assembler_x86.hpp 74.9 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

class BiasedLockingCounters;

// Contains all the definitions needed for x86 assembly code generation.

// Calling convention
class Argument VALUE_OBJ_CLASS_SPEC {
 public:
  enum {
#ifdef _LP64
#ifdef _WIN64
    n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
#else
    n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
#endif // _WIN64
    n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
#else
    n_register_parameters = 0   // 0 registers used to pass arguments
#endif // _LP64
  };
};


#ifdef _LP64
// Symbolically name the register arguments used by the c calling convention.
// Windows is different from linux/solaris. So much for standards...

#ifdef _WIN64

REGISTER_DECLARATION(Register, c_rarg0, rcx);
REGISTER_DECLARATION(Register, c_rarg1, rdx);
REGISTER_DECLARATION(Register, c_rarg2, r8);
REGISTER_DECLARATION(Register, c_rarg3, r9);

61 62 63 64
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
D
duke 已提交
65 66 67 68 69 70 71 72 73 74

#else

REGISTER_DECLARATION(Register, c_rarg0, rdi);
REGISTER_DECLARATION(Register, c_rarg1, rsi);
REGISTER_DECLARATION(Register, c_rarg2, rdx);
REGISTER_DECLARATION(Register, c_rarg3, rcx);
REGISTER_DECLARATION(Register, c_rarg4, r8);
REGISTER_DECLARATION(Register, c_rarg5, r9);

75 76 77 78 79 80 81 82
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
D
duke 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

#endif // _WIN64

// Symbolically name the register arguments used by the Java calling convention.
// We have control over the convention for java so we can do what we please.
// What pleases us is to offset the java calling convention so that when
// we call a suitable jni method the arguments are lined up and we don't
// have to do little shuffling. A suitable jni method is non-static and a
// small number of arguments (two fewer args on windows)
//
//        |-------------------------------------------------------|
//        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
//        |-------------------------------------------------------|
//        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
//        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
//        |-------------------------------------------------------|
//        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
//        |-------------------------------------------------------|

REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
// Windows runs out of register args here
#ifdef _WIN64
REGISTER_DECLARATION(Register, j_rarg3, rdi);
REGISTER_DECLARATION(Register, j_rarg4, rsi);
#else
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
#endif /* _WIN64 */
REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);

115 116 117 118 119 120 121 122
REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
D
duke 已提交
123 124 125 126

REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile

127
REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
D
duke 已提交
128 129
REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved

130 131 132 133 134 135
#else
// rscratch1 will apear in 32bit code that is dead but of course must compile
// Using noreg ensures if the dead code is incorrectly live and executed it
// will cause an assertion failure
#define rscratch1 noreg

D
duke 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
#endif // _LP64

// Address is an abstraction used to represent a memory location
// using any of the amd64 addressing modes with one object.
//
// Note: A register location is represented via a Register, not
//       via an address for efficiency & simplicity reasons.

class ArrayAddress;

class Address VALUE_OBJ_CLASS_SPEC {
 public:
  enum ScaleFactor {
    no_scale = -1,
    times_1  =  0,
    times_2  =  1,
    times_4  =  2,
153 154
    times_8  =  3,
    times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
D
duke 已提交
155
  };
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  static ScaleFactor times(int size) {
    assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
    if (size == 8)  return times_8;
    if (size == 4)  return times_4;
    if (size == 2)  return times_2;
    return times_1;
  }
  static int scale_size(ScaleFactor scale) {
    assert(scale != no_scale, "");
    assert(((1 << (int)times_1) == 1 &&
            (1 << (int)times_2) == 2 &&
            (1 << (int)times_4) == 4 &&
            (1 << (int)times_8) == 8), "");
    return (1 << (int)scale);
  }
D
duke 已提交
171 172 173 174 175 176 177 178

 private:
  Register         _base;
  Register         _index;
  ScaleFactor      _scale;
  int              _disp;
  RelocationHolder _rspec;

179 180 181 182 183
  // Easily misused constructors make them private
  // %%% can we make these go away?
  NOT_LP64(Address(address loc, RelocationHolder spec);)
  Address(int disp, address loc, relocInfo::relocType rtype);
  Address(int disp, address loc, RelocationHolder spec);
D
duke 已提交
184 185

 public:
186 187

 int disp() { return _disp; }
D
duke 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  // creation
  Address()
    : _base(noreg),
      _index(noreg),
      _scale(no_scale),
      _disp(0) {
  }

  // No default displacement otherwise Register can be implicitly
  // converted to 0(Register) which is quite a different animal.

  Address(Register base, int disp)
    : _base(base),
      _index(noreg),
      _scale(no_scale),
      _disp(disp) {
  }

  Address(Register base, Register index, ScaleFactor scale, int disp = 0)
    : _base (base),
      _index(index),
      _scale(scale),
      _disp (disp) {
    assert(!index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

215
  Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    : _base (base),
      _index(index.register_or_noreg()),
      _scale(scale),
      _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
    if (!index.is_register())  scale = Address::no_scale;
    assert(!_index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

  Address plus_disp(int disp) const {
    Address a = (*this);
    a._disp += disp;
    return a;
  }

D
duke 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  // The following two overloads are used in connection with the
  // ByteSize type (see sizes.hpp).  They simplify the use of
  // ByteSize'd arguments in assembly code. Note that their equivalent
  // for the optimized build are the member functions with int disp
  // argument since ByteSize is mapped to an int type in that case.
  //
  // Note: DO NOT introduce similar overloaded functions for WordSize
  // arguments as in the optimized mode, both ByteSize and WordSize
  // are mapped to the same type and thus the compiler cannot make a
  // distinction anymore (=> compiler errors).

#ifdef ASSERT
  Address(Register base, ByteSize disp)
    : _base(base),
      _index(noreg),
      _scale(no_scale),
      _disp(in_bytes(disp)) {
  }

  Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
    : _base(base),
      _index(index),
      _scale(scale),
      _disp(in_bytes(disp)) {
    assert(!index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }
258

259
  Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
260 261 262 263 264 265 266 267 268
    : _base (base),
      _index(index.register_or_noreg()),
      _scale(scale),
      _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
    if (!index.is_register())  scale = Address::no_scale;
    assert(!_index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

D
duke 已提交
269 270 271
#endif // ASSERT

  // accessors
272 273 274 275 276
  bool        uses(Register reg) const { return _base == reg || _index == reg; }
  Register    base()             const { return _base;  }
  Register    index()            const { return _index; }
  ScaleFactor scale()            const { return _scale; }
  int         disp()             const { return _disp;  }
D
duke 已提交
277 278 279 280

  // Convert the raw encoding form into the form expected by the constructor for
  // Address.  An index of 4 (rsp) corresponds to having no index, so convert
  // that to noreg for the Address constructor.
281
  static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
D
duke 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

  static Address make_array(ArrayAddress);

 private:
  bool base_needs_rex() const {
    return _base != noreg && _base->encoding() >= 8;
  }

  bool index_needs_rex() const {
    return _index != noreg &&_index->encoding() >= 8;
  }

  relocInfo::relocType reloc() const { return _rspec.type(); }

  friend class Assembler;
  friend class MacroAssembler;
  friend class LIR_Assembler; // base/index/scale/disp
};

//
// AddressLiteral has been split out from Address because operands of this type
// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
// the few instructions that need to deal with address literals are unique and the
// MacroAssembler does not have to implement every instruction in the Assembler
// in order to search for address literals that may need special handling depending
// on the instruction and the platform. As small step on the way to merging i486/amd64
// directories.
//
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
  friend class ArrayAddress;
  RelocationHolder _rspec;
  // Typically we use AddressLiterals we want to use their rval
  // However in some situations we want the lval (effect address) of the item.
  // We provide a special factory for making those lvals.
  bool _is_lval;

  // If the target is far we'll need to load the ea of this to
  // a register to reach it. Otherwise if near we can do rip
  // relative addressing.

