );
  ins_pipe( fpu_mem_reg );
%}

// Store XMM register to memory (double-precision floating points)
// MOVSD instruction
instruct storeXD(memory mem, regXD src) %{
  predicate(UseSSE>=2);
  match(Set mem (StoreD mem src));
  ins_cost(95);
  format %{ "MOVSD  $mem,$src" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  ins_pipe( pipe_slow );
%}

// Store XMM register to memory (single-precision floating point)
// MOVSS instruction
instruct storeX(memory mem, regX src) %{
  predicate(UseSSE>=1);
  match(Set mem (StoreF mem src));
  ins_cost(95);
  format %{ "MOVSS  $mem,$src" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  ins_pipe( pipe_slow );
%}

// Store Aligned Packed Single Float XMM register to memory
instruct storeA2F(memory mem, regXD src) %{
  predicate(UseSSE>=1);
  match(Set mem (Store2F mem src));
  ins_cost(145);
  format %{ "MOVQ  $mem,$src\t! packed2F" %}
  ins_encode( movq_st(mem, src));
  ins_pipe( pipe_slow );
%}

// Store Float
instruct storeF( memory mem, regFPR1 src) %{
  predicate(UseSSE==0);
  match(Set mem (StoreF mem src));

  ins_cost(100);
  format %{ "FST_S  $mem,$src" %}
  opcode(0xD9);       /* D9 /2 */
  ins_encode( enc_FP_store(mem,src) );
  ins_pipe( fpu_mem_reg );
%}

// Store Float does rounding on x86
instruct storeF_rounded( memory mem, regFPR1 src) %{
  predicate(UseSSE==0);
  match(Set mem (StoreF mem (RoundFloat src)));

  ins_cost(100);
  format %{ "FST_S  $mem,$src\t# round" %}
  opcode(0xD9);       /* D9 /2 */
  ins_encode( enc_FP_store(mem,src) );
  ins_pipe( fpu_mem_reg );
%}

// Store Float does rounding on x86
instruct storeF_Drounded( memory mem, regDPR1 src) %{
  predicate(UseSSE<=1);
  match(Set mem (StoreF mem (ConvD2F src)));

  ins_cost(100);
  format %{ "FST_S  $mem,$src\t# D-round" %}
  opcode(0xD9);       /* D9 /2 */
  ins_encode( enc_FP_store(mem,src) );
  ins_pipe( fpu_mem_reg );
%}

// Store immediate Float value (it is faster than store from FPU register)
// The instruction usage is guarded by predicate in operand immF().
instruct storeF_imm( memory mem, immF src) %{
  match(Set mem (StoreF mem src));

  ins_cost(50);
  format %{ "MOV    $mem,$src\t# store float" %}
  opcode(0xC7);               /* C7 /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  ins_pipe( ialu_mem_imm );
%}

// Store immediate Float value (it is faster than store from XMM register)
// The instruction usage is guarded by predicate in operand immXF().
instruct storeX_imm( memory mem, immXF src) %{
  match(Set mem (StoreF mem src));

  ins_cost(50);
  format %{ "MOV    $mem,$src\t# store float" %}
  opcode(0xC7);               /* C7 /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  ins_pipe( ialu_mem_imm );
%}

// Store Integer to stack slot
instruct storeSSI(stackSlotI dst, eRegI src) %{
  match(Set dst src);

  ins_cost(100);
  format %{ "MOV    $dst,$src" %}
  opcode(0x89);
  ins_encode( OpcPRegSS( dst, src ) );
  ins_pipe( ialu_mem_reg );
%}

// Store Integer to stack slot
instruct storeSSP(stackSlotP dst, eRegP src) %{
  match(Set dst src);

  ins_cost(100);
  format %{ "MOV    $dst,$src" %}
  opcode(0x89);
  ins_encode( OpcPRegSS( dst, src ) );
  ins_pipe( ialu_mem_reg );
%}

// Store Long to stack slot
instruct storeSSL(stackSlotL dst, eRegL src) %{
  match(Set dst src);

  ins_cost(200);
  format %{ "MOV    $dst,$src.lo\n\t"
            "MOV    $dst+4,$src.hi" %}
  opcode(0x89, 0x89);
  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  ins_pipe( ialu_mem_long_reg );
%}

//----------MemBar Instructions-----------------------------------------------
// Memory barrier flavors

instruct membar_acquire() %{
  match(MemBarAcquire);
  ins_cost(400);

  size(0);
7703 7704 7705
  format %{ "MEMBAR-acquire ! (empty encoding)" %}
  ins_encode();
  ins_pipe(empty);
D
duke 已提交
7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723
%}

instruct membar_acquire_lock() %{
  match(MemBarAcquire);
  predicate(Matcher::prior_fast_lock(n));
  ins_cost(0);

  size(0);
  format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  ins_encode( );
  ins_pipe(empty);
%}

instruct membar_release() %{
  match(MemBarRelease);
  ins_cost(400);

  size(0);
7724 7725 7726
  format %{ "MEMBAR-release ! (empty encoding)" %}
  ins_encode( );
  ins_pipe(empty);
D
duke 已提交
7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739
%}

instruct membar_release_lock() %{
  match(MemBarRelease);
  predicate(Matcher::post_fast_unlock(n));
  ins_cost(0);

  size(0);
  format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  ins_encode( );
  ins_pipe(empty);
%}

7740
instruct membar_volatile(eFlagsReg cr) %{
D
duke 已提交
7741
  match(MemBarVolatile);
7742
  effect(KILL cr);
D
duke 已提交
7743 7744
  ins_cost(400);

7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755
  format %{ 
    $$template
    if (os::is_MP()) {
      $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
    } else {
      $$emit$$"MEMBAR-volatile ! (empty encoding)"
    }
  %}
  ins_encode %{
    __ membar(Assembler::StoreLoad);
  %}
D
duke 已提交
7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798
  ins_pipe(pipe_slow);
%}

instruct unnecessary_membar_volatile() %{
  match(MemBarVolatile);
  predicate(Matcher::post_store_load_barrier(n));
  ins_cost(0);

  size(0);
  format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  ins_encode( );
  ins_pipe(empty);
%}

//----------Move Instructions--------------------------------------------------
instruct castX2P(eAXRegP dst, eAXRegI src) %{
  match(Set dst (CastX2P src));
  format %{ "# X2P  $dst, $src" %}
  ins_encode( /*empty encoding*/ );
  ins_cost(0);
  ins_pipe(empty);
%}

instruct castP2X(eRegI dst, eRegP src ) %{
  match(Set dst (CastP2X src));
  ins_cost(50);
  format %{ "MOV    $dst, $src\t# CastP2X" %}
  ins_encode( enc_Copy( dst, src) );
  ins_pipe( ialu_reg_reg );
%}

//----------Conditional Move---------------------------------------------------
// Conditional move
instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cop $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  ins_pipe( pipe_cmov_reg );
%}

7799
instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
D
duke 已提交
7800 7801 7802 7803 7804 7805 7806 7807 7808
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cop $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  ins_pipe( pipe_cmov_reg );
%}

7809 7810 7811 7812 7813 7814 7815 7816 7817
instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  expand %{
    cmovI_regU(cop, cr, dst, src);
  %}
%}

D
duke 已提交
7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829
// Conditional move
instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  ins_cost(250);
  format %{ "CMOV$cop $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  ins_pipe( pipe_cmov_mem );
%}

// Conditional move
7830
instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
D
duke 已提交
7831 7832 7833 7834 7835 7836 7837 7838 7839
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  ins_cost(250);
  format %{ "CMOV$cop $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  ins_pipe( pipe_cmov_mem );
%}

7840 7841 7842 7843 7844 7845 7846 7847 7848
instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  ins_cost(250);
  expand %{
    cmovI_memU(cop, cr, dst, src);
  %}
%}

D
duke 已提交
7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
// Conditional move
instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  ins_pipe( pipe_cmov_reg );
%}

// Conditional move (non-P6 version)
// Note:  a CMoveP is generated for  stubs and native wrappers
//        regardless of whether we are on a P6, so we
//        emulate a cmov here
instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  ins_cost(300);
  format %{ "Jn$cop   skip\n\t"
          "MOV    $dst,$src\t# pointer\n"
      "skip:" %}
  opcode(0x8b);
  ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  ins_pipe( pipe_cmov_reg );
%}

// Conditional move
7876
instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
D
duke 已提交
7877 7878 7879 7880 7881 7882 7883 7884 7885
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  ins_pipe( pipe_cmov_reg );
%}

7886 7887 7888 7889 7890 7891 7892 7893 7894
instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  expand %{
    cmovP_regU(cop, cr, dst, src);
  %}
%}

D
duke 已提交
7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023
// DISABLED: Requires the ADLC to emit a bottom_type call that
// correctly meets the two pointer arguments; one is an incoming
// register but the other is a memory operand.  ALSO appears to
// be buggy with implicit null checks.
//
//// Conditional move
//instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
//  predicate(VM_Version::supports_cmov() );
//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
//  ins_cost(250);
//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
//  opcode(0x0F,0x40);
//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
//  ins_pipe( pipe_cmov_mem );
//%}
//
//// Conditional move
//instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
//  predicate(VM_Version::supports_cmov() );
//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
//  ins_cost(250);
//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
//  opcode(0x0F,0x40);
//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
//  ins_pipe( pipe_cmov_mem );
//%}

// Conditional move
instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  predicate(UseSSE<=1);
  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "FCMOV$cop $dst,$src\t# double" %}
  opcode(0xDA);
  ins_encode( enc_cmov_d(cop,src) );
  ins_pipe( pipe_cmovD_reg );
%}

// Conditional move
instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  predicate(UseSSE==0);
  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "FCMOV$cop $dst,$src\t# float" %}
  opcode(0xDA);
  ins_encode( enc_cmov_d(cop,src) );
  ins_pipe( pipe_cmovD_reg );
%}

// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  predicate(UseSSE<=1);
  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "Jn$cop   skip\n\t"
            "MOV    $dst,$src\t# double\n"
      "skip:" %}
  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  ins_pipe( pipe_cmovD_reg );
%}

// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  predicate(UseSSE==0);
  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "Jn$cop    skip\n\t"
            "MOV    $dst,$src\t# float\n"
      "skip:" %}
  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  ins_pipe( pipe_cmovD_reg );
%}

// No CMOVE with SSE/SSE2
instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  predicate (UseSSE>=1);
  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "Jn$cop   skip\n\t"
            "MOVSS  $dst,$src\t# float\n"
      "skip:" %}
  ins_encode %{
    Label skip;
    // Invert sense of branch from sense of CMOV
    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
    __ bind(skip);
  %}
  ins_pipe( pipe_slow );
%}

// No CMOVE with SSE/SSE2
instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  predicate (UseSSE>=2);
  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "Jn$cop   skip\n\t"
            "MOVSD  $dst,$src\t# float\n"
      "skip:" %}
  ins_encode %{
    Label skip;
    // Invert sense of branch from sense of CMOV
    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
    __ bind(skip);
  %}
  ins_pipe( pipe_slow );
%}

// unsigned version
instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  predicate (UseSSE>=1);
  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "Jn$cop   skip\n\t"
            "MOVSS  $dst,$src\t# float\n"
      "skip:" %}
  ins_encode %{
    Label skip;
    // Invert sense of branch from sense of CMOV
    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
    __ bind(skip);
  %}
  ins_pipe( pipe_slow );
%}

8024 8025 8026 8027 8028 8029 8030 8031 8032
instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  predicate (UseSSE>=1);
  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovX_regU(cop, cr, dst, src);
  %}
%}

D
duke 已提交
8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
// unsigned version
instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  predicate (UseSSE>=2);
  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "Jn$cop   skip\n\t"
            "MOVSD  $dst,$src\t# float\n"
      "skip:" %}
  ins_encode %{
    Label skip;
    // Invert sense of branch from sense of CMOV
    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
    __ bind(skip);
  %}
  ins_pipe( pipe_slow );
%}

8051 8052 8053 8054 8055 8056 8057 8058 8059
instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  predicate (UseSSE>=2);
  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovXD_regU(cop, cr, dst, src);
  %}
%}

D
duke 已提交
8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081
instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
            "CMOV$cop $dst.hi,$src.hi" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  ins_pipe( pipe_cmov_reg_long );
%}

instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
            "CMOV$cop $dst.hi,$src.hi" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  ins_pipe( pipe_cmov_reg_long );
%}

8082 8083 8084 8085 8086 8087 8088 8089 8090
instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  predicate(VM_Version::supports_cmov() );
  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  ins_cost(200);
  expand %{
    cmovL_regU(cop, cr, dst, src);
  %}
%}

D
duke 已提交
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
//----------Arithmetic Instructions--------------------------------------------
//----------Addition Instructions----------------------------------------------
// Integer Addition Instructions
instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (AddI dst src));
  effect(KILL cr);

  size(2);
  format %{ "ADD    $dst,$src" %}
  opcode(0x03);
  ins_encode( OpcP, RegReg( dst, src) );
  ins_pipe( ialu_reg_reg );
%}

instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  match(Set dst (AddI dst src));
  effect(KILL cr);

  format %{ "ADD    $dst,$src" %}
  opcode(0x81, 0x00); /* /0 id */
  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  ins_pipe( ialu_reg );
%}

instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  predicate(UseIncDec);
  match(Set dst (AddI dst src));
  effect(KILL cr);

  size(1);
  format %{ "INC    $dst" %}
  opcode(0x40); /*  */
  ins_encode( Opc_plus( primary, dst ) );
  ins_pipe( ialu_reg );
%}

instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  match(Set dst (AddI src0 src1));
  ins_cost(110);

  format %{ "LEA    $dst,[$src0 + $src1]" %}
  opcode(0x8D); /* 0x8D /r */
  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  ins_pipe( ialu_reg_reg );
%}

instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  match(Set dst (AddP src0 src1));
  ins_cost(110);

  format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  opcode(0x8D); /* 0x8D /r */
  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  ins_pipe( ialu_reg_reg );
%}

instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  predicate(UseIncDec);
  match(Set dst (AddI dst src));
  effect(KILL cr);

  size(1);
  format %{ "DEC    $dst" %}
  opcode(0x48); /*  */
  ins_encode( Opc_plus( primary, dst ) );
  ins_pipe( ialu_reg );
%}

instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (AddP dst src));
  effect(KILL cr);

  size(2);
  format %{ "ADD    $dst,$src" %}
  opcode(0x03);
  ins_encode( OpcP, RegReg( dst, src) );
  ins_pipe( ialu_reg_reg );
%}

instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  match(Set dst (AddP dst src));
  effect(KILL cr);

  format %{ "ADD    $dst,$src" %}
  opcode(0x81,0x00); /* Opcode 81 /0 id */
  // ins_encode( RegImm( dst, src) );
  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  ins_pipe( ialu_reg );
%}

instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  match(Set dst (AddI dst (LoadI src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "ADD    $dst,$src" %}
  opcode(0x03);
  ins_encode( OpcP, RegMem( dst, src) );
  ins_pipe( ialu_reg_mem );
%}

instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(150);
  format %{ "ADD    $dst,$src" %}
  opcode(0x01);  /* Opcode 01 /r */
  ins_encode( OpcP, RegMem( src, dst ) );
  ins_pipe( ialu_mem_reg );
%}

// Add Memory with Immediate
instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "ADD    $dst,$src" %}
  opcode(0x81);               /* Opcode 81 /0 id */
  ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  ins_pipe( ialu_mem_imm );
%}

instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "INC    $dst" %}
  opcode(0xFF);               /* Opcode FF /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,dst));
  ins_pipe( ialu_mem_imm );
%}

instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "DEC    $dst" %}
  opcode(0xFF);               /* Opcode FF /1 */
  ins_encode( OpcP, RMopc_Mem(0x01,dst));
  ins_pipe( ialu_mem_imm );
%}


instruct checkCastPP( eRegP dst ) %{
  match(Set dst (CheckCastPP dst));

  size(0);
  format %{ "#checkcastPP of $dst" %}
  ins_encode( /*empty encoding*/ );
  ins_pipe( empty );
%}

instruct castPP( eRegP dst ) %{
  match(Set dst (CastPP dst));
  format %{ "#castPP of $dst" %}
  ins_encode( /*empty encoding*/ );
  ins_pipe( empty );
%}

instruct castII( eRegI dst ) %{
  match(Set dst (CastII dst));
  format %{ "#castII of $dst" %}
  ins_encode( /*empty encoding*/ );
  ins_cost(0);
  ins_pipe( empty );
%}


// Load-locked - same as a regular pointer load when used with compare-swap
instruct loadPLocked(eRegP dst, memory mem) %{
  match(Set dst (LoadPLocked mem));

  ins_cost(125);
  format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  opcode(0x8B);
  ins_encode( OpcP, RegMem(dst,mem));
  ins_pipe( ialu_reg_mem );
%}

// LoadLong-locked - same as a volatile long load when used with compare-swap
instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  predicate(UseSSE<=1);
  match(Set dst (LoadLLocked mem));

  ins_cost(200);
  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
            "FISTp  $dst" %}
  ins_encode(enc_loadL_volatile(mem,dst));
  ins_pipe( fpu_reg_mem );
%}

instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  predicate(UseSSE>=2);
  match(Set dst (LoadLLocked mem));
  effect(TEMP tmp);
  ins_cost(180);
  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
            "MOVSD  $dst,$tmp" %}
  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  ins_pipe( pipe_slow );
%}

instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  predicate(UseSSE>=2);
  match(Set dst (LoadLLocked mem));
  effect(TEMP tmp);
  ins_cost(160);
  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
            "MOVD   $dst.lo,$tmp\n\t"
            "PSRLQ  $tmp,32\n\t"
            "MOVD   $dst.hi,$tmp" %}
  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  ins_pipe( pipe_slow );
%}

// Conditional-store of the updated heap-top.
// Used during allocation of the shared heap.
// Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  // EAX is killed if there is contention, but then it's also unused.
  // In the common case of no contention, EAX holds the new oop address.
  format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  ins_pipe( pipe_cmpxchg );
%}

8322 8323 8324 8325 8326 8327 8328
// Conditional-store of an int value.
// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  match(Set cr (StoreIConditional mem (Binary oldval newval)));
  effect(KILL oldval);
  format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
D
duke 已提交
8329 8330 8331
  ins_pipe( pipe_cmpxchg );
%}

8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348
// Conditional-store of a long value.
// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  match(Set cr (StoreLConditional mem (Binary oldval newval)));
  effect(KILL oldval);
  format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
            "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
            "XCHG   EBX,ECX"
  %}
  ins_encode %{
    // Note: we need to swap rbx, and rcx before and after the
    //       cmpxchg8 instruction because the instruction uses
    //       rcx as the high order word of the new value to store but
    //       our register encoding uses rbx.
    __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
    if( os::is_MP() )
      __ lock();
8349
    __ cmpxchg8($mem$$Address);
8350 8351
    __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  %}
D
duke 已提交
8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817
  ins_pipe( pipe_cmpxchg );
%}

// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them

instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  effect(KILL cr, KILL oldval);
  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
            "MOV    $res,0\n\t"
            "JNE,s  fail\n\t"
            "MOV    $res,1\n"
          "fail:" %}
  ins_encode( enc_cmpxchg8(mem_ptr),
              enc_flags_ne_to_boolean(res) );
  ins_pipe( pipe_cmpxchg );
%}

instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  effect(KILL cr, KILL oldval);
  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
            "MOV    $res,0\n\t"
            "JNE,s  fail\n\t"
            "MOV    $res,1\n"
          "fail:" %}
  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  ins_pipe( pipe_cmpxchg );
%}

instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  effect(KILL cr, KILL oldval);
  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
            "MOV    $res,0\n\t"
            "JNE,s  fail\n\t"
            "MOV    $res,1\n"
          "fail:" %}
  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  ins_pipe( pipe_cmpxchg );
%}

//----------Subtraction Instructions-------------------------------------------
// Integer Subtraction Instructions
instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (SubI dst src));
  effect(KILL cr);

  size(2);
  format %{ "SUB    $dst,$src" %}
  opcode(0x2B);
  ins_encode( OpcP, RegReg( dst, src) );
  ins_pipe( ialu_reg_reg );
%}

instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  match(Set dst (SubI dst src));
  effect(KILL cr);

  format %{ "SUB    $dst,$src" %}
  opcode(0x81,0x05);  /* Opcode 81 /5 */
  // ins_encode( RegImm( dst, src) );
  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  ins_pipe( ialu_reg );
%}

instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  match(Set dst (SubI dst (LoadI src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "SUB    $dst,$src" %}
  opcode(0x2B);
  ins_encode( OpcP, RegMem( dst, src) );
  ins_pipe( ialu_reg_mem );
%}

instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(150);
  format %{ "SUB    $dst,$src" %}
  opcode(0x29);  /* Opcode 29 /r */
  ins_encode( OpcP, RegMem( src, dst ) );
  ins_pipe( ialu_mem_reg );
%}

// Subtract from a pointer
instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  match(Set dst (AddP dst (SubI zero src)));
  effect(KILL cr);

  size(2);
  format %{ "SUB    $dst,$src" %}
  opcode(0x2B);
  ins_encode( OpcP, RegReg( dst, src) );
  ins_pipe( ialu_reg_reg );
%}

instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  match(Set dst (SubI zero dst));
  effect(KILL cr);

  size(2);
  format %{ "NEG    $dst" %}
  opcode(0xF7,0x03);  // Opcode F7 /3
  ins_encode( OpcP, RegOpc( dst ) );
  ins_pipe( ialu_reg );
%}


