g1RemSet.cpp 36.2 KB
Newer Older
1
/*
X
xdono 已提交
2
 * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_g1RemSet.cpp.incl"

#define CARD_REPEAT_HISTO 0

#if CARD_REPEAT_HISTO
static size_t ct_freq_sz;
static jbyte* ct_freq = NULL;

void init_ct_freq_table(size_t heap_sz_bytes) {
  if (ct_freq == NULL) {
    ct_freq_sz = heap_sz_bytes/CardTableModRefBS::card_size;
    ct_freq = new jbyte[ct_freq_sz];
    for (size_t j = 0; j < ct_freq_sz; j++) ct_freq[j] = 0;
  }
}

void ct_freq_note_card(size_t index) {
  assert(0 <= index && index < ct_freq_sz, "Bounds error.");
  if (ct_freq[index] < 100) { ct_freq[index]++; }
}

static IntHistogram card_repeat_count(10, 10);

void ct_freq_update_histo_and_reset() {
  for (size_t j = 0; j < ct_freq_sz; j++) {
    card_repeat_count.add_entry(ct_freq[j]);
    ct_freq[j] = 0;
  }

}
#endif


class IntoCSOopClosure: public OopsInHeapRegionClosure {
  OopsInHeapRegionClosure* _blk;
  G1CollectedHeap* _g1;
public:
  IntoCSOopClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* blk) :
    _g1(g1), _blk(blk) {}
  void set_region(HeapRegion* from) {
    _blk->set_region(from);
  }
  virtual void do_oop(narrowOop* p) {
    guarantee(false, "NYI");
  }
  virtual void do_oop(oop* p) {
    oop obj = *p;
    if (_g1->obj_in_cs(obj)) _blk->do_oop(p);
  }
  bool apply_to_weak_ref_discovered_field() { return true; }
  bool idempotent() { return true; }
};

class IntoCSRegionClosure: public HeapRegionClosure {
  IntoCSOopClosure _blk;
  G1CollectedHeap* _g1;
public:
  IntoCSRegionClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* blk) :
    _g1(g1), _blk(g1, blk) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->in_collection_set()) {
      _blk.set_region(r);
      if (r->isHumongous()) {
        if (r->startsHumongous()) {
          oop obj = oop(r->bottom());
          obj->oop_iterate(&_blk);
        }
      } else {
        r->oop_before_save_marks_iterate(&_blk);
      }
    }
    return false;
  }
};

void
StupidG1RemSet::oops_into_collection_set_do(OopsInHeapRegionClosure* oc,
                                            int worker_i) {
  IntoCSRegionClosure rc(_g1, oc);
  _g1->heap_region_iterate(&rc);
}

class UpdateRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*    _g1h;
  ModRefBarrierSet*   _mr_bs;
  UpdateRSOopClosure  _cl;
  int _worker_i;
public:
  UpdateRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
    _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
    _mr_bs(g1->mr_bs()),
    _worker_i(worker_i),
    _g1h(g1)
    {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->in_collection_set() && !r->continuesHumongous()) {
      _cl.set_from(r);
      r->set_next_filter_kind(HeapRegionDCTOC::OutOfRegionFilterKind);
      _mr_bs->mod_oop_in_space_iterate(r, &_cl, true, true);
    }
    return false;
  }
};

class VerifyRSCleanCardOopClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  VerifyRSCleanCardOopClosure(G1CollectedHeap* g1) : _g1(g1) {}

  virtual void do_oop(narrowOop* p) {
    guarantee(false, "NYI");
  }
  virtual void do_oop(oop* p) {
    oop obj = *p;
    HeapRegion* to = _g1->heap_region_containing(obj);
    guarantee(to == NULL || !to->in_collection_set(),
              "Missed a rem set member.");
  }
};

HRInto_G1RemSet::HRInto_G1RemSet(G1CollectedHeap* g1, CardTableModRefBS* ct_bs)
  : G1RemSet(g1), _ct_bs(ct_bs), _g1p(_g1->g1_policy()),
    _cg1r(g1->concurrent_g1_refine()),
    _par_traversal_in_progress(false), _new_refs(NULL),
    _cards_scanned(NULL), _total_cards_scanned(0)
{
  _seq_task = new SubTasksDone(NumSeqTasks);
153 154 155 156 157
  guarantee(n_workers() > 0, "There should be some workers");
  _new_refs = NEW_C_HEAP_ARRAY(GrowableArray<oop*>*, n_workers());
  for (uint i = 0; i < n_workers(); i++) {
    _new_refs[i] = new (ResourceObj::C_HEAP) GrowableArray<oop*>(8192,true);
  }
158 159 160 161
}

