divnode.cpp 46.9 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

#include "incls/_precompiled.incl"
#include "incls/_divnode.cpp.incl"
#include <math.h>

R
rasbold 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
//----------------------magic_int_divide_constants-----------------------------
// Compute magic multiplier and shift constant for converting a 32 bit divide
// by constant into a multiply/shift/add series. Return false if calculations
// fail.
//
// Borrowed almost verbatum from Hacker's Delight by Henry S. Warren, Jr. with
// minor type name and parameter changes.
static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
  int32_t p;
  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
  const uint32_t two31 = 0x80000000L;     // 2**31.

  ad = ABS(d);
  if (d == 0 || d == 1) return false;
  t = two31 + ((uint32_t)d >> 31);
  anc = t - 1 - t%ad;     // Absolute value of nc.
  p = 31;                 // Init. p.
  q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
  r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
  q2 = two31/ad;          // Init. q2 = 2**p/|d|.
  r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
  do {
    p = p + 1;
    q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    if (r1 >= anc) {      // (Must be an unsigned
      q1 = q1 + 1;        // comparison here).
      r1 = r1 - anc;
    }
    q2 = 2*q2;            // Update q2 = 2**p/|d|.
    r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    if (r2 >= ad) {       // (Must be an unsigned
      q2 = q2 + 1;        // comparison here).
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));

  M = q2 + 1;
  if (d < 0) M = -M;      // Magic number and
  s = p - 32;             // shift amount to return.

  return true;
}

//--------------------------transform_int_divide-------------------------------
// Convert a division by constant divisor into an alternate Ideal graph.
// Return NULL if no transformation occurs.
static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
D
duke 已提交
82 83

  // Check for invalid divisors
R
rasbold 已提交
84 85
  assert( divisor != 0 && divisor != min_jint,
          "bad divisor for transforming to long multiply" );
D
duke 已提交
86 87

  bool d_pos = divisor >= 0;
R
rasbold 已提交
88
  jint d = d_pos ? divisor : -divisor;
D
duke 已提交
89 90 91
  const int N = 32;

  // Result
R
rasbold 已提交
92
  Node *q = NULL;
D
duke 已提交
93 94

  if (d == 1) {
R
rasbold 已提交
95 96 97
    // division by +/- 1
    if (!d_pos) {
      // Just negate the value
D
duke 已提交
98 99
      q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
    }
R
rasbold 已提交
100 101
  } else if ( is_power_of_2(d) ) {
    // division by +/- a power of 2
D
duke 已提交
102 103 104 105 106

    // See if we can simply do a shift without rounding
    bool needs_rounding = true;
    const Type *dt = phase->type(dividend);
    const TypeInt *dti = dt->isa_int();
R
rasbold 已提交
107 108
    if (dti && dti->_lo >= 0) {
      // we don't need to round a positive dividend
D
duke 已提交
109
      needs_rounding = false;
R
rasbold 已提交
110 111 112
    } else if( dividend->Opcode() == Op_AndI ) {
      // An AND mask of sufficient size clears the low bits and
      // I can avoid rounding.
113 114 115 116 117 118 119
      const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
      if( andconi_t && andconi_t->is_con() ) {
        jint andconi = andconi_t->get_con();
        if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
          dividend = dividend->in(1);
          needs_rounding = false;
        }
D
duke 已提交
120 121 122 123
      }
    }

    // Add rounding to the shift to handle the sign bit
R
rasbold 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    int l = log2_intptr(d-1)+1;
    if (needs_rounding) {
      // Divide-by-power-of-2 can be made into a shift, but you have to do
      // more math for the rounding.  You need to add 0 for positive
      // numbers, and "i-1" for negative numbers.  Example: i=4, so the
      // shift is by 2.  You need to add 3 to negative dividends and 0 to
      // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
      // (-2+3)>>2 becomes 0, etc.

