mulnode.cpp 52.6 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// Portions of code courtesy of Clifford Click

#include "incls/_precompiled.incl"
#include "incls/_mulnode.cpp.incl"


//=============================================================================
//------------------------------hash-------------------------------------------
// Hash function over MulNodes.  Needs to be commutative; i.e., I swap
// (commute) inputs to MulNodes willy-nilly so the hash function must return
// the same value in the presence of edge swapping.
uint MulNode::hash() const {
  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
}

//------------------------------Identity---------------------------------------
// Multiplying a one preserves the other argument
Node *MulNode::Identity( PhaseTransform *phase ) {
  register const Type *one = mul_id();  // The multiplicative identity
  if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  if( phase->type( in(2) )->higher_equal( one ) ) return in(1);

  return this;
}

//------------------------------Ideal------------------------------------------
// We also canonicalize the Node, moving constants to the right input,
// and flatten expressions (so that 1+x+2 becomes x+3).
Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  Node *progress = NULL;        // Progress flag
  // We are OK if right is a constant, or right is a load and
  // left is a non-constant.
  if( !(t2->singleton() ||
        (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
    if( t1->singleton() ||       // Left input is a constant?
        // Otherwise, sort inputs (commutativity) to help value numbering.
        (in(1)->_idx > in(2)->_idx) ) {
      swap_edges(1, 2);
      const Type *t = t1;
      t1 = t2;
      t2 = t;
      progress = this;            // Made progress
    }
  }

  // If the right input is a constant, and the left input is a product of a
  // constant, flatten the expression tree.
  uint op = Opcode();
  if( t2->singleton() &&        // Right input is a constant?
      op != Op_MulF &&          // Float & double cannot reassociate
      op != Op_MulD ) {
    if( t2 == Type::TOP ) return NULL;
    Node *mul1 = in(1);
#ifdef ASSERT
    // Check for dead loop
    int   op1 = mul1->Opcode();
    if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
        ( op1 == mul_opcode() || op1 == add_opcode() ) &&
        ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
          phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
      assert(false, "dead loop in MulNode::Ideal");
#endif

    if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
      // Mul of a constant?
      const Type *t12 = phase->type( mul1->in(2) );
      if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
        // Compute new constant; check for overflow
        const Type *tcon01 = mul1->as_Mul()->mul_ring(t2,t12);
        if( tcon01->singleton() ) {
          // The Mul of the flattened expression
          set_req(1, mul1->in(1));
          set_req(2, phase->makecon( tcon01 ));
          t2 = tcon01;
          progress = this;      // Made progress
        }
      }
    }
    // If the right input is a constant, and the left input is an add of a
    // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
    const Node *add1 = in(1);
    if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
      // Add of a constant?
      const Type *t12 = phase->type( add1->in(2) );
      if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
        assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
        // Compute new constant; check for overflow
        const Type *tcon01 = mul_ring(t2,t12);
        if( tcon01->singleton() ) {

        // Convert (X+con1)*con0 into X*con0
          Node *mul = clone();    // mul = ()*con0
          mul->set_req(1,add1->in(1));  // mul = X*con0
          mul = phase->transform(mul);

          Node *add2 = add1->clone();
          add2->set_req(1, mul);        // X*con0 + con0*con1
          add2->set_req(2, phase->makecon(tcon01) );
          progress = add2;
        }
      }
    } // End of is left input an add
  } // End of is right input a Mul

  return progress;
}

//------------------------------Value-----------------------------------------
const Type *MulNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is ZERO ==> the result is ZERO.
  // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
  int op = Opcode();
  if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
    const Type *zero = add_id();        // The multiplicative zero
    if( t1->higher_equal( zero ) ) return zero;
    if( t2->higher_equal( zero ) ) return zero;
  }

  // Either input is BOTTOM ==> the result is the local BOTTOM
  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
    return bottom_type();

155 156 157 158 159 160 161 162
#if defined(IA32)
  // Can't trust native compilers to properly fold strict double
  // multiplication with round-to-zero on this platform.
  if (op == Op_MulD && phase->C->method()->is_strict()) {
    return TypeD::DOUBLE;
  }
#endif

D
duke 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  return mul_ring(t1,t2);            // Local flavor of type multiplication
}


//=============================================================================
//------------------------------Ideal------------------------------------------
// Check for power-of-2 multiply, then try the regular MulNode::Ideal
Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Swap constant to right
  jint con;
  if ((con = in(1)->find_int_con(0)) != 0) {
    swap_edges(1, 2);
    // Finish rest of method to use info in 'con'
  } else if ((con = in(2)->find_int_con(0)) == 0) {
    return MulNode::Ideal(phase, can_reshape);
  }

  // Now we have a constant Node on the right and the constant in con
  if( con == 0 ) return NULL;   // By zero is handled by Value call
  if( con == 1 ) return NULL;   // By one  is handled by Identity call

  // Check for negative constant; if so negate the final result
  bool sign_flip = false;
  if( con < 0 ) {
    con = -con;
    sign_flip = true;
  }