HRInto_G1RemSet::~HRInto_G1RemSet() {
  delete _seq_task;
162 163 164 165
  for (uint i = 0; i < n_workers(); i++) {
    delete _new_refs[i];
  }
  FREE_C_HEAP_ARRAY(GrowableArray<oop*>*, _new_refs);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
}

void CountNonCleanMemRegionClosure::do_MemRegion(MemRegion mr) {
  if (_g1->is_in_g1_reserved(mr.start())) {
    _n += (int) ((mr.byte_size() / CardTableModRefBS::card_size));
    if (_start_first == NULL) _start_first = mr.start();
  }
}

class ScanRSClosure : public HeapRegionClosure {
  size_t _cards_done, _cards;
  G1CollectedHeap* _g1h;
  OopsInHeapRegionClosure* _oc;
  G1BlockOffsetSharedArray* _bot_shared;
  CardTableModRefBS *_ct_bs;
  int _worker_i;
  bool _try_claimed;
183
  size_t _min_skip_distance, _max_skip_distance;
184 185 186 187 188 189 190 191 192 193 194
public:
  ScanRSClosure(OopsInHeapRegionClosure* oc, int worker_i) :
    _oc(oc),
    _cards(0),
    _cards_done(0),
    _worker_i(worker_i),
    _try_claimed(false)
  {
    _g1h = G1CollectedHeap::heap();
    _bot_shared = _g1h->bot_shared();
    _ct_bs = (CardTableModRefBS*) (_g1h->barrier_set());
195 196
    _min_skip_distance = 16;
    _max_skip_distance = 2 * _g1h->n_par_threads() * _min_skip_distance;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  }

  void set_try_claimed() { _try_claimed = true; }

  void scanCard(size_t index, HeapRegion *r) {
    _cards_done++;
    DirtyCardToOopClosure* cl =
      r->new_dcto_closure(_oc,
                         CardTableModRefBS::Precise,
                         HeapRegionDCTOC::IntoCSFilterKind);

    // Set the "from" region in the closure.
    _oc->set_region(r);
    HeapWord* card_start = _bot_shared->address_for_index(index);
    HeapWord* card_end = card_start + G1BlockOffsetSharedArray::N_words;
    Space *sp = SharedHeap::heap()->space_containing(card_start);
    MemRegion sm_region;
    if (ParallelGCThreads > 0) {
      // first find the used area
      sm_region = sp->used_region_at_save_marks();
    } else {
      // The closure is not idempotent.  We shouldn't look at objects
      // allocated during the GC.
      sm_region = sp->used_region_at_save_marks();
    }
    MemRegion mr = sm_region.intersection(MemRegion(card_start,card_end));
    if (!mr.is_empty()) {
      cl->do_MemRegion(mr);
    }
  }

  void printCard(HeapRegion* card_region, size_t card_index,
                 HeapWord* card_start) {
    gclog_or_tty->print_cr("T %d Region [" PTR_FORMAT ", " PTR_FORMAT ") "
                           "RS names card %p: "
                           "[" PTR_FORMAT ", " PTR_FORMAT ")",
                           _worker_i,
                           card_region->bottom(), card_region->end(),
                           card_index,
                           card_start, card_start + G1BlockOffsetSharedArray::N_words);
  }

  bool doHeapRegion(HeapRegion* r) {
    assert(r->in_collection_set(), "should only be called on elements of CS.");
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs->iter_is_complete()) return false; // All done.
    if (!_try_claimed && !hrrs->claim_iter()) return false;
    // If we didn't return above, then
    //   _try_claimed || r->claim_iter()
    // is true: either we're supposed to work on claimed-but-not-complete
    // regions, or we successfully claimed the region.
    HeapRegionRemSetIterator* iter = _g1h->rem_set_iterator(_worker_i);
    hrrs->init_iterator(iter);
    size_t card_index;
251
    size_t skip_distance = 0, current_card = 0, jump_to_card = 0;
252
    while (iter->has_next(card_index)) {
253 254 255 256
      if (current_card < jump_to_card) {
        ++current_card;
        continue;
      }
257 258 259 260 261 262 263 264 265 266
      HeapWord* card_start = _g1h->bot_shared()->address_for_index(card_index);
#if 0
      gclog_or_tty->print("Rem set iteration yielded card [" PTR_FORMAT ", " PTR_FORMAT ").\n",
                          card_start, card_start + CardTableModRefBS::card_size_in_words);
#endif

      HeapRegion* card_region = _g1h->heap_region_containing(card_start);
      assert(card_region != NULL, "Yielding cards not in the heap?");
      _cards++;

267 268 269
       // If the card is dirty, then we will scan it during updateRS.
      if (!card_region->in_collection_set() && !_ct_bs->is_card_dirty(card_index)) {
          if (!_ct_bs->is_card_claimed(card_index) && _ct_bs->claim_card(card_index)) {
270
            scanCard(card_index, card_region);
271 272 273 274 275 276 277 278 279 280 281 282
          } else if (_try_claimed) {
            if (jump_to_card == 0 || jump_to_card != current_card) {
              // We did some useful work in the previous iteration.
              // Decrease the distance.
              skip_distance = MAX2(skip_distance >> 1, _min_skip_distance);
            } else {
              // Previous iteration resulted in a claim failure.
              // Increase the distance.
              skip_distance = MIN2(skip_distance << 1, _max_skip_distance);
            }
            jump_to_card = current_card + skip_distance;
          }
283
      }
284 285 286 287
      ++current_card;
    }
    if (!_try_claimed) {
      hrrs->set_iter_complete();
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    }
    return false;
  }
  // Set all cards back to clean.
  void cleanup() {_g1h->cleanUpCardTable();}
  size_t cards_done() { return _cards_done;}
  size_t cards_looked_up() { return _cards;}
};