  address          _target;

 protected:
  // creation
  AddressLiteral()
    : _is_lval(false),
      _target(NULL)
  {}

  public:


  AddressLiteral(address target, relocInfo::relocType rtype);

  AddressLiteral(address target, RelocationHolder const& rspec)
    : _rspec(rspec),
      _is_lval(false),
      _target(target)
  {}

  AddressLiteral addr() {
    AddressLiteral ret = *this;
    ret._is_lval = true;
    return ret;
  }


 private:

  address target() { return _target; }
  bool is_lval() { return _is_lval; }

  relocInfo::relocType reloc() const { return _rspec.type(); }
  const RelocationHolder& rspec() const { return _rspec; }

  friend class Assembler;
  friend class MacroAssembler;
  friend class Address;
  friend class LIR_Assembler;
};

// Convience classes
class RuntimeAddress: public AddressLiteral {

  public:

  RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}

};

class OopAddress: public AddressLiteral {

  public:

  OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}

};

class ExternalAddress: public AddressLiteral {

  public:

  ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}

};

class InternalAddress: public AddressLiteral {

  public:

  InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}

};

// x86 can do array addressing as a single operation since disp can be an absolute
// address amd64 can't. We create a class that expresses the concept but does extra
// magic on amd64 to get the final result

class ArrayAddress VALUE_OBJ_CLASS_SPEC {
  private:

  AddressLiteral _base;
  Address        _index;

  public:

  ArrayAddress() {};
  ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
  AddressLiteral base() { return _base; }
  Address index() { return _index; }

};

415
const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
D
duke 已提交
416 417 418 419 420 421 422 423

// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
// is what you get. The Assembler is generating code into a CodeBuffer.

class Assembler : public AbstractAssembler  {
  friend class AbstractAssembler; // for the non-virtual hack
  friend class LIR_Assembler; // as_Address()
424
  friend class StubGenerator;
D
duke 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

 public:
  enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
    zero          = 0x4,
    notZero       = 0x5,
    equal         = 0x4,
    notEqual      = 0x5,
    less          = 0xc,
    lessEqual     = 0xe,
    greater       = 0xf,
    greaterEqual  = 0xd,
    below         = 0x2,
    belowEqual    = 0x6,
    above         = 0x7,
    aboveEqual    = 0x3,
    overflow      = 0x0,
    noOverflow    = 0x1,
    carrySet      = 0x2,
    carryClear    = 0x3,
    negative      = 0x8,
    positive      = 0x9,
    parity        = 0xa,
    noParity      = 0xb
  };

  enum Prefix {
    // segment overrides
    CS_segment = 0x2e,
    SS_segment = 0x36,
    DS_segment = 0x3e,
    ES_segment = 0x26,
    FS_segment = 0x64,
    GS_segment = 0x65,

    REX        = 0x40,

    REX_B      = 0x41,
    REX_X      = 0x42,
    REX_XB     = 0x43,
    REX_R      = 0x44,
    REX_RB     = 0x45,
    REX_RX     = 0x46,
    REX_RXB    = 0x47,

    REX_W      = 0x48,

    REX_WB     = 0x49,
    REX_WX     = 0x4A,
    REX_WXB    = 0x4B,
    REX_WR     = 0x4C,
    REX_WRB    = 0x4D,
    REX_WRX    = 0x4E,
    REX_WRXB   = 0x4F
  };

  enum WhichOperand {
    // input to locate_operand, and format code for relocations
482
    imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
D
duke 已提交
483 484
    disp32_operand = 1,          // embedded 32-bit displacement or address
    call32_operand = 2,          // embedded 32-bit self-relative displacement
485
#ifndef _LP64
D
duke 已提交
486
    _WhichOperand_limit = 3
487 488 489 490
#else
     narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
    _WhichOperand_limit = 4
#endif
D
duke 已提交
491 492 493 494
  };



495 496 497 498 499 500 501 502 503
  // NOTE: The general philopsophy of the declarations here is that 64bit versions
  // of instructions are freely declared without the need for wrapping them an ifdef.
  // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
  // In the .cpp file the implementations are wrapped so that they are dropped out
  // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
  // to the size it was prior to merging up the 32bit and 64bit assemblers.
  //
  // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
  // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
D
duke 已提交
504

505
private:
D
duke 已提交
506 507


508 509 510
  // 64bit prefixes
  int prefix_and_encode(int reg_enc, bool byteinst = false);
  int prefixq_and_encode(int reg_enc);
D
duke 已提交
511

512 513
  int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
  int prefixq_and_encode(int dst_enc, int src_enc);
D
duke 已提交
514

515 516 517
  void prefix(Register reg);
  void prefix(Address adr);
  void prefixq(Address adr);
D
duke 已提交
518

519 520
  void prefix(Address adr, Register reg,  bool byteinst = false);
  void prefixq(Address adr, Register reg);
D
duke 已提交
521

522
  void prefix(Address adr, XMMRegister reg);
D
duke 已提交
523

524
  void prefetch_prefix(Address src);
D
duke 已提交
525

526 527
  // Helper functions for groups of instructions
  void emit_arith_b(int op1, int op2, Register dst, int imm8);
D
duke 已提交
528

529 530 531 532
  void emit_arith(int op1, int op2, Register dst, int32_t imm32);
  // only 32bit??
  void emit_arith(int op1, int op2, Register dst, jobject obj);
  void emit_arith(int op1, int op2, Register dst, Register src);
D
duke 已提交
533

534 535 536 537 538
  void emit_operand(Register reg,
                    Register base, Register index, Address::ScaleFactor scale,
                    int disp,
                    RelocationHolder const& rspec,
                    int rip_relative_correction = 0);
D
duke 已提交
539

540
  void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
D
duke 已提交
541

542 543
  // operands that only take the original 32bit registers
  void emit_operand32(Register reg, Address adr);
D
duke 已提交
544

545 546 547 548
  void emit_operand(XMMRegister reg,
                    Register base, Register index, Address::ScaleFactor scale,
                    int disp,
                    RelocationHolder const& rspec);
D
duke 已提交
549

550
  void emit_operand(XMMRegister reg, Address adr);
D
duke 已提交
551

552
  void emit_operand(MMXRegister reg, Address adr);
D
duke 已提交
553

554 555
  // workaround gcc (3.2.1-7) bug
  void emit_operand(Address adr, MMXRegister reg);
D
duke 已提交
556 557


558 559
  // Immediate-to-memory forms
  void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
D
duke 已提交
560

561
  void emit_farith(int b1, int b2, int i);
D
duke 已提交
562 563 564


 protected:
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
  #ifdef ASSERT
  void check_relocation(RelocationHolder const& rspec, int format);
  #endif

  inline void emit_long64(jlong x);

  void emit_data(jint data, relocInfo::relocType    rtype, int format);
  void emit_data(jint data, RelocationHolder const& rspec, int format);
  void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
  void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);


  bool reachable(AddressLiteral adr) NOT_LP64({ return true;});

  // These are all easily abused and hence protected

  // 32BIT ONLY SECTION
#ifndef _LP64
  // Make these disappear in 64bit mode since they would never be correct
  void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
  void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY

587
  void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
588 589 590 591 592 593
  void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY

  void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
#else
  // 64BIT ONLY SECTION
  void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
594 595 596 597 598 599

  void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
  void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);

  void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
  void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
#endif // _LP64

  // These are unique in that we are ensured by the caller that the 32bit
  // relative in these instructions will always be able to reach the potentially
  // 64bit address described by entry. Since they can take a 64bit address they
  // don't have the 32 suffix like the other instructions in this class.

  void call_literal(address entry, RelocationHolder const& rspec);
  void jmp_literal(address entry, RelocationHolder const& rspec);

  // Avoid using directly section
  // Instructions in this section are actually usable by anyone without danger
  // of failure but have performance issues that are addressed my enhanced
  // instructions which will do the proper thing base on the particular cpu.
  // We protect them because we don't trust you...