  // Get low bit; check for being the only bit
  Node *res = NULL;
  jint bit1 = con & -con;       // Extract low bit
  if( bit1 == con ) {           // Found a power of 2?
    res = new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
  } else {

    // Check for constant with 2 bits set
    jint bit2 = con-bit1;
    bit2 = bit2 & -bit2;          // Extract 2nd bit
    if( bit2 + bit1 == con ) {    // Found all bits in con?
      Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
      Node *n2 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
      res = new (phase->C, 3) AddINode( n2, n1 );

    } else if (is_power_of_2(con+1)) {
      // Sleezy: power-of-2 -1.  Next time be generic.
      jint temp = (jint) (con + 1);
      Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
      res = new (phase->C, 3) SubINode( n1, in(1) );
    } else {
      return MulNode::Ideal(phase, can_reshape);
    }
  }

  if( sign_flip ) {             // Need to negate result?
    res = phase->transform(res);// Transform, before making the zero con
    res = new (phase->C, 3) SubINode(phase->intcon(0),res);
  }

  return res;                   // Return final result
}

//------------------------------mul_ring---------------------------------------
// Compute the product type of two integer ranges into this node.
const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
  const TypeInt *r0 = t0->is_int(); // Handy access
  const TypeInt *r1 = t1->is_int();

  // Fetch endpoints of all ranges
  int32 lo0 = r0->_lo;
  double a = (double)lo0;
  int32 hi0 = r0->_hi;
  double b = (double)hi0;
  int32 lo1 = r1->_lo;
  double c = (double)lo1;
  int32 hi1 = r1->_hi;
  double d = (double)hi1;

  // Compute all endpoints & check for overflow
  int32 A = lo0*lo1;
  if( (double)A != a*c ) return TypeInt::INT; // Overflow?
  int32 B = lo0*hi1;
  if( (double)B != a*d ) return TypeInt::INT; // Overflow?
  int32 C = hi0*lo1;
  if( (double)C != b*c ) return TypeInt::INT; // Overflow?
  int32 D = hi0*hi1;
  if( (double)D != b*d ) return TypeInt::INT; // Overflow?

  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
  else { lo0 = B; hi0 = A; }
  if( C < D ) {
    if( C < lo0 ) lo0 = C;
    if( D > hi0 ) hi0 = D;
  } else {
    if( D < lo0 ) lo0 = D;
    if( C > hi0 ) hi0 = C;
  }
  return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
}


//=============================================================================
//------------------------------Ideal------------------------------------------
// Check for power-of-2 multiply, then try the regular MulNode::Ideal
Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Swap constant to right
  jlong con;
  if ((con = in(1)->find_long_con(0)) != 0) {
    swap_edges(1, 2);
    // Finish rest of method to use info in 'con'
  } else if ((con = in(2)->find_long_con(0)) == 0) {
    return MulNode::Ideal(phase, can_reshape);
  }

  // Now we have a constant Node on the right and the constant in con
  if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
  if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call

  // Check for negative constant; if so negate the final result
  bool sign_flip = false;
  if( con < 0 ) {
    con = -con;
    sign_flip = true;
  }

  // Get low bit; check for being the only bit
  Node *res = NULL;
  jlong bit1 = con & -con;      // Extract low bit
  if( bit1 == con ) {           // Found a power of 2?
    res = new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
  } else {

    // Check for constant with 2 bits set
    jlong bit2 = con-bit1;
    bit2 = bit2 & -bit2;          // Extract 2nd bit
    if( bit2 + bit1 == con ) {    // Found all bits in con?
      Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
      Node *n2 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
      res = new (phase->C, 3) AddLNode( n2, n1 );

    } else if (is_power_of_2_long(con+1)) {
      // Sleezy: power-of-2 -1.  Next time be generic.
      jlong temp = (jlong) (con + 1);
      Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
      res = new (phase->C, 3) SubLNode( n1, in(1) );
    } else {
      return MulNode::Ideal(phase, can_reshape);
    }
  }

  if( sign_flip ) {             // Need to negate result?
    res = phase->transform(res);// Transform, before making the zero con
    res = new (phase->C, 3) SubLNode(phase->longcon(0),res);
  }

  return res;                   // Return final result
}

//------------------------------mul_ring---------------------------------------
// Compute the product type of two integer ranges into this node.
const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
  const TypeLong *r0 = t0->is_long(); // Handy access
  const TypeLong *r1 = t1->is_long();

  // Fetch endpoints of all ranges
  jlong lo0 = r0->_lo;
  double a = (double)lo0;
  jlong hi0 = r0->_hi;
  double b = (double)hi0;
  jlong lo1 = r1->_lo;
  double c = (double)lo1;
  jlong hi1 = r1->_hi;
  double d = (double)hi1;

  // Compute all endpoints & check for overflow
  jlong A = lo0*lo1;
  if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
  jlong B = lo0*hi1;
  if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
  jlong C = hi0*lo1;
  if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
  jlong D = hi0*hi1;
  if( (double)D != b*d ) return TypeLong::LONG; // Overflow?