// We want the parallel threads to start their scanning at
// different collection set regions to avoid contention.
// If we have:
//          n collection set regions
//          p threads
// Then thread t will start at region t * floor (n/p)

HeapRegion* HRInto_G1RemSet::calculateStartRegion(int worker_i) {
  HeapRegion* result = _g1p->collection_set();
  if (ParallelGCThreads > 0) {
    size_t cs_size = _g1p->collection_set_size();
    int n_workers = _g1->workers()->total_workers();
    size_t cs_spans = cs_size / n_workers;
    size_t ind      = cs_spans * worker_i;
    for (size_t i = 0; i < ind; i++)
      result = result->next_in_collection_set();
  }
  return result;
}

void HRInto_G1RemSet::scanRS(OopsInHeapRegionClosure* oc, int worker_i) {
  double rs_time_start = os::elapsedTime();
  HeapRegion *startRegion = calculateStartRegion(worker_i);

  BufferingOopsInHeapRegionClosure boc(oc);
  ScanRSClosure scanRScl(&boc, worker_i);
  _g1->collection_set_iterate_from(startRegion, &scanRScl);
  scanRScl.set_try_claimed();
  _g1->collection_set_iterate_from(startRegion, &scanRScl);

  boc.done();
  double closure_app_time_sec = boc.closure_app_seconds();
  double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) -
    closure_app_time_sec;
  double closure_app_time_ms = closure_app_time_sec * 1000.0;

  assert( _cards_scanned != NULL, "invariant" );
  _cards_scanned[worker_i] = scanRScl.cards_done();

  _g1p->record_scan_rs_start_time(worker_i, rs_time_start * 1000.0);
  _g1p->record_scan_rs_time(worker_i, scan_rs_time_sec * 1000.0);
338 339 340 341

  double scan_new_refs_time_ms = _g1p->get_scan_new_refs_time(worker_i);
  if (scan_new_refs_time_ms > 0.0) {
    closure_app_time_ms += scan_new_refs_time_ms;
342
  }
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
  _g1p->record_obj_copy_time(worker_i, closure_app_time_ms);
}

void HRInto_G1RemSet::updateRS(int worker_i) {
  ConcurrentG1Refine* cg1r = _g1->concurrent_g1_refine();

  double start = os::elapsedTime();
  _g1p->record_update_rs_start_time(worker_i, start * 1000.0);

  if (G1RSBarrierUseQueue && !cg1r->do_traversal()) {
    // Apply the appropriate closure to all remaining log entries.
    _g1->iterate_dirty_card_closure(false, worker_i);
    // Now there should be no dirty cards.
    if (G1RSLogCheckCardTable) {
      CountNonCleanMemRegionClosure cl(_g1);
      _ct_bs->mod_card_iterate(&cl);
      // XXX This isn't true any more: keeping cards of young regions
      // marked dirty broke it.  Need some reasonable fix.
      guarantee(cl.n() == 0, "Card table should be clean.");
    }
  } else {
    UpdateRSOutOfRegionClosure update_rs(_g1, worker_i);
    _g1->heap_region_iterate(&update_rs);
    // We did a traversal; no further one is necessary.
    if (G1RSBarrierUseQueue) {
      assert(cg1r->do_traversal(), "Or we shouldn't have gotten here.");
      cg1r->set_pya_cancel();
    }
    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }
  }
  _g1p->record_update_rs_time(worker_i, (os::elapsedTime() - start) * 1000.0);
}

#ifndef PRODUCT
class PrintRSClosure : public HeapRegionClosure {
  int _count;
public:
  PrintRSClosure() : _count(0) {}
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    _count += (int) hrrs->occupied();
    if (hrrs->occupied() == 0) {
      gclog_or_tty->print("Heap Region [" PTR_FORMAT ", " PTR_FORMAT ") "
                          "has no remset entries\n",
                          r->bottom(), r->end());
    } else {
      gclog_or_tty->print("Printing rem set for heap region [" PTR_FORMAT ", " PTR_FORMAT ")\n",
                          r->bottom(), r->end());
      r->print();
      hrrs->print();
      gclog_or_tty->print("\nDone printing rem set\n");
    }
    return false;
  }
  int occupied() {return _count;}
};
#endif