D
duke 已提交
616 617 618 619 620 621 622 623
  // Don't use next inc() and dec() methods directly. INC & DEC instructions
  // could cause a partial flag stall since they don't set CF flag.
  // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
  // which call inc() & dec() or add() & sub() in accordance with
  // the product flag UseIncDec value.

  void decl(Register dst);
  void decl(Address dst);
624 625
  void decq(Register dst);
  void decq(Address dst);
D
duke 已提交
626 627 628

  void incl(Register dst);
  void incl(Address dst);
629 630
  void incq(Register dst);
  void incq(Address dst);
D
duke 已提交
631

632 633 634
  // New cpus require use of movsd and movss to avoid partial register stall
  // when loading from memory. But for old Opteron use movlpd instead of movsd.
  // The selection is done in MacroAssembler::movdbl() and movflt().
D
duke 已提交
635

636 637 638 639
  // Move Scalar Single-Precision Floating-Point Values
  void movss(XMMRegister dst, Address src);
  void movss(XMMRegister dst, XMMRegister src);
  void movss(Address dst, XMMRegister src);
D
duke 已提交
640

641 642 643 644 645
  // Move Scalar Double-Precision Floating-Point Values
  void movsd(XMMRegister dst, Address src);
  void movsd(XMMRegister dst, XMMRegister src);
  void movsd(Address dst, XMMRegister src);
  void movlpd(XMMRegister dst, Address src);
D
duke 已提交
646

647 648 649 650
  // New cpus require use of movaps and movapd to avoid partial register stall
  // when moving between registers.
  void movaps(XMMRegister dst, XMMRegister src);
  void movapd(XMMRegister dst, XMMRegister src);
D
duke 已提交
651

652
  // End avoid using directly
D
duke 已提交
653 654


655 656
  // Instruction prefixes
  void prefix(Prefix p);
D
duke 已提交
657

658
  public:
D
duke 已提交
659

660 661
  // Creation
  Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
D
duke 已提交
662

663 664 665
  // Decoding
  static address locate_operand(address inst, WhichOperand which);
  static address locate_next_instruction(address inst);
D
duke 已提交
666

667
  // Utilities
D
duke 已提交
668

669 670 671 672 673 674 675
#ifdef _LP64
 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
#else
 static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
 static bool is_simm32(int32_t x) { return true; }
#endif // LP64
D
duke 已提交
676

677 678 679
  // Generic instructions
  // Does 32bit or 64bit as needed for the platform. In some sense these
  // belong in macro assembler but there is no need for both varieties to exist
D
duke 已提交
680

681
  void lea(Register dst, Address src);
D
duke 已提交
682

683
  void mov(Register dst, Register src);
D
duke 已提交
684

685 686
  void pusha();
  void popa();
D
duke 已提交
687

688 689
  void pushf();
  void popf();
D
duke 已提交
690

691
  void push(int32_t imm32);
D
duke 已提交
692

693
  void push(Register src);
D
duke 已提交
694

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  void pop(Register dst);

  // These are dummies to prevent surprise implicit conversions to Register
  void push(void* v);
  void pop(void* v);


  // These do register sized moves/scans
  void rep_mov();
  void rep_set();
  void repne_scan();
#ifdef _LP64
  void repne_scanl();
#endif

  // Vanilla instructions in lexical order

  void adcl(Register dst, int32_t imm32);
  void adcl(Register dst, Address src);
  void adcl(Register dst, Register src);

  void adcq(Register dst, int32_t imm32);
  void adcq(Register dst, Address src);
  void adcq(Register dst, Register src);


  void addl(Address dst, int32_t imm32);
  void addl(Address dst, Register src);
  void addl(Register dst, int32_t imm32);
  void addl(Register dst, Address src);
  void addl(Register dst, Register src);

  void addq(Address dst, int32_t imm32);
  void addq(Address dst, Register src);
  void addq(Register dst, int32_t imm32);
  void addq(Register dst, Address src);
  void addq(Register dst, Register src);
D
duke 已提交
732 733 734 735 736 737 738


  void addr_nop_4();
  void addr_nop_5();
  void addr_nop_7();
  void addr_nop_8();

739 740 741
  // Add Scalar Double-Precision Floating-Point Values
  void addsd(XMMRegister dst, Address src);
  void addsd(XMMRegister dst, XMMRegister src);
D
duke 已提交
742

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
  // Add Scalar Single-Precision Floating-Point Values
  void addss(XMMRegister dst, Address src);
  void addss(XMMRegister dst, XMMRegister src);

  void andl(Register dst, int32_t imm32);
  void andl(Register dst, Address src);
  void andl(Register dst, Register src);

  void andq(Register dst, int32_t imm32);
  void andq(Register dst, Address src);
  void andq(Register dst, Register src);


  // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
  void andpd(XMMRegister dst, Address src);
  void andpd(XMMRegister dst, XMMRegister src);

760 761 762 763 764 765 766 767
  void bsfl(Register dst, Register src);
  void bsrl(Register dst, Register src);

#ifdef _LP64
  void bsfq(Register dst, Register src);
  void bsrq(Register dst, Register src);
#endif

768 769 770
  void bswapl(Register reg);

  void bswapq(Register reg);
D
duke 已提交
771 772 773 774 775

  void call(Label& L, relocInfo::relocType rtype);
  void call(Register reg);  // push pc; pc <- reg
  void call(Address adr);   // push pc; pc <- adr

776
  void cdql();
D
duke 已提交
777

778
  void cdqq();
D
duke 已提交
779

780
  void cld() { emit_byte(0xfc); }
D
duke 已提交
781

782
  void clflush(Address adr);
D
duke 已提交
783

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
  void cmovl(Condition cc, Register dst, Register src);
  void cmovl(Condition cc, Register dst, Address src);

  void cmovq(Condition cc, Register dst, Register src);
  void cmovq(Condition cc, Register dst, Address src);


  void cmpb(Address dst, int imm8);

  void cmpl(Address dst, int32_t imm32);

  void cmpl(Register dst, int32_t imm32);
  void cmpl(Register dst, Register src);
  void cmpl(Register dst, Address src);

  void cmpq(Address dst, int32_t imm32);
  void cmpq(Address dst, Register src);

  void cmpq(Register dst, int32_t imm32);
  void cmpq(Register dst, Register src);
  void cmpq(Register dst, Address src);

  // these are dummies used to catch attempting to convert NULL to Register
  void cmpl(Register dst, void* junk); // dummy
  void cmpq(Register dst, void* junk); // dummy

  void cmpw(Address dst, int imm16);

  void cmpxchg8 (Address adr);

  void cmpxchgl(Register reg, Address adr);

  void cmpxchgq(Register reg, Address adr);

  // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  void comisd(XMMRegister dst, Address src);

  // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  void comiss(XMMRegister dst, Address src);

  // Identify processor type and features
  void cpuid() {
    emit_byte(0x0F);
    emit_byte(0xA2);
  }

  // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
  void cvtsd2ss(XMMRegister dst, XMMRegister src);

  // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
  void cvtsi2sdl(XMMRegister dst, Register src);
  void cvtsi2sdq(XMMRegister dst, Register src);

  // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
  void cvtsi2ssl(XMMRegister dst, Register src);
  void cvtsi2ssq(XMMRegister dst, Register src);

  // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
  void cvtdq2pd(XMMRegister dst, XMMRegister src);

  // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
  void cvtdq2ps(XMMRegister dst, XMMRegister src);

  // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
  void cvtss2sd(XMMRegister dst, XMMRegister src);

  // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
  void cvttsd2sil(Register dst, Address src);
  void cvttsd2sil(Register dst, XMMRegister src);
  void cvttsd2siq(Register dst, XMMRegister src);

  // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
  void cvttss2sil(Register dst, XMMRegister src);
  void cvttss2siq(Register dst, XMMRegister src);

  // Divide Scalar Double-Precision Floating-Point Values
  void divsd(XMMRegister dst, Address src);
  void divsd(XMMRegister dst, XMMRegister src);