  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
  else { lo0 = B; hi0 = A; }
  if( C < D ) {
    if( C < lo0 ) lo0 = C;
    if( D > hi0 ) hi0 = D;
  } else {
    if( D < lo0 ) lo0 = D;
    if( C > hi0 ) hi0 = C;
  }
  return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
}

//=============================================================================
//------------------------------mul_ring---------------------------------------
// Compute the product type of two double ranges into this node.
const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
  if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
  return TypeF::make( t0->getf() * t1->getf() );
}

//=============================================================================
//------------------------------mul_ring---------------------------------------
// Compute the product type of two double ranges into this node.
const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
  if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
371
  // We must be multiplying 2 double constants.
D
duke 已提交
372 373 374
  return TypeD::make( t0->getd() * t1->getd() );
}

R
rasbold 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
//=============================================================================
//------------------------------Value------------------------------------------
const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // It is not worth trying to constant fold this stuff!
  return TypeLong::LONG;
}

D
duke 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
//=============================================================================
//------------------------------mul_ring---------------------------------------
// Supplied function returns the product of the inputs IN THE CURRENT RING.
// For the logical operations the ring's MUL is really a logical AND function.
// This also type-checks the inputs for sanity.  Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
  const TypeInt *r0 = t0->is_int(); // Handy access
  const TypeInt *r1 = t1->is_int();
  int widen = MAX2(r0->_widen,r1->_widen);

  // If either input is a constant, might be able to trim cases
  if( !r0->is_con() && !r1->is_con() )
    return TypeInt::INT;        // No constants to be had

  // Both constants?  Return bits
  if( r0->is_con() && r1->is_con() )
    return TypeInt::make( r0->get_con() & r1->get_con() );

  if( r0->is_con() && r0->get_con() > 0 )
    return TypeInt::make(0, r0->get_con(), widen);

  if( r1->is_con() && r1->get_con() > 0 )
    return TypeInt::make(0, r1->get_con(), widen);

  if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
    return TypeInt::BOOL;
  }

  return TypeInt::INT;          // No constants to be had
}

//------------------------------Identity---------------------------------------
// Masking off the high bits of an unsigned load is not required
Node *AndINode::Identity( PhaseTransform *phase ) {

  // x & x => x
  if (phase->eqv(in(1), in(2))) return in(1);

  Node *load = in(1);
  const TypeInt *t2 = phase->type( in(2) )->isa_int();
  if( t2 && t2->is_con() ) {
    int con = t2->get_con();
    // Masking off high bits which are always zero is useless.
    const TypeInt* t1 = phase->type( in(1) )->isa_int();
    if (t1 != NULL && t1->_lo >= 0) {
      jint t1_support = ((jint)1 << (1 + log2_intptr(t1->_hi))) - 1;
      if ((t1_support & con) == t1_support)
        return load;
    }
    uint lop = load->Opcode();
    if( lop == Op_LoadC &&
        con == 0x0000FFFF )     // Already zero-extended
      return load;
    // Masking off the high bits of a unsigned-shift-right is not
    // needed either.
    if( lop == Op_URShiftI ) {
      const TypeInt *t12 = phase->type( load->in(2) )->isa_int();
      if( t12 && t12->is_con() ) {
        int shift_con = t12->get_con();
        int mask = max_juint >> shift_con;
        if( (mask&con) == mask )  // If AND is useless, skip it
          return load;
      }
    }
  }
  return MulNode::Identity(phase);
}

//------------------------------Ideal------------------------------------------
Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Special case constant AND mask
  const TypeInt *t2 = phase->type( in(2) )->isa_int();
  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
  const int mask = t2->get_con();
  Node *load = in(1);
  uint lop = load->Opcode();

  // Masking bits off of a Character?  Hi bits are already zero.
  if( lop == Op_LoadC &&
      (mask & 0xFFFF0000) )     // Can we make a smaller mask?
    return new (phase->C, 3) AndINode(load,phase->intcon(mask&0xFFFF));

  // Masking bits off of a Short?  Loading a Character does some masking
  if( lop == Op_LoadS &&
      (mask & 0xFFFF0000) == 0 ) {
    Node *ldc = new (phase->C, 3) LoadCNode(load->in(MemNode::Control),
                                  load->in(MemNode::Memory),
                                  load->in(MemNode::Address),
                                  load->adr_type());
    ldc = phase->transform(ldc);
    return new (phase->C, 3) AndINode(ldc,phase->intcon(mask&0xFFFF));
  }

  // Masking sign bits off of a Byte?  Let the matcher use an unsigned load
  if( lop == Op_LoadB &&
      (!in(0) && load->in(0)) &&
      (mask == 0x000000FF) ) {
    // Associate this node with the LoadB, so the matcher can see them together.
    // If we don't do this, it is common for the LoadB to have one control
    // edge, and the store or call containing this AndI to have a different
    // control edge.  This will cause Label_Root to group the AndI with
    // the encoding store or call, so the matcher has no chance to match
    // this AndI together with the LoadB.  Setting the control edge here
    // prevents Label_Root from grouping the AndI with the store or call,
    // if it has a control edge that is inconsistent with the LoadB.
    set_req(0, load->in(0));
    return this;
  }