class CountRSSizeClosure: public HeapRegionClosure {
  size_t _n;
  size_t _tot;
  size_t _max;
  HeapRegion* _max_r;
  enum {
    N = 20,
    MIN = 6
  };
  int _histo[N];
public:
  CountRSSizeClosure() : _n(0), _tot(0), _max(0), _max_r(NULL) {
    for (int i = 0; i < N; i++) _histo[i] = 0;
  }
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      size_t occ = r->rem_set()->occupied();
      _n++;
      _tot += occ;
      if (occ > _max) {
        _max = occ;
        _max_r = r;
      }
      // Fit it into a histo bin.
      int s = 1 << MIN;
      int i = 0;
      while (occ > (size_t) s && i < (N-1)) {
        s = s << 1;
        i++;
      }
      _histo[i]++;
    }
    return false;
  }
  size_t n() { return _n; }
  size_t tot() { return _tot; }
  size_t mx() { return _max; }
  HeapRegion* mxr() { return _max_r; }
  void print_histo() {
    int mx = N;
    while (mx >= 0) {
      if (_histo[mx-1] > 0) break;
      mx--;
    }
    gclog_or_tty->print_cr("Number of regions with given RS sizes:");
    gclog_or_tty->print_cr("           <= %8d   %8d", 1 << MIN, _histo[0]);
    for (int i = 1; i < mx-1; i++) {
      gclog_or_tty->print_cr("  %8d  - %8d   %8d",
                    (1 << (MIN + i - 1)) + 1,
                    1 << (MIN + i),
                    _histo[i]);
    }
    gclog_or_tty->print_cr("            > %8d   %8d", (1 << (MIN+mx-2))+1, _histo[mx-1]);
  }
};

void
HRInto_G1RemSet::scanNewRefsRS(OopsInHeapRegionClosure* oc,
                                             int worker_i) {
  double scan_new_refs_start_sec = os::elapsedTime();
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (g1h->barrier_set());
467 468
  for (int i = 0; i < _new_refs[worker_i]->length(); i++) {
    oop* p = _new_refs[worker_i]->at(i);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    oop obj = *p;
    // *p was in the collection set when p was pushed on "_new_refs", but
    // another thread may have processed this location from an RS, so it
    // might not point into the CS any longer.  If so, it's obviously been
    // processed, and we don't need to do anything further.
    if (g1h->obj_in_cs(obj)) {
      HeapRegion* r = g1h->heap_region_containing(p);

      DEBUG_ONLY(HeapRegion* to = g1h->heap_region_containing(obj));
      oc->set_region(r);
      // If "p" has already been processed concurrently, this is
      // idempotent.
      oc->do_oop(p);
    }
  }
  _g1p->record_scan_new_refs_time(worker_i,
                                  (os::elapsedTime() - scan_new_refs_start_sec)
                                  * 1000.0);
}

void HRInto_G1RemSet::set_par_traversal(bool b) {
  _par_traversal_in_progress = b;
  HeapRegionRemSet::set_par_traversal(b);
}

void HRInto_G1RemSet::cleanupHRRS() {
  HeapRegionRemSet::cleanup();
}

void
HRInto_G1RemSet::oops_into_collection_set_do(OopsInHeapRegionClosure* oc,
                                             int worker_i) {
#if CARD_REPEAT_HISTO
  ct_freq_update_histo_and_reset();
#endif
  if (worker_i == 0) {
    _cg1r->clear_and_record_card_counts();
  }

  // Make this into a command-line flag...
  if (G1RSCountHisto && (ParallelGCThreads == 0 || worker_i == 0)) {
    CountRSSizeClosure count_cl;
    _g1->heap_region_iterate(&count_cl);
    gclog_or_tty->print_cr("Avg of %d RS counts is %f, max is %d, "
                  "max region is " PTR_FORMAT,
                  count_cl.n(), (float)count_cl.tot()/(float)count_cl.n(),
                  count_cl.mx(), count_cl.mxr());
    count_cl.print_histo();
  }

  if (ParallelGCThreads > 0) {
520 521 522 523 524 525 526
    // The two flags below were introduced temporarily to serialize
    // the updating and scanning of remembered sets. There are some
    // race conditions when these two operations are done in parallel
    // and they are causing failures. When we resolve said race
    // conditions, we'll revert back to parallel remembered set
    // updating and scanning. See CRs 6677707 and 6677708.
    if (G1EnableParallelRSetUpdating || (worker_i == 0)) {
527 528
      updateRS(worker_i);
      scanNewRefsRS(oc, worker_i);
529 530 531 532 533
    } else {
      _g1p->record_update_rs_start_time(worker_i, os::elapsedTime());
      _g1p->record_update_rs_processed_buffers(worker_i, 0.0);
      _g1p->record_update_rs_time(worker_i, 0.0);
      _g1p->record_scan_new_refs_time(worker_i, 0.0);
534 535
    }
    if (G1EnableParallelRSetScanning || (worker_i == 0)) {
536
      scanRS(oc, worker_i);
537 538 539
    } else {
      _g1p->record_scan_rs_start_time(worker_i, os::elapsedTime());
      _g1p->record_scan_rs_time(worker_i, 0.0);
540 541 542 543
    }
  } else {
    assert(worker_i == 0, "invariant");
    updateRS(0);
544
    scanNewRefsRS(oc, 0);
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    scanRS(oc, 0);
  }
}

void HRInto_G1RemSet::
prepare_for_oops_into_collection_set_do() {
#if G1_REM_SET_LOGGING
  PrintRSClosure cl;
  _g1->collection_set_iterate(&cl);
#endif
  cleanupHRRS();
  ConcurrentG1Refine* cg1r = _g1->concurrent_g1_refine();
  _g1->set_refine_cte_cl_concurrency(false);
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  dcqs.concatenate_logs();