  // Divide Scalar Single-Precision Floating-Point Values
  void divss(XMMRegister dst, Address src);
  void divss(XMMRegister dst, XMMRegister src);

  void emms();

  void fabs();

  void fadd(int i);

  void fadd_d(Address src);
  void fadd_s(Address src);

  // "Alternate" versions of x87 instructions place result down in FPU
  // stack instead of on TOS

  void fadda(int i); // "alternate" fadd
  void faddp(int i = 1);

  void fchs();

  void fcom(int i);

  void fcomp(int i = 1);
  void fcomp_d(Address src);
  void fcomp_s(Address src);

  void fcompp();

  void fcos();

  void fdecstp();

  void fdiv(int i);
  void fdiv_d(Address src);
  void fdivr_s(Address src);
  void fdiva(int i);  // "alternate" fdiv
  void fdivp(int i = 1);

  void fdivr(int i);
  void fdivr_d(Address src);
  void fdiv_s(Address src);

  void fdivra(int i); // "alternate" reversed fdiv

  void fdivrp(int i = 1);

  void ffree(int i = 0);

  void fild_d(Address adr);
  void fild_s(Address adr);

  void fincstp();

  void finit();

  void fist_s (Address adr);
  void fistp_d(Address adr);
  void fistp_s(Address adr);

  void fld1();

  void fld_d(Address adr);
  void fld_s(Address adr);
  void fld_s(int index);
  void fld_x(Address adr);  // extended-precision (80-bit) format

  void fldcw(Address src);

  void fldenv(Address src);

  void fldlg2();

  void fldln2();

  void fldz();

  void flog();
  void flog10();

  void fmul(int i);

  void fmul_d(Address src);
  void fmul_s(Address src);

  void fmula(int i);  // "alternate" fmul

  void fmulp(int i = 1);

  void fnsave(Address dst);

  void fnstcw(Address src);

  void fnstsw_ax();

  void fprem();
  void fprem1();

  void frstor(Address src);

  void fsin();

  void fsqrt();

  void fst_d(Address adr);
  void fst_s(Address adr);

  void fstp_d(Address adr);
  void fstp_d(int index);
  void fstp_s(Address adr);
  void fstp_x(Address adr); // extended-precision (80-bit) format

  void fsub(int i);
  void fsub_d(Address src);
  void fsub_s(Address src);

  void fsuba(int i);  // "alternate" fsub

  void fsubp(int i = 1);

  void fsubr(int i);
  void fsubr_d(Address src);
  void fsubr_s(Address src);

  void fsubra(int i); // "alternate" reversed fsub

  void fsubrp(int i = 1);

  void ftan();

  void ftst();

  void fucomi(int i = 1);
  void fucomip(int i = 1);

  void fwait();

  void fxch(int i = 1);

  void fxrstor(Address src);

  void fxsave(Address dst);

  void fyl2x();

  void hlt();

  void idivl(Register src);

  void idivq(Register src);

  void imull(Register dst, Register src);
  void imull(Register dst, Register src, int value);

  void imulq(Register dst, Register src);
  void imulq(Register dst, Register src, int value);


  // jcc is the generic conditional branch generator to run-
  // time routines, jcc is used for branches to labels. jcc
  // takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;      // unbound label
  // jcc(cc, L);   // forward branch to unbound label
D
duke 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
  // bind(L);      // bind label to the current pc
  // jcc(cc, L);   // backward branch to bound label
  // bind(L);      // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

  void jcc(Condition cc, Label& L,
           relocInfo::relocType rtype = relocInfo::none);

  // Conditional jump to a 8-bit offset to L.
  // WARNING: be very careful using this for forward jumps.  If the label is
  // not bound within an 8-bit offset of this instruction, a run-time error
  // will occur.
  void jccb(Condition cc, Label& L);

1045
  void jmp(Address entry);    // pc <- entry
D
duke 已提交
1046

1047 1048
  // Label operations & relative jumps (PPUM Appendix D)
  void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
D
duke 已提交
1049

1050
  void jmp(Register entry); // pc <- entry
D
duke 已提交
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
  // Unconditional 8-bit offset jump to L.
  // WARNING: be very careful using this for forward jumps.  If the label is
  // not bound within an 8-bit offset of this instruction, a run-time error
  // will occur.
  void jmpb(Label& L);

  void ldmxcsr( Address src );

  void leal(Register dst, Address src);

  void leaq(Register dst, Address src);

  void lfence() {
    emit_byte(0x0F);
    emit_byte(0xAE);
    emit_byte(0xE8);
  }

  void lock();

1072 1073 1074 1075 1076 1077
  void lzcntl(Register dst, Register src);

#ifdef _LP64
  void lzcntq(Register dst, Register src);
#endif

1078 1079 1080 1081 1082 1083 1084
  enum Membar_mask_bits {
    StoreStore = 1 << 3,
    LoadStore  = 1 << 2,
    StoreLoad  = 1 << 1,
    LoadLoad   = 1 << 0
  };

1085
  // Serializes memory and blows flags
1086
  void membar(Membar_mask_bits order_constraint) {
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    if (os::is_MP()) {
      // We only have to handle StoreLoad
      if (order_constraint & StoreLoad) {
        // All usable chips support "locked" instructions which suffice
        // as barriers, and are much faster than the alternative of
        // using cpuid instruction. We use here a locked add [esp],0.
        // This is conveniently otherwise a no-op except for blowing
        // flags.
        // Any change to this code may need to revisit other places in
        // the code where this idiom is used, in particular the
        // orderAccess code.
        lock();
        addl(Address(rsp, 0), 0);// Assert the lock# signal here
      }
    }
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
  }

  void mfence();

  // Moves

  void mov64(Register dst, int64_t imm64);

  void movb(Address dst, Register src);
  void movb(Address dst, int imm8);
  void movb(Register dst, Address src);

  void movdl(XMMRegister dst, Register src);
  void movdl(Register dst, XMMRegister src);

  // Move Double Quadword
  void movdq(XMMRegister dst, Register src);
  void movdq(Register dst, XMMRegister src);

  // Move Aligned Double Quadword
  void movdqa(Address     dst, XMMRegister src);
  void movdqa(XMMRegister dst, Address src);
  void movdqa(XMMRegister dst, XMMRegister src);

1126 1127 1128 1129 1130
  // Move Unaligned Double Quadword
  void movdqu(Address     dst, XMMRegister src);
  void movdqu(XMMRegister dst, Address src);
  void movdqu(XMMRegister dst, XMMRegister src);

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
  void movl(Register dst, int32_t imm32);
  void movl(Address dst, int32_t imm32);
  void movl(Register dst, Register src);
  void movl(Register dst, Address src);
  void movl(Address dst, Register src);

  // These dummies prevent using movl from converting a zero (like NULL) into Register
  // by giving the compiler two choices it can't resolve

  void movl(Address  dst, void* junk);
  void movl(Register dst, void* junk);

#ifdef _LP64
  void movq(Register dst, Register src);
  void movq(Register dst, Address src);
  void movq(Address dst, Register src);
#endif

  void movq(Address     dst, MMXRegister src );
  void movq(MMXRegister dst, Address src );

#ifdef _LP64
  // These dummies prevent using movq from converting a zero (like NULL) into Register
  // by giving the compiler two choices it can't resolve

  void movq(Address  dst, void* dummy);
  void movq(Register dst, void* dummy);
#endif

  // Move Quadword
  void movq(Address     dst, XMMRegister src);
  void movq(XMMRegister dst, Address src);

  void movsbl(Register dst, Address src);
  void movsbl(Register dst, Register src);

#ifdef _LP64
1168 1169 1170
  void movsbq(Register dst, Address src);
  void movsbq(Register dst, Register src);

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
  // Move signed 32bit immediate to 64bit extending sign
  void movslq(Address dst, int32_t imm64);
  void movslq(Register dst, int32_t imm64);

  void movslq(Register dst, Address src);
  void movslq(Register dst, Register src);
  void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
#endif

  void movswl(Register dst, Address src);
  void movswl(Register dst, Register src);