  // Masking off sign bits?  Dont make them!
  if( lop == Op_RShiftI ) {
    const TypeInt *t12 = phase->type(load->in(2))->isa_int();
    if( t12 && t12->is_con() ) { // Shift is by a constant
      int shift = t12->get_con();
      shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
      const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
      // If the AND'ing of the 2 masks has no bits, then only original shifted
      // bits survive.  NO sign-extension bits survive the maskings.
      if( (sign_bits_mask & mask) == 0 ) {
        // Use zero-fill shift instead
        Node *zshift = phase->transform(new (phase->C, 3) URShiftINode(load->in(1),load->in(2)));
        return new (phase->C, 3) AndINode( zshift, in(2) );
      }
    }
  }

  // Check for 'negate/and-1', a pattern emitted when someone asks for
  // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
  // plus 1) and the mask is of the low order bit.  Skip the negate.
  if( lop == Op_SubI && mask == 1 && load->in(1) &&
      phase->type(load->in(1)) == TypeInt::ZERO )
    return new (phase->C, 3) AndINode( load->in(2), in(2) );

  return MulNode::Ideal(phase, can_reshape);
}

//=============================================================================
//------------------------------mul_ring---------------------------------------
// Supplied function returns the product of the inputs IN THE CURRENT RING.
// For the logical operations the ring's MUL is really a logical AND function.
// This also type-checks the inputs for sanity.  Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
  const TypeLong *r0 = t0->is_long(); // Handy access
  const TypeLong *r1 = t1->is_long();
  int widen = MAX2(r0->_widen,r1->_widen);

  // If either input is a constant, might be able to trim cases
  if( !r0->is_con() && !r1->is_con() )
    return TypeLong::LONG;      // No constants to be had

  // Both constants?  Return bits
  if( r0->is_con() && r1->is_con() )
    return TypeLong::make( r0->get_con() & r1->get_con() );

  if( r0->is_con() && r0->get_con() > 0 )
    return TypeLong::make(CONST64(0), r0->get_con(), widen);

  if( r1->is_con() && r1->get_con() > 0 )
    return TypeLong::make(CONST64(0), r1->get_con(), widen);

  return TypeLong::LONG;        // No constants to be had
}

//------------------------------Identity---------------------------------------
// Masking off the high bits of an unsigned load is not required
Node *AndLNode::Identity( PhaseTransform *phase ) {

  // x & x => x
  if (phase->eqv(in(1), in(2))) return in(1);

  Node *usr = in(1);
  const TypeLong *t2 = phase->type( in(2) )->isa_long();
  if( t2 && t2->is_con() ) {
    jlong con = t2->get_con();
    // Masking off high bits which are always zero is useless.
    const TypeLong* t1 = phase->type( in(1) )->isa_long();
    if (t1 != NULL && t1->_lo >= 0) {
      jlong t1_support = ((jlong)1 << (1 + log2_long(t1->_hi))) - 1;
      if ((t1_support & con) == t1_support)
        return usr;
    }
    uint lop = usr->Opcode();
    // Masking off the high bits of a unsigned-shift-right is not
    // needed either.
    if( lop == Op_URShiftL ) {
      const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
      if( t12 && t12->is_con() ) {
        int shift_con = t12->get_con();
        jlong mask = max_julong >> shift_con;
        if( (mask&con) == mask )  // If AND is useless, skip it
          return usr;
      }
    }
  }
  return MulNode::Identity(phase);
}

//------------------------------Ideal------------------------------------------
Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Special case constant AND mask
  const TypeLong *t2 = phase->type( in(2) )->isa_long();
  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
  const jlong mask = t2->get_con();

  Node *rsh = in(1);
  uint rop = rsh->Opcode();

  // Masking off sign bits?  Dont make them!
  if( rop == Op_RShiftL ) {
    const TypeInt *t12 = phase->type(rsh->in(2))->isa_int();
    if( t12 && t12->is_con() ) { // Shift is by a constant
      int shift = t12->get_con();
      shift &= (BitsPerJavaInteger*2)-1;  // semantics of Java shifts
      const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - shift)) -1);
      // If the AND'ing of the 2 masks has no bits, then only original shifted
      // bits survive.  NO sign-extension bits survive the maskings.
      if( (sign_bits_mask & mask) == 0 ) {
        // Use zero-fill shift instead
        Node *zshift = phase->transform(new (phase->C, 3) URShiftLNode(rsh->in(1),rsh->in(2)));
        return new (phase->C, 3) AndLNode( zshift, in(2) );
      }
    }
  }

  return MulNode::Ideal(phase, can_reshape);
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *LShiftINode::Identity( PhaseTransform *phase ) {
  const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
}