  assert(!_par_traversal_in_progress, "Invariant between iterations.");
  if (ParallelGCThreads > 0) {
    set_par_traversal(true);
564
    _seq_task->set_par_threads((int)n_workers());
565 566 567 568 569 570 571 572
    if (cg1r->do_traversal()) {
      updateRS(0);
      // Have to do this again after updaters
      cleanupHRRS();
    }
  }
  guarantee( _cards_scanned == NULL, "invariant" );
  _cards_scanned = NEW_C_HEAP_ARRAY(size_t, n_workers());
573 574 575
  for (uint i = 0; i < n_workers(); ++i) {
    _cards_scanned[i] = 0;
  }
576 577 578 579 580 581 582 583 584 585 586 587
  _total_cards_scanned = 0;
}


class cleanUpIteratorsClosure : public HeapRegionClosure {
  bool doHeapRegion(HeapRegion *r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    hrrs->init_for_par_iteration();
    return false;
  }
};

588 589 590 591 592 593 594 595 596 597
class UpdateRSetOopsIntoCSImmediate : public OopClosure {
  G1CollectedHeap* _g1;
public:
  UpdateRSetOopsIntoCSImmediate(G1CollectedHeap* g1) : _g1(g1) { }
  virtual void do_oop(narrowOop* p) {
    guarantee(false, "NYI");
  }
  virtual void do_oop(oop* p) {
    HeapRegion* to = _g1->heap_region_containing(*p);
    if (to->in_collection_set()) {
598
      to->rem_set()->add_reference(p, 0);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    }
  }
};

class UpdateRSetOopsIntoCSDeferred : public OopClosure {
  G1CollectedHeap* _g1;
  CardTableModRefBS* _ct_bs;
  DirtyCardQueue* _dcq;
public:
  UpdateRSetOopsIntoCSDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
    _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) { }
  virtual void do_oop(narrowOop* p) {
    guarantee(false, "NYI");
  }
  virtual void do_oop(oop* p) {
    oop obj = *p;
    if (_g1->obj_in_cs(obj)) {
      size_t card_index = _ct_bs->index_for(p);
      if (_ct_bs->mark_card_deferred(card_index)) {
        _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
      }
    }
  }
};

void HRInto_G1RemSet::new_refs_iterate(OopClosure* cl) {
  for (size_t i = 0; i < n_workers(); i++) {
    for (int j = 0; j < _new_refs[i]->length(); j++) {
      oop* p = _new_refs[i]->at(j);
      cl->do_oop(p);
    }
  }
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
void HRInto_G1RemSet::cleanup_after_oops_into_collection_set_do() {
  guarantee( _cards_scanned != NULL, "invariant" );
  _total_cards_scanned = 0;
  for (uint i = 0; i < n_workers(); ++i)
    _total_cards_scanned += _cards_scanned[i];
  FREE_C_HEAP_ARRAY(size_t, _cards_scanned);
  _cards_scanned = NULL;
  // Cleanup after copy
#if G1_REM_SET_LOGGING
  PrintRSClosure cl;
  _g1->heap_region_iterate(&cl);
#endif
  _g1->set_refine_cte_cl_concurrency(true);
  cleanUpIteratorsClosure iterClosure;
  _g1->collection_set_iterate(&iterClosure);
  // Set all cards back to clean.
  _g1->cleanUpCardTable();
  if (ParallelGCThreads > 0) {
    ConcurrentG1Refine* cg1r = _g1->concurrent_g1_refine();
    if (cg1r->do_traversal()) {
      cg1r->cg1rThread()->set_do_traversal(false);
    }
    set_par_traversal(false);
  }
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

  if (_g1->evacuation_failed()) {
    // Restore remembered sets for the regions pointing into
    // the collection set.
    if (G1DeferredRSUpdate) {
      DirtyCardQueue dcq(&_g1->dirty_card_queue_set());
      UpdateRSetOopsIntoCSDeferred deferred_update(_g1, &dcq);
      new_refs_iterate(&deferred_update);
    } else {
      UpdateRSetOopsIntoCSImmediate immediate_update(_g1);
      new_refs_iterate(&immediate_update);
    }
  }
  for (uint i = 0; i < n_workers(); i++) {
    _new_refs[i]->clear();
  }

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
  assert(!_par_traversal_in_progress, "Invariant between iterations.");
}

class UpdateRSObjectClosure: public ObjectClosure {
  UpdateRSOopClosure* _update_rs_oop_cl;
public:
  UpdateRSObjectClosure(UpdateRSOopClosure* update_rs_oop_cl) :
    _update_rs_oop_cl(update_rs_oop_cl) {}
  void do_object(oop obj) {
    obj->oop_iterate(_update_rs_oop_cl);
  }