1183 1184 1185 1186 1187
#ifdef _LP64
  void movswq(Register dst, Address src);
  void movswq(Register dst, Register src);
#endif

1188 1189 1190 1191 1192 1193 1194
  void movw(Address dst, int imm16);
  void movw(Register dst, Address src);
  void movw(Address dst, Register src);

  void movzbl(Register dst, Address src);
  void movzbl(Register dst, Register src);

1195 1196 1197 1198 1199
#ifdef _LP64
  void movzbq(Register dst, Address src);
  void movzbq(Register dst, Register src);
#endif

1200 1201 1202
  void movzwl(Register dst, Address src);
  void movzwl(Register dst, Register src);

1203 1204 1205 1206 1207
#ifdef _LP64
  void movzwq(Register dst, Address src);
  void movzwq(Register dst, Register src);
#endif

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
  void mull(Address src);
  void mull(Register src);

  // Multiply Scalar Double-Precision Floating-Point Values
  void mulsd(XMMRegister dst, Address src);
  void mulsd(XMMRegister dst, XMMRegister src);

  // Multiply Scalar Single-Precision Floating-Point Values
  void mulss(XMMRegister dst, Address src);
  void mulss(XMMRegister dst, XMMRegister src);

  void negl(Register dst);

#ifdef _LP64
  void negq(Register dst);
#endif

  void nop(int i = 1);

  void notl(Register dst);

#ifdef _LP64
  void notq(Register dst);
#endif

  void orl(Address dst, int32_t imm32);
  void orl(Register dst, int32_t imm32);
  void orl(Register dst, Address src);
  void orl(Register dst, Register src);

  void orq(Address dst, int32_t imm32);
  void orq(Register dst, int32_t imm32);
  void orq(Register dst, Address src);
  void orq(Register dst, Register src);

C
cfang 已提交
1243 1244 1245 1246
  // SSE4.2 string instructions
  void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
  void pcmpestri(XMMRegister xmm1, Address src, int imm8);

1247 1248 1249 1250 1251
  void popl(Address dst);

#ifdef _LP64
  void popq(Address dst);
#endif
D
duke 已提交
1252

1253 1254 1255 1256 1257 1258 1259 1260
  void popcntl(Register dst, Address src);
  void popcntl(Register dst, Register src);

#ifdef _LP64
  void popcntq(Register dst, Address src);
  void popcntq(Register dst, Register src);
#endif

1261
  // Prefetches (SSE, SSE2, 3DNOW only)
D
duke 已提交
1262

1263 1264 1265 1266 1267 1268
  void prefetchnta(Address src);
  void prefetchr(Address src);
  void prefetcht0(Address src);
  void prefetcht1(Address src);
  void prefetcht2(Address src);
  void prefetchw(Address src);
D
duke 已提交
1269

1270 1271 1272
  // Shuffle Packed Doublewords
  void pshufd(XMMRegister dst, XMMRegister src, int mode);
  void pshufd(XMMRegister dst, Address src,     int mode);
D
duke 已提交
1273

1274 1275 1276
  // Shuffle Packed Low Words
  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  void pshuflw(XMMRegister dst, Address src,     int mode);
D
duke 已提交
1277

1278 1279
  // Shift Right Logical Quadword Immediate
  void psrlq(XMMRegister dst, int shift);
D
duke 已提交
1280

C
cfang 已提交
1281 1282 1283 1284
  // Logical Compare Double Quadword
  void ptest(XMMRegister dst, XMMRegister src);
  void ptest(XMMRegister dst, Address src);

1285 1286
  // Interleave Low Bytes
  void punpcklbw(XMMRegister dst, XMMRegister src);
D
duke 已提交
1287

1288
  void pushl(Address src);
D
duke 已提交
1289

1290
  void pushq(Address src);
D
duke 已提交
1291

1292 1293 1294
  // Xor Packed Byte Integer Values
  void pxor(XMMRegister dst, Address src);
  void pxor(XMMRegister dst, XMMRegister src);
D
duke 已提交
1295

1296
  void rcll(Register dst, int imm8);
D
duke 已提交
1297

1298
  void rclq(Register dst, int imm8);
D
duke 已提交
1299

1300
  void ret(int imm16);
D
duke 已提交
1301

1302
  void sahf();
D
duke 已提交
1303

1304 1305
  void sarl(Register dst, int imm8);
  void sarl(Register dst);
D
duke 已提交
1306

1307 1308
  void sarq(Register dst, int imm8);
  void sarq(Register dst);
D
duke 已提交
1309

1310 1311 1312 1313
  void sbbl(Address dst, int32_t imm32);
  void sbbl(Register dst, int32_t imm32);
  void sbbl(Register dst, Address src);
  void sbbl(Register dst, Register src);
D
duke 已提交
1314

1315 1316 1317 1318
  void sbbq(Address dst, int32_t imm32);
  void sbbq(Register dst, int32_t imm32);
  void sbbq(Register dst, Address src);
  void sbbq(Register dst, Register src);
D
duke 已提交
1319

1320
  void setb(Condition cc, Register dst);
D
duke 已提交
1321

1322
  void shldl(Register dst, Register src);
D
duke 已提交
1323

1324 1325
  void shll(Register dst, int imm8);
  void shll(Register dst);
D
duke 已提交
1326

1327 1328
  void shlq(Register dst, int imm8);
  void shlq(Register dst);
D
duke 已提交
1329

1330
  void shrdl(Register dst, Register src);
D
duke 已提交
1331

1332 1333
  void shrl(Register dst, int imm8);
  void shrl(Register dst);
D
duke 已提交
1334

1335 1336
  void shrq(Register dst, int imm8);
  void shrq(Register dst);
D
duke 已提交
1337

1338
  void smovl(); // QQQ generic?
D
duke 已提交
1339

1340 1341
  // Compute Square Root of Scalar Double-Precision Floating-Point Value
  void sqrtsd(XMMRegister dst, Address src);
D
duke 已提交
1342 1343
  void sqrtsd(XMMRegister dst, XMMRegister src);

1344
  void std() { emit_byte(0xfd); }
D
duke 已提交
1345

1346
  void stmxcsr( Address dst );
D
duke 已提交
1347

1348 1349 1350 1351 1352
  void subl(Address dst, int32_t imm32);
  void subl(Address dst, Register src);
  void subl(Register dst, int32_t imm32);
  void subl(Register dst, Address src);
  void subl(Register dst, Register src);
D
duke 已提交
1353

1354 1355 1356 1357 1358
  void subq(Address dst, int32_t imm32);
  void subq(Address dst, Register src);
  void subq(Register dst, int32_t imm32);
  void subq(Register dst, Address src);
  void subq(Register dst, Register src);
D
duke 已提交
1359 1360


1361 1362 1363
  // Subtract Scalar Double-Precision Floating-Point Values
  void subsd(XMMRegister dst, Address src);
  void subsd(XMMRegister dst, XMMRegister src);
D
duke 已提交
1364

1365 1366 1367
  // Subtract Scalar Single-Precision Floating-Point Values
  void subss(XMMRegister dst, Address src);
  void subss(XMMRegister dst, XMMRegister src);
D
duke 已提交
1368

1369
  void testb(Register dst, int imm8);
D
duke 已提交
1370

1371 1372 1373
  void testl(Register dst, int32_t imm32);
  void testl(Register dst, Register src);
  void testl(Register dst, Address src);
D
duke 已提交
1374

1375 1376
  void testq(Register dst, int32_t imm32);
  void testq(Register dst, Register src);
D
duke 已提交
1377 1378


1379 1380 1381
  // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  void ucomisd(XMMRegister dst, Address src);
  void ucomisd(XMMRegister dst, XMMRegister src);
D
duke 已提交
1382

1383 1384 1385
  // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  void ucomiss(XMMRegister dst, Address src);
  void ucomiss(XMMRegister dst, XMMRegister src);
D
duke 已提交
1386