//----------Multiplication/Division Instructions-------------------------------
// Integer Multiplication Instructions
// Multiply Register
instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (MulI dst src));
  effect(KILL cr);

  size(3);
  ins_cost(300);
  format %{ "IMUL   $dst,$src" %}
  opcode(0xAF, 0x0F);
  ins_encode( OpcS, OpcP, RegReg( dst, src) );
  ins_pipe( ialu_reg_reg_alu0 );
%}

// Multiply 32-bit Immediate
instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  match(Set dst (MulI src imm));
  effect(KILL cr);

  ins_cost(300);
  format %{ "IMUL   $dst,$src,$imm" %}
  opcode(0x69);  /* 69 /r id */
  ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  ins_pipe( ialu_reg_reg_alu0 );
%}

instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  match(Set dst src);
  effect(KILL cr);

  // Note that this is artificially increased to make it more expensive than loadConL
  ins_cost(250);
  format %{ "MOV    EAX,$src\t// low word only" %}
  opcode(0xB8);
  ins_encode( LdImmL_Lo(dst, src) );
  ins_pipe( ialu_reg_fat );
%}

// Multiply by 32-bit Immediate, taking the shifted high order results
//  (special case for shift by 32)
instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  effect(USE src1, KILL cr);

  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  ins_cost(0*100 + 1*400 - 150);
  format %{ "IMUL   EDX:EAX,$src1" %}
  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  ins_pipe( pipe_slow );
%}

// Multiply by 32-bit Immediate, taking the shifted high order results
instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  effect(USE src1, KILL cr);

  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  ins_cost(1*100 + 1*400 - 150);
  format %{ "IMUL   EDX:EAX,$src1\n\t"
            "SAR    EDX,$cnt-32" %}
  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  ins_pipe( pipe_slow );
%}

// Multiply Memory 32-bit Immediate
instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  match(Set dst (MulI (LoadI src) imm));
  effect(KILL cr);

  ins_cost(300);
  format %{ "IMUL   $dst,$src,$imm" %}
  opcode(0x69);  /* 69 /r id */
  ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  ins_pipe( ialu_reg_mem_alu0 );
%}

// Multiply Memory
instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  match(Set dst (MulI dst (LoadI src)));
  effect(KILL cr);

  ins_cost(350);
  format %{ "IMUL   $dst,$src" %}
  opcode(0xAF, 0x0F);
  ins_encode( OpcS, OpcP, RegMem( dst, src) );
  ins_pipe( ialu_reg_mem_alu0 );
%}

// Multiply Register Int to Long
instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  // Basic Idea: long = (long)int * (long)int
  match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  effect(DEF dst, USE src, USE src1, KILL flags);

  ins_cost(300);
  format %{ "IMUL   $dst,$src1" %}

  ins_encode( long_int_multiply( dst, src1 ) );
  ins_pipe( ialu_reg_reg_alu0 );
%}

instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  effect(KILL flags);

  ins_cost(300);
  format %{ "MUL    $dst,$src1" %}

  ins_encode( long_uint_multiply(dst, src1) );
  ins_pipe( ialu_reg_reg_alu0 );
%}

// Multiply Register Long
instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  match(Set dst (MulL dst src));
  effect(KILL cr, TEMP tmp);
  ins_cost(4*100+3*400);
// Basic idea: lo(result) = lo(x_lo * y_lo)
//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  format %{ "MOV    $tmp,$src.lo\n\t"
            "IMUL   $tmp,EDX\n\t"
            "MOV    EDX,$src.hi\n\t"
            "IMUL   EDX,EAX\n\t"
            "ADD    $tmp,EDX\n\t"
            "MUL    EDX:EAX,$src.lo\n\t"
            "ADD    EDX,$tmp" %}
  ins_encode( long_multiply( dst, src, tmp ) );
  ins_pipe( pipe_slow );
%}

// Multiply Register Long by small constant
instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  match(Set dst (MulL dst src));
  effect(KILL cr, TEMP tmp);
  ins_cost(2*100+2*400);
  size(12);
// Basic idea: lo(result) = lo(src * EAX)
//             hi(result) = hi(src * EAX) + lo(src * EDX)
  format %{ "IMUL   $tmp,EDX,$src\n\t"
            "MOV    EDX,$src\n\t"
            "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
            "ADD    EDX,$tmp" %}
  ins_encode( long_multiply_con( dst, src, tmp ) );
  ins_pipe( pipe_slow );
%}

// Integer DIV with Register
instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  match(Set rax (DivI rax div));
  effect(KILL rdx, KILL cr);
  size(26);
  ins_cost(30*100+10*100);
  format %{ "CMP    EAX,0x80000000\n\t"
            "JNE,s  normal\n\t"
            "XOR    EDX,EDX\n\t"
            "CMP    ECX,-1\n\t"
            "JE,s   done\n"
    "normal: CDQ\n\t"
            "IDIV   $div\n\t"
    "done:"        %}
  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  ins_encode( cdq_enc, OpcP, RegOpc(div) );
  ins_pipe( ialu_reg_reg_alu0 );
%}

// Divide Register Long
instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  match(Set dst (DivL src1 src2));
  effect( KILL cr, KILL cx, KILL bx );
  ins_cost(10000);
  format %{ "PUSH   $src1.hi\n\t"
            "PUSH   $src1.lo\n\t"
            "PUSH   $src2.hi\n\t"
            "PUSH   $src2.lo\n\t"
            "CALL   SharedRuntime::ldiv\n\t"
            "ADD    ESP,16" %}
  ins_encode( long_div(src1,src2) );
  ins_pipe( pipe_slow );
%}

// Integer DIVMOD with Register, both quotient and mod results
instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  match(DivModI rax div);
  effect(KILL cr);
  size(26);
  ins_cost(30*100+10*100);
  format %{ "CMP    EAX,0x80000000\n\t"
            "JNE,s  normal\n\t"
            "XOR    EDX,EDX\n\t"
            "CMP    ECX,-1\n\t"
            "JE,s   done\n"
    "normal: CDQ\n\t"
            "IDIV   $div\n\t"
    "done:"        %}
  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  ins_encode( cdq_enc, OpcP, RegOpc(div) );
  ins_pipe( pipe_slow );
%}

// Integer MOD with Register
instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  match(Set rdx (ModI rax div));
  effect(KILL rax, KILL cr);

  size(26);
  ins_cost(300);
  format %{ "CDQ\n\t"
            "IDIV   $div" %}
  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  ins_encode( cdq_enc, OpcP, RegOpc(div) );
  ins_pipe( ialu_reg_reg_alu0 );
%}

// Remainder Register Long
instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  match(Set dst (ModL src1 src2));
  effect( KILL cr, KILL cx, KILL bx );
  ins_cost(10000);
  format %{ "PUSH   $src1.hi\n\t"
            "PUSH   $src1.lo\n\t"
            "PUSH   $src2.hi\n\t"
            "PUSH   $src2.lo\n\t"
            "CALL   SharedRuntime::lrem\n\t"
            "ADD    ESP,16" %}
  ins_encode( long_mod(src1,src2) );
  ins_pipe( pipe_slow );
%}

// Integer Shift Instructions
// Shift Left by one
instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  match(Set dst (LShiftI dst shift));
  effect(KILL cr);

  size(2);
  format %{ "SHL    $dst,$shift" %}
  opcode(0xD1, 0x4);  /* D1 /4 */
  ins_encode( OpcP, RegOpc( dst ) );
  ins_pipe( ialu_reg );
%}

// Shift Left by 8-bit immediate
instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  match(Set dst (LShiftI dst shift));
  effect(KILL cr);

  size(3);
  format %{ "SHL    $dst,$shift" %}
  opcode(0xC1, 0x4);  /* C1 /4 ib */
  ins_encode( RegOpcImm( dst, shift) );
  ins_pipe( ialu_reg );
%}

// Shift Left by variable
instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  match(Set dst (LShiftI dst shift));
  effect(KILL cr);

  size(2);
  format %{ "SHL    $dst,$shift" %}
  opcode(0xD3, 0x4);  /* D3 /4 */
  ins_encode( OpcP, RegOpc( dst ) );
  ins_pipe( ialu_reg_reg );
%}

// Arithmetic shift right by one
instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  match(Set dst (RShiftI dst shift));
  effect(KILL cr);

  size(2);
  format %{ "SAR    $dst,$shift" %}
  opcode(0xD1, 0x7);  /* D1 /7 */
  ins_encode( OpcP, RegOpc( dst ) );
  ins_pipe( ialu_reg );
%}

// Arithmetic shift right by one
instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  effect(KILL cr);
  format %{ "SAR    $dst,$shift" %}
  opcode(0xD1, 0x7);  /* D1 /7 */
  ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  ins_pipe( ialu_mem_imm );
%}

// Arithmetic Shift Right by 8-bit immediate
instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  match(Set dst (RShiftI dst shift));
  effect(KILL cr);

  size(3);
  format %{ "SAR    $dst,$shift" %}
  opcode(0xC1, 0x7);  /* C1 /7 ib */
  ins_encode( RegOpcImm( dst, shift ) );
  ins_pipe( ialu_mem_imm );
%}

// Arithmetic Shift Right by 8-bit immediate
instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  effect(KILL cr);

  format %{ "SAR    $dst,$shift" %}
  opcode(0xC1, 0x7);  /* C1 /7 ib */
  ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  ins_pipe( ialu_mem_imm );
%}

// Arithmetic Shift Right by variable
instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  match(Set dst (RShiftI dst shift));
  effect(KILL cr);

  size(2);
  format %{ "SAR    $dst,$shift" %}
  opcode(0xD3, 0x7);  /* D3 /7 */
  ins_encode( OpcP, RegOpc( dst ) );
  ins_pipe( ialu_reg_reg );
%}

// Logical shift right by one
instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  match(Set dst (URShiftI dst shift));
  effect(KILL cr);

  size(2);
  format %{ "SHR    $dst,$shift" %}
  opcode(0xD1, 0x5);  /* D1 /5 */
  ins_encode( OpcP, RegOpc( dst ) );
  ins_pipe( ialu_reg );
%}

// Logical Shift Right by 8-bit immediate
instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  match(Set dst (URShiftI dst shift));
  effect(KILL cr);

  size(3);
  format %{ "SHR    $dst,$shift" %}
  opcode(0xC1, 0x5);  /* C1 /5 ib */
  ins_encode( RegOpcImm( dst, shift) );
  ins_pipe( ialu_reg );
%}

8818

D
duke 已提交
8819 8820
// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
// This idiom is used by the compiler for the i2b bytecode.
T
twisti 已提交
8821
instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
D
duke 已提交
8822 8823 8824 8825
  match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));

  size(3);
  format %{ "MOVSX  $dst,$src :8" %}
T
twisti 已提交
8826 8827 8828 8829
  ins_encode %{
    __ movsbl($dst$$Register, $src$$Register);
  %}
  ins_pipe(ialu_reg_reg);
D
duke 已提交
8830 8831 8832 8833
%}

// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
// This idiom is used by the compiler the i2s bytecode.
T
twisti 已提交
8834
instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
D
duke 已提交
8835 8836 8837 8838
  match(Set dst (RShiftI (LShiftI src sixteen) sixteen));

  size(3);
  format %{ "MOVSX  $dst,$src :16" %}
T
twisti 已提交
8839 8840 8841 8842
  ins_encode %{
    __ movswl($dst$$Register, $src$$Register);
  %}
  ins_pipe(ialu_reg_reg);
D
duke 已提交
8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935
%}


// Logical Shift Right by variable
instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  match(Set dst (URShiftI dst shift));
  effect(KILL cr);

  size(2);
  format %{ "SHR    $dst,$shift" %}
  opcode(0xD3, 0x5);  /* D3 /5 */
  ins_encode( OpcP, RegOpc( dst ) );
  ins_pipe( ialu_reg_reg );
%}


//----------Logical Instructions-----------------------------------------------
//----------Integer Logical Instructions---------------------------------------
// And Instructions
// And Register with Register
instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (AndI dst src));
  effect(KILL cr);

  size(2);
  format %{ "AND    $dst,$src" %}
  opcode(0x23);
  ins_encode( OpcP, RegReg( dst, src) );
  ins_pipe( ialu_reg_reg );
%}

// And Register with Immediate
instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  match(Set dst (AndI dst src));
  effect(KILL cr);

  format %{ "AND    $dst,$src" %}
  opcode(0x81,0x04);  /* Opcode 81 /4 */
  // ins_encode( RegImm( dst, src) );
  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  ins_pipe( ialu_reg );
%}

// And Register with Memory
instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  match(Set dst (AndI dst (LoadI src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "AND    $dst,$src" %}
  opcode(0x23);
  ins_encode( OpcP, RegMem( dst, src) );
  ins_pipe( ialu_reg_mem );
%}

// And Memory with Register
instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(150);
  format %{ "AND    $dst,$src" %}
  opcode(0x21);  /* Opcode 21 /r */
  ins_encode( OpcP, RegMem( src, dst ) );
  ins_pipe( ialu_mem_reg );
%}

// And Memory with Immediate
instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "AND    $dst,$src" %}
  opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  // ins_encode( MemImm( dst, src) );
  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  ins_pipe( ialu_mem_imm );
%}

// Or Instructions
// Or Register with Register
instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (OrI dst src));
  effect(KILL cr);

  size(2);
  format %{ "OR     $dst,$src" %}
  opcode(0x0B);
  ins_encode( OpcP, RegReg( dst, src) );
  ins_pipe( ialu_reg_reg );
%}

8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947
instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  match(Set dst (OrI dst (CastP2X src)));
  effect(KILL cr);

  size(2);
  format %{ "OR     $dst,$src" %}
  opcode(0x0B);
  ins_encode( OpcP, RegReg( dst, src) );
  ins_pipe( ialu_reg_reg );
%}


D
duke 已提交
8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142
// Or Register with Immediate
instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  match(Set dst (OrI dst src));
  effect(KILL cr);

  format %{ "OR     $dst,$src" %}
  opcode(0x81,0x01);  /* Opcode 81 /1 id */
  // ins_encode( RegImm( dst, src) );
  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  ins_pipe( ialu_reg );
%}

// Or Register with Memory
instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  match(Set dst (OrI dst (LoadI src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "OR     $dst,$src" %}
  opcode(0x0B);
  ins_encode( OpcP, RegMem( dst, src) );
  ins_pipe( ialu_reg_mem );
%}

// Or Memory with Register
instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(150);
  format %{ "OR     $dst,$src" %}
  opcode(0x09);  /* Opcode 09 /r */
  ins_encode( OpcP, RegMem( src, dst ) );
  ins_pipe( ialu_mem_reg );
%}

// Or Memory with Immediate
instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "OR     $dst,$src" %}
  opcode(0x81,0x1);  /* Opcode 81 /1 id */
  // ins_encode( MemImm( dst, src) );
  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  ins_pipe( ialu_mem_imm );
%}

// ROL/ROR
// ROL expand
instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  effect(USE_DEF dst, USE shift, KILL cr);

  format %{ "ROL    $dst, $shift" %}
  opcode(0xD1, 0x0); /* Opcode D1 /0 */
  ins_encode( OpcP, RegOpc( dst ));
  ins_pipe( ialu_reg );
%}

instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  effect(USE_DEF dst, USE shift, KILL cr);

  format %{ "ROL    $dst, $shift" %}
  opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  ins_encode( RegOpcImm(dst, shift) );
  ins_pipe(ialu_reg);
%}

instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  effect(USE_DEF dst, USE shift, KILL cr);

  format %{ "ROL    $dst, $shift" %}
  opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  ins_encode(OpcP, RegOpc(dst));
  ins_pipe( ialu_reg_reg );
%}
// end of ROL expand

// ROL 32bit by one once
instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));

  expand %{
    rolI_eReg_imm1(dst, lshift, cr);
  %}
%}

// ROL 32bit var by imm8 once
instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));

  expand %{
    rolI_eReg_imm8(dst, lshift, cr);
  %}
%}

// ROL 32bit var by var once
instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));

  expand %{
    rolI_eReg_CL(dst, shift, cr);
  %}
%}

// ROL 32bit var by var once
instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));

  expand %{
    rolI_eReg_CL(dst, shift, cr);
  %}
%}

// ROR expand
instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  effect(USE_DEF dst, USE shift, KILL cr);

  format %{ "ROR    $dst, $shift" %}
  opcode(0xD1,0x1);  /* Opcode D1 /1 */
  ins_encode( OpcP, RegOpc( dst ) );
  ins_pipe( ialu_reg );
%}

instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  effect (USE_DEF dst, USE shift, KILL cr);

  format %{ "ROR    $dst, $shift" %}
  opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  ins_encode( RegOpcImm(dst, shift) );
  ins_pipe( ialu_reg );
%}

instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  effect(USE_DEF dst, USE shift, KILL cr);

  format %{ "ROR    $dst, $shift" %}
  opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  ins_encode(OpcP, RegOpc(dst));
  ins_pipe( ialu_reg_reg );
%}
// end of ROR expand

// ROR right once
instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));

  expand %{
    rorI_eReg_imm1(dst, rshift, cr);
  %}
%}

// ROR 32bit by immI8 once
instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));

  expand %{
    rorI_eReg_imm8(dst, rshift, cr);
  %}
%}

// ROR 32bit var by var once
instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));

  expand %{
    rorI_eReg_CL(dst, shift, cr);
  %}
%}

// ROR 32bit var by var once
instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));

  expand %{
    rorI_eReg_CL(dst, shift, cr);
  %}
%}

// Xor Instructions
// Xor Register with Register
instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (XorI dst src));
  effect(KILL cr);

  size(2);
  format %{ "XOR    $dst,$src" %}
  opcode(0x33);
  ins_encode( OpcP, RegReg( dst, src) );
  ins_pipe( ialu_reg_reg );
%}

9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154
// Xor Register with Immediate -1
instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  match(Set dst (XorI dst imm));  

  size(2);
  format %{ "NOT    $dst" %}  
  ins_encode %{
     __ notl($dst$$Register);
  %}
  ins_pipe( ialu_reg );
%}

D
duke 已提交
9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471
// Xor Register with Immediate
instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  match(Set dst (XorI dst src));
  effect(KILL cr);

  format %{ "XOR    $dst,$src" %}
  opcode(0x81,0x06);  /* Opcode 81 /6 id */
  // ins_encode( RegImm( dst, src) );
  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  ins_pipe( ialu_reg );
%}

// Xor Register with Memory
instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  match(Set dst (XorI dst (LoadI src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "XOR    $dst,$src" %}
  opcode(0x33);
  ins_encode( OpcP, RegMem(dst, src) );
  ins_pipe( ialu_reg_mem );
%}

// Xor Memory with Register
instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(150);
  format %{ "XOR    $dst,$src" %}
  opcode(0x31);  /* Opcode 31 /r */
  ins_encode( OpcP, RegMem( src, dst ) );
  ins_pipe( ialu_mem_reg );
%}

// Xor Memory with Immediate
instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  effect(KILL cr);

  ins_cost(125);
  format %{ "XOR    $dst,$src" %}
  opcode(0x81,0x6);  /* Opcode 81 /6 id */
  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  ins_pipe( ialu_mem_imm );
%}

//----------Convert Int to Boolean---------------------------------------------

instruct movI_nocopy(eRegI dst, eRegI src) %{
  effect( DEF dst, USE src );
  format %{ "MOV    $dst,$src" %}
  ins_encode( enc_Copy( dst, src) );
  ins_pipe( ialu_reg_reg );
%}

instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  effect( USE_DEF dst, USE src, KILL cr );

  size(4);
  format %{ "NEG    $dst\n\t"
            "ADC    $dst,$src" %}
  ins_encode( neg_reg(dst),
              OpcRegReg(0x13,dst,src) );
  ins_pipe( ialu_reg_reg_long );
%}

instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  match(Set dst (Conv2B src));

  expand %{
    movI_nocopy(dst,src);
    ci2b(dst,src,cr);
  %}
%}

instruct movP_nocopy(eRegI dst, eRegP src) %{
  effect( DEF dst, USE src );
  format %{ "MOV    $dst,$src" %}
  ins_encode( enc_Copy( dst, src) );
  ins_pipe( ialu_reg_reg );
%}

instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  effect( USE_DEF dst, USE src, KILL cr );
  format %{ "NEG    $dst\n\t"
            "ADC    $dst,$src" %}
  ins_encode( neg_reg(dst),
              OpcRegReg(0x13,dst,src) );
  ins_pipe( ialu_reg_reg_long );
%}

instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  match(Set dst (Conv2B src));

  expand %{
    movP_nocopy(dst,src);
    cp2b(dst,src,cr);
  %}
%}

instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  match(Set dst (CmpLTMask p q));
  effect( KILL cr );
  ins_cost(400);

  // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  format %{ "XOR    $dst,$dst\n\t"
            "CMP    $p,$q\n\t"
            "SETlt  $dst\n\t"
            "NEG    $dst" %}
  ins_encode( OpcRegReg(0x33,dst,dst),
              OpcRegReg(0x3B,p,q),
              setLT_reg(dst), neg_reg(dst) );
  ins_pipe( pipe_slow );
%}

instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  match(Set dst (CmpLTMask dst zero));
  effect( DEF dst, KILL cr );
  ins_cost(100);

  format %{ "SAR    $dst,31" %}
  opcode(0xC1, 0x7);  /* C1 /7 ib */
  ins_encode( RegOpcImm( dst, 0x1F ) );
  ins_pipe( ialu_reg );
%}


instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  effect( KILL tmp, KILL cr );
  ins_cost(400);
  // annoyingly, $tmp has no edges so you cant ask for it in
  // any format or encoding
  format %{ "SUB    $p,$q\n\t"
            "SBB    ECX,ECX\n\t"
            "AND    ECX,$y\n\t"
            "ADD    $p,ECX" %}
  ins_encode( enc_cmpLTP(p,q,y,tmp) );
  ins_pipe( pipe_cmplt );
%}

/* If I enable this, I encourage spilling in the inner loop of compress.
instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  effect( USE_KILL tmp, KILL cr );
  ins_cost(400);

  format %{ "SUB    $p,$q\n\t"
            "SBB    ECX,ECX\n\t"
            "AND    ECX,$y\n\t"
            "ADD    $p,ECX" %}
  ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
%}
*/

//----------Long Instructions------------------------------------------------
// Add Long Register with Register
instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  match(Set dst (AddL dst src));
  effect(KILL cr);
  ins_cost(200);
  format %{ "ADD    $dst.lo,$src.lo\n\t"
            "ADC    $dst.hi,$src.hi" %}
  opcode(0x03, 0x13);
  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  ins_pipe( ialu_reg_reg_long );
%}

// Add Long Register with Immediate
instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  match(Set dst (AddL dst src));
  effect(KILL cr);
  format %{ "ADD    $dst.lo,$src.lo\n\t"
            "ADC    $dst.hi,$src.hi" %}
  opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  ins_pipe( ialu_reg_long );
%}

// Add Long Register with Memory
instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  match(Set dst (AddL dst (LoadL mem)));
  effect(KILL cr);
  ins_cost(125);
  format %{ "ADD    $dst.lo,$mem\n\t"
            "ADC    $dst.hi,$mem+4" %}
  opcode(0x03, 0x13);
  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  ins_pipe( ialu_reg_long_mem );
%}

// Subtract Long Register with Register.
instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  match(Set dst (SubL dst src));
  effect(KILL cr);
  ins_cost(200);
  format %{ "SUB    $dst.lo,$src.lo\n\t"
            "SBB    $dst.hi,$src.hi" %}
  opcode(0x2B, 0x1B);
  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  ins_pipe( ialu_reg_reg_long );
%}

// Subtract Long Register with Immediate
instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  match(Set dst (SubL dst src));
  effect(KILL cr);
  format %{ "SUB    $dst.lo,$src.lo\n\t"
            "SBB    $dst.hi,$src.hi" %}
  opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  ins_pipe( ialu_reg_long );
%}

// Subtract Long Register with Memory
instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  match(Set dst (SubL dst (LoadL mem)));
  effect(KILL cr);
  ins_cost(125);
  format %{ "SUB    $dst.lo,$mem\n\t"
            "SBB    $dst.hi,$mem+4" %}
  opcode(0x2B, 0x1B);
  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  ins_pipe( ialu_reg_long_mem );
%}

instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  match(Set dst (SubL zero dst));
  effect(KILL cr);
  ins_cost(300);
  format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  ins_encode( neg_long(dst) );
  ins_pipe( ialu_reg_reg_long );
%}

// And Long Register with Register
instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  match(Set dst (AndL dst src));
  effect(KILL cr);
  format %{ "AND    $dst.lo,$src.lo\n\t"
            "AND    $dst.hi,$src.hi" %}
  opcode(0x23,0x23);
  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  ins_pipe( ialu_reg_reg_long );
%}

// And Long Register with Immediate
instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  match(Set dst (AndL dst src));
  effect(KILL cr);
  format %{ "AND    $dst.lo,$src.lo\n\t"
            "AND    $dst.hi,$src.hi" %}
  opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  ins_pipe( ialu_reg_long );
%}

// And Long Register with Memory
instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  match(Set dst (AndL dst (LoadL mem)));
  effect(KILL cr);
  ins_cost(125);
  format %{ "AND    $dst.lo,$mem\n\t"
            "AND    $dst.hi,$mem+4" %}
  opcode(0x23, 0x23);
  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  ins_pipe( ialu_reg_long_mem );
%}

// Or Long Register with Register
instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  match(Set dst (OrL dst src));
  effect(KILL cr);
  format %{ "OR     $dst.lo,$src.lo\n\t"
            "OR     $dst.hi,$src.hi" %}
  opcode(0x0B,0x0B);
  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  ins_pipe( ialu_reg_reg_long );
%}

// Or Long Register with Immediate
instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  match(Set dst (OrL dst src));
  effect(KILL cr);
  format %{ "OR     $dst.lo,$src.lo\n\t"
            "OR     $dst.hi,$src.hi" %}
  opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  ins_pipe( ialu_reg_long );
%}

// Or Long Register with Memory
instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  match(Set dst (OrL dst (LoadL mem)));
  effect(KILL cr);
  ins_cost(125);
  format %{ "OR     $dst.lo,$mem\n\t"
            "OR     $dst.hi,$mem+4" %}
  opcode(0x0B,0x0B);
  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  ins_pipe( ialu_reg_long_mem );
%}

// Xor Long Register with Register
instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  match(Set dst (XorL dst src));
  effect(KILL cr);
  format %{ "XOR    $dst.lo,$src.lo\n\t"
            "XOR    $dst.hi,$src.hi" %}
  opcode(0x33,0x33);
  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  ins_pipe( ialu_reg_reg_long );
%}

9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483
// Xor Long Register with Immediate -1
instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  match(Set dst (XorL dst imm));  
  format %{ "NOT    $dst.lo\n\t"
            "NOT    $dst.hi" %}
  ins_encode %{
     __ notl($dst$$Register);
     __ notl(HIGH_FROM_LOW($dst$$Register));
  %}
  ins_pipe( ialu_reg_long );
%}

D
duke 已提交
9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506
// Xor Long Register with Immediate
instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  match(Set dst (XorL dst src));
  effect(KILL cr);
  format %{ "XOR    $dst.lo,$src.lo\n\t"
            "XOR    $dst.hi,$src.hi" %}
  opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  ins_pipe( ialu_reg_long );
%}

// Xor Long Register with Memory
instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  match(Set dst (XorL dst (LoadL mem)));
  effect(KILL cr);
  ins_cost(125);
  format %{ "XOR    $dst.lo,$mem\n\t"
            "XOR    $dst.hi,$mem+4" %}
  opcode(0x33,0x33);
  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  ins_pipe( ialu_reg_long_mem );
%}

9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563
// Shift Left Long by 1
instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  predicate(UseNewLongLShift);
  match(Set dst (LShiftL dst cnt));
  effect(KILL cr);
  ins_cost(100);
  format %{ "ADD    $dst.lo,$dst.lo\n\t"
            "ADC    $dst.hi,$dst.hi" %}
  ins_encode %{
    __ addl($dst$$Register,$dst$$Register);
    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  %}
  ins_pipe( ialu_reg_long );
%}

// Shift Left Long by 2
instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  predicate(UseNewLongLShift);
  match(Set dst (LShiftL dst cnt));
  effect(KILL cr);
  ins_cost(100);
  format %{ "ADD    $dst.lo,$dst.lo\n\t"
            "ADC    $dst.hi,$dst.hi\n\t" 
            "ADD    $dst.lo,$dst.lo\n\t"
            "ADC    $dst.hi,$dst.hi" %}
  ins_encode %{
    __ addl($dst$$Register,$dst$$Register);
    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
    __ addl($dst$$Register,$dst$$Register);
    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  %}
  ins_pipe( ialu_reg_long );
%}

// Shift Left Long by 3
instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  predicate(UseNewLongLShift);
  match(Set dst (LShiftL dst cnt));
  effect(KILL cr);
  ins_cost(100);
  format %{ "ADD    $dst.lo,$dst.lo\n\t"
            "ADC    $dst.hi,$dst.hi\n\t" 
            "ADD    $dst.lo,$dst.lo\n\t"
            "ADC    $dst.hi,$dst.hi\n\t" 
            "ADD    $dst.lo,$dst.lo\n\t"
            "ADC    $dst.hi,$dst.hi" %}
  ins_encode %{
    __ addl($dst$$Register,$dst$$Register);
    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
    __ addl($dst$$Register,$dst$$Register);
    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
    __ addl($dst$$Register,$dst$$Register);
    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  %}
  ins_pipe( ialu_reg_long );
%}

D
duke 已提交
9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711
// Shift Left Long by 1-31
instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  match(Set dst (LShiftL dst cnt));
  effect(KILL cr);
  ins_cost(200);
  format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
            "SHL    $dst.lo,$cnt" %}
  opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  ins_encode( move_long_small_shift(dst,cnt) );
  ins_pipe( ialu_reg_long );
%}

// Shift Left Long by 32-63
instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  match(Set dst (LShiftL dst cnt));
  effect(KILL cr);
  ins_cost(300);
  format %{ "MOV    $dst.hi,$dst.lo\n"
          "\tSHL    $dst.hi,$cnt-32\n"
          "\tXOR    $dst.lo,$dst.lo" %}
  opcode(0xC1, 0x4);  /* C1 /4 ib */
  ins_encode( move_long_big_shift_clr(dst,cnt) );
  ins_pipe( ialu_reg_long );
%}

// Shift Left Long by variable
instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  match(Set dst (LShiftL dst shift));
  effect(KILL cr);
  ins_cost(500+200);
  size(17);
  format %{ "TEST   $shift,32\n\t"
            "JEQ,s  small\n\t"
            "MOV    $dst.hi,$dst.lo\n\t"
            "XOR    $dst.lo,$dst.lo\n"
    "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
            "SHL    $dst.lo,$shift" %}
  ins_encode( shift_left_long( dst, shift ) );
  ins_pipe( pipe_slow );
%}

// Shift Right Long by 1-31
instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  match(Set dst (URShiftL dst cnt));
  effect(KILL cr);
  ins_cost(200);
  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
            "SHR    $dst.hi,$cnt" %}
  opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  ins_encode( move_long_small_shift(dst,cnt) );
  ins_pipe( ialu_reg_long );
%}

// Shift Right Long by 32-63
instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  match(Set dst (URShiftL dst cnt));
  effect(KILL cr);
  ins_cost(300);
  format %{ "MOV    $dst.lo,$dst.hi\n"
          "\tSHR    $dst.lo,$cnt-32\n"
          "\tXOR    $dst.hi,$dst.hi" %}
  opcode(0xC1, 0x5);  /* C1 /5 ib */
  ins_encode( move_long_big_shift_clr(dst,cnt) );
  ins_pipe( ialu_reg_long );
%}

// Shift Right Long by variable
instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  match(Set dst (URShiftL dst shift));
  effect(KILL cr);
  ins_cost(600);
  size(17);
  format %{ "TEST   $shift,32\n\t"
            "JEQ,s  small\n\t"
            "MOV    $dst.lo,$dst.hi\n\t"
            "XOR    $dst.hi,$dst.hi\n"
    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
            "SHR    $dst.hi,$shift" %}
  ins_encode( shift_right_long( dst, shift ) );
  ins_pipe( pipe_slow );
%}

// Shift Right Long by 1-31
instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  match(Set dst (RShiftL dst cnt));
  effect(KILL cr);
  ins_cost(200);
  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
            "SAR    $dst.hi,$cnt" %}
  opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  ins_encode( move_long_small_shift(dst,cnt) );
  ins_pipe( ialu_reg_long );
%}

// Shift Right Long by 32-63
instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  match(Set dst (RShiftL dst cnt));
  effect(KILL cr);
  ins_cost(300);
  format %{ "MOV    $dst.lo,$dst.hi\n"
          "\tSAR    $dst.lo,$cnt-32\n"
          "\tSAR    $dst.hi,31" %}
  opcode(0xC1, 0x7);  /* C1 /7 ib */
  ins_encode( move_long_big_shift_sign(dst,cnt) );
  ins_pipe( ialu_reg_long );
%}

// Shift Right arithmetic Long by variable
instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  match(Set dst (RShiftL dst shift));
  effect(KILL cr);
  ins_cost(600);
  size(18);
  format %{ "TEST   $shift,32\n\t"
            "JEQ,s  small\n\t"
            "MOV    $dst.lo,$dst.hi\n\t"
            "SAR    $dst.hi,31\n"
    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
            "SAR    $dst.hi,$shift" %}
  ins_encode( shift_right_arith_long( dst, shift ) );
  ins_pipe( pipe_slow );
%}


//----------Double Instructions------------------------------------------------
// Double Math

// Compare & branch

// P6 version of float compare, sets condition codes in EFLAGS
instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  predicate(VM_Version::supports_cmov() && UseSSE <=1);
  match(Set cr (CmpD src1 src2));
  effect(KILL rax);
  ins_cost(150);
  format %{ "FLD    $src1\n\t"
            "FUCOMIP ST,$src2  // P6 instruction\n\t"
            "JNP    exit\n\t"
            "MOV    ah,1       // saw a NaN, set CF\n\t"
            "SAHF\n"
     "exit:\tNOP               // avoid branch to branch" %}
  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  ins_encode( Push_Reg_D(src1),
              OpcP, RegOpc(src2),
              cmpF_P6_fixup );
  ins_pipe( pipe_slow );
%}

9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723
instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
  predicate(VM_Version::supports_cmov() && UseSSE <=1);
  match(Set cr (CmpD src1 src2));
  ins_cost(150);
  format %{ "FLD    $src1\n\t"
            "FUCOMIP ST,$src2  // P6 instruction" %}
  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  ins_encode( Push_Reg_D(src1),
              OpcP, RegOpc(src2));
  ins_pipe( pipe_slow );
%}

D
duke 已提交
9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787
// Compare & branch
instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  predicate(UseSSE<=1);
  match(Set cr (CmpD src1 src2));
  effect(KILL rax);
  ins_cost(200);
  format %{ "FLD    $src1\n\t"
            "FCOMp  $src2\n\t"
            "FNSTSW AX\n\t"
            "TEST   AX,0x400\n\t"
            "JZ,s   flags\n\t"
            "MOV    AH,1\t# unordered treat as LT\n"
    "flags:\tSAHF" %}
  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  ins_encode( Push_Reg_D(src1),
              OpcP, RegOpc(src2),
              fpu_flags);
  ins_pipe( pipe_slow );
%}

// Compare vs zero into -1,0,1
instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
  predicate(UseSSE<=1);
  match(Set dst (CmpD3 src1 zero));
  effect(KILL cr, KILL rax);
  ins_cost(280);
  format %{ "FTSTD  $dst,$src1" %}
  opcode(0xE4, 0xD9);
  ins_encode( Push_Reg_D(src1),
              OpcS, OpcP, PopFPU,
              CmpF_Result(dst));
  ins_pipe( pipe_slow );
%}

// Compare into -1,0,1
instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
  predicate(UseSSE<=1);
  match(Set dst (CmpD3 src1 src2));
  effect(KILL cr, KILL rax);
  ins_cost(300);
  format %{ "FCMPD  $dst,$src1,$src2" %}
  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  ins_encode( Push_Reg_D(src1),
              OpcP, RegOpc(src2),
              CmpF_Result(dst));
  ins_pipe( pipe_slow );
%}

// float compare and set condition codes in EFLAGS by XMM regs
instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
  predicate(UseSSE>=2);
  match(Set cr (CmpD dst src));
  effect(KILL rax);
  ins_cost(125);
  format %{ "COMISD $dst,$src\n"
          "\tJNP    exit\n"
          "\tMOV    ah,1       // saw a NaN, set CF\n"
          "\tSAHF\n"
     "exit:\tNOP               // avoid branch to branch" %}
  opcode(0x66, 0x0F, 0x2F);
  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
  ins_pipe( pipe_slow );
%}

9788 9789 9790 9791 9792 9793 9794 9795 9796 9797
instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set cr (CmpD dst src));
  ins_cost(100);
  format %{ "COMISD $dst,$src" %}
  opcode(0x66, 0x0F, 0x2F);
  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

D
duke 已提交
9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813
// float compare and set condition codes in EFLAGS by XMM regs
instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
  predicate(UseSSE>=2);
  match(Set cr (CmpD dst (LoadD src)));
  effect(KILL rax);
  ins_cost(145);
  format %{ "COMISD $dst,$src\n"
          "\tJNP    exit\n"
          "\tMOV    ah,1       // saw a NaN, set CF\n"
          "\tSAHF\n"
     "exit:\tNOP               // avoid branch to branch" %}
  opcode(0x66, 0x0F, 0x2F);
  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
  ins_pipe( pipe_slow );
%}

9814 9815 9816 9817 9818 9819 9820 9821 9822 9823
instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
  predicate(UseSSE>=2);
  match(Set cr (CmpD dst (LoadD src)));
  ins_cost(100);
  format %{ "COMISD $dst,$src" %}
  opcode(0x66, 0x0F, 0x2F);
  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
  ins_pipe( pipe_slow );
%}

D
duke 已提交
9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710
// Compare into -1,0,1 in XMM
instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
  predicate(UseSSE>=2);
  match(Set dst (CmpD3 src1 src2));
  effect(KILL cr);
  ins_cost(255);
  format %{ "XOR    $dst,$dst\n"
          "\tCOMISD $src1,$src2\n"
          "\tJP,s   nan\n"
          "\tJEQ,s  exit\n"
          "\tJA,s   inc\n"
      "nan:\tDEC    $dst\n"
          "\tJMP,s  exit\n"
      "inc:\tINC    $dst\n"
      "exit:"
                %}
  opcode(0x66, 0x0F, 0x2F);
  ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
             CmpX_Result(dst));
  ins_pipe( pipe_slow );
%}

// Compare into -1,0,1 in XMM and memory
instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
  predicate(UseSSE>=2);
  match(Set dst (CmpD3 src1 (LoadD mem)));
  effect(KILL cr);
  ins_cost(275);
  format %{ "COMISD $src1,$mem\n"
          "\tMOV    $dst,0\t\t# do not blow flags\n"
          "\tJP,s   nan\n"
          "\tJEQ,s  exit\n"
          "\tJA,s   inc\n"
      "nan:\tDEC    $dst\n"
          "\tJMP,s  exit\n"
      "inc:\tINC    $dst\n"
      "exit:"
                %}
  opcode(0x66, 0x0F, 0x2F);
  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
             LdImmI(dst,0x0), CmpX_Result(dst));
  ins_pipe( pipe_slow );
%}


instruct subD_reg(regD dst, regD src) %{
  predicate (UseSSE <=1);
  match(Set dst (SubD dst src));

  format %{ "FLD    $src\n\t"
            "DSUBp  $dst,ST" %}
  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  ins_cost(150);
  ins_encode( Push_Reg_D(src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_reg );
%}

instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  predicate (UseSSE <=1);
  match(Set dst (RoundDouble (SubD src1 src2)));
  ins_cost(250);

  format %{ "FLD    $src2\n\t"
            "DSUB   ST,$src1\n\t"
            "FSTP_D $dst\t# D-round" %}
  opcode(0xD8, 0x5);
  ins_encode( Push_Reg_D(src2),
              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
  ins_pipe( fpu_mem_reg_reg );
%}


instruct subD_reg_mem(regD dst, memory src) %{
  predicate (UseSSE <=1);
  match(Set dst (SubD dst (LoadD src)));
  ins_cost(150);

  format %{ "FLD    $src\n\t"
            "DSUBp  $dst,ST" %}
  opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_mem );
%}

instruct absD_reg(regDPR1 dst, regDPR1 src) %{
  predicate (UseSSE<=1);
  match(Set dst (AbsD src));
  ins_cost(100);
  format %{ "FABS" %}
  opcode(0xE1, 0xD9);
  ins_encode( OpcS, OpcP );
  ins_pipe( fpu_reg_reg );
%}

instruct absXD_reg( regXD dst ) %{
  predicate(UseSSE>=2);
  match(Set dst (AbsD dst));
  format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
  ins_encode( AbsXD_encoding(dst));
  ins_pipe( pipe_slow );
%}

instruct negD_reg(regDPR1 dst, regDPR1 src) %{
  predicate(UseSSE<=1);
  match(Set dst (NegD src));
  ins_cost(100);
  format %{ "FCHS" %}
  opcode(0xE0, 0xD9);
  ins_encode( OpcS, OpcP );
  ins_pipe( fpu_reg_reg );
%}

instruct negXD_reg( regXD dst ) %{
  predicate(UseSSE>=2);
  match(Set dst (NegD dst));
  format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
  ins_encode %{
     __ xorpd($dst$$XMMRegister,
              ExternalAddress((address)double_signflip_pool));
  %}
  ins_pipe( pipe_slow );
%}

instruct addD_reg(regD dst, regD src) %{
  predicate(UseSSE<=1);
  match(Set dst (AddD dst src));
  format %{ "FLD    $src\n\t"
            "DADD   $dst,ST" %}
  size(4);
  ins_cost(150);
  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  ins_encode( Push_Reg_D(src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_reg );
%}


instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  predicate(UseSSE<=1);
  match(Set dst (RoundDouble (AddD src1 src2)));
  ins_cost(250);

  format %{ "FLD    $src2\n\t"
            "DADD   ST,$src1\n\t"
            "FSTP_D $dst\t# D-round" %}
  opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  ins_encode( Push_Reg_D(src2),
              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
  ins_pipe( fpu_mem_reg_reg );
%}


instruct addD_reg_mem(regD dst, memory src) %{
  predicate(UseSSE<=1);
  match(Set dst (AddD dst (LoadD src)));
  ins_cost(150);

  format %{ "FLD    $src\n\t"
            "DADDp  $dst,ST" %}
  opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_mem );
%}