};

class ScrubRSClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  BitMap* _region_bm;
  BitMap* _card_bm;
  CardTableModRefBS* _ctbs;
public:
  ScrubRSClosure(BitMap* region_bm, BitMap* card_bm) :
    _g1h(G1CollectedHeap::heap()),
    _region_bm(region_bm), _card_bm(card_bm),
    _ctbs(NULL)
  {
    ModRefBarrierSet* bs = _g1h->mr_bs();
    guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
    _ctbs = (CardTableModRefBS*)bs;
  }

  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      r->rem_set()->scrub(_ctbs, _region_bm, _card_bm);
    }
    return false;
  }
};

void HRInto_G1RemSet::scrub(BitMap* region_bm, BitMap* card_bm) {
  ScrubRSClosure scrub_cl(region_bm, card_bm);
  _g1->heap_region_iterate(&scrub_cl);
}

void HRInto_G1RemSet::scrub_par(BitMap* region_bm, BitMap* card_bm,
                                int worker_num, int claim_val) {
  ScrubRSClosure scrub_cl(region_bm, card_bm);
  _g1->heap_region_par_iterate_chunked(&scrub_cl, worker_num, claim_val);
}


class ConcRefineRegionClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  ConcurrentGCThread* _cgc_thrd;
  ConcurrentG1Refine* _cg1r;
  unsigned _cards_processed;
  UpdateRSOopClosure _update_rs_oop_cl;
public:
  ConcRefineRegionClosure(CardTableModRefBS* ctbs,
                          ConcurrentG1Refine* cg1r,
                          HRInto_G1RemSet* g1rs) :
    _ctbs(ctbs), _cg1r(cg1r), _cgc_thrd(cg1r->cg1rThread()),
    _update_rs_oop_cl(g1rs), _cards_processed(0),
    _g1h(G1CollectedHeap::heap())
  {}

  bool doHeapRegion(HeapRegion* r) {
    if (!r->in_collection_set() &&
        !r->continuesHumongous() &&
743
        !r->is_young()) {
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
      _update_rs_oop_cl.set_from(r);
      UpdateRSObjectClosure update_rs_obj_cl(&_update_rs_oop_cl);

      // For each run of dirty card in the region:
      //   1) Clear the cards.
      //   2) Process the range corresponding to the run, adding any
      //      necessary RS entries.
      // 1 must precede 2, so that a concurrent modification redirties the
      // card.  If a processing attempt does not succeed, because it runs
      // into an unparseable region, we will do binary search to find the
      // beginning of the next parseable region.
      HeapWord* startAddr = r->bottom();
      HeapWord* endAddr = r->used_region().end();
      HeapWord* lastAddr;
      HeapWord* nextAddr;

      for (nextAddr = lastAddr = startAddr;
           nextAddr < endAddr;
           nextAddr = lastAddr) {
        MemRegion dirtyRegion;

        // Get and clear dirty region from card table
        MemRegion next_mr(nextAddr, endAddr);
        dirtyRegion =
          _ctbs->dirty_card_range_after_reset(
                           next_mr,
                           true, CardTableModRefBS::clean_card_val());
        assert(dirtyRegion.start() >= nextAddr,
               "returned region inconsistent?");

        if (!dirtyRegion.is_empty()) {
          HeapWord* stop_point =
            r->object_iterate_mem_careful(dirtyRegion,
                                          &update_rs_obj_cl);
          if (stop_point == NULL) {
            lastAddr = dirtyRegion.end();
            _cards_processed +=
              (int) (dirtyRegion.word_size() / CardTableModRefBS::card_size_in_words);
          } else {
            // We're going to skip one or more cards that we can't parse.
            HeapWord* next_parseable_card =
              r->next_block_start_careful(stop_point);
            // Round this up to a card boundary.
            next_parseable_card =
              _ctbs->addr_for(_ctbs->byte_after_const(next_parseable_card));
            // Now we invalidate the intervening cards so we'll see them
            // again.
            MemRegion remaining_dirty =
              MemRegion(stop_point, dirtyRegion.end());
            MemRegion skipped =
              MemRegion(stop_point, next_parseable_card);
            _ctbs->invalidate(skipped.intersection(remaining_dirty));

            // Now start up again where we can parse.
            lastAddr = next_parseable_card;

            // Count how many we did completely.
            _cards_processed +=
              (stop_point - dirtyRegion.start()) /
              CardTableModRefBS::card_size_in_words;
          }
          // Allow interruption at regular intervals.
          // (Might need to make them more regular, if we get big
          // dirty regions.)
          if (_cgc_thrd != NULL) {
            if (_cgc_thrd->should_yield()) {
              _cgc_thrd->yield();
              switch (_cg1r->get_pya()) {
              case PYA_continue:
                // This may have changed: re-read.
                endAddr = r->used_region().end();
                continue;
              case PYA_restart: case PYA_cancel:
                return true;
              }
            }
          }
        } else {
          break;
        }
      }
    }
    // A good yield opportunity.
    if (_cgc_thrd != NULL) {
      if (_cgc_thrd->should_yield()) {
        _cgc_thrd->yield();
        switch (_cg1r->get_pya()) {
        case PYA_restart: case PYA_cancel:
          return true;
        default:
          break;
        }