1387
  void xaddl(Address dst, Register src);
D
duke 已提交
1388

1389
  void xaddq(Address dst, Register src);
D
duke 已提交
1390

1391 1392 1393 1394 1395
  void xchgl(Register reg, Address adr);
  void xchgl(Register dst, Register src);

  void xchgq(Register reg, Address adr);
  void xchgq(Register dst, Register src);
D
duke 已提交
1396

1397 1398 1399
  void xorl(Register dst, int32_t imm32);
  void xorl(Register dst, Address src);
  void xorl(Register dst, Register src);
D
duke 已提交
1400

1401 1402
  void xorq(Register dst, Address src);
  void xorq(Register dst, Register src);
D
duke 已提交
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412
  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  void xorpd(XMMRegister dst, Address src);
  void xorpd(XMMRegister dst, XMMRegister src);

  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  void xorps(XMMRegister dst, Address src);
  void xorps(XMMRegister dst, XMMRegister src);

  void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
D
duke 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421
};


// MacroAssembler extends Assembler by frequently used macros.
//
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.

class MacroAssembler: public Assembler {
1422 1423
  friend class LIR_Assembler;
  friend class Runtime1;      // as_Address()
D
duke 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
 protected:

  Address as_Address(AddressLiteral adr);
  Address as_Address(ArrayAddress adr);

  // Support for VM calls
  //
  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
#ifdef CC_INTERP
  // c++ interpreter never wants to use interp_masm version of call_VM
  #define VIRTUAL
#else
  #define VIRTUAL virtual
#endif

  VIRTUAL void call_VM_leaf_base(
    address entry_point,               // the entry point
    int     number_of_arguments        // the number of arguments to pop after the call
  );

  // This is the base routine called by the different versions of call_VM. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
  //
  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  // returns the register which contains the thread upon return. If a thread register has been
  // specified, the return value will correspond to that register. If no last_java_sp is specified
  // (noreg) than rsp will be used instead.
  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
    Register java_thread,              // the thread if computed before     ; use noreg otherwise
    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
    address  entry_point,              // the entry point
    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
    bool     check_exceptions          // whether to check for pending exceptions after return
  );

  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  // The implementation is only non-empty for the InterpreterMacroAssembler,
  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  virtual void check_and_handle_popframe(Register java_thread);
  virtual void check_and_handle_earlyret(Register java_thread);

  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);

  // helpers for FPU flag access
  // tmp is a temporary register, if none is available use noreg
  void save_rax   (Register tmp);
  void restore_rax(Register tmp);

 public:
  MacroAssembler(CodeBuffer* code) : Assembler(code) {}

  // Support for NULL-checks
  //
  // Generates code that causes a NULL OS exception if the content of reg is NULL.
  // If the accessed location is M[reg + offset] and the offset is known, provide the
  // offset. No explicit code generation is needed if the offset is within a certain
  // range (0 <= offset <= page_size).

  void null_check(Register reg, int offset = -1);
1487
  static bool needs_explicit_null_check(intptr_t offset);
D
duke 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

  // Required platform-specific helpers for Label::patch_instructions.
  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  void pd_patch_instruction(address branch, address target);
#ifndef PRODUCT
  static void pd_print_patched_instruction(address branch);
#endif

  // The following 4 methods return the offset of the appropriate move instruction

1498
  // Support for fast byte/short loading with zero extension (depending on particular CPU)
D
duke 已提交
1499
  int load_unsigned_byte(Register dst, Address src);
1500
  int load_unsigned_short(Register dst, Address src);
D
duke 已提交
1501

1502
  // Support for fast byte/short loading with sign extension (depending on particular CPU)
D
duke 已提交
1503
  int load_signed_byte(Register dst, Address src);
1504
  int load_signed_short(Register dst, Address src);
D
duke 已提交
1505 1506 1507 1508

  // Support for sign-extension (hi:lo = extend_sign(lo))
  void extend_sign(Register hi, Register lo);

1509 1510 1511
  // Loading values by size and signed-ness
  void load_sized_value(Register dst, Address src, int size_in_bytes, bool is_signed);

D
duke 已提交
1512
  // Support for inc/dec with optimal instruction selection depending on value
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }

  void decrementl(Address dst, int value = 1);
  void decrementl(Register reg, int value = 1);

  void decrementq(Register reg, int value = 1);
  void decrementq(Address dst, int value = 1);

  void incrementl(Address dst, int value = 1);
  void incrementl(Register reg, int value = 1);

  void incrementq(Register reg, int value = 1);
  void incrementq(Address dst, int value = 1);

D
duke 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

  // Support optimal SSE move instructions.
  void movflt(XMMRegister dst, XMMRegister src) {
    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
    else                       { movss (dst, src); return; }
  }
  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  void movflt(XMMRegister dst, AddressLiteral src);
  void movflt(Address dst, XMMRegister src) { movss(dst, src); }

  void movdbl(XMMRegister dst, XMMRegister src) {
    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
    else                       { movsd (dst, src); return; }
  }

  void movdbl(XMMRegister dst, AddressLiteral src);

  void movdbl(XMMRegister dst, Address src) {
    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
    else                         { movlpd(dst, src); return; }
  }
  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }

1552 1553
  void incrementl(AddressLiteral dst);
  void incrementl(ArrayAddress dst);
D
duke 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

  // Alignment
  void align(int modulus);

  // Misc
  void fat_nop(); // 5 byte nop

  // Stack frame creation/removal
  void enter();
  void leave();

  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  // The pointer will be loaded into the thread register.
  void get_thread(Register thread);

A
Merge  
apetrusenko 已提交
1569

D
duke 已提交
1570 1571 1572 1573 1574 1575 1576
  // Support for VM calls
  //
  // It is imperative that all calls into the VM are handled via the call_VM macros.
  // They make sure that the stack linkage is setup correctly. call_VM's correspond
  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.


1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
  void call_VM(Register oop_result,
               address entry_point,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1, Register arg_2,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1, Register arg_2, Register arg_3,
               bool check_exceptions = true);

  // Overloadings with last_Java_sp
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               int number_of_arguments = 0,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, bool
               check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, Register arg_2,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, Register arg_2, Register arg_3,
               bool check_exceptions = true);

  void call_VM_leaf(address entry_point,
                    int number_of_arguments = 0);
  void call_VM_leaf(address entry_point,
                    Register arg_1);
  void call_VM_leaf(address entry_point,
                    Register arg_1, Register arg_2);
  void call_VM_leaf(address entry_point,
                    Register arg_1, Register arg_2, Register arg_3);
D
duke 已提交
1623 1624

  // last Java Frame (fills frame anchor)
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
  void set_last_Java_frame(Register thread,
                           Register last_java_sp,
                           Register last_java_fp,
                           address last_java_pc);

  // thread in the default location (r15_thread on 64bit)
  void set_last_Java_frame(Register last_java_sp,
                           Register last_java_fp,
                           address last_java_pc);

D
duke 已提交
1635 1636
  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);

1637 1638 1639
  // thread in the default location (r15_thread on 64bit)
  void reset_last_Java_frame(bool clear_fp, bool clear_pc);

D
duke 已提交
1640 1641 1642 1643
  // Stores
  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)

A
Merge  
apetrusenko 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
  void g1_write_barrier_pre(Register obj,
#ifndef _LP64
                            Register thread,
#endif
                            Register tmp,
                            Register tmp2,
                            bool     tosca_live);
  void g1_write_barrier_post(Register store_addr,
                             Register new_val,
#ifndef _LP64
                             Register thread,
#endif
                             Register tmp,
                             Register tmp2);
1658 1659


D
duke 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
  // split store_check(Register obj) to enhance instruction interleaving
  void store_check_part_1(Register obj);
  void store_check_part_2(Register obj);

  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  void c2bool(Register x);

  // C++ bool manipulation

  void movbool(Register dst, Address src);
  void movbool(Address dst, bool boolconst);
  void movbool(Address dst, Register src);
  void testbool(Register dst);