// add-to-memory
instruct addD_mem_reg(memory dst, regD src) %{
  predicate(UseSSE<=1);
  match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  ins_cost(150);

  format %{ "FLD_D  $dst\n\t"
            "DADD   ST,$src\n\t"
            "FST_D  $dst" %}
  opcode(0xDD, 0x0);
  ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
              Opcode(0xD8), RegOpc(src),
              set_instruction_start,
              Opcode(0xDD), RMopc_Mem(0x03,dst) );
  ins_pipe( fpu_reg_mem );
%}

instruct addD_reg_imm1(regD dst, immD1 src) %{
  predicate(UseSSE<=1);
  match(Set dst (AddD dst src));
  ins_cost(125);
  format %{ "FLD1\n\t"
            "DADDp  $dst,ST" %}
  opcode(0xDE, 0x00);
  ins_encode( LdImmD(src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg );
%}

instruct addD_reg_imm(regD dst, immD src) %{
  predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  match(Set dst (AddD dst src));
  ins_cost(200);
  format %{ "FLD_D  [$src]\n\t"
            "DADDp  $dst,ST" %}
  opcode(0xDE, 0x00);       /* DE /0 */
  ins_encode( LdImmD(src),
              OpcP, RegOpc(dst));
  ins_pipe( fpu_reg_mem );
%}

instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
  predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  match(Set dst (RoundDouble (AddD src con)));
  ins_cost(200);
  format %{ "FLD_D  [$con]\n\t"
            "DADD   ST,$src\n\t"
            "FSTP_D $dst\t# D-round" %}
  opcode(0xD8, 0x00);       /* D8 /0 */
  ins_encode( LdImmD(con),
              OpcP, RegOpc(src), Pop_Mem_D(dst));
  ins_pipe( fpu_mem_reg_con );
%}

// Add two double precision floating point values in xmm
instruct addXD_reg(regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (AddD dst src));
  format %{ "ADDSD  $dst,$src" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct addXD_imm(regXD dst, immXD con) %{
  predicate(UseSSE>=2);
  match(Set dst (AddD dst con));
  format %{ "ADDSD  $dst,[$con]" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
  ins_pipe( pipe_slow );
%}

instruct addXD_mem(regXD dst, memory mem) %{
  predicate(UseSSE>=2);
  match(Set dst (AddD dst (LoadD mem)));
  format %{ "ADDSD  $dst,$mem" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
  ins_pipe( pipe_slow );
%}

// Sub two double precision floating point values in xmm
instruct subXD_reg(regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (SubD dst src));
  format %{ "SUBSD  $dst,$src" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct subXD_imm(regXD dst, immXD con) %{
  predicate(UseSSE>=2);
  match(Set dst (SubD dst con));
  format %{ "SUBSD  $dst,[$con]" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
  ins_pipe( pipe_slow );
%}

instruct subXD_mem(regXD dst, memory mem) %{
  predicate(UseSSE>=2);
  match(Set dst (SubD dst (LoadD mem)));
  format %{ "SUBSD  $dst,$mem" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
  ins_pipe( pipe_slow );
%}

// Mul two double precision floating point values in xmm
instruct mulXD_reg(regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (MulD dst src));
  format %{ "MULSD  $dst,$src" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct mulXD_imm(regXD dst, immXD con) %{
  predicate(UseSSE>=2);
  match(Set dst (MulD dst con));
  format %{ "MULSD  $dst,[$con]" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
  ins_pipe( pipe_slow );
%}

instruct mulXD_mem(regXD dst, memory mem) %{
  predicate(UseSSE>=2);
  match(Set dst (MulD dst (LoadD mem)));
  format %{ "MULSD  $dst,$mem" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
  ins_pipe( pipe_slow );
%}

// Div two double precision floating point values in xmm
instruct divXD_reg(regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (DivD dst src));
  format %{ "DIVSD  $dst,$src" %}
  opcode(0xF2, 0x0F, 0x5E);
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct divXD_imm(regXD dst, immXD con) %{
  predicate(UseSSE>=2);
  match(Set dst (DivD dst con));
  format %{ "DIVSD  $dst,[$con]" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
  ins_pipe( pipe_slow );
%}

instruct divXD_mem(regXD dst, memory mem) %{
  predicate(UseSSE>=2);
  match(Set dst (DivD dst (LoadD mem)));
  format %{ "DIVSD  $dst,$mem" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
  ins_pipe( pipe_slow );
%}


instruct mulD_reg(regD dst, regD src) %{
  predicate(UseSSE<=1);
  match(Set dst (MulD dst src));
  format %{ "FLD    $src\n\t"
            "DMULp  $dst,ST" %}
  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  ins_cost(150);
  ins_encode( Push_Reg_D(src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_reg );
%}

// Strict FP instruction biases argument before multiply then
// biases result to avoid double rounding of subnormals.
//
// scale arg1 by multiplying arg1 by 2^(-15360)
// load arg2
// multiply scaled arg1 by arg2
// rescale product by 2^(15360)
//
instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  match(Set dst (MulD dst src));
  ins_cost(1);   // Select this instruction for all strict FP double multiplies

  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
            "DMULp  $dst,ST\n\t"
            "FLD    $src\n\t"
            "DMULp  $dst,ST\n\t"
            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
            "DMULp  $dst,ST\n\t" %}
  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  ins_encode( strictfp_bias1(dst),
              Push_Reg_D(src),
              OpcP, RegOpc(dst),
              strictfp_bias2(dst) );
  ins_pipe( fpu_reg_reg );
%}

instruct mulD_reg_imm(regD dst, immD src) %{
  predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  match(Set dst (MulD dst src));
  ins_cost(200);
  format %{ "FLD_D  [$src]\n\t"
            "DMULp  $dst,ST" %}
  opcode(0xDE, 0x1); /* DE /1 */
  ins_encode( LdImmD(src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_mem );
%}


instruct mulD_reg_mem(regD dst, memory src) %{
  predicate( UseSSE<=1 );
  match(Set dst (MulD dst (LoadD src)));
  ins_cost(200);
  format %{ "FLD_D  $src\n\t"
            "DMULp  $dst,ST" %}
  opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_mem );
%}

//
// Cisc-alternate to reg-reg multiply
instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
  predicate( UseSSE<=1 );
  match(Set dst (MulD src (LoadD mem)));
  ins_cost(250);
  format %{ "FLD_D  $mem\n\t"
            "DMUL   ST,$src\n\t"
            "FSTP_D $dst" %}
  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
              OpcReg_F(src),
              Pop_Reg_D(dst) );
  ins_pipe( fpu_reg_reg_mem );
%}


// MACRO3 -- addD a mulD
// This instruction is a '2-address' instruction in that the result goes
// back to src2.  This eliminates a move from the macro; possibly the
// register allocator will have to add it back (and maybe not).
instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
  predicate( UseSSE<=1 );
  match(Set src2 (AddD (MulD src0 src1) src2));
  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
            "DMUL   ST,$src1\n\t"
            "DADDp  $src2,ST" %}
  ins_cost(250);
  opcode(0xDD); /* LoadD DD /0 */
  ins_encode( Push_Reg_F(src0),
              FMul_ST_reg(src1),
              FAddP_reg_ST(src2) );
  ins_pipe( fpu_reg_reg_reg );
%}


// MACRO3 -- subD a mulD
instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
  predicate( UseSSE<=1 );
  match(Set src2 (SubD (MulD src0 src1) src2));
  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
            "DMUL   ST,$src1\n\t"
            "DSUBRp $src2,ST" %}
  ins_cost(250);
  ins_encode( Push_Reg_F(src0),
              FMul_ST_reg(src1),
              Opcode(0xDE), Opc_plus(0xE0,src2));
  ins_pipe( fpu_reg_reg_reg );
%}


instruct divD_reg(regD dst, regD src) %{
  predicate( UseSSE<=1 );
  match(Set dst (DivD dst src));

  format %{ "FLD    $src\n\t"
            "FDIVp  $dst,ST" %}
  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  ins_cost(150);
  ins_encode( Push_Reg_D(src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_reg );
%}

// Strict FP instruction biases argument before division then
// biases result, to avoid double rounding of subnormals.
//
// scale dividend by multiplying dividend by 2^(-15360)
// load divisor
// divide scaled dividend by divisor
// rescale quotient by 2^(15360)
//
instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
  predicate (UseSSE<=1);
  match(Set dst (DivD dst src));
  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  ins_cost(01);

  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
            "DMULp  $dst,ST\n\t"
            "FLD    $src\n\t"
            "FDIVp  $dst,ST\n\t"
            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
            "DMULp  $dst,ST\n\t" %}
  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  ins_encode( strictfp_bias1(dst),
              Push_Reg_D(src),
              OpcP, RegOpc(dst),
              strictfp_bias2(dst) );
  ins_pipe( fpu_reg_reg );
%}

instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  match(Set dst (RoundDouble (DivD src1 src2)));

  format %{ "FLD    $src1\n\t"
            "FDIV   ST,$src2\n\t"
            "FSTP_D $dst\t# D-round" %}
  opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  ins_encode( Push_Reg_D(src1),
              OpcP, RegOpc(src2), Pop_Mem_D(dst) );
  ins_pipe( fpu_mem_reg_reg );
%}


instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
  predicate(UseSSE<=1);
  match(Set dst (ModD dst src));
  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS

  format %{ "DMOD   $dst,$src" %}
  ins_cost(250);
  ins_encode(Push_Reg_Mod_D(dst, src),
              emitModD(),
              Push_Result_Mod_D(src),
              Pop_Reg_D(dst));
  ins_pipe( pipe_slow );
%}

instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
  predicate(UseSSE>=2);
  match(Set dst (ModD src0 src1));
  effect(KILL rax, KILL cr);

  format %{ "SUB    ESP,8\t # DMOD\n"
          "\tMOVSD  [ESP+0],$src1\n"
          "\tFLD_D  [ESP+0]\n"
          "\tMOVSD  [ESP+0],$src0\n"
          "\tFLD_D  [ESP+0]\n"
     "loop:\tFPREM\n"
          "\tFWAIT\n"
          "\tFNSTSW AX\n"
          "\tSAHF\n"
          "\tJP     loop\n"
          "\tFSTP_D [ESP+0]\n"
          "\tMOVSD  $dst,[ESP+0]\n"
          "\tADD    ESP,8\n"
          "\tFSTP   ST0\t # Restore FPU Stack"
    %}
  ins_cost(250);
  ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
  ins_pipe( pipe_slow );
%}

instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
  predicate (UseSSE<=1);
  match(Set dst (SinD src));
  ins_cost(1800);
  format %{ "DSIN   $dst" %}
  opcode(0xD9, 0xFE);
  ins_encode( OpcP, OpcS );
  ins_pipe( pipe_slow );
%}

instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
  predicate (UseSSE>=2);
  match(Set dst (SinD dst));
  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
  ins_cost(1800);
  format %{ "DSIN   $dst" %}
  opcode(0xD9, 0xFE);
  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
  ins_pipe( pipe_slow );
%}

instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
  predicate (UseSSE<=1);
  match(Set dst (CosD src));
  ins_cost(1800);
  format %{ "DCOS   $dst" %}
  opcode(0xD9, 0xFF);
  ins_encode( OpcP, OpcS );
  ins_pipe( pipe_slow );
%}

instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
  predicate (UseSSE>=2);
  match(Set dst (CosD dst));
  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
  ins_cost(1800);
  format %{ "DCOS   $dst" %}
  opcode(0xD9, 0xFF);
  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
  ins_pipe( pipe_slow );
%}

instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
  predicate (UseSSE<=1);
  match(Set dst(TanD src));
  format %{ "DTAN   $dst" %}
  ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
              Opcode(0xDD), Opcode(0xD8));   // fstp st
  ins_pipe( pipe_slow );
%}

instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
  predicate (UseSSE>=2);
  match(Set dst(TanD dst));
  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
  format %{ "DTAN   $dst" %}
  ins_encode( Push_SrcXD(dst),
              Opcode(0xD9), Opcode(0xF2),    // fptan
              Opcode(0xDD), Opcode(0xD8),   // fstp st
              Push_ResultXD(dst) );
  ins_pipe( pipe_slow );
%}

instruct atanD_reg(regD dst, regD src) %{
  predicate (UseSSE<=1);
  match(Set dst(AtanD dst src));
  format %{ "DATA   $dst,$src" %}
  opcode(0xD9, 0xF3);
  ins_encode( Push_Reg_D(src),
              OpcP, OpcS, RegOpc(dst) );
  ins_pipe( pipe_slow );
%}

instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
  predicate (UseSSE>=2);
  match(Set dst(AtanD dst src));
  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
  format %{ "DATA   $dst,$src" %}
  opcode(0xD9, 0xF3);
  ins_encode( Push_SrcXD(src),
              OpcP, OpcS, Push_ResultXD(dst) );
  ins_pipe( pipe_slow );
%}

instruct sqrtD_reg(regD dst, regD src) %{
  predicate (UseSSE<=1);
  match(Set dst (SqrtD src));
  format %{ "DSQRT  $dst,$src" %}
  opcode(0xFA, 0xD9);
  ins_encode( Push_Reg_D(src),
              OpcS, OpcP, Pop_Reg_D(dst) );
  ins_pipe( pipe_slow );
%}

instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
  predicate (UseSSE<=1);
  match(Set Y (PowD X Y));  // Raise X to the Yth power
  effect(KILL rax, KILL rbx, KILL rcx);
  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
            "FLD_D  $X\n\t"
            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"

            "FDUP   \t\t\t# Q Q\n\t"
            "FRNDINT\t\t\t# int(Q) Q\n\t"
            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
            "FISTP  dword [ESP]\n\t"
            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
            "MOV    [ESP+0],0\n\t"
            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"

            "ADD    ESP,8"
             %}
  ins_encode( push_stack_temp_qword,
              Push_Reg_D(X),
              Opcode(0xD9), Opcode(0xF1),   // fyl2x
              pow_exp_core_encoding,
              pop_stack_temp_qword);
  ins_pipe( pipe_slow );
%}

instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
  predicate (UseSSE>=2);
  match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
            "MOVSD  [ESP],$src1\n\t"
            "FLD    FPR1,$src1\n\t"
            "MOVSD  [ESP],$src0\n\t"
            "FLD    FPR1,$src0\n\t"
            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"

            "FDUP   \t\t\t# Q Q\n\t"
            "FRNDINT\t\t\t# int(Q) Q\n\t"
            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
            "FISTP  dword [ESP]\n\t"
            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
            "MOV    [ESP+0],0\n\t"
            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"

            "FST_D  [ESP]\n\t"
            "MOVSD  $dst,[ESP]\n\t"
            "ADD    ESP,8"
             %}
  ins_encode( push_stack_temp_qword,
              push_xmm_to_fpr1(src1),
              push_xmm_to_fpr1(src0),
              Opcode(0xD9), Opcode(0xF1),   // fyl2x
              pow_exp_core_encoding,
              Push_ResultXD(dst) );
  ins_pipe( pipe_slow );
%}


instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
  predicate (UseSSE<=1);
  match(Set dpr1 (ExpD dpr1));
  effect(KILL rax, KILL rbx, KILL rcx);
  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
            "FMULP  \t\t\t# Q=X*log2(e)\n\t"

            "FDUP   \t\t\t# Q Q\n\t"
            "FRNDINT\t\t\t# int(Q) Q\n\t"
            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
            "FISTP  dword [ESP]\n\t"
            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
            "MOV    [ESP+0],0\n\t"
            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"

            "ADD    ESP,8"
             %}
  ins_encode( push_stack_temp_qword,
              Opcode(0xD9), Opcode(0xEA),   // fldl2e
              Opcode(0xDE), Opcode(0xC9),   // fmulp
              pow_exp_core_encoding,
              pop_stack_temp_qword);
  ins_pipe( pipe_slow );
%}

instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
  predicate (UseSSE>=2);
  match(Set dst (ExpD src));
  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
            "MOVSD  [ESP],$src\n\t"
            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
            "FMULP  \t\t\t# Q=X*log2(e) X\n\t"

            "FDUP   \t\t\t# Q Q\n\t"
            "FRNDINT\t\t\t# int(Q) Q\n\t"
            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
            "FISTP  dword [ESP]\n\t"
            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
            "MOV    [ESP+0],0\n\t"
            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"

            "FST_D  [ESP]\n\t"
            "MOVSD  $dst,[ESP]\n\t"
            "ADD    ESP,8"
             %}
  ins_encode( Push_SrcXD(src),
              Opcode(0xD9), Opcode(0xEA),   // fldl2e
              Opcode(0xDE), Opcode(0xC9),   // fmulp
              pow_exp_core_encoding,
              Push_ResultXD(dst) );
  ins_pipe( pipe_slow );
%}



instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
  predicate (UseSSE<=1);
  // The source Double operand on FPU stack
  match(Set dst (Log10D src));
  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
  // fxch         ; swap ST(0) with ST(1)
  // fyl2x        ; compute log_10(2) * log_2(x)
  format %{ "FLDLG2 \t\t\t#Log10\n\t"
            "FXCH   \n\t"
            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
         %}
  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
              Opcode(0xD9), Opcode(0xC9),   // fxch
              Opcode(0xD9), Opcode(0xF1));  // fyl2x

  ins_pipe( pipe_slow );
%}

instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
  predicate (UseSSE>=2);
  effect(KILL cr);
  match(Set dst (Log10D src));
  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
  // fyl2x        ; compute log_10(2) * log_2(x)
  format %{ "FLDLG2 \t\t\t#Log10\n\t"
            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
         %}
  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
              Push_SrcXD(src),
              Opcode(0xD9), Opcode(0xF1),   // fyl2x
              Push_ResultXD(dst));

  ins_pipe( pipe_slow );
%}

instruct logD_reg(regDPR1 dst, regDPR1 src) %{
  predicate (UseSSE<=1);
  // The source Double operand on FPU stack
  match(Set dst (LogD src));
  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
  // fxch         ; swap ST(0) with ST(1)
  // fyl2x        ; compute log_e(2) * log_2(x)
  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
            "FXCH   \n\t"
            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
         %}
  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
              Opcode(0xD9), Opcode(0xC9),   // fxch
              Opcode(0xD9), Opcode(0xF1));  // fyl2x

  ins_pipe( pipe_slow );
%}

instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
  predicate (UseSSE>=2);
  effect(KILL cr);
  // The source and result Double operands in XMM registers
  match(Set dst (LogD src));
  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
  // fyl2x        ; compute log_e(2) * log_2(x)
  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
         %}
  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
              Push_SrcXD(src),
              Opcode(0xD9), Opcode(0xF1),   // fyl2x
              Push_ResultXD(dst));
  ins_pipe( pipe_slow );
%}

//-------------Float Instructions-------------------------------
// Float Math

// Code for float compare:
//     fcompp();
//     fwait(); fnstsw_ax();
//     sahf();
//     movl(dst, unordered_result);
//     jcc(Assembler::parity, exit);
//     movl(dst, less_result);
//     jcc(Assembler::below, exit);
//     movl(dst, equal_result);
//     jcc(Assembler::equal, exit);
//     movl(dst, greater_result);
//   exit:

// P6 version of float compare, sets condition codes in EFLAGS
instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
  predicate(VM_Version::supports_cmov() && UseSSE == 0);
  match(Set cr (CmpF src1 src2));
  effect(KILL rax);
  ins_cost(150);
  format %{ "FLD    $src1\n\t"
            "FUCOMIP ST,$src2  // P6 instruction\n\t"
            "JNP    exit\n\t"
            "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
            "SAHF\n"
     "exit:\tNOP               // avoid branch to branch" %}
  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  ins_encode( Push_Reg_D(src1),
              OpcP, RegOpc(src2),
              cmpF_P6_fixup );
  ins_pipe( pipe_slow );
%}

10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722
instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
  predicate(VM_Version::supports_cmov() && UseSSE == 0);
  match(Set cr (CmpF src1 src2));
  ins_cost(100);
  format %{ "FLD    $src1\n\t"
            "FUCOMIP ST,$src2  // P6 instruction" %}
  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  ins_encode( Push_Reg_D(src1),
              OpcP, RegOpc(src2));
  ins_pipe( pipe_slow );
%}