      }
    }
    return false;
  }

  unsigned cards_processed() { return _cards_processed; }
};


void HRInto_G1RemSet::concurrentRefinementPass(ConcurrentG1Refine* cg1r) {
  ConcRefineRegionClosure cr_cl(ct_bs(), cg1r, this);
  _g1->heap_region_iterate(&cr_cl);
  _conc_refine_traversals++;
  _conc_refine_cards += cr_cl.cards_processed();
}

static IntHistogram out_of_histo(50, 50);



void HRInto_G1RemSet::concurrentRefineOneCard(jbyte* card_ptr, int worker_i) {
  // If the card is no longer dirty, nothing to do.
  if (*card_ptr != CardTableModRefBS::dirty_card_val()) return;

  // Construct the region representing the card.
  HeapWord* start = _ct_bs->addr_for(card_ptr);
  // And find the region containing it.
  HeapRegion* r = _g1->heap_region_containing(start);
  if (r == NULL) {
    guarantee(_g1->is_in_permanent(start), "Or else where?");
    return;  // Not in the G1 heap (might be in perm, for example.)
  }
  // Why do we have to check here whether a card is on a young region,
  // given that we dirty young regions and, as a result, the
  // post-barrier is supposed to filter them out and never to enqueue
  // them? When we allocate a new region as the "allocation region" we
  // actually dirty its cards after we release the lock, since card
  // dirtying while holding the lock was a performance bottleneck. So,
  // as a result, it is possible for other threads to actually
  // allocate objects in the region (after the acquire the lock)
  // before all the cards on the region are dirtied. This is unlikely,
  // and it doesn't happen often, but it can happen. So, the extra
  // check below filters out those cards.
880
  if (r->is_young()) {
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    return;
  }
  // While we are processing RSet buffers during the collection, we
  // actually don't want to scan any cards on the collection set,
  // since we don't want to update remebered sets with entries that
  // point into the collection set, given that live objects from the
  // collection set are about to move and such entries will be stale
  // very soon. This change also deals with a reliability issue which
  // involves scanning a card in the collection set and coming across
  // an array that was being chunked and looking malformed. Note,
  // however, that if evacuation fails, we have to scan any objects
  // that were not moved and create any missing entries.
  if (r->in_collection_set()) {
    return;
  }

  // Should we defer it?
  if (_cg1r->use_cache()) {
    card_ptr = _cg1r->cache_insert(card_ptr);
    // If it was not an eviction, nothing to do.
    if (card_ptr == NULL) return;

    // OK, we have to reset the card start, region, etc.
    start = _ct_bs->addr_for(card_ptr);
    r = _g1->heap_region_containing(start);
    if (r == NULL) {
      guarantee(_g1->is_in_permanent(start), "Or else where?");
      return;  // Not in the G1 heap (might be in perm, for example.)
    }
    guarantee(!r->is_young(), "It was evicted in the current minor cycle.");
  }

  HeapWord* end   = _ct_bs->addr_for(card_ptr + 1);
  MemRegion dirtyRegion(start, end);

#if CARD_REPEAT_HISTO
  init_ct_freq_table(_g1->g1_reserved_obj_bytes());
  ct_freq_note_card(_ct_bs->index_for(start));
#endif

  UpdateRSOopClosure update_rs_oop_cl(this, worker_i);
  update_rs_oop_cl.set_from(r);
  FilterOutOfRegionClosure filter_then_update_rs_oop_cl(r, &update_rs_oop_cl);

  // Undirty the card.
  *card_ptr = CardTableModRefBS::clean_card_val();
  // We must complete this write before we do any of the reads below.
  OrderAccess::storeload();
  // And process it, being careful of unallocated portions of TLAB's.
  HeapWord* stop_point =
    r->oops_on_card_seq_iterate_careful(dirtyRegion,
                                        &filter_then_update_rs_oop_cl);
  // If stop_point is non-null, then we encountered an unallocated region
  // (perhaps the unfilled portion of a TLAB.)  For now, we'll dirty the
  // card and re-enqueue: if we put off the card until a GC pause, then the
  // unallocated portion will be filled in.  Alternatively, we might try
  // the full complexity of the technique used in "regular" precleaning.
  if (stop_point != NULL) {
    // The card might have gotten re-dirtied and re-enqueued while we
    // worked.  (In fact, it's pretty likely.)
    if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
      *card_ptr = CardTableModRefBS::dirty_card_val();
      MutexLockerEx x(Shared_DirtyCardQ_lock,
                      Mutex::_no_safepoint_check_flag);
      DirtyCardQueue* sdcq =
        JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
      sdcq->enqueue(card_ptr);
    }
  } else {
    out_of_histo.add_entry(filter_then_update_rs_oop_cl.out_of_region());
    _conc_refine_cards++;
  }
}

class HRRSStatsIter: public HeapRegionClosure {
  size_t _occupied;
  size_t _total_mem_sz;
  size_t _max_mem_sz;
  HeapRegion* _max_mem_sz_region;
public:
  HRRSStatsIter() :
    _occupied(0),
    _total_mem_sz(0),
    _max_mem_sz(0),
    _max_mem_sz_region(NULL)
  {}