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
  // oop manipulations
  void load_klass(Register dst, Register src);
  void store_klass(Register dst, Register src);

  void load_prototype_header(Register dst, Register src);

#ifdef _LP64
  void store_klass_gap(Register dst, Register src);

  void load_heap_oop(Register dst, Address src);
  void store_heap_oop(Address dst, Register src);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

  // This dummy is to prevent a call to store_heap_oop from
  // converting a zero (like NULL) into a Register by giving
  // the compiler two choices it can't resolve

  void store_heap_oop(Address dst, void* dummy);

  // Used for storing NULL. All other oop constants should be
  // stored using routines that take a jobject.
  void store_heap_oop_null(Address dst);

1696 1697 1698 1699 1700 1701 1702 1703
  void encode_heap_oop(Register r);
  void decode_heap_oop(Register r);
  void encode_heap_oop_not_null(Register r);
  void decode_heap_oop_not_null(Register r);
  void encode_heap_oop_not_null(Register dst, Register src);
  void decode_heap_oop_not_null(Register dst, Register src);

  void set_narrow_oop(Register dst, jobject obj);
1704 1705 1706
  void set_narrow_oop(Address dst, jobject obj);
  void cmp_narrow_oop(Register dst, jobject obj);
  void cmp_narrow_oop(Address dst, jobject obj);
1707 1708 1709 1710 1711 1712

  // if heap base register is used - reinit it with the correct value
  void reinit_heapbase();
#endif // _LP64

  // Int division/remainder for Java
D
duke 已提交
1713 1714 1715 1716
  // (as idivl, but checks for special case as described in JVM spec.)
  // returns idivl instruction offset for implicit exception handling
  int corrected_idivl(Register reg);

1717 1718 1719 1720 1721
  // Long division/remainder for Java
  // (as idivq, but checks for special case as described in JVM spec.)
  // returns idivq instruction offset for implicit exception handling
  int corrected_idivq(Register reg);

D
duke 已提交
1722 1723
  void int3();

1724
  // Long operation macros for a 32bit cpu
D
duke 已提交
1725 1726 1727 1728
  // Long negation for Java
  void lneg(Register hi, Register lo);

  // Long multiplication for Java
1729
  // (destroys contents of eax, ebx, ecx and edx)
D
duke 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y

  // Long shifts for Java
  // (semantics as described in JVM spec.)
  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)

  // Long compare for Java
  // (semantics as described in JVM spec.)
  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

  // misc

  // Sign extension
  void sign_extend_short(Register reg);
  void sign_extend_byte(Register reg);

  // Division by power of 2, rounding towards 0
  void division_with_shift(Register reg, int shift_value);

D
duke 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  //
  // CF (corresponds to C0) if x < y
  // PF (corresponds to C2) if unordered
  // ZF (corresponds to C3) if x = y
  //
  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  void fcmp(Register tmp);
  // Variant of the above which allows y to be further down the stack
  // and which only pops x and y if specified. If pop_right is
  // specified then pop_left must also be specified.
  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);

  // Floating-point comparison for Java
  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  // (semantics as described in JVM spec.)
  void fcmp2int(Register dst, bool unordered_is_less);
  // Variant of the above which allows y to be further down the stack
  // and which only pops x and y if specified. If pop_right is
  // specified then pop_left must also be specified.
  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);

  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  // tmp is a temporary register, if none is available use noreg
  void fremr(Register tmp);


  // same as fcmp2int, but using SSE2
  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);

  // Inlined sin/cos generator for Java; must not use CPU instruction
  // directly on Intel as it does not have high enough precision
  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  // number of FPU stack slots in use; all but the topmost will
  // require saving if a slow case is necessary. Assumes argument is
  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  // this code.
  void trigfunc(char trig, int num_fpu_regs_in_use = 1);

  // branch to L if FPU flag C2 is set/not set
  // tmp is a temporary register, if none is available use noreg
  void jC2 (Register tmp, Label& L);
  void jnC2(Register tmp, Label& L);

  // Pop ST (ffree & fincstp combined)
  void fpop();

  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  void push_fTOS();

  // pops double TOS element from CPU stack and pushes on FPU stack
  void pop_fTOS();

  void empty_FPU_stack();

  void push_IU_state();
  void pop_IU_state();

  void push_FPU_state();
  void pop_FPU_state();

  void push_CPU_state();
  void pop_CPU_state();

  // Round up to a power of two
  void round_to(Register reg, int modulus);

  // Callee saved registers handling
  void push_callee_saved_registers();
  void pop_callee_saved_registers();

  // allocation
  void eden_allocate(
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  void tlab_allocate(
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Register t2,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);

1843 1844 1845
  // interface method calling
  void lookup_interface_method(Register recv_klass,
                               Register intf_klass,
1846
                               RegisterOrConstant itable_index,
1847 1848 1849 1850
                               Register method_result,
                               Register scan_temp,
                               Label& no_such_interface);

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
  // Test sub_klass against super_klass, with fast and slow paths.

  // The fast path produces a tri-state answer: yes / no / maybe-slow.
  // One of the three labels can be NULL, meaning take the fall-through.
  // If super_check_offset is -1, the value is loaded up from super_klass.
  // No registers are killed, except temp_reg.
  void check_klass_subtype_fast_path(Register sub_klass,
                                     Register super_klass,
                                     Register temp_reg,
                                     Label* L_success,
                                     Label* L_failure,
                                     Label* L_slow_path,
1863
                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

  // The rest of the type check; must be wired to a corresponding fast path.
  // It does not repeat the fast path logic, so don't use it standalone.
  // The temp_reg and temp2_reg can be noreg, if no temps are available.
  // Updates the sub's secondary super cache as necessary.
  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  void check_klass_subtype_slow_path(Register sub_klass,
                                     Register super_klass,
                                     Register temp_reg,
                                     Register temp2_reg,
                                     Label* L_success,
                                     Label* L_failure,
                                     bool set_cond_codes = false);

  // Simplified, combined version, good for typical uses.
  // Falls through on failure.
  void check_klass_subtype(Register sub_klass,
                           Register super_klass,
                           Register temp_reg,
                           Label& L_success);

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
  // method handles (JSR 292)
  void check_method_handle_type(Register mtype_reg, Register mh_reg,
                                Register temp_reg,
                                Label& wrong_method_type);
  void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
                                  Register temp_reg);
  void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);


D
duke 已提交
1895 1896 1897 1898
  //----
  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0

  // Debugging
1899 1900 1901

  // only if +VerifyOops
  void verify_oop(Register reg, const char* s = "broken oop");
D
duke 已提交
1902 1903
  void verify_oop_addr(Address addr, const char * s = "broken oop addr");

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
  // only if +VerifyFPU
  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");

  // prints msg, dumps registers and stops execution
  void stop(const char* msg);

  // prints msg and continues
  void warn(const char* msg);

  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  static void debug64(char* msg, int64_t pc, int64_t regs[]);

D
duke 已提交
1916
  void os_breakpoint();
1917

D
duke 已提交
1918
  void untested()                                { stop("untested"); }
1919

D
duke 已提交
1920
  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
1921

D
duke 已提交
1922
  void should_not_reach_here()                   { stop("should not reach here"); }
1923

D
duke 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
  void print_CPU_state();

  // Stack overflow checking
  void bang_stack_with_offset(int offset) {
    // stack grows down, caller passes positive offset
    assert(offset > 0, "must bang with negative offset");
    movl(Address(rsp, (-offset)), rax);
  }

  // Writes to stack successive pages until offset reached to check for
  // stack overflow + shadow pages.  Also, clobbers tmp
  void bang_stack_size(Register size, Register tmp);

1937 1938 1939
  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
                                                Register tmp,
                                                int offset);
1940

D
duke 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
  // Support for serializing memory accesses between threads
  void serialize_memory(Register thread, Register tmp);

  void verify_tlab();