D
duke 已提交
10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787

// Compare & branch
instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
  predicate(UseSSE == 0);
  match(Set cr (CmpF src1 src2));
  effect(KILL rax);
  ins_cost(200);
  format %{ "FLD    $src1\n\t"
            "FCOMp  $src2\n\t"
            "FNSTSW AX\n\t"
            "TEST   AX,0x400\n\t"
            "JZ,s   flags\n\t"
            "MOV    AH,1\t# unordered treat as LT\n"
    "flags:\tSAHF" %}
  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  ins_encode( Push_Reg_D(src1),
              OpcP, RegOpc(src2),
              fpu_flags);
  ins_pipe( pipe_slow );
%}

// Compare vs zero into -1,0,1
instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
  predicate(UseSSE == 0);
  match(Set dst (CmpF3 src1 zero));
  effect(KILL cr, KILL rax);
  ins_cost(280);
  format %{ "FTSTF  $dst,$src1" %}
  opcode(0xE4, 0xD9);
  ins_encode( Push_Reg_D(src1),
              OpcS, OpcP, PopFPU,
              CmpF_Result(dst));
  ins_pipe( pipe_slow );
%}

// Compare into -1,0,1
instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
  predicate(UseSSE == 0);
  match(Set dst (CmpF3 src1 src2));
  effect(KILL cr, KILL rax);
  ins_cost(300);
  format %{ "FCMPF  $dst,$src1,$src2" %}
  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  ins_encode( Push_Reg_D(src1),
              OpcP, RegOpc(src2),
              CmpF_Result(dst));
  ins_pipe( pipe_slow );
%}

// float compare and set condition codes in EFLAGS by XMM regs
instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
  predicate(UseSSE>=1);
  match(Set cr (CmpF dst src));
  effect(KILL rax);
  ins_cost(145);
  format %{ "COMISS $dst,$src\n"
          "\tJNP    exit\n"
          "\tMOV    ah,1       // saw a NaN, set CF\n"
          "\tSAHF\n"
     "exit:\tNOP               // avoid branch to branch" %}
  opcode(0x0F, 0x2F);
  ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
  ins_pipe( pipe_slow );
%}

10788 10789 10790 10791 10792 10793 10794 10795 10796 10797
instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
  predicate(UseSSE>=1);
  match(Set cr (CmpF dst src));
  ins_cost(100);
  format %{ "COMISS $dst,$src" %}
  opcode(0x0F, 0x2F);
  ins_encode(OpcP, OpcS, RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

D
duke 已提交
10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813
// float compare and set condition codes in EFLAGS by XMM regs
instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
  predicate(UseSSE>=1);
  match(Set cr (CmpF dst (LoadF src)));
  effect(KILL rax);
  ins_cost(165);
  format %{ "COMISS $dst,$src\n"
          "\tJNP    exit\n"
          "\tMOV    ah,1       // saw a NaN, set CF\n"
          "\tSAHF\n"
     "exit:\tNOP               // avoid branch to branch" %}
  opcode(0x0F, 0x2F);
  ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
  ins_pipe( pipe_slow );
%}

10814 10815 10816 10817 10818 10819 10820 10821 10822 10823
instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
  predicate(UseSSE>=1);
  match(Set cr (CmpF dst (LoadF src)));
  ins_cost(100);
  format %{ "COMISS $dst,$src" %}
  opcode(0x0F, 0x2F);
  ins_encode(OpcP, OpcS, RegMem(dst, src));
  ins_pipe( pipe_slow );
%}

D
duke 已提交
10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726
// Compare into -1,0,1 in XMM
instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
  predicate(UseSSE>=1);
  match(Set dst (CmpF3 src1 src2));
  effect(KILL cr);
  ins_cost(255);
  format %{ "XOR    $dst,$dst\n"
          "\tCOMISS $src1,$src2\n"
          "\tJP,s   nan\n"
          "\tJEQ,s  exit\n"
          "\tJA,s   inc\n"
      "nan:\tDEC    $dst\n"
          "\tJMP,s  exit\n"
      "inc:\tINC    $dst\n"
      "exit:"
                %}
  opcode(0x0F, 0x2F);
  ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
  ins_pipe( pipe_slow );
%}

// Compare into -1,0,1 in XMM and memory
instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
  predicate(UseSSE>=1);
  match(Set dst (CmpF3 src1 (LoadF mem)));
  effect(KILL cr);
  ins_cost(275);
  format %{ "COMISS $src1,$mem\n"
          "\tMOV    $dst,0\t\t# do not blow flags\n"
          "\tJP,s   nan\n"
          "\tJEQ,s  exit\n"
          "\tJA,s   inc\n"
      "nan:\tDEC    $dst\n"
          "\tJMP,s  exit\n"
      "inc:\tINC    $dst\n"
      "exit:"
                %}
  opcode(0x0F, 0x2F);
  ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
  ins_pipe( pipe_slow );
%}

// Spill to obtain 24-bit precision
instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (SubF src1 src2));

  format %{ "FSUB   $dst,$src1 - $src2" %}
  opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
  ins_encode( Push_Reg_F(src1),
              OpcReg_F(src2),
              Pop_Mem_F(dst) );
  ins_pipe( fpu_mem_reg_reg );
%}
//
// This instruction does not round to 24-bits
instruct subF_reg(regF dst, regF src) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (SubF dst src));

  format %{ "FSUB   $dst,$src" %}
  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  ins_encode( Push_Reg_F(src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_reg );
%}

// Spill to obtain 24-bit precision
instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (AddF src1 src2));

  format %{ "FADD   $dst,$src1,$src2" %}
  opcode(0xD8, 0x0); /* D8 C0+i */
  ins_encode( Push_Reg_F(src2),
              OpcReg_F(src1),
              Pop_Mem_F(dst) );
  ins_pipe( fpu_mem_reg_reg );
%}
//
// This instruction does not round to 24-bits
instruct addF_reg(regF dst, regF src) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (AddF dst src));

  format %{ "FLD    $src\n\t"
            "FADDp  $dst,ST" %}
  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  ins_encode( Push_Reg_F(src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_reg );
%}

// Add two single precision floating point values in xmm
instruct addX_reg(regX dst, regX src) %{
  predicate(UseSSE>=1);
  match(Set dst (AddF dst src));
  format %{ "ADDSS  $dst,$src" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct addX_imm(regX dst, immXF con) %{
  predicate(UseSSE>=1);
  match(Set dst (AddF dst con));
  format %{ "ADDSS  $dst,[$con]" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
  ins_pipe( pipe_slow );
%}

instruct addX_mem(regX dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (AddF dst (LoadF mem)));
  format %{ "ADDSS  $dst,$mem" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
  ins_pipe( pipe_slow );
%}

// Subtract two single precision floating point values in xmm
instruct subX_reg(regX dst, regX src) %{
  predicate(UseSSE>=1);
  match(Set dst (SubF dst src));
  format %{ "SUBSS  $dst,$src" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct subX_imm(regX dst, immXF con) %{
  predicate(UseSSE>=1);
  match(Set dst (SubF dst con));
  format %{ "SUBSS  $dst,[$con]" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
  ins_pipe( pipe_slow );
%}

instruct subX_mem(regX dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (SubF dst (LoadF mem)));
  format %{ "SUBSS  $dst,$mem" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
  ins_pipe( pipe_slow );
%}

// Multiply two single precision floating point values in xmm
instruct mulX_reg(regX dst, regX src) %{
  predicate(UseSSE>=1);
  match(Set dst (MulF dst src));
  format %{ "MULSS  $dst,$src" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct mulX_imm(regX dst, immXF con) %{
  predicate(UseSSE>=1);
  match(Set dst (MulF dst con));
  format %{ "MULSS  $dst,[$con]" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
  ins_pipe( pipe_slow );
%}

instruct mulX_mem(regX dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (MulF dst (LoadF mem)));
  format %{ "MULSS  $dst,$mem" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
  ins_pipe( pipe_slow );
%}

// Divide two single precision floating point values in xmm
instruct divX_reg(regX dst, regX src) %{
  predicate(UseSSE>=1);
  match(Set dst (DivF dst src));
  format %{ "DIVSS  $dst,$src" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct divX_imm(regX dst, immXF con) %{
  predicate(UseSSE>=1);
  match(Set dst (DivF dst con));
  format %{ "DIVSS  $dst,[$con]" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
  ins_pipe( pipe_slow );
%}

instruct divX_mem(regX dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (DivF dst (LoadF mem)));
  format %{ "DIVSS  $dst,$mem" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
  ins_pipe( pipe_slow );
%}

// Get the square root of a single precision floating point values in xmm
instruct sqrtX_reg(regX dst, regX src) %{
  predicate(UseSSE>=1);
  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  format %{ "SQRTSS $dst,$src" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct sqrtX_mem(regX dst, memory mem) %{
  predicate(UseSSE>=1);
  match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
  format %{ "SQRTSS $dst,$mem" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
  ins_pipe( pipe_slow );
%}

// Get the square root of a double precision floating point values in xmm
instruct sqrtXD_reg(regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (SqrtD src));
  format %{ "SQRTSD $dst,$src" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct sqrtXD_mem(regXD dst, memory mem) %{
  predicate(UseSSE>=2);
  match(Set dst (SqrtD (LoadD mem)));
  format %{ "SQRTSD $dst,$mem" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
  ins_pipe( pipe_slow );
%}

instruct absF_reg(regFPR1 dst, regFPR1 src) %{
  predicate(UseSSE==0);
  match(Set dst (AbsF src));
  ins_cost(100);
  format %{ "FABS" %}
  opcode(0xE1, 0xD9);
  ins_encode( OpcS, OpcP );
  ins_pipe( fpu_reg_reg );
%}

instruct absX_reg(regX dst ) %{
  predicate(UseSSE>=1);
  match(Set dst (AbsF dst));
  format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
  ins_encode( AbsXF_encoding(dst));
  ins_pipe( pipe_slow );
%}

instruct negF_reg(regFPR1 dst, regFPR1 src) %{
  predicate(UseSSE==0);
  match(Set dst (NegF src));
  ins_cost(100);
  format %{ "FCHS" %}
  opcode(0xE0, 0xD9);
  ins_encode( OpcS, OpcP );
  ins_pipe( fpu_reg_reg );
%}

instruct negX_reg( regX dst ) %{
  predicate(UseSSE>=1);
  match(Set dst (NegF dst));
  format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
  ins_encode( NegXF_encoding(dst));
  ins_pipe( pipe_slow );
%}

// Cisc-alternate to addF_reg
// Spill to obtain 24-bit precision
instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (AddF src1 (LoadF src2)));

  format %{ "FLD    $src2\n\t"
            "FADD   ST,$src1\n\t"
            "FSTP_S $dst" %}
  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
              OpcReg_F(src1),
              Pop_Mem_F(dst) );
  ins_pipe( fpu_mem_reg_mem );
%}
//
// Cisc-alternate to addF_reg
// This instruction does not round to 24-bits
instruct addF_reg_mem(regF dst, memory src) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (AddF dst (LoadF src)));

  format %{ "FADD   $dst,$src" %}
  opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_mem );
%}

// // Following two instructions for _222_mpegaudio
// Spill to obtain 24-bit precision
instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (AddF src1 src2));

  format %{ "FADD   $dst,$src1,$src2" %}
  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
              OpcReg_F(src2),
              Pop_Mem_F(dst) );
  ins_pipe( fpu_mem_reg_mem );
%}

// Cisc-spill variant
// Spill to obtain 24-bit precision
instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (AddF src1 (LoadF src2)));

  format %{ "FADD   $dst,$src1,$src2 cisc" %}
  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
              set_instruction_start,
              OpcP, RMopc_Mem(secondary,src1),
              Pop_Mem_F(dst) );
  ins_pipe( fpu_mem_mem_mem );
%}

// Spill to obtain 24-bit precision
instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (AddF src1 src2));

  format %{ "FADD   $dst,$src1,$src2" %}
  opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
              set_instruction_start,
              OpcP, RMopc_Mem(secondary,src1),
              Pop_Mem_F(dst) );
  ins_pipe( fpu_mem_mem_mem );
%}


// Spill to obtain 24-bit precision
instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (AddF src1 src2));
  format %{ "FLD    $src1\n\t"
            "FADD   $src2\n\t"
            "FSTP_S $dst"  %}
  opcode(0xD8, 0x00);       /* D8 /0 */
  ins_encode( Push_Reg_F(src1),
              Opc_MemImm_F(src2),
              Pop_Mem_F(dst));
  ins_pipe( fpu_mem_reg_con );
%}
//
// This instruction does not round to 24-bits
instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (AddF src1 src2));
  format %{ "FLD    $src1\n\t"
            "FADD   $src2\n\t"
            "FSTP_S $dst"  %}
  opcode(0xD8, 0x00);       /* D8 /0 */
  ins_encode( Push_Reg_F(src1),
              Opc_MemImm_F(src2),
              Pop_Reg_F(dst));
  ins_pipe( fpu_reg_reg_con );
%}

// Spill to obtain 24-bit precision
instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (MulF src1 src2));

  format %{ "FLD    $src1\n\t"
            "FMUL   $src2\n\t"
            "FSTP_S $dst"  %}
  opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
  ins_encode( Push_Reg_F(src1),
              OpcReg_F(src2),
              Pop_Mem_F(dst) );
  ins_pipe( fpu_mem_reg_reg );
%}
//
// This instruction does not round to 24-bits
instruct mulF_reg(regF dst, regF src1, regF src2) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (MulF src1 src2));

  format %{ "FLD    $src1\n\t"
            "FMUL   $src2\n\t"
            "FSTP_S $dst"  %}
  opcode(0xD8, 0x1); /* D8 C8+i */
  ins_encode( Push_Reg_F(src2),
              OpcReg_F(src1),
              Pop_Reg_F(dst) );
  ins_pipe( fpu_reg_reg_reg );
%}


// Spill to obtain 24-bit precision
// Cisc-alternate to reg-reg multiply
instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (MulF src1 (LoadF src2)));

  format %{ "FLD_S  $src2\n\t"
            "FMUL   $src1\n\t"
            "FSTP_S $dst"  %}
  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
              OpcReg_F(src1),
              Pop_Mem_F(dst) );
  ins_pipe( fpu_mem_reg_mem );
%}
//
// This instruction does not round to 24-bits
// Cisc-alternate to reg-reg multiply
instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (MulF src1 (LoadF src2)));

  format %{ "FMUL   $dst,$src1,$src2" %}
  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
              OpcReg_F(src1),
              Pop_Reg_F(dst) );
  ins_pipe( fpu_reg_reg_mem );
%}

// Spill to obtain 24-bit precision
instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (MulF src1 src2));

  format %{ "FMUL   $dst,$src1,$src2" %}
  opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
              set_instruction_start,
              OpcP, RMopc_Mem(secondary,src1),
              Pop_Mem_F(dst) );
  ins_pipe( fpu_mem_mem_mem );
%}

// Spill to obtain 24-bit precision
instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (MulF src1 src2));

  format %{ "FMULc $dst,$src1,$src2" %}
  opcode(0xD8, 0x1);  /* D8 /1*/
  ins_encode( Push_Reg_F(src1),
              Opc_MemImm_F(src2),
              Pop_Mem_F(dst));
  ins_pipe( fpu_mem_reg_con );
%}
//
// This instruction does not round to 24-bits
instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (MulF src1 src2));

  format %{ "FMULc $dst. $src1, $src2" %}
  opcode(0xD8, 0x1);  /* D8 /1*/
  ins_encode( Push_Reg_F(src1),
              Opc_MemImm_F(src2),
              Pop_Reg_F(dst));
  ins_pipe( fpu_reg_reg_con );
%}


//
// MACRO1 -- subsume unshared load into mulF
// This instruction does not round to 24-bits
instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (MulF (LoadF mem1) src));

  format %{ "FLD    $mem1    ===MACRO1===\n\t"
            "FMUL   ST,$src\n\t"
            "FSTP   $dst" %}
  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
              OpcReg_F(src),
              Pop_Reg_F(dst) );
  ins_pipe( fpu_reg_reg_mem );
%}
//
// MACRO2 -- addF a mulF which subsumed an unshared load
// This instruction does not round to 24-bits
instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
  ins_cost(95);

  format %{ "FLD    $mem1     ===MACRO2===\n\t"
            "FMUL   ST,$src1  subsume mulF left load\n\t"
            "FADD   ST,$src2\n\t"
            "FSTP   $dst" %}
  opcode(0xD9); /* LoadF D9 /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem1),
              FMul_ST_reg(src1),
              FAdd_ST_reg(src2),
              Pop_Reg_F(dst) );
  ins_pipe( fpu_reg_mem_reg_reg );
%}

// MACRO3 -- addF a mulF
// This instruction does not round to 24-bits.  It is a '2-address'
// instruction in that the result goes back to src2.  This eliminates
// a move from the macro; possibly the register allocator will have
// to add it back (and maybe not).
instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set src2 (AddF (MulF src0 src1) src2));

  format %{ "FLD    $src0     ===MACRO3===\n\t"
            "FMUL   ST,$src1\n\t"
            "FADDP  $src2,ST" %}
  opcode(0xD9); /* LoadF D9 /0 */
  ins_encode( Push_Reg_F(src0),
              FMul_ST_reg(src1),
              FAddP_reg_ST(src2) );
  ins_pipe( fpu_reg_reg_reg );
%}

// MACRO4 -- divF subF
// This instruction does not round to 24-bits
instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (DivF (SubF src2 src1) src3));

  format %{ "FLD    $src2   ===MACRO4===\n\t"
            "FSUB   ST,$src1\n\t"
            "FDIV   ST,$src3\n\t"
            "FSTP  $dst" %}
  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  ins_encode( Push_Reg_F(src2),
              subF_divF_encode(src1,src3),
              Pop_Reg_F(dst) );
  ins_pipe( fpu_reg_reg_reg_reg );
%}

// Spill to obtain 24-bit precision
instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (DivF src1 src2));

  format %{ "FDIV   $dst,$src1,$src2" %}
  opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
  ins_encode( Push_Reg_F(src1),
              OpcReg_F(src2),
              Pop_Mem_F(dst) );
  ins_pipe( fpu_mem_reg_reg );
%}
//
// This instruction does not round to 24-bits
instruct divF_reg(regF dst, regF src) %{
  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (DivF dst src));

  format %{ "FDIV   $dst,$src" %}
  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  ins_encode( Push_Reg_F(src),
              OpcP, RegOpc(dst) );
  ins_pipe( fpu_reg_reg );
%}


// Spill to obtain 24-bit precision
instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (ModF src1 src2));
  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS

  format %{ "FMOD   $dst,$src1,$src2" %}
  ins_encode( Push_Reg_Mod_D(src1, src2),
              emitModD(),
              Push_Result_Mod_D(src2),
              Pop_Mem_F(dst));
  ins_pipe( pipe_slow );
%}
//
// This instruction does not round to 24-bits
instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (ModF dst src));
  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS

  format %{ "FMOD   $dst,$src" %}
  ins_encode(Push_Reg_Mod_D(dst, src),
              emitModD(),
              Push_Result_Mod_D(src),
              Pop_Reg_F(dst));
  ins_pipe( pipe_slow );
%}

instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
  predicate(UseSSE>=1);
  match(Set dst (ModF src0 src1));
  effect(KILL rax, KILL cr);
  format %{ "SUB    ESP,4\t # FMOD\n"
          "\tMOVSS  [ESP+0],$src1\n"
          "\tFLD_S  [ESP+0]\n"
          "\tMOVSS  [ESP+0],$src0\n"
          "\tFLD_S  [ESP+0]\n"
     "loop:\tFPREM\n"
          "\tFWAIT\n"
          "\tFNSTSW AX\n"
          "\tSAHF\n"
          "\tJP     loop\n"
          "\tFSTP_S [ESP+0]\n"
          "\tMOVSS  $dst,[ESP+0]\n"
          "\tADD    ESP,4\n"
          "\tFSTP   ST0\t # Restore FPU Stack"
    %}
  ins_cost(250);
  ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
  ins_pipe( pipe_slow );
%}


//----------Arithmetic Conversion Instructions---------------------------------
// The conversions operations are all Alpha sorted.  Please keep it that way!

instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
  predicate(UseSSE==0);
  match(Set dst (RoundFloat src));
  ins_cost(125);
  format %{ "FST_S  $dst,$src\t# F-round" %}
  ins_encode( Pop_Mem_Reg_F(dst, src) );
  ins_pipe( fpu_mem_reg );
%}

instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
  predicate(UseSSE<=1);
  match(Set dst (RoundDouble src));
  ins_cost(125);
  format %{ "FST_D  $dst,$src\t# D-round" %}
  ins_encode( Pop_Mem_Reg_D(dst, src) );
  ins_pipe( fpu_mem_reg );
%}

// Force rounding to 24-bit precision and 6-bit exponent
instruct convD2F_reg(stackSlotF dst, regD src) %{
  predicate(UseSSE==0);
  match(Set dst (ConvD2F src));
  format %{ "FST_S  $dst,$src\t# F-round" %}
  expand %{
    roundFloat_mem_reg(dst,src);
  %}
%}

// Force rounding to 24-bit precision and 6-bit exponent
instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
  predicate(UseSSE==1);
  match(Set dst (ConvD2F src));
  effect( KILL cr );
  format %{ "SUB    ESP,4\n\t"
            "FST_S  [ESP],$src\t# F-round\n\t"
            "MOVSS  $dst,[ESP]\n\t"
            "ADD ESP,4" %}
  ins_encode( D2X_encoding(dst, src) );
  ins_pipe( pipe_slow );
%}