//------------------------------Ideal------------------------------------------
// If the right input is a constant, and the left input is an add of a
// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const Type *t  = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;       // Right input is dead
  const TypeInt *t2 = t->isa_int();
  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count

  if ( con == 0 )  return NULL; // let Identity() handle 0 shift count

  // Left input is an add of a constant?
  Node *add1 = in(1);
  int add1_op = add1->Opcode();
  if( add1_op == Op_AddI ) {    // Left input is an add?
    assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
    const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
    if( t12 && t12->is_con() ){ // Left input is an add of a con?
      // Transform is legal, but check for profit.  Avoid breaking 'i2s'
      // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
      if( con < 16 ) {
        // Compute X << con0
        Node *lsh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(1), in(2) ) );
        // Compute X<<con0 + (con1<<con0)
        return new (phase->C, 3) AddINode( lsh, phase->intcon(t12->get_con() << con));
      }
    }
  }

  // Check for "(x>>c0)<<c0" which just masks off low bits
  if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
      add1->in(2) == in(2) )
    // Convert to "(x & -(1<<c0))"
    return new (phase->C, 3) AndINode(add1->in(1),phase->intcon( -(1<<con)));

  // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
  if( add1_op == Op_AndI ) {
    Node *add2 = add1->in(1);
    int add2_op = add2->Opcode();
    if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
        add2->in(2) == in(2) ) {
      // Convert to "(x & (Y<<c0))"
      Node *y_sh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(2), in(2) ) );
      return new (phase->C, 3) AndINode( add2->in(1), y_sh );
    }
  }

  // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
  // before shifting them away.
  const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
  if( add1_op == Op_AndI &&
      phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
    return new (phase->C, 3) LShiftINode( add1->in(1), in(2) );

  return NULL;
}

//------------------------------Value------------------------------------------
// A LShiftINode shifts its input2 left by input1 amount.
const Type *LShiftINode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return TypeInt::INT;

  const TypeInt *r1 = t1->is_int(); // Handy access
  const TypeInt *r2 = t2->is_int(); // Handy access

  if (!r2->is_con())
    return TypeInt::INT;

  uint shift = r2->get_con();
  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
  // Shift by a multiple of 32 does nothing:
  if (shift == 0)  return t1;

  // If the shift is a constant, shift the bounds of the type,
  // unless this could lead to an overflow.
  if (!r1->is_con()) {
    jint lo = r1->_lo, hi = r1->_hi;
    if (((lo << shift) >> shift) == lo &&
        ((hi << shift) >> shift) == hi) {
      // No overflow.  The range shifts up cleanly.
      return TypeInt::make((jint)lo << (jint)shift,
                           (jint)hi << (jint)shift,
                           MAX2(r1->_widen,r2->_widen));
    }
    return TypeInt::INT;
  }

  return TypeInt::make( (jint)r1->get_con() << (jint)shift );
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *LShiftLNode::Identity( PhaseTransform *phase ) {
  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
}

//------------------------------Ideal------------------------------------------
// If the right input is a constant, and the left input is an add of a
// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const Type *t  = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;       // Right input is dead
  const TypeInt *t2 = t->isa_int();
  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count

  if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count

  // Left input is an add of a constant?
  Node *add1 = in(1);
  int add1_op = add1->Opcode();
  if( add1_op == Op_AddL ) {    // Left input is an add?
    // Avoid dead data cycles from dead loops
    assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
    const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
    if( t12 && t12->is_con() ){ // Left input is an add of a con?
      // Compute X << con0
      Node *lsh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(1), in(2) ) );
      // Compute X<<con0 + (con1<<con0)
      return new (phase->C, 3) AddLNode( lsh, phase->longcon(t12->get_con() << con));
    }
  }

  // Check for "(x>>c0)<<c0" which just masks off low bits
  if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
      add1->in(2) == in(2) )
    // Convert to "(x & -(1<<c0))"
    return new (phase->C, 3) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));

  // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
  if( add1_op == Op_AndL ) {
    Node *add2 = add1->in(1);
    int add2_op = add2->Opcode();
    if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
        add2->in(2) == in(2) ) {
      // Convert to "(x & (Y<<c0))"
      Node *y_sh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(2), in(2) ) );
      return new (phase->C, 3) AndLNode( add2->in(1), y_sh );
    }
  }

  // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
  // before shifting them away.
  const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) - CONST64(1);
  if( add1_op == Op_AndL &&
      phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
    return new (phase->C, 3) LShiftLNode( add1->in(1), in(2) );

  return NULL;
}

//------------------------------Value------------------------------------------
// A LShiftLNode shifts its input2 left by input1 amount.
const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return TypeLong::LONG;

  const TypeLong *r1 = t1->is_long(); // Handy access
  const TypeInt  *r2 = t2->is_int();  // Handy access

  if (!r2->is_con())
    return TypeLong::LONG;

  uint shift = r2->get_con();
  shift &= (BitsPerJavaInteger*2)-1;  // semantics of Java shifts
  // Shift by a multiple of 64 does nothing:
  if (shift == 0)  return t1;