  // Biased locking support
  // lock_reg and obj_reg must be loaded up with the appropriate values.
  // swap_reg must be rax, and is killed.
  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  // be killed; if not supplied, push/pop will be used internally to
  // allocate a temporary (inefficient, avoid if possible).
  // Optional slow case is for implementations (interpreter and C1) which branch to
  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  // Returns offset of first potentially-faulting instruction for null
  // check info (currently consumed only by C1). If
  // swap_reg_contains_mark is true then returns -1 as it is assumed
  // the calling code has already passed any potential faults.
1958 1959
  int biased_locking_enter(Register lock_reg, Register obj_reg,
                           Register swap_reg, Register tmp_reg,
D
duke 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
                           bool swap_reg_contains_mark,
                           Label& done, Label* slow_case = NULL,
                           BiasedLockingCounters* counters = NULL);
  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);


  Condition negate_condition(Condition cond);

  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  // operands. In general the names are modified to avoid hiding the instruction in Assembler
  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  // here in MacroAssembler. The major exception to this rule is call

  // Arithmetics


1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  void addptr(Address dst, Register src);

  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  void addptr(Register dst, int32_t src);
  void addptr(Register dst, Register src);

  void andptr(Register dst, int32_t src);
  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }

  void cmp8(AddressLiteral src1, int imm);

  // renamed to drag out the casting of address to int32_t/intptr_t
D
duke 已提交
1989 1990 1991 1992 1993 1994 1995 1996
  void cmp32(Register src1, int32_t imm);

  void cmp32(AddressLiteral src1, int32_t imm);
  // compare reg - mem, or reg - &mem
  void cmp32(Register src1, AddressLiteral src2);

  void cmp32(Register src1, Address src2);

1997 1998 1999 2000 2001
#ifndef _LP64
  void cmpoop(Address dst, jobject obj);
  void cmpoop(Register dst, jobject obj);
#endif // _LP64

D
duke 已提交
2002 2003 2004 2005 2006
  // NOTE src2 must be the lval. This is NOT an mem-mem compare
  void cmpptr(Address src1, AddressLiteral src2);

  void cmpptr(Register src1, AddressLiteral src2);

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }

  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }

  // cmp64 to avoild hiding cmpq
  void cmp64(Register src1, AddressLiteral src);

  void cmpxchgptr(Register reg, Address adr);

  void locked_cmpxchgptr(Register reg, AddressLiteral adr);


  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }


  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }

  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }

  void shlptr(Register dst, int32_t shift);
  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }

  void shrptr(Register dst, int32_t shift);
  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }

  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }

  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }

  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  void subptr(Register dst, int32_t src);
  void subptr(Register dst, Register src);


  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }

  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }

  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
D
duke 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062



  // Helper functions for statistics gathering.
  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  void cond_inc32(Condition cond, AddressLiteral counter_addr);
  // Unconditional atomic increment.
  void atomic_incl(AddressLiteral counter_addr);

  void lea(Register dst, AddressLiteral adr);
  void lea(Address dst, AddressLiteral adr);
2063 2064 2065 2066 2067 2068 2069 2070 2071
  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }

  void leal32(Register dst, Address src) { leal(dst, src); }

  void test32(Register src1, AddressLiteral src2);

  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
D
duke 已提交
2072

2073 2074 2075 2076 2077
  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  void testptr(Register src1, Register src2);

  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
D
duke 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

  // Calls

  void call(Label& L, relocInfo::relocType rtype);
  void call(Register entry);

  // NOTE: this call tranfers to the effective address of entry NOT
  // the address contained by entry. This is because this is more natural
  // for jumps/calls.
  void call(AddressLiteral entry);

  // Jumps

  // NOTE: these jumps tranfer to the effective address of dst NOT
  // the address contained by dst. This is because this is more natural
  // for jumps/calls.
  void jump(AddressLiteral dst);
  void jump_cc(Condition cc, AddressLiteral dst);

  // 32bit can do a case table jump in one instruction but we no longer allow the base
  // to be installed in the Address class. This jump will tranfers to the address
  // contained in the location described by entry (not the address of entry)
  void jump(ArrayAddress entry);

  // Floating

  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  void andpd(XMMRegister dst, AddressLiteral src);

  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  void comiss(XMMRegister dst, AddressLiteral src);

  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  void comisd(XMMRegister dst, AddressLiteral src);

  void fldcw(Address src) { Assembler::fldcw(src); }
  void fldcw(AddressLiteral src);

  void fld_s(int index)   { Assembler::fld_s(index); }
  void fld_s(Address src) { Assembler::fld_s(src); }
  void fld_s(AddressLiteral src);

  void fld_d(Address src) { Assembler::fld_d(src); }
  void fld_d(AddressLiteral src);

  void fld_x(Address src) { Assembler::fld_x(src); }
  void fld_x(AddressLiteral src);

  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  void ldmxcsr(AddressLiteral src);

2129 2130 2131
private:
  // these are private because users should be doing movflt/movdbl

D
duke 已提交
2132 2133 2134 2135 2136
  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, AddressLiteral src);

2137 2138 2139 2140 2141
  void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
  void movlpd(XMMRegister dst, AddressLiteral src);

public:

D
duke 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  void movsd(XMMRegister dst, AddressLiteral src);

  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
  void ucomiss(XMMRegister dst, AddressLiteral src);

  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
  void ucomisd(XMMRegister dst, AddressLiteral src);

  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  void xorpd(XMMRegister dst, AddressLiteral src);

  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  void xorps(XMMRegister dst, AddressLiteral src);

  // Data

2167 2168 2169 2170 2171
  void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }

  void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }

D
duke 已提交
2172 2173 2174 2175 2176 2177 2178
  void movoop(Register dst, jobject obj);
  void movoop(Address dst, jobject obj);

  void movptr(ArrayAddress dst, Register src);
  // can this do an lea?
  void movptr(Register dst, ArrayAddress src);

2179 2180
  void movptr(Register dst, Address src);

D
duke 已提交
2181 2182
  void movptr(Register dst, AddressLiteral src);

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
  void movptr(Register dst, intptr_t src);
  void movptr(Register dst, Register src);
  void movptr(Address dst, intptr_t src);

  void movptr(Address dst, Register src);

#ifdef _LP64
  // Generally the next two are only used for moving NULL
  // Although there are situations in initializing the mark word where
  // they could be used. They are dangerous.

  // They only exist on LP64 so that int32_t and intptr_t are not the same
  // and we have ambiguous declarations.

  void movptr(Address dst, int32_t imm32);
  void movptr(Register dst, int32_t imm32);
#endif // _LP64

D
duke 已提交
2201 2202 2203
  // to avoid hiding movl
  void mov32(AddressLiteral dst, Register src);
  void mov32(Register dst, AddressLiteral src);
2204

D
duke 已提交
2205 2206 2207 2208 2209 2210
  // to avoid hiding movb
  void movbyte(ArrayAddress dst, int src);

  // Can push value or effective address
  void pushptr(AddressLiteral src);

2211 2212 2213 2214 2215 2216 2217 2218 2219
  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }

  void pushoop(jobject obj);

  // sign extend as need a l to ptr sized element
  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
  // IndexOf strings.
  void string_indexof(Register str1, Register str2,
                      Register cnt1, Register cnt2, Register result,
                      XMMRegister vec, Register tmp);

  // Compare strings.
  void string_compare(Register str1, Register str2,
                      Register cnt1, Register cnt2, Register result,
                      XMMRegister vec1, XMMRegister vec2);

  // Compare char[] arrays.
  void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
                          Register limit, Register result, Register chr,
                          XMMRegister vec1, XMMRegister vec2);
2234

D
duke 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
#undef VIRTUAL

};

/**
 * class SkipIfEqual:
 *
 * Instantiating this class will result in assembly code being output that will
 * jump around any code emitted between the creation of the instance and it's
 * automatic destruction at the end of a scope block, depending on the value of
 * the flag passed to the constructor, which will be checked at run-time.
 */
class SkipIfEqual {
 private:
  MacroAssembler* _masm;
  Label _label;

 public:
   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
   ~SkipIfEqual();
};

#ifdef ASSERT
inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
#endif