  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    size_t mem_sz = r->rem_set()->mem_size();
    if (mem_sz > _max_mem_sz) {
      _max_mem_sz = mem_sz;
      _max_mem_sz_region = r;
    }
    _total_mem_sz += mem_sz;
    size_t occ = r->rem_set()->occupied();
    _occupied += occ;
    return false;
  }
  size_t total_mem_sz() { return _total_mem_sz; }
  size_t max_mem_sz() { return _max_mem_sz; }
  size_t occupied() { return _occupied; }
  HeapRegion* max_mem_sz_region() { return _max_mem_sz_region; }
};

void HRInto_G1RemSet::print_summary_info() {
  G1CollectedHeap* g1 = G1CollectedHeap::heap();
  ConcurrentG1RefineThread* cg1r_thrd =
    g1->concurrent_g1_refine()->cg1rThread();

#if CARD_REPEAT_HISTO
  gclog_or_tty->print_cr("\nG1 card_repeat count histogram: ");
  gclog_or_tty->print_cr("  # of repeats --> # of cards with that number.");
  card_repeat_count.print_on(gclog_or_tty);
#endif

  if (FILTEROUTOFREGIONCLOSURE_DOHISTOGRAMCOUNT) {
    gclog_or_tty->print_cr("\nG1 rem-set out-of-region histogram: ");
    gclog_or_tty->print_cr("  # of CS ptrs --> # of cards with that number.");
    out_of_histo.print_on(gclog_or_tty);
  }
  gclog_or_tty->print_cr("\n Concurrent RS processed %d cards in "
                "%5.2fs.",
                _conc_refine_cards, cg1r_thrd->vtime_accum());

  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  jint tot_processed_buffers =
    dcqs.processed_buffers_mut() + dcqs.processed_buffers_rs_thread();
  gclog_or_tty->print_cr("  Of %d completed buffers:", tot_processed_buffers);
  gclog_or_tty->print_cr("     %8d (%5.1f%%) by conc RS thread.",
                dcqs.processed_buffers_rs_thread(),
                100.0*(float)dcqs.processed_buffers_rs_thread()/
                (float)tot_processed_buffers);
  gclog_or_tty->print_cr("     %8d (%5.1f%%) by mutator threads.",
                dcqs.processed_buffers_mut(),
                100.0*(float)dcqs.processed_buffers_mut()/
                (float)tot_processed_buffers);
  gclog_or_tty->print_cr("   Did %d concurrent refinement traversals.",
                _conc_refine_traversals);
  if (!G1RSBarrierUseQueue) {
    gclog_or_tty->print_cr("   Scanned %8.2f cards/traversal.",
                  _conc_refine_traversals > 0 ?
                  (float)_conc_refine_cards/(float)_conc_refine_traversals :
                  0);
  }
  gclog_or_tty->print_cr("");
  if (G1UseHRIntoRS) {
    HRRSStatsIter blk;
    g1->heap_region_iterate(&blk);
    gclog_or_tty->print_cr("  Total heap region rem set sizes = " SIZE_FORMAT "K."
                           "  Max = " SIZE_FORMAT "K.",
                           blk.total_mem_sz()/K, blk.max_mem_sz()/K);
    gclog_or_tty->print_cr("  Static structures = " SIZE_FORMAT "K,"
                           " free_lists = " SIZE_FORMAT "K.",
                           HeapRegionRemSet::static_mem_size()/K,
                           HeapRegionRemSet::fl_mem_size()/K);
    gclog_or_tty->print_cr("    %d occupied cards represented.",
                           blk.occupied());
    gclog_or_tty->print_cr("    Max sz region = [" PTR_FORMAT ", " PTR_FORMAT " )"
1040
                           ", cap = " SIZE_FORMAT "K, occ = " SIZE_FORMAT "K.",
1041 1042 1043 1044 1045 1046 1047 1048 1049
                           blk.max_mem_sz_region()->bottom(), blk.max_mem_sz_region()->end(),
                           (blk.max_mem_sz_region()->rem_set()->mem_size() + K - 1)/K,
                           (blk.max_mem_sz_region()->rem_set()->occupied() + K - 1)/K);
    gclog_or_tty->print_cr("    Did %d coarsenings.",
                  HeapRegionRemSet::n_coarsenings());

  }
}
void HRInto_G1RemSet::prepare_for_verify() {
1050 1051 1052
  if (G1HRRSFlushLogBuffersOnVerify &&
      (VerifyBeforeGC || VerifyAfterGC)
      &&  !_g1->full_collection()) {
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    cleanupHRRS();
    _g1->set_refine_cte_cl_concurrency(false);
    if (SafepointSynchronize::is_at_safepoint()) {
      DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
      dcqs.concatenate_logs();
    }
    bool cg1r_use_cache = _cg1r->use_cache();
    _cg1r->set_use_cache(false);
    updateRS(0);
    _cg1r->set_use_cache(cg1r_use_cache);
1063 1064

    assert(JavaThread::dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
1065 1066
  }
}