  // If the shift is a constant, shift the bounds of the type,
  // unless this could lead to an overflow.
  if (!r1->is_con()) {
    jlong lo = r1->_lo, hi = r1->_hi;
    if (((lo << shift) >> shift) == lo &&
        ((hi << shift) >> shift) == hi) {
      // No overflow.  The range shifts up cleanly.
      return TypeLong::make((jlong)lo << (jint)shift,
                            (jlong)hi << (jint)shift,
                            MAX2(r1->_widen,r2->_widen));
    }
    return TypeLong::LONG;
  }

  return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *RShiftINode::Identity( PhaseTransform *phase ) {
  const TypeInt *t2 = phase->type(in(2))->isa_int();
  if( !t2 ) return this;
  if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
    return in(1);

  // Check for useless sign-masking
  if( in(1)->Opcode() == Op_LShiftI &&
      in(1)->req() == 3 &&
      in(1)->in(2) == in(2) &&
      t2->is_con() ) {
    uint shift = t2->get_con();
    shift &= BitsPerJavaInteger-1; // semantics of Java shifts
    // Compute masks for which this shifting doesn't change
    int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
    int hi = ~lo;               // 00007FFF
    const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
    if( !t11 ) return this;
    // Does actual value fit inside of mask?
    if( lo <= t11->_lo && t11->_hi <= hi )
      return in(1)->in(1);      // Then shifting is a nop
  }

  return this;
}

//------------------------------Ideal------------------------------------------
Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Inputs may be TOP if they are dead.
  const TypeInt *t1 = phase->type( in(1) )->isa_int();
  if( !t1 ) return NULL;        // Left input is an integer
  const TypeInt *t2 = phase->type( in(2) )->isa_int();
  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  const TypeInt *t3;  // type of in(1).in(2)
  int shift = t2->get_con();
  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts

  if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count

  // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
  // Such expressions arise normally from shift chains like (byte)(x >> 24).
  const Node *mask = in(1);
  if( mask->Opcode() == Op_AndI &&
      (t3 = phase->type(mask->in(2))->isa_int()) &&
      t3->is_con() ) {
    Node *x = mask->in(1);
    jint maskbits = t3->get_con();
    // Convert to "(x >> shift) & (mask >> shift)"
    Node *shr_nomask = phase->transform( new (phase->C, 3) RShiftINode(mask->in(1), in(2)) );
    return new (phase->C, 3) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
  }

  // Check for "(short[i] <<16)>>16" which simply sign-extends
  const Node *shl = in(1);
  if( shl->Opcode() != Op_LShiftI ) return NULL;

  if( shift == 16 &&
      (t3 = phase->type(shl->in(2))->isa_int()) &&
      t3->is_con(16) ) {
    Node *ld = shl->in(1);
    if( ld->Opcode() == Op_LoadS ) {
      // Sign extension is just useless here.  Return a RShiftI of zero instead
      // returning 'ld' directly.  We cannot return an old Node directly as
      // that is the job of 'Identity' calls and Identity calls only work on
      // direct inputs ('ld' is an extra Node removed from 'this').  The
      // combined optimization requires Identity only return direct inputs.
      set_req(1, ld);
      set_req(2, phase->intcon(0));
      return this;
    }
    else if( ld->Opcode() == Op_LoadC )
      // Replace zero-extension-load with sign-extension-load
      return new (phase->C, 3) LoadSNode( ld->in(MemNode::Control),
                                ld->in(MemNode::Memory),
                                ld->in(MemNode::Address),
                                ld->adr_type());
  }

  // Check for "(byte[i] <<24)>>24" which simply sign-extends
  if( shift == 24 &&
      (t3 = phase->type(shl->in(2))->isa_int()) &&
      t3->is_con(24) ) {
    Node *ld = shl->in(1);
    if( ld->Opcode() == Op_LoadB ) {
      // Sign extension is just useless here
      set_req(1, ld);
      set_req(2, phase->intcon(0));
      return this;
    }
  }

  return NULL;
}

//------------------------------Value------------------------------------------
// A RShiftINode shifts its input2 right by input1 amount.
const Type *RShiftINode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
    return TypeInt::INT;

  if (t2 == TypeInt::INT)
    return TypeInt::INT;

  const TypeInt *r1 = t1->is_int(); // Handy access
  const TypeInt *r2 = t2->is_int(); // Handy access

  // If the shift is a constant, just shift the bounds of the type.
  // For example, if the shift is 31, we just propagate sign bits.
  if (r2->is_con()) {
    uint shift = r2->get_con();
    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
    // Shift by a multiple of 32 does nothing:
    if (shift == 0)  return t1;
    // Calculate reasonably aggressive bounds for the result.
    // This is necessary if we are to correctly type things
    // like (x<<24>>24) == ((byte)x).
    jint lo = (jint)r1->_lo >> (jint)shift;
    jint hi = (jint)r1->_hi >> (jint)shift;
    assert(lo <= hi, "must have valid bounds");
    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
#ifdef ASSERT
    // Make sure we get the sign-capture idiom correct.
    if (shift == BitsPerJavaInteger-1) {
      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
      if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
    }
#endif
    return ti;
  }

  if( !r1->is_con() || !r2->is_con() )
    return TypeInt::INT;

  // Signed shift right
  return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *RShiftLNode::Identity( PhaseTransform *phase ) {
  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
}