// Force rounding double precision to single precision
instruct convXD2X_reg(regX dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (ConvD2F src));
  format %{ "CVTSD2SS $dst,$src\t# F-round" %}
  opcode(0xF2, 0x0F, 0x5A);
  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct convF2D_reg_reg(regD dst, regF src) %{
  predicate(UseSSE==0);
  match(Set dst (ConvF2D src));
  format %{ "FST_S  $dst,$src\t# D-round" %}
  ins_encode( Pop_Reg_Reg_D(dst, src));
  ins_pipe( fpu_reg_reg );
%}

instruct convF2D_reg(stackSlotD dst, regF src) %{
  predicate(UseSSE==1);
  match(Set dst (ConvF2D src));
  format %{ "FST_D  $dst,$src\t# D-round" %}
  expand %{
    roundDouble_mem_reg(dst,src);
  %}
%}

instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
  predicate(UseSSE==1);
  match(Set dst (ConvF2D src));
  effect( KILL cr );
  format %{ "SUB    ESP,4\n\t"
            "MOVSS  [ESP] $src\n\t"
            "FLD_S  [ESP]\n\t"
            "ADD    ESP,4\n\t"
            "FSTP   $dst\t# D-round" %}
  ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
  ins_pipe( pipe_slow );
%}

instruct convX2XD_reg(regXD dst, regX src) %{
  predicate(UseSSE>=2);
  match(Set dst (ConvF2D src));
  format %{ "CVTSS2SD $dst,$src\t# D-round" %}
  opcode(0xF3, 0x0F, 0x5A);
  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
  predicate(UseSSE<=1);
  match(Set dst (ConvD2I src));
  effect( KILL tmp, KILL cr );
  format %{ "FLD    $src\t# Convert double to int \n\t"
            "FLDCW  trunc mode\n\t"
            "SUB    ESP,4\n\t"
            "FISTp  [ESP + #0]\n\t"
            "FLDCW  std/24-bit mode\n\t"
            "POP    EAX\n\t"
            "CMP    EAX,0x80000000\n\t"
            "JNE,s  fast\n\t"
            "FLD_D  $src\n\t"
            "CALL   d2i_wrapper\n"
      "fast:" %}
  ins_encode( Push_Reg_D(src), D2I_encoding(src) );
  ins_pipe( pipe_slow );
%}

// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
  predicate(UseSSE>=2);
  match(Set dst (ConvD2I src));
  effect( KILL tmp, KILL cr );
  format %{ "CVTTSD2SI $dst, $src\n\t"
            "CMP    $dst,0x80000000\n\t"
            "JNE,s  fast\n\t"
            "SUB    ESP, 8\n\t"
            "MOVSD  [ESP], $src\n\t"
            "FLD_D  [ESP]\n\t"
            "ADD    ESP, 8\n\t"
            "CALL   d2i_wrapper\n"
      "fast:" %}
  opcode(0x1); // double-precision conversion
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
  ins_pipe( pipe_slow );
%}

instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
  predicate(UseSSE<=1);
  match(Set dst (ConvD2L src));
  effect( KILL cr );
  format %{ "FLD    $src\t# Convert double to long\n\t"
            "FLDCW  trunc mode\n\t"
            "SUB    ESP,8\n\t"
            "FISTp  [ESP + #0]\n\t"
            "FLDCW  std/24-bit mode\n\t"
            "POP    EAX\n\t"
            "POP    EDX\n\t"
            "CMP    EDX,0x80000000\n\t"
            "JNE,s  fast\n\t"
            "TEST   EAX,EAX\n\t"
            "JNE,s  fast\n\t"
            "FLD    $src\n\t"
            "CALL   d2l_wrapper\n"
      "fast:" %}
  ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
  ins_pipe( pipe_slow );
%}

// XMM lacks a float/double->long conversion, so use the old FPU stack.
instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
  predicate (UseSSE>=2);
  match(Set dst (ConvD2L src));
  effect( KILL cr );
  format %{ "SUB    ESP,8\t# Convert double to long\n\t"
            "MOVSD  [ESP],$src\n\t"
            "FLD_D  [ESP]\n\t"
            "FLDCW  trunc mode\n\t"
            "FISTp  [ESP + #0]\n\t"
            "FLDCW  std/24-bit mode\n\t"
            "POP    EAX\n\t"
            "POP    EDX\n\t"
            "CMP    EDX,0x80000000\n\t"
            "JNE,s  fast\n\t"
            "TEST   EAX,EAX\n\t"
            "JNE,s  fast\n\t"
            "SUB    ESP,8\n\t"
            "MOVSD  [ESP],$src\n\t"
            "FLD_D  [ESP]\n\t"
            "CALL   d2l_wrapper\n"
      "fast:" %}
  ins_encode( XD2L_encoding(src) );
  ins_pipe( pipe_slow );
%}

// Convert a double to an int.  Java semantics require we do complex
// manglations in the corner cases.  So we set the rounding mode to
// 'zero', store the darned double down as an int, and reset the
// rounding mode to 'nearest'.  The hardware stores a flag value down
// if we would overflow or converted a NAN; we check for this and
// and go the slow path if needed.
instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
  predicate(UseSSE==0);
  match(Set dst (ConvF2I src));
  effect( KILL tmp, KILL cr );
  format %{ "FLD    $src\t# Convert float to int \n\t"
            "FLDCW  trunc mode\n\t"
            "SUB    ESP,4\n\t"
            "FISTp  [ESP + #0]\n\t"
            "FLDCW  std/24-bit mode\n\t"
            "POP    EAX\n\t"
            "CMP    EAX,0x80000000\n\t"
            "JNE,s  fast\n\t"
            "FLD    $src\n\t"
            "CALL   d2i_wrapper\n"
      "fast:" %}
  // D2I_encoding works for F2I
  ins_encode( Push_Reg_F(src), D2I_encoding(src) );
  ins_pipe( pipe_slow );
%}

// Convert a float in xmm to an int reg.
instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
  predicate(UseSSE>=1);
  match(Set dst (ConvF2I src));
  effect( KILL tmp, KILL cr );
  format %{ "CVTTSS2SI $dst, $src\n\t"
            "CMP    $dst,0x80000000\n\t"
            "JNE,s  fast\n\t"
            "SUB    ESP, 4\n\t"
            "MOVSS  [ESP], $src\n\t"
            "FLD    [ESP]\n\t"
            "ADD    ESP, 4\n\t"
            "CALL   d2i_wrapper\n"
      "fast:" %}
  opcode(0x0); // single-precision conversion
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
  ins_pipe( pipe_slow );
%}

instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
  predicate(UseSSE==0);
  match(Set dst (ConvF2L src));
  effect( KILL cr );
  format %{ "FLD    $src\t# Convert float to long\n\t"
            "FLDCW  trunc mode\n\t"
            "SUB    ESP,8\n\t"
            "FISTp  [ESP + #0]\n\t"
            "FLDCW  std/24-bit mode\n\t"
            "POP    EAX\n\t"
            "POP    EDX\n\t"
            "CMP    EDX,0x80000000\n\t"
            "JNE,s  fast\n\t"
            "TEST   EAX,EAX\n\t"
            "JNE,s  fast\n\t"
            "FLD    $src\n\t"
            "CALL   d2l_wrapper\n"
      "fast:" %}
  // D2L_encoding works for F2L
  ins_encode( Push_Reg_F(src), D2L_encoding(src) );
  ins_pipe( pipe_slow );
%}

// XMM lacks a float/double->long conversion, so use the old FPU stack.
instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
  predicate (UseSSE>=1);
  match(Set dst (ConvF2L src));
  effect( KILL cr );
  format %{ "SUB    ESP,8\t# Convert float to long\n\t"
            "MOVSS  [ESP],$src\n\t"
            "FLD_S  [ESP]\n\t"
            "FLDCW  trunc mode\n\t"
            "FISTp  [ESP + #0]\n\t"
            "FLDCW  std/24-bit mode\n\t"
            "POP    EAX\n\t"
            "POP    EDX\n\t"
            "CMP    EDX,0x80000000\n\t"
            "JNE,s  fast\n\t"
            "TEST   EAX,EAX\n\t"
            "JNE,s  fast\n\t"
            "SUB    ESP,4\t# Convert float to long\n\t"
            "MOVSS  [ESP],$src\n\t"
            "FLD_S  [ESP]\n\t"
            "ADD    ESP,4\n\t"
            "CALL   d2l_wrapper\n"
      "fast:" %}
  ins_encode( X2L_encoding(src) );
  ins_pipe( pipe_slow );
%}

instruct convI2D_reg(regD dst, stackSlotI src) %{
  predicate( UseSSE<=1 );
  match(Set dst (ConvI2D src));
  format %{ "FILD   $src\n\t"
            "FSTP   $dst" %}
  opcode(0xDB, 0x0);  /* DB /0 */
  ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
  ins_pipe( fpu_reg_mem );
%}

instruct convI2XD_reg(regXD dst, eRegI src) %{
11727
  predicate( UseSSE>=2 && !UseXmmI2D );
D
duke 已提交
11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743
  match(Set dst (ConvI2D src));
  format %{ "CVTSI2SD $dst,$src" %}
  opcode(0xF2, 0x0F, 0x2A);
  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct convI2XD_mem(regXD dst, memory mem) %{
  predicate( UseSSE>=2 );
  match(Set dst (ConvI2D (LoadI mem)));
  format %{ "CVTSI2SD $dst,$mem" %}
  opcode(0xF2, 0x0F, 0x2A);
  ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
  ins_pipe( pipe_slow );
%}

11744 11745 11746 11747 11748 11749 11750 11751
instruct convXI2XD_reg(regXD dst, eRegI src)
%{
  predicate( UseSSE>=2 && UseXmmI2D );
  match(Set dst (ConvI2D src));

  format %{ "MOVD  $dst,$src\n\t"
            "CVTDQ2PD $dst,$dst\t# i2d" %}
  ins_encode %{
11752
    __ movdl($dst$$XMMRegister, $src$$Register);
11753 11754 11755 11756 11757
    __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
  %}
  ins_pipe(pipe_slow); // XXX
%}

D
duke 已提交
11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832
instruct convI2D_mem(regD dst, memory mem) %{
  predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
  match(Set dst (ConvI2D (LoadI mem)));
  format %{ "FILD   $mem\n\t"
            "FSTP   $dst" %}
  opcode(0xDB);      /* DB /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),
              Pop_Reg_D(dst));
  ins_pipe( fpu_reg_mem );
%}

// Convert a byte to a float; no rounding step needed.
instruct conv24I2F_reg(regF dst, stackSlotI src) %{
  predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
  match(Set dst (ConvI2F src));
  format %{ "FILD   $src\n\t"
            "FSTP   $dst" %}

  opcode(0xDB, 0x0);  /* DB /0 */
  ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
  ins_pipe( fpu_reg_mem );
%}

// In 24-bit mode, force exponent rounding by storing back out
instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (ConvI2F src));
  ins_cost(200);
  format %{ "FILD   $src\n\t"
            "FSTP_S $dst" %}
  opcode(0xDB, 0x0);  /* DB /0 */
  ins_encode( Push_Mem_I(src),
              Pop_Mem_F(dst));
  ins_pipe( fpu_mem_mem );
%}

// In 24-bit mode, force exponent rounding by storing back out
instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
  match(Set dst (ConvI2F (LoadI mem)));
  ins_cost(200);
  format %{ "FILD   $mem\n\t"
            "FSTP_S $dst" %}
  opcode(0xDB);  /* DB /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),
              Pop_Mem_F(dst));
  ins_pipe( fpu_mem_mem );
%}

// This instruction does not round to 24-bits
instruct convI2F_reg(regF dst, stackSlotI src) %{
  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (ConvI2F src));
  format %{ "FILD   $src\n\t"
            "FSTP   $dst" %}
  opcode(0xDB, 0x0);  /* DB /0 */
  ins_encode( Push_Mem_I(src),
              Pop_Reg_F(dst));
  ins_pipe( fpu_reg_mem );
%}

// This instruction does not round to 24-bits
instruct convI2F_mem(regF dst, memory mem) %{
  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
  match(Set dst (ConvI2F (LoadI mem)));
  format %{ "FILD   $mem\n\t"
            "FSTP   $dst" %}
  opcode(0xDB);      /* DB /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,mem),
              Pop_Reg_F(dst));
  ins_pipe( fpu_reg_mem );
%}

// Convert an int to a float in xmm; no rounding step needed.
instruct convI2X_reg(regX dst, eRegI src) %{
11833
  predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
D
duke 已提交
11834 11835 11836 11837 11838 11839 11840 11841
  match(Set dst (ConvI2F src));
  format %{ "CVTSI2SS $dst, $src" %}

  opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  ins_pipe( pipe_slow );
%}

11842 11843 11844 11845 11846 11847 11848 11849
 instruct convXI2X_reg(regX dst, eRegI src)
%{
  predicate( UseSSE>=2 && UseXmmI2F );
  match(Set dst (ConvI2F src));

  format %{ "MOVD  $dst,$src\n\t"
            "CVTDQ2PS $dst,$dst\t# i2f" %}
  ins_encode %{
11850
    __ movdl($dst$$XMMRegister, $src$$Register);
11851 11852 11853 11854 11855
    __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
  %}
  ins_pipe(pipe_slow); // XXX
%}

D
duke 已提交
11856 11857 11858
instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
  match(Set dst (ConvI2L src));
  effect(KILL cr);
11859
  ins_cost(375);
D
duke 已提交
11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870
  format %{ "MOV    $dst.lo,$src\n\t"
            "MOV    $dst.hi,$src\n\t"
            "SAR    $dst.hi,31" %}
  ins_encode(convert_int_long(dst,src));
  ins_pipe( ialu_reg_reg_long );
%}

// Zero-extend convert int to long
instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
  match(Set dst (AndL (ConvI2L src) mask) );
  effect( KILL flags );
11871
  ins_cost(250);
D
duke 已提交
11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882
  format %{ "MOV    $dst.lo,$src\n\t"
            "XOR    $dst.hi,$dst.hi" %}
  opcode(0x33); // XOR
  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
  ins_pipe( ialu_reg_reg_long );
%}

// Zero-extend long
instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
  match(Set dst (AndL src mask) );
  effect( KILL flags );
11883
  ins_cost(250);
D
duke 已提交
11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311
  format %{ "MOV    $dst.lo,$src.lo\n\t"
            "XOR    $dst.hi,$dst.hi\n\t" %}
  opcode(0x33); // XOR
  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
  ins_pipe( ialu_reg_reg_long );
%}

instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
  predicate (UseSSE<=1);
  match(Set dst (ConvL2D src));
  effect( KILL cr );
  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
            "PUSH   $src.lo\n\t"
            "FILD   ST,[ESP + #0]\n\t"
            "ADD    ESP,8\n\t"
            "FSTP_D $dst\t# D-round" %}
  opcode(0xDF, 0x5);  /* DF /5 */
  ins_encode(convert_long_double(src), Pop_Mem_D(dst));
  ins_pipe( pipe_slow );
%}

instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
  predicate (UseSSE>=2);
  match(Set dst (ConvL2D src));
  effect( KILL cr );
  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
            "PUSH   $src.lo\n\t"
            "FILD_D [ESP]\n\t"
            "FSTP_D [ESP]\n\t"
            "MOVSD  $dst,[ESP]\n\t"
            "ADD    ESP,8" %}
  opcode(0xDF, 0x5);  /* DF /5 */
  ins_encode(convert_long_double2(src), Push_ResultXD(dst));
  ins_pipe( pipe_slow );
%}

instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
  predicate (UseSSE>=1);
  match(Set dst (ConvL2F src));
  effect( KILL cr );
  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
            "PUSH   $src.lo\n\t"
            "FILD_D [ESP]\n\t"
            "FSTP_S [ESP]\n\t"
            "MOVSS  $dst,[ESP]\n\t"
            "ADD    ESP,8" %}
  opcode(0xDF, 0x5);  /* DF /5 */
  ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
  ins_pipe( pipe_slow );
%}

instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
  match(Set dst (ConvL2F src));
  effect( KILL cr );
  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
            "PUSH   $src.lo\n\t"
            "FILD   ST,[ESP + #0]\n\t"
            "ADD    ESP,8\n\t"
            "FSTP_S $dst\t# F-round" %}
  opcode(0xDF, 0x5);  /* DF /5 */
  ins_encode(convert_long_double(src), Pop_Mem_F(dst));
  ins_pipe( pipe_slow );
%}

instruct convL2I_reg( eRegI dst, eRegL src ) %{
  match(Set dst (ConvL2I src));
  effect( DEF dst, USE src );
  format %{ "MOV    $dst,$src.lo" %}
  ins_encode(enc_CopyL_Lo(dst,src));
  ins_pipe( ialu_reg_reg );
%}


instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
  match(Set dst (MoveF2I src));
  effect( DEF dst, USE src );
  ins_cost(100);
  format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
  opcode(0x8B);
  ins_encode( OpcP, RegMem(dst,src));
  ins_pipe( ialu_reg_mem );
%}

instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  predicate(UseSSE==0);
  match(Set dst (MoveF2I src));
  effect( DEF dst, USE src );

  ins_cost(125);
  format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
  ins_encode( Pop_Mem_Reg_F(dst, src) );
  ins_pipe( fpu_mem_reg );
%}

instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
  predicate(UseSSE>=1);
  match(Set dst (MoveF2I src));
  effect( DEF dst, USE src );

  ins_cost(95);
  format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
  ins_pipe( pipe_slow );
%}

instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
  predicate(UseSSE>=2);
  match(Set dst (MoveF2I src));
  effect( DEF dst, USE src );
  ins_cost(85);
  format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
  ins_encode( MovX2I_reg(dst, src));
  ins_pipe( pipe_slow );
%}

instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
  match(Set dst (MoveI2F src));
  effect( DEF dst, USE src );

  ins_cost(100);
  format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
  opcode(0x89);
  ins_encode( OpcPRegSS( dst, src ) );
  ins_pipe( ialu_mem_reg );
%}


instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  predicate(UseSSE==0);
  match(Set dst (MoveI2F src));
  effect(DEF dst, USE src);

  ins_cost(125);
  format %{ "FLD_S  $src\n\t"
            "FSTP   $dst\t# MoveI2F_stack_reg" %}
  opcode(0xD9);               /* D9 /0, FLD m32real */
  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
              Pop_Reg_F(dst) );
  ins_pipe( fpu_reg_mem );
%}

instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
  predicate(UseSSE>=1);
  match(Set dst (MoveI2F src));
  effect( DEF dst, USE src );

  ins_cost(95);
  format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
  ins_pipe( pipe_slow );
%}

instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
  predicate(UseSSE>=2);
  match(Set dst (MoveI2F src));
  effect( DEF dst, USE src );

  ins_cost(85);
  format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
  ins_encode( MovI2X_reg(dst, src) );
  ins_pipe( pipe_slow );
%}

instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
  match(Set dst (MoveD2L src));
  effect(DEF dst, USE src);

  ins_cost(250);
  format %{ "MOV    $dst.lo,$src\n\t"
            "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
  opcode(0x8B, 0x8B);
  ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
  ins_pipe( ialu_mem_long_reg );
%}

instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  predicate(UseSSE<=1);
  match(Set dst (MoveD2L src));
  effect(DEF dst, USE src);

  ins_cost(125);
  format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
  ins_encode( Pop_Mem_Reg_D(dst, src) );
  ins_pipe( fpu_mem_reg );
%}

instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (MoveD2L src));
  effect(DEF dst, USE src);
  ins_cost(95);

  format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
  ins_pipe( pipe_slow );
%}

instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
  predicate(UseSSE>=2);
  match(Set dst (MoveD2L src));
  effect(DEF dst, USE src, TEMP tmp);
  ins_cost(85);
  format %{ "MOVD   $dst.lo,$src\n\t"
            "PSHUFLW $tmp,$src,0x4E\n\t"
            "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
  ins_encode( MovXD2L_reg(dst, src, tmp) );
  ins_pipe( pipe_slow );
%}

instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
  match(Set dst (MoveL2D src));
  effect(DEF dst, USE src);

  ins_cost(200);
  format %{ "MOV    $dst,$src.lo\n\t"
            "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
  opcode(0x89, 0x89);
  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  ins_pipe( ialu_mem_long_reg );
%}


instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  predicate(UseSSE<=1);
  match(Set dst (MoveL2D src));
  effect(DEF dst, USE src);
  ins_cost(125);

  format %{ "FLD_D  $src\n\t"
            "FSTP   $dst\t# MoveL2D_stack_reg" %}
  opcode(0xDD);               /* DD /0, FLD m64real */
  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
              Pop_Reg_D(dst) );
  ins_pipe( fpu_reg_mem );
%}


instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  match(Set dst (MoveL2D src));
  effect(DEF dst, USE src);

  ins_cost(95);
  format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
  ins_pipe( pipe_slow );
%}

instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  match(Set dst (MoveL2D src));
  effect(DEF dst, USE src);

  ins_cost(95);
  format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
  ins_pipe( pipe_slow );
%}

instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
  predicate(UseSSE>=2);
  match(Set dst (MoveL2D src));
  effect(TEMP dst, USE src, TEMP tmp);
  ins_cost(85);
  format %{ "MOVD   $dst,$src.lo\n\t"
            "MOVD   $tmp,$src.hi\n\t"
            "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
  ins_encode( MovL2XD_reg(dst, src, tmp) );
  ins_pipe( pipe_slow );
%}

// Replicate scalar to packed byte (1 byte) values in xmm
instruct Repl8B_reg(regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate8B src));
  format %{ "MOVDQA  $dst,$src\n\t"
            "PUNPCKLBW $dst,$dst\n\t"
            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
  ins_encode( pshufd_8x8(dst, src));
  ins_pipe( pipe_slow );
%}

// Replicate scalar to packed byte (1 byte) values in xmm
instruct Repl8B_eRegI(regXD dst, eRegI src) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate8B src));
  format %{ "MOVD    $dst,$src\n\t"
            "PUNPCKLBW $dst,$dst\n\t"
            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
  ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
  ins_pipe( pipe_slow );
%}

// Replicate scalar zero to packed byte (1 byte) values in xmm
instruct Repl8B_immI0(regXD dst, immI0 zero) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate8B zero));
  format %{ "PXOR  $dst,$dst\t! replicate8B" %}
  ins_encode( pxor(dst, dst));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar to packed shore (2 byte) values in xmm
instruct Repl4S_reg(regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate4S src));
  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
  ins_encode( pshufd_4x16(dst, src));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar to packed shore (2 byte) values in xmm
instruct Repl4S_eRegI(regXD dst, eRegI src) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate4S src));
  format %{ "MOVD    $dst,$src\n\t"
            "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar zero to packed short (2 byte) values in xmm
instruct Repl4S_immI0(regXD dst, immI0 zero) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate4S zero));
  format %{ "PXOR  $dst,$dst\t! replicate4S" %}
  ins_encode( pxor(dst, dst));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar to packed char (2 byte) values in xmm
instruct Repl4C_reg(regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate4C src));
  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
  ins_encode( pshufd_4x16(dst, src));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar to packed char (2 byte) values in xmm
instruct Repl4C_eRegI(regXD dst, eRegI src) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate4C src));
  format %{ "MOVD    $dst,$src\n\t"
            "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar zero to packed char (2 byte) values in xmm
instruct Repl4C_immI0(regXD dst, immI0 zero) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate4C zero));
  format %{ "PXOR  $dst,$dst\t! replicate4C" %}
  ins_encode( pxor(dst, dst));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar to packed integer (4 byte) values in xmm
instruct Repl2I_reg(regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate2I src));
  format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
  ins_encode( pshufd(dst, src, 0x00));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar to packed integer (4 byte) values in xmm
instruct Repl2I_eRegI(regXD dst, eRegI src) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate2I src));
  format %{ "MOVD   $dst,$src\n\t"
            "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
  ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar zero to packed integer (2 byte) values in xmm
instruct Repl2I_immI0(regXD dst, immI0 zero) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate2I zero));
  format %{ "PXOR  $dst,$dst\t! replicate2I" %}
  ins_encode( pxor(dst, dst));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar to packed single precision floating point values in xmm
instruct Repl2F_reg(regXD dst, regXD src) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate2F src));
  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
  ins_encode( pshufd(dst, src, 0xe0));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar to packed single precision floating point values in xmm
instruct Repl2F_regX(regXD dst, regX src) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate2F src));
  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
  ins_encode( pshufd(dst, src, 0xe0));
  ins_pipe( fpu_reg_reg );
%}

// Replicate scalar to packed single precision floating point values in xmm
instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
  predicate(UseSSE>=2);
  match(Set dst (Replicate2F zero));
  format %{ "PXOR  $dst,$dst\t! replicate2F" %}
  ins_encode( pxor(dst, dst));
  ins_pipe( fpu_reg_reg );
%}

// =======================================================================
// fast clearing of an array
instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
  match(Set dummy (ClearArray cnt base));
  effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
  format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
            "XOR    EAX,EAX\n\t"
            "REP STOS\t# store EAX into [EDI++] while ECX--" %}
  opcode(0,0x4);
  ins_encode( Opcode(0xD1), RegOpc(ECX),
              OpcRegReg(0x33,EAX,EAX),
              Opcode(0xF3), Opcode(0xAB) );
  ins_pipe( pipe_slow );
%}

12312 12313 12314 12315
instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
                        eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
D
duke 已提交
12316

12317 12318 12319 12320 12321 12322
  format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
  ins_encode %{
    __ string_compare($str1$$Register, $str2$$Register,
                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
                      $tmp1$$XMMRegister, $tmp2$$XMMRegister);
  %}
C
cfang 已提交
12323 12324 12325 12326
  ins_pipe( pipe_slow );
%}

// fast string equals
12327 12328 12329 12330
instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
                       regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
  match(Set result (StrEquals (Binary str1 str2) cnt));
  effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
C
cfang 已提交
12331

12332 12333 12334 12335 12336 12337
  format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
  ins_encode %{
    __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
                          $cnt$$Register, $result$$Register, $tmp3$$Register,
                          $tmp1$$XMMRegister, $tmp2$$XMMRegister);
  %}
C
cfang 已提交
12338 12339 12340
  ins_pipe( pipe_slow );
%}

12341 12342
instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
                        eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
C
cfang 已提交
12343
  predicate(UseSSE42Intrinsics);
12344 12345
  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
  effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
C
cfang 已提交
12346

12347 12348 12349 12350 12351 12352
  format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
  ins_encode %{
    __ string_indexof($str1$$Register, $str2$$Register,
                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
                      $tmp1$$XMMRegister, $tmp2$$Register);
  %}
D
duke 已提交
12353 12354 12355
  ins_pipe( pipe_slow );
%}

12356
// fast array equals
12357 12358 12359
instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
                      regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
%{
12360
  match(Set result (AryEq ary1 ary2));
C
cfang 已提交
12361
  effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
12362 12363
  //ins_cost(300);

12364 12365 12366 12367 12368 12369
  format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
  ins_encode %{
    __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
                          $tmp3$$Register, $result$$Register, $tmp4$$Register,
                          $tmp1$$XMMRegister, $tmp2$$XMMRegister);
  %}
12370 12371 12372
  ins_pipe( pipe_slow );
%}

D
duke 已提交
12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714
//----------Control Flow Instructions------------------------------------------
// Signed compare Instructions
instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
  match(Set cr (CmpI op1 op2));
  effect( DEF cr, USE op1, USE op2 );
  format %{ "CMP    $op1,$op2" %}
  opcode(0x3B);  /* Opcode 3B /r */
  ins_encode( OpcP, RegReg( op1, op2) );
  ins_pipe( ialu_cr_reg_reg );
%}

instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
  match(Set cr (CmpI op1 op2));
  effect( DEF cr, USE op1 );
  format %{ "CMP    $op1,$op2" %}
  opcode(0x81,0x07);  /* Opcode 81 /7 */
  // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
  ins_pipe( ialu_cr_reg_imm );
%}

// Cisc-spilled version of cmpI_eReg
instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
  match(Set cr (CmpI op1 (LoadI op2)));

  format %{ "CMP    $op1,$op2" %}
  ins_cost(500);
  opcode(0x3B);  /* Opcode 3B /r */
  ins_encode( OpcP, RegMem( op1, op2) );
  ins_pipe( ialu_cr_reg_mem );
%}

instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
  match(Set cr (CmpI src zero));
  effect( DEF cr, USE src );

  format %{ "TEST   $src,$src" %}
  opcode(0x85);
  ins_encode( OpcP, RegReg( src, src ) );
  ins_pipe( ialu_cr_reg_imm );
%}

instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
  match(Set cr (CmpI (AndI src con) zero));

  format %{ "TEST   $src,$con" %}
  opcode(0xF7,0x00);
  ins_encode( OpcP, RegOpc(src), Con32(con) );
  ins_pipe( ialu_cr_reg_imm );
%}

instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
  match(Set cr (CmpI (AndI src mem) zero));

  format %{ "TEST   $src,$mem" %}
  opcode(0x85);
  ins_encode( OpcP, RegMem( src, mem ) );
  ins_pipe( ialu_cr_reg_mem );
%}

// Unsigned compare Instructions; really, same as signed except they
// produce an eFlagsRegU instead of eFlagsReg.
instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
  match(Set cr (CmpU op1 op2));

  format %{ "CMPu   $op1,$op2" %}
  opcode(0x3B);  /* Opcode 3B /r */
  ins_encode( OpcP, RegReg( op1, op2) );
  ins_pipe( ialu_cr_reg_reg );
%}

instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
  match(Set cr (CmpU op1 op2));

  format %{ "CMPu   $op1,$op2" %}
  opcode(0x81,0x07);  /* Opcode 81 /7 */
  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
  ins_pipe( ialu_cr_reg_imm );
%}

// // Cisc-spilled version of cmpU_eReg
instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
  match(Set cr (CmpU op1 (LoadI op2)));

  format %{ "CMPu   $op1,$op2" %}
  ins_cost(500);
  opcode(0x3B);  /* Opcode 3B /r */
  ins_encode( OpcP, RegMem( op1, op2) );
  ins_pipe( ialu_cr_reg_mem );
%}

// // Cisc-spilled version of cmpU_eReg
//instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
//  match(Set cr (CmpU (LoadI op1) op2));
//
//  format %{ "CMPu   $op1,$op2" %}
//  ins_cost(500);
//  opcode(0x39);  /* Opcode 39 /r */
//  ins_encode( OpcP, RegMem( op1, op2) );
//%}

instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
  match(Set cr (CmpU src zero));

  format %{ "TESTu  $src,$src" %}
  opcode(0x85);
  ins_encode( OpcP, RegReg( src, src ) );
  ins_pipe( ialu_cr_reg_imm );
%}

// Unsigned pointer compare Instructions
instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
  match(Set cr (CmpP op1 op2));

  format %{ "CMPu   $op1,$op2" %}
  opcode(0x3B);  /* Opcode 3B /r */
  ins_encode( OpcP, RegReg( op1, op2) );
  ins_pipe( ialu_cr_reg_reg );
%}

instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
  match(Set cr (CmpP op1 op2));

  format %{ "CMPu   $op1,$op2" %}
  opcode(0x81,0x07);  /* Opcode 81 /7 */
  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
  ins_pipe( ialu_cr_reg_imm );
%}

// // Cisc-spilled version of cmpP_eReg
instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
  match(Set cr (CmpP op1 (LoadP op2)));

  format %{ "CMPu   $op1,$op2" %}
  ins_cost(500);
  opcode(0x3B);  /* Opcode 3B /r */
  ins_encode( OpcP, RegMem( op1, op2) );
  ins_pipe( ialu_cr_reg_mem );
%}

// // Cisc-spilled version of cmpP_eReg
//instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
//  match(Set cr (CmpP (LoadP op1) op2));
//
//  format %{ "CMPu   $op1,$op2" %}
//  ins_cost(500);
//  opcode(0x39);  /* Opcode 39 /r */
//  ins_encode( OpcP, RegMem( op1, op2) );
//%}

// Compare raw pointer (used in out-of-heap check).
// Only works because non-oop pointers must be raw pointers
// and raw pointers have no anti-dependencies.
instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
  predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
  match(Set cr (CmpP op1 (LoadP op2)));

  format %{ "CMPu   $op1,$op2" %}
  opcode(0x3B);  /* Opcode 3B /r */
  ins_encode( OpcP, RegMem( op1, op2) );
  ins_pipe( ialu_cr_reg_mem );
%}

//
// This will generate a signed flags result. This should be ok
// since any compare to a zero should be eq/neq.
instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
  match(Set cr (CmpP src zero));

  format %{ "TEST   $src,$src" %}
  opcode(0x85);
  ins_encode( OpcP, RegReg( src, src ) );
  ins_pipe( ialu_cr_reg_imm );
%}

// Cisc-spilled version of testP_reg
// This will generate a signed flags result. This should be ok
// since any compare to a zero should be eq/neq.
instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
  match(Set cr (CmpP (LoadP op) zero));

  format %{ "TEST   $op,0xFFFFFFFF" %}
  ins_cost(500);
  opcode(0xF7);               /* Opcode F7 /0 */
  ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
  ins_pipe( ialu_cr_reg_imm );
%}

// Yanked all unsigned pointer compare operations.
// Pointer compares are done with CmpP which is already unsigned.

//----------Max and Min--------------------------------------------------------
// Min Instructions
////
//   *** Min and Max using the conditional move are slower than the
//   *** branch version on a Pentium III.
// // Conditional move for min
//instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
//  effect( USE_DEF op2, USE op1, USE cr );
//  format %{ "CMOVlt $op2,$op1\t! min" %}
//  opcode(0x4C,0x0F);
//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
//  ins_pipe( pipe_cmov_reg );
//%}
//
//// Min Register with Register (P6 version)
//instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
//  predicate(VM_Version::supports_cmov() );
//  match(Set op2 (MinI op1 op2));
//  ins_cost(200);
//  expand %{
//    eFlagsReg cr;
//    compI_eReg(cr,op1,op2);
//    cmovI_reg_lt(op2,op1,cr);
//  %}
//%}

// Min Register with Register (generic version)
instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
  match(Set dst (MinI dst src));
  effect(KILL flags);
  ins_cost(300);

  format %{ "MIN    $dst,$src" %}
  opcode(0xCC);
  ins_encode( min_enc(dst,src) );
  ins_pipe( pipe_slow );
%}

// Max Register with Register
//   *** Min and Max using the conditional move are slower than the
//   *** branch version on a Pentium III.
// // Conditional move for max
//instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
//  effect( USE_DEF op2, USE op1, USE cr );
//  format %{ "CMOVgt $op2,$op1\t! max" %}
//  opcode(0x4F,0x0F);
//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
//  ins_pipe( pipe_cmov_reg );
//%}
//
// // Max Register with Register (P6 version)
//instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
//  predicate(VM_Version::supports_cmov() );
//  match(Set op2 (MaxI op1 op2));
//  ins_cost(200);
//  expand %{
//    eFlagsReg cr;
//    compI_eReg(cr,op1,op2);
//    cmovI_reg_gt(op2,op1,cr);
//  %}
//%}

// Max Register with Register (generic version)
instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
  match(Set dst (MaxI dst src));
  effect(KILL flags);
  ins_cost(300);

  format %{ "MAX    $dst,$src" %}
  opcode(0xCC);
  ins_encode( max_enc(dst,src) );
  ins_pipe( pipe_slow );
%}

// ============================================================================
// Branch Instructions
// Jump Table
instruct jumpXtnd(eRegI switch_val) %{
  match(Jump switch_val);
  ins_cost(350);

  format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}

  ins_encode %{
    address table_base  = __ address_table_constant(_index2label);

    // Jump to Address(table_base + switch_reg)
    InternalAddress table(table_base);
    Address index(noreg, $switch_val$$Register, Address::times_1);
    __ jump(ArrayAddress(table, index));
  %}
  ins_pc_relative(1);
  ins_pipe(pipe_jmp);
%}

// Jump Direct - Label defines a relative address from JMP+1
instruct jmpDir(label labl) %{
  match(Goto);
  effect(USE labl);

  ins_cost(300);
  format %{ "JMP    $labl" %}
  size(5);
  opcode(0xE9);
  ins_encode( OpcP, Lbl( labl ) );
  ins_pipe( pipe_jmp );
  ins_pc_relative(1);
%}

// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
  match(If cop cr);
  effect(USE labl);

  ins_cost(300);
  format %{ "J$cop    $labl" %}
  size(6);
  opcode(0x0F, 0x80);
  ins_encode( Jcc( cop, labl) );
  ins_pipe( pipe_jcc );
  ins_pc_relative(1);
%}

// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
  match(CountedLoopEnd cop cr);
  effect(USE labl);

  ins_cost(300);
  format %{ "J$cop    $labl\t# Loop end" %}
  size(6);
  opcode(0x0F, 0x80);
  ins_encode( Jcc( cop, labl) );
  ins_pipe( pipe_jcc );
  ins_pc_relative(1);
%}

// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
  match(CountedLoopEnd cop cmp);
  effect(USE labl);

  ins_cost(300);
  format %{ "J$cop,u  $labl\t# Loop end" %}
  size(6);
  opcode(0x0F, 0x80);
  ins_encode( Jcc( cop, labl) );
  ins_pipe( pipe_jcc );
  ins_pc_relative(1);
%}

12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727
instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
  match(CountedLoopEnd cop cmp);
  effect(USE labl);

  ins_cost(200);
  format %{ "J$cop,u  $labl\t# Loop end" %}
  size(6);
  opcode(0x0F, 0x80);
  ins_encode( Jcc( cop, labl) );
  ins_pipe( pipe_jcc );
  ins_pc_relative(1);
%}

D
duke 已提交
12728 12729 12730 12731 12732 12733 12734 12735 12736
// Jump Direct Conditional - using unsigned comparison
instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
  match(If cop cmp);
  effect(USE labl);

  ins_cost(300);
  format %{ "J$cop,u  $labl" %}
  size(6);
  opcode(0x0F, 0x80);
12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793
  ins_encode(Jcc(cop, labl));
  ins_pipe(pipe_jcc);
  ins_pc_relative(1);
%}

instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
  match(If cop cmp);
  effect(USE labl);

  ins_cost(200);
  format %{ "J$cop,u  $labl" %}
  size(6);
  opcode(0x0F, 0x80);
  ins_encode(Jcc(cop, labl));
  ins_pipe(pipe_jcc);
  ins_pc_relative(1);
%}

instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
  match(If cop cmp);
  effect(USE labl);

  ins_cost(200);
  format %{ $$template
    if ($cop$$cmpcode == Assembler::notEqual) {
      $$emit$$"JP,u   $labl\n\t"
      $$emit$$"J$cop,u   $labl"
    } else {
      $$emit$$"JP,u   done\n\t"
      $$emit$$"J$cop,u   $labl\n\t"
      $$emit$$"done:"
    }
  %}
  size(12);
  opcode(0x0F, 0x80);
  ins_encode %{
    Label* l = $labl$$label;
    $$$emit8$primary;
    emit_cc(cbuf, $secondary, Assembler::parity);
    int parity_disp = -1;
    bool ok = false;
    if ($cop$$cmpcode == Assembler::notEqual) {
       // the two jumps 6 bytes apart so the jump distances are too
       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
    } else if ($cop$$cmpcode == Assembler::equal) {
       parity_disp = 6;
       ok = true;
    } else {
       ShouldNotReachHere();
    }
    emit_d32(cbuf, parity_disp);
    $$$emit8$primary;
    emit_cc(cbuf, $secondary, $cop$$cmpcode);
    int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
    emit_d32(cbuf, disp);
  %}
  ins_pipe(pipe_jcc);
D
duke 已提交
12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806
  ins_pc_relative(1);
%}

// ============================================================================
// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
// array for an instance of the superklass.  Set a hidden internal cache on a
// hit (cache is checked with exposed code in gen_subtype_check()).  Return
// NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
  match(Set result (PartialSubtypeCheck sub super));
  effect( KILL rcx, KILL cr );

  ins_cost(1100);  // slightly larger than the next version
12807
  format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
D
duke 已提交
12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825
            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
            "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
            "XOR    $result,$result\t\t Hit: EDI zero\n\t"
     "miss:\t" %}

  opcode(0x1); // Force a XOR of EDI
  ins_encode( enc_PartialSubtypeCheck() );
  ins_pipe( pipe_slow );
%}

instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
  match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
  effect( KILL rcx, KILL result );

  ins_cost(1000);
12826
  format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
D
duke 已提交
12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886
            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
            "JNE,s  miss\t\t# Missed: flags NZ\n\t"
            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
     "miss:\t" %}

  opcode(0x0);  // No need to XOR EDI
  ins_encode( enc_PartialSubtypeCheck() );
  ins_pipe( pipe_slow );
%}

// ============================================================================
// Branch Instructions -- short offset versions
//
// These instructions are used to replace jumps of a long offset (the default
// match) with jumps of a shorter offset.  These instructions are all tagged
// with the ins_short_branch attribute, which causes the ADLC to suppress the
// match rules in general matching.  Instead, the ADLC generates a conversion
// method in the MachNode which can be used to do in-place replacement of the
// long variant with the shorter variant.  The compiler will determine if a
// branch can be taken by the is_short_branch_offset() predicate in the machine
// specific code section of the file.