//------------------------------Value------------------------------------------
// A RShiftLNode shifts its input2 right by input1 amount.
const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
    return TypeLong::LONG;

  if (t2 == TypeInt::INT)
    return TypeLong::LONG;

  const TypeLong *r1 = t1->is_long(); // Handy access
  const TypeInt  *r2 = t2->is_int (); // Handy access

  // If the shift is a constant, just shift the bounds of the type.
  // For example, if the shift is 63, we just propagate sign bits.
  if (r2->is_con()) {
    uint shift = r2->get_con();
    shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
    // Shift by a multiple of 64 does nothing:
    if (shift == 0)  return t1;
    // Calculate reasonably aggressive bounds for the result.
    // This is necessary if we are to correctly type things
    // like (x<<24>>24) == ((byte)x).
    jlong lo = (jlong)r1->_lo >> (jlong)shift;
    jlong hi = (jlong)r1->_hi >> (jlong)shift;
    assert(lo <= hi, "must have valid bounds");
    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
    #ifdef ASSERT
    // Make sure we get the sign-capture idiom correct.
    if (shift == (2*BitsPerJavaInteger)-1) {
      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
      if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
    }
    #endif
    return tl;
  }

  return TypeLong::LONG;                // Give up
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *URShiftINode::Identity( PhaseTransform *phase ) {
  const TypeInt *ti = phase->type( in(2) )->isa_int();
  if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);

  // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
  // Happens during new-array length computation.
  // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
  Node *add = in(1);
  if( add->Opcode() == Op_AddI ) {
    const TypeInt *t2  = phase->type(add->in(2))->isa_int();
    if( t2 && t2->is_con(wordSize - 1) &&
        add->in(1)->Opcode() == Op_LShiftI ) {
      // Check that shift_counts are LogBytesPerWord
      Node          *lshift_count   = add->in(1)->in(2);
      const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
      if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
          t_lshift_count == phase->type(in(2)) ) {
        Node          *x   = add->in(1)->in(1);
        const TypeInt *t_x = phase->type(x)->isa_int();
        if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
          return x;
        }
      }
    }
  }

  return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
}

//------------------------------Ideal------------------------------------------
Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const TypeInt *t2 = phase->type( in(2) )->isa_int();
  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  const int con = t2->get_con() & 31; // Shift count is always masked
  if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
  // We'll be wanting the right-shift amount as a mask of that many bits
  const int mask = right_n_bits(BitsPerJavaInteger - con);

  int in1_op = in(1)->Opcode();

  // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
  if( in1_op == Op_URShiftI ) {
    const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
    if( t12 && t12->is_con() ) { // Right input is a constant
      assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
      const int con2 = t12->get_con() & 31; // Shift count is always masked
      const int con3 = con+con2;
      if( con3 < 32 )           // Only merge shifts if total is < 32
        return new (phase->C, 3) URShiftINode( in(1)->in(1), phase->intcon(con3) );
    }
  }

  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
  // If Q is "X << z" the rounding is useless.  Look for patterns like
  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
  Node *add = in(1);
  if( in1_op == Op_AddI ) {
    Node *lshl = add->in(1);
    if( lshl->Opcode() == Op_LShiftI &&
        phase->type(lshl->in(2)) == t2 ) {
      Node *y_z = phase->transform( new (phase->C, 3) URShiftINode(add->in(2),in(2)) );
      Node *sum = phase->transform( new (phase->C, 3) AddINode( lshl->in(1), y_z ) );
      return new (phase->C, 3) AndINode( sum, phase->intcon(mask) );
    }
  }

  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
  // This shortens the mask.  Also, if we are extracting a high byte and
  // storing it to a buffer, the mask will be removed completely.
  Node *andi = in(1);
  if( in1_op == Op_AndI ) {
    const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
    if( t3 && t3->is_con() ) { // Right input is a constant
      jint mask2 = t3->get_con();
      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
      Node *newshr = phase->transform( new (phase->C, 3) URShiftINode(andi->in(1), in(2)) );
      return new (phase->C, 3) AndINode(newshr, phase->intcon(mask2));
      // The negative values are easier to materialize than positive ones.
      // A typical case from address arithmetic is ((x & ~15) >> 4).
      // It's better to change that to ((x >> 4) & ~0) versus
      // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
    }
  }

  // Check for "(X << z ) >>> z" which simply zero-extends
  Node *shl = in(1);
  if( in1_op == Op_LShiftI &&
      phase->type(shl->in(2)) == t2 )
    return new (phase->C, 3) AndINode( shl->in(1), phase->intcon(mask) );

  return NULL;
}

//------------------------------Value------------------------------------------
// A URShiftINode shifts its input2 right by input1 amount.
const Type *URShiftINode::Value( PhaseTransform *phase ) const {
  // (This is a near clone of RShiftINode::Value.)
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
    return TypeInt::INT;

  if (t2 == TypeInt::INT)
    return TypeInt::INT;

  const TypeInt *r1 = t1->is_int();     // Handy access
  const TypeInt *r2 = t2->is_int();     // Handy access