// Jump Direct - Label defines a relative address from JMP+1
instruct jmpDir_short(label labl) %{
  match(Goto);
  effect(USE labl);

  ins_cost(300);
  format %{ "JMP,s  $labl" %}
  size(2);
  opcode(0xEB);
  ins_encode( OpcP, LblShort( labl ) );
  ins_pipe( pipe_jmp );
  ins_pc_relative(1);
  ins_short_branch(1);
%}

// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
  match(If cop cr);
  effect(USE labl);

  ins_cost(300);
  format %{ "J$cop,s  $labl" %}
  size(2);
  opcode(0x70);
  ins_encode( JccShort( cop, labl) );
  ins_pipe( pipe_jcc );
  ins_pc_relative(1);
  ins_short_branch(1);
%}

// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
  match(CountedLoopEnd cop cr);
  effect(USE labl);

  ins_cost(300);
12887
  format %{ "J$cop,s  $labl\t# Loop end" %}
D
duke 已提交
12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901
  size(2);
  opcode(0x70);
  ins_encode( JccShort( cop, labl) );
  ins_pipe( pipe_jcc );
  ins_pc_relative(1);
  ins_short_branch(1);
%}

// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
  match(CountedLoopEnd cop cmp);
  effect(USE labl);

  ins_cost(300);
12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916
  format %{ "J$cop,us $labl\t# Loop end" %}
  size(2);
  opcode(0x70);
  ins_encode( JccShort( cop, labl) );
  ins_pipe( pipe_jcc );
  ins_pc_relative(1);
  ins_short_branch(1);
%}

instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
  match(CountedLoopEnd cop cmp);
  effect(USE labl);

  ins_cost(300);
  format %{ "J$cop,us $labl\t# Loop end" %}
D
duke 已提交
12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939
  size(2);
  opcode(0x70);
  ins_encode( JccShort( cop, labl) );
  ins_pipe( pipe_jcc );
  ins_pc_relative(1);
  ins_short_branch(1);
%}

// Jump Direct Conditional - using unsigned comparison
instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
  match(If cop cmp);
  effect(USE labl);

  ins_cost(300);
  format %{ "J$cop,us $labl" %}
  size(2);
  opcode(0x70);
  ins_encode( JccShort( cop, labl) );
  ins_pipe( pipe_jcc );
  ins_pc_relative(1);
  ins_short_branch(1);
%}

12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993
instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
  match(If cop cmp);
  effect(USE labl);

  ins_cost(300);
  format %{ "J$cop,us $labl" %}
  size(2);
  opcode(0x70);
  ins_encode( JccShort( cop, labl) );
  ins_pipe( pipe_jcc );
  ins_pc_relative(1);
  ins_short_branch(1);
%}

instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
  match(If cop cmp);
  effect(USE labl);

  ins_cost(300);
  format %{ $$template
    if ($cop$$cmpcode == Assembler::notEqual) {
      $$emit$$"JP,u,s   $labl\n\t"
      $$emit$$"J$cop,u,s   $labl"
    } else {
      $$emit$$"JP,u,s   done\n\t"
      $$emit$$"J$cop,u,s  $labl\n\t"
      $$emit$$"done:"
    }
  %}
  size(4);
  opcode(0x70);
  ins_encode %{
    Label* l = $labl$$label;
    emit_cc(cbuf, $primary, Assembler::parity);
    int parity_disp = -1;
    if ($cop$$cmpcode == Assembler::notEqual) {
      parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
    } else if ($cop$$cmpcode == Assembler::equal) {
      parity_disp = 2;
    } else {
      ShouldNotReachHere();
    }
    emit_d8(cbuf, parity_disp);
    emit_cc(cbuf, $primary, $cop$$cmpcode);
    int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
    emit_d8(cbuf, disp);
    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
    assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
  %}
  ins_pipe(pipe_jcc);
  ins_pc_relative(1);
  ins_short_branch(1);
%}

D
duke 已提交
12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033
// ============================================================================
// Long Compare
//
// Currently we hold longs in 2 registers.  Comparing such values efficiently
// is tricky.  The flavor of compare used depends on whether we are testing
// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
// The GE test is the negated LT test.  The LE test can be had by commuting
// the operands (yielding a GE test) and then negating; negate again for the
// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
// NE test is negated from that.

// Due to a shortcoming in the ADLC, it mixes up expressions like:
// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
// are collapsed internally in the ADLC's dfa-gen code.  The match for
// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
// foo match ends up with the wrong leaf.  One fix is to not match both
// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
// both forms beat the trinary form of long-compare and both are very useful
// on Intel which has so few registers.

// Manifest a CmpL result in an integer register.  Very painful.
// This is the test to avoid.
instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
  match(Set dst (CmpL3 src1 src2));
  effect( KILL flags );
  ins_cost(1000);
  format %{ "XOR    $dst,$dst\n\t"
            "CMP    $src1.hi,$src2.hi\n\t"
            "JLT,s  m_one\n\t"
            "JGT,s  p_one\n\t"
            "CMP    $src1.lo,$src2.lo\n\t"
            "JB,s   m_one\n\t"
            "JEQ,s  done\n"
    "p_one:\tINC    $dst\n\t"
            "JMP,s  done\n"
    "m_one:\tDEC    $dst\n"
     "done:" %}
  ins_encode %{
    Label p_one, m_one, done;
13034
    __ xorptr($dst$$Register, $dst$$Register);
D
duke 已提交
13035 13036 13037 13038 13039 13040 13041
    __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
    __ jccb(Assembler::less,    m_one);
    __ jccb(Assembler::greater, p_one);
    __ cmpl($src1$$Register, $src2$$Register);
    __ jccb(Assembler::below,   m_one);
    __ jccb(Assembler::equal,   done);
    __ bind(p_one);
13042
    __ incrementl($dst$$Register);
D
duke 已提交
13043 13044
    __ jmpb(done);
    __ bind(m_one);
13045
    __ decrementl($dst$$Register);
D
duke 已提交
13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451
    __ bind(done);
  %}
  ins_pipe( pipe_slow );
%}

//======
// Manifest a CmpL result in the normal flags.  Only good for LT or GE
// compares.  Can be used for LE or GT compares by reversing arguments.
// NOT GOOD FOR EQ/NE tests.
instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
  match( Set flags (CmpL src zero ));
  ins_cost(100);
  format %{ "TEST   $src.hi,$src.hi" %}
  opcode(0x85);
  ins_encode( OpcP, RegReg_Hi2( src, src ) );
  ins_pipe( ialu_cr_reg_reg );
%}

// Manifest a CmpL result in the normal flags.  Only good for LT or GE
// compares.  Can be used for LE or GT compares by reversing arguments.
// NOT GOOD FOR EQ/NE tests.
instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
  match( Set flags (CmpL src1 src2 ));
  effect( TEMP tmp );
  ins_cost(300);
  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
            "MOV    $tmp,$src1.hi\n\t"
            "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
  ins_encode( long_cmp_flags2( src1, src2, tmp ) );
  ins_pipe( ialu_cr_reg_reg );
%}

// Long compares reg < zero/req OR reg >= zero/req.
// Just a wrapper for a normal branch, plus the predicate test.
instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
  match(If cmp flags);
  effect(USE labl);
  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
  expand %{
    jmpCon(cmp,flags,labl);    // JLT or JGE...
  %}
%}

// Compare 2 longs and CMOVE longs.
instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
  ins_cost(400);
  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
            "CMOV$cmp $dst.hi,$src.hi" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
  ins_pipe( pipe_cmov_reg_long );
%}

instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
  ins_cost(500);
  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
            "CMOV$cmp $dst.hi,$src.hi" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
  ins_pipe( pipe_cmov_reg_long );
%}

// Compare 2 longs and CMOVE ints.
instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cmp $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
  ins_pipe( pipe_cmov_reg );
%}

instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
  ins_cost(250);
  format %{ "CMOV$cmp $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
  ins_pipe( pipe_cmov_mem );
%}

// Compare 2 longs and CMOVE ints.
instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cmp $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
  ins_pipe( pipe_cmov_reg );
%}

// Compare 2 longs and CMOVE doubles
instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovD_regS(cmp,flags,dst,src);
  %}
%}

// Compare 2 longs and CMOVE doubles
instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovXD_regS(cmp,flags,dst,src);
  %}
%}

instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovF_regS(cmp,flags,dst,src);
  %}
%}

instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovX_regS(cmp,flags,dst,src);
  %}
%}

//======
// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
  match( Set flags (CmpL src zero ));
  effect(TEMP tmp);
  ins_cost(200);
  format %{ "MOV    $tmp,$src.lo\n\t"
            "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
  ins_encode( long_cmp_flags0( src, tmp ) );
  ins_pipe( ialu_reg_reg_long );
%}

// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
  match( Set flags (CmpL src1 src2 ));
  ins_cost(200+300);
  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
            "JNE,s  skip\n\t"
            "CMP    $src1.hi,$src2.hi\n\t"
     "skip:\t" %}
  ins_encode( long_cmp_flags1( src1, src2 ) );
  ins_pipe( ialu_cr_reg_reg );
%}

// Long compare reg == zero/reg OR reg != zero/reg
// Just a wrapper for a normal branch, plus the predicate test.
instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
  match(If cmp flags);
  effect(USE labl);
  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
  expand %{
    jmpCon(cmp,flags,labl);    // JEQ or JNE...
  %}
%}

// Compare 2 longs and CMOVE longs.
instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
  ins_cost(400);
  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
            "CMOV$cmp $dst.hi,$src.hi" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
  ins_pipe( pipe_cmov_reg_long );
%}

instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
  ins_cost(500);
  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
            "CMOV$cmp $dst.hi,$src.hi" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
  ins_pipe( pipe_cmov_reg_long );
%}

// Compare 2 longs and CMOVE ints.
instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cmp $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
  ins_pipe( pipe_cmov_reg );
%}

instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
  ins_cost(250);
  format %{ "CMOV$cmp $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
  ins_pipe( pipe_cmov_mem );
%}

// Compare 2 longs and CMOVE ints.
instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cmp $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
  ins_pipe( pipe_cmov_reg );
%}

// Compare 2 longs and CMOVE doubles
instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovD_regS(cmp,flags,dst,src);
  %}
%}

// Compare 2 longs and CMOVE doubles
instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovXD_regS(cmp,flags,dst,src);
  %}
%}

instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovF_regS(cmp,flags,dst,src);
  %}
%}

instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovX_regS(cmp,flags,dst,src);
  %}
%}

//======
// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
// Same as cmpL_reg_flags_LEGT except must negate src
instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
  match( Set flags (CmpL src zero ));
  effect( TEMP tmp );
  ins_cost(300);
  format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
            "CMP    $tmp,$src.lo\n\t"
            "SBB    $tmp,$src.hi\n\t" %}
  ins_encode( long_cmp_flags3(src, tmp) );
  ins_pipe( ialu_reg_reg_long );
%}

// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
// Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
// requires a commuted test to get the same result.
instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
  match( Set flags (CmpL src1 src2 ));
  effect( TEMP tmp );
  ins_cost(300);
  format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
            "MOV    $tmp,$src2.hi\n\t"
            "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
  ins_encode( long_cmp_flags2( src2, src1, tmp ) );
  ins_pipe( ialu_cr_reg_reg );
%}

// Long compares reg < zero/req OR reg >= zero/req.
// Just a wrapper for a normal branch, plus the predicate test
instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
  match(If cmp flags);
  effect(USE labl);
  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
  ins_cost(300);
  expand %{
    jmpCon(cmp,flags,labl);    // JGT or JLE...
  %}
%}

// Compare 2 longs and CMOVE longs.
instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
  ins_cost(400);
  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
            "CMOV$cmp $dst.hi,$src.hi" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
  ins_pipe( pipe_cmov_reg_long );
%}

instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
  ins_cost(500);
  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
            "CMOV$cmp $dst.hi,$src.hi+4" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
  ins_pipe( pipe_cmov_reg_long );
%}

// Compare 2 longs and CMOVE ints.
instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cmp $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
  ins_pipe( pipe_cmov_reg );
%}

instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
  ins_cost(250);
  format %{ "CMOV$cmp $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
  ins_pipe( pipe_cmov_mem );
%}

// Compare 2 longs and CMOVE ptrs.
instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  format %{ "CMOV$cmp $dst,$src" %}
  opcode(0x0F,0x40);
  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
  ins_pipe( pipe_cmov_reg );
%}

// Compare 2 longs and CMOVE doubles
instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovD_regS(cmp,flags,dst,src);
  %}
%}

// Compare 2 longs and CMOVE doubles
instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovXD_regS(cmp,flags,dst,src);
  %}
%}

instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovF_regS(cmp,flags,dst,src);
  %}
%}


instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
  ins_cost(200);
  expand %{
    fcmovX_regS(cmp,flags,dst,src);
  %}
%}


// ============================================================================
// Procedure Call/Return Instructions
// Call Java Static Instruction
// Note: If this code changes, the corresponding ret_addr_offset() and
//       compute_padding() functions will have to be adjusted.
instruct CallStaticJavaDirect(method meth) %{
  match(CallStaticJava);
13452
  predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
D
duke 已提交
13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466
  effect(USE meth);

  ins_cost(300);
  format %{ "CALL,static " %}
  opcode(0xE8); /* E8 cd */
  ins_encode( pre_call_FPU,
              Java_Static_Call( meth ),
              call_epilog,
              post_call_FPU );
  ins_pipe( pipe_slow );
  ins_pc_relative(1);
  ins_alignment(4);
%}

13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490
// Call Java Static Instruction (method handle version)
// Note: If this code changes, the corresponding ret_addr_offset() and
//       compute_padding() functions will have to be adjusted.
instruct CallStaticJavaHandle(method meth, eBPRegP ebp) %{
  match(CallStaticJava);
  predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  effect(USE meth);
  // EBP is saved by all callees (for interpreter stack correction).
  // We use it here for a similar purpose, in {preserve,restore}_SP.

  ins_cost(300);
  format %{ "CALL,static/MethodHandle " %}
  opcode(0xE8); /* E8 cd */
  ins_encode( pre_call_FPU,
              preserve_SP,
              Java_Static_Call( meth ),
              restore_SP,
              call_epilog,
              post_call_FPU );
  ins_pipe( pipe_slow );
  ins_pc_relative(1);
  ins_alignment(4);
%}

D
duke 已提交
13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671
// Call Java Dynamic Instruction
// Note: If this code changes, the corresponding ret_addr_offset() and
//       compute_padding() functions will have to be adjusted.
instruct CallDynamicJavaDirect(method meth) %{
  match(CallDynamicJava);
  effect(USE meth);

  ins_cost(300);
  format %{ "MOV    EAX,(oop)-1\n\t"
            "CALL,dynamic" %}
  opcode(0xE8); /* E8 cd */
  ins_encode( pre_call_FPU,
              Java_Dynamic_Call( meth ),
              call_epilog,
              post_call_FPU );
  ins_pipe( pipe_slow );
  ins_pc_relative(1);
  ins_alignment(4);
%}

// Call Runtime Instruction
instruct CallRuntimeDirect(method meth) %{
  match(CallRuntime );
  effect(USE meth);

  ins_cost(300);
  format %{ "CALL,runtime " %}
  opcode(0xE8); /* E8 cd */
  // Use FFREEs to clear entries in float stack
  ins_encode( pre_call_FPU,
              FFree_Float_Stack_All,
              Java_To_Runtime( meth ),
              post_call_FPU );
  ins_pipe( pipe_slow );
  ins_pc_relative(1);
%}

// Call runtime without safepoint
instruct CallLeafDirect(method meth) %{
  match(CallLeaf);
  effect(USE meth);

  ins_cost(300);
  format %{ "CALL_LEAF,runtime " %}
  opcode(0xE8); /* E8 cd */
  ins_encode( pre_call_FPU,
              FFree_Float_Stack_All,
              Java_To_Runtime( meth ),
              Verify_FPU_For_Leaf, post_call_FPU );
  ins_pipe( pipe_slow );
  ins_pc_relative(1);
%}

instruct CallLeafNoFPDirect(method meth) %{
  match(CallLeafNoFP);
  effect(USE meth);

  ins_cost(300);
  format %{ "CALL_LEAF_NOFP,runtime " %}
  opcode(0xE8); /* E8 cd */
  ins_encode(Java_To_Runtime(meth));
  ins_pipe( pipe_slow );
  ins_pc_relative(1);
%}


// Return Instruction
// Remove the return address & jump to it.
instruct Ret() %{
  match(Return);
  format %{ "RET" %}
  opcode(0xC3);
  ins_encode(OpcP);
  ins_pipe( pipe_jmp );
%}

// Tail Call; Jump from runtime stub to Java code.
// Also known as an 'interprocedural jump'.
// Target of jump will eventually return to caller.
// TailJump below removes the return address.
instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
  match(TailCall jump_target method_oop );
  ins_cost(300);
  format %{ "JMP    $jump_target \t# EBX holds method oop" %}
  opcode(0xFF, 0x4);  /* Opcode FF /4 */
  ins_encode( OpcP, RegOpc(jump_target) );
  ins_pipe( pipe_jmp );
%}


// Tail Jump; remove the return address; jump to target.
// TailCall above leaves the return address around.
instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
  match( TailJump jump_target ex_oop );
  ins_cost(300);
  format %{ "POP    EDX\t# pop return address into dummy\n\t"
            "JMP    $jump_target " %}
  opcode(0xFF, 0x4);  /* Opcode FF /4 */
  ins_encode( enc_pop_rdx,
              OpcP, RegOpc(jump_target) );
  ins_pipe( pipe_jmp );
%}

// Create exception oop: created by stack-crawling runtime code.
// Created exception is now available to this handler, and is setup
// just prior to jumping to this handler.  No code emitted.
instruct CreateException( eAXRegP ex_oop )
%{
  match(Set ex_oop (CreateEx));

  size(0);
  // use the following format syntax
  format %{ "# exception oop is in EAX; no code emitted" %}
  ins_encode();
  ins_pipe( empty );
%}


// Rethrow exception:
// The exception oop will come in the first argument position.
// Then JUMP (not call) to the rethrow stub code.
instruct RethrowException()
%{
  match(Rethrow);

  // use the following format syntax
  format %{ "JMP    rethrow_stub" %}
  ins_encode(enc_rethrow);
  ins_pipe( pipe_jmp );
%}

// inlined locking and unlocking


instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
  match( Set cr (FastLock object box) );
  effect( TEMP tmp, TEMP scr );
  ins_cost(300);
  format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
  ins_encode( Fast_Lock(object,box,tmp,scr) );
  ins_pipe( pipe_slow );
  ins_pc_relative(1);
%}

instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
  match( Set cr (FastUnlock object box) );
  effect( TEMP tmp );
  ins_cost(300);
  format %{ "FASTUNLOCK $object, $box, $tmp" %}
  ins_encode( Fast_Unlock(object,box,tmp) );
  ins_pipe( pipe_slow );
  ins_pc_relative(1);
%}



// ============================================================================
// Safepoint Instruction
instruct safePoint_poll(eFlagsReg cr) %{
  match(SafePoint);
  effect(KILL cr);

  // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
  // On SPARC that might be acceptable as we can generate the address with
  // just a sethi, saving an or.  By polling at offset 0 we can end up
  // putting additional pressure on the index-0 in the D$.  Because of
  // alignment (just like the situation at hand) the lower indices tend
  // to see more traffic.  It'd be better to change the polling address
  // to offset 0 of the last $line in the polling page.

  format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
  ins_cost(125);
  size(6) ;
  ins_encode( Safepoint_Poll() );
  ins_pipe( ialu_reg_mem );
%}

//----------PEEPHOLE RULES-----------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
//
T
twisti 已提交
13672
// peepmatch ( root_instr_name [preceding_instruction]* );
D
duke 已提交
13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767
//
// peepconstraint %{
// (instruction_number.operand_name relational_op instruction_number.operand_name
//  [, ...] );
// // instruction numbers are zero-based using left to right order in peepmatch
//
// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
// // provide an instruction_number.operand_name for each operand that appears
// // in the replacement instruction's match rule
//
// ---------VM FLAGS---------------------------------------------------------
//
// All peephole optimizations can be turned off using -XX:-OptoPeephole
//
// Each peephole rule is given an identifying number starting with zero and
// increasing by one in the order seen by the parser.  An individual peephole
// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
// on the command-line.
//
// ---------CURRENT LIMITATIONS----------------------------------------------
//
// Only match adjacent instructions in same basic block
// Only equality constraints
// Only constraints between operands, not (0.dest_reg == EAX_enc)
// Only one replacement instruction
//
// ---------EXAMPLE----------------------------------------------------------
//
// // pertinent parts of existing instructions in architecture description
// instruct movI(eRegI dst, eRegI src) %{
//   match(Set dst (CopyI src));
// %}
//
// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
//   match(Set dst (AddI dst src));
//   effect(KILL cr);
// %}
//
// // Change (inc mov) to lea
// peephole %{
//   // increment preceeded by register-register move
//   peepmatch ( incI_eReg movI );
//   // require that the destination register of the increment
//   // match the destination register of the move
//   peepconstraint ( 0.dst == 1.dst );
//   // construct a replacement instruction that sets
//   // the destination to ( move's source register + one )
//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// Implementation no longer uses movX instructions since
// machine-independent system no longer uses CopyX nodes.
//
// peephole %{
//   peepmatch ( incI_eReg movI );
//   peepconstraint ( 0.dst == 1.dst );
//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// peephole %{
//   peepmatch ( decI_eReg movI );
//   peepconstraint ( 0.dst == 1.dst );
//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// peephole %{
//   peepmatch ( addI_eReg_imm movI );
//   peepconstraint ( 0.dst == 1.dst );
//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// peephole %{
//   peepmatch ( addP_eReg_imm movP );
//   peepconstraint ( 0.dst == 1.dst );
//   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
// %}

// // Change load of spilled value to only a spill
// instruct storeI(memory mem, eRegI src) %{
//   match(Set mem (StoreI mem src));
// %}
//
// instruct loadI(eRegI dst, memory mem) %{
//   match(Set dst (LoadI mem));
// %}
//
peephole %{
  peepmatch ( loadI storeI );
  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
%}

//----------SMARTSPILL RULES---------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.