  if (r2->is_con()) {
    uint shift = r2->get_con();
    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
    // Shift by a multiple of 32 does nothing:
    if (shift == 0)  return t1;
    // Calculate reasonably aggressive bounds for the result.
    jint lo = (juint)r1->_lo >> (juint)shift;
    jint hi = (juint)r1->_hi >> (juint)shift;
    if (r1->_hi >= 0 && r1->_lo < 0) {
      // If the type has both negative and positive values,
      // there are two separate sub-domains to worry about:
      // The positive half and the negative half.
      jint neg_lo = lo;
      jint neg_hi = (juint)-1 >> (juint)shift;
      jint pos_lo = (juint) 0 >> (juint)shift;
      jint pos_hi = hi;
      lo = MIN2(neg_lo, pos_lo);  // == 0
      hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
    }
    assert(lo <= hi, "must have valid bounds");
    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
    #ifdef ASSERT
    // Make sure we get the sign-capture idiom correct.
    if (shift == BitsPerJavaInteger-1) {
      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
      if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
    }
    #endif
    return ti;
  }

  //
  // Do not support shifted oops in info for GC
  //
  // else if( t1->base() == Type::InstPtr ) {
  //
  //   const TypeInstPtr *o = t1->is_instptr();
  //   if( t1->singleton() )
  //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
  // }
  // else if( t1->base() == Type::KlassPtr ) {
  //   const TypeKlassPtr *o = t1->is_klassptr();
  //   if( t1->singleton() )
  //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
  // }

  return TypeInt::INT;
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *URShiftLNode::Identity( PhaseTransform *phase ) {
  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
}

//------------------------------Ideal------------------------------------------
Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const TypeInt *t2 = phase->type( in(2) )->isa_int();
  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
  if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
                              // note: mask computation below does not work for 0 shift count
  // We'll be wanting the right-shift amount as a mask of that many bits
  const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) -1);

  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
  // If Q is "X << z" the rounding is useless.  Look for patterns like
  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
  Node *add = in(1);
  if( add->Opcode() == Op_AddL ) {
    Node *lshl = add->in(1);
    if( lshl->Opcode() == Op_LShiftL &&
        phase->type(lshl->in(2)) == t2 ) {
      Node *y_z = phase->transform( new (phase->C, 3) URShiftLNode(add->in(2),in(2)) );
      Node *sum = phase->transform( new (phase->C, 3) AddLNode( lshl->in(1), y_z ) );
      return new (phase->C, 3) AndLNode( sum, phase->longcon(mask) );
    }
  }

  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
  // This shortens the mask.  Also, if we are extracting a high byte and
  // storing it to a buffer, the mask will be removed completely.
  Node *andi = in(1);
  if( andi->Opcode() == Op_AndL ) {
    const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
    if( t3 && t3->is_con() ) { // Right input is a constant
      jlong mask2 = t3->get_con();
      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
      Node *newshr = phase->transform( new (phase->C, 3) URShiftLNode(andi->in(1), in(2)) );
      return new (phase->C, 3) AndLNode(newshr, phase->longcon(mask2));
    }
  }

  // Check for "(X << z ) >>> z" which simply zero-extends
  Node *shl = in(1);
  if( shl->Opcode() == Op_LShiftL &&
      phase->type(shl->in(2)) == t2 )
    return new (phase->C, 3) AndLNode( shl->in(1), phase->longcon(mask) );

  return NULL;
}

//------------------------------Value------------------------------------------
// A URShiftINode shifts its input2 right by input1 amount.
const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
  // (This is a near clone of RShiftLNode::Value.)
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
    return TypeLong::LONG;

  if (t2 == TypeInt::INT)
    return TypeLong::LONG;

  const TypeLong *r1 = t1->is_long(); // Handy access
  const TypeInt  *r2 = t2->is_int (); // Handy access

  if (r2->is_con()) {
    uint shift = r2->get_con();
    shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
    // Shift by a multiple of 64 does nothing:
    if (shift == 0)  return t1;
    // Calculate reasonably aggressive bounds for the result.
    jlong lo = (julong)r1->_lo >> (juint)shift;
    jlong hi = (julong)r1->_hi >> (juint)shift;
    if (r1->_hi >= 0 && r1->_lo < 0) {
      // If the type has both negative and positive values,
      // there are two separate sub-domains to worry about:
      // The positive half and the negative half.
      jlong neg_lo = lo;
      jlong neg_hi = (julong)-1 >> (juint)shift;
      jlong pos_lo = (julong) 0 >> (juint)shift;
      jlong pos_hi = hi;
      //lo = MIN2(neg_lo, pos_lo);  // == 0
      lo = neg_lo < pos_lo ? neg_lo : pos_lo;
      //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
      hi = neg_hi > pos_hi ? neg_hi : pos_hi;
    }
    assert(lo <= hi, "must have valid bounds");
    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
    #ifdef ASSERT
    // Make sure we get the sign-capture idiom correct.
    if (shift == (2*BitsPerJavaInteger)-1) {
      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
      if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
    }
    #endif
    return tl;
  }

  return TypeLong::LONG;                // Give up
}