      // Compute 0 or -1, based on sign bit
      Node *sign = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N - 1)));
      // Mask sign bit to the low sign bits
      Node *round = phase->transform(new (phase->C, 3) URShiftINode(sign, phase->intcon(N - l)));
      // Round up before shifting
      dividend = phase->transform(new (phase->C, 3) AddINode(dividend, round));
D
duke 已提交
139 140
    }

R
rasbold 已提交
141
    // Shift for division
D
duke 已提交
142 143
    q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));

R
rasbold 已提交
144
    if (!d_pos) {
D
duke 已提交
145
      q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
R
rasbold 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    }
  } else {
    // Attempt the jint constant divide -> multiply transform found in
    //   "Division by Invariant Integers using Multiplication"
    //     by Granlund and Montgomery
    // See also "Hacker's Delight", chapter 10 by Warren.

    jint magic_const;
    jint shift_const;
    if (magic_int_divide_constants(d, magic_const, shift_const)) {
      Node *magic = phase->longcon(magic_const);
      Node *dividend_long = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));

      // Compute the high half of the dividend x magic multiplication
      Node *mul_hi = phase->transform(new (phase->C, 3) MulLNode(dividend_long, magic));

      if (magic_const < 0) {
        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N)));
        mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));

        // The magic multiplier is too large for a 32 bit constant. We've adjusted
        // it down by 2^32, but have to add 1 dividend back in after the multiplication.
        // This handles the "overflow" case described by Granlund and Montgomery.
        mul_hi = phase->transform(new (phase->C, 3) AddINode(dividend, mul_hi));

        // Shift over the (adjusted) mulhi
        if (shift_const != 0) {
          mul_hi = phase->transform(new (phase->C, 3) RShiftINode(mul_hi, phase->intcon(shift_const)));
        }
      } else {
        // No add is required, we can merge the shifts together.
        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
        mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
      }

      // Get a 0 or -1 from the sign of the dividend.
      Node *addend0 = mul_hi;
      Node *addend1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));

      // If the divisor is negative, swap the order of the input addends;
      // this has the effect of negating the quotient.
      if (!d_pos) {
        Node *temp = addend0; addend0 = addend1; addend1 = temp;
      }

      // Adjust the final quotient by subtracting -1 (adding 1)
      // from the mul_hi.
      q = new (phase->C, 3) SubINode(addend0, addend1);
    }
D
duke 已提交
195 196
  }

R
rasbold 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  return q;
}

//---------------------magic_long_divide_constants-----------------------------
// Compute magic multiplier and shift constant for converting a 64 bit divide
// by constant into a multiply/shift/add series. Return false if calculations
// fail.
//
// Borrowed almost verbatum from Hacker's Delight by Henry S. Warren, Jr. with
// minor type name and parameter changes.  Adjusted to 64 bit word width.
static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
  int64_t p;
  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
  const uint64_t two63 = 0x8000000000000000LL;     // 2**63.

  ad = ABS(d);
  if (d == 0 || d == 1) return false;
  t = two63 + ((uint64_t)d >> 63);
  anc = t - 1 - t%ad;     // Absolute value of nc.
  p = 63;                 // Init. p.
  q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
  r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
  q2 = two63/ad;          // Init. q2 = 2**p/|d|.
  r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
  do {
    p = p + 1;
    q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    if (r1 >= anc) {      // (Must be an unsigned
      q1 = q1 + 1;        // comparison here).
      r1 = r1 - anc;
    }
    q2 = 2*q2;            // Update q2 = 2**p/|d|.
    r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    if (r2 >= ad) {       // (Must be an unsigned
      q2 = q2 + 1;        // comparison here).
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));

  M = q2 + 1;
  if (d < 0) M = -M;      // Magic number and
  s = p - 64;             // shift amount to return.

  return true;
}
D
duke 已提交
244

R
rasbold 已提交
245 246 247 248 249 250 251 252
//---------------------long_by_long_mulhi--------------------------------------
// Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
static Node *long_by_long_mulhi( PhaseGVN *phase, Node *dividend, jlong magic_const) {
  // If the architecture supports a 64x64 mulhi, there is
  // no need to synthesize it in ideal nodes.
  if (Matcher::has_match_rule(Op_MulHiL)) {
    Node *v = phase->longcon(magic_const);
    return new (phase->C, 3) MulHiLNode(dividend, v);
D
duke 已提交
253 254
  }

R
rasbold 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  const int N = 64;

  Node *u_hi = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));
  Node *u_lo = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));

  Node *v_hi = phase->longcon(magic_const >> N/2);
  Node *v_lo = phase->longcon(magic_const & 0XFFFFFFFF);

  Node *hihi_product = phase->transform(new (phase->C, 3) MulLNode(u_hi, v_hi));
  Node *hilo_product = phase->transform(new (phase->C, 3) MulLNode(u_hi, v_lo));
  Node *lohi_product = phase->transform(new (phase->C, 3) MulLNode(u_lo, v_hi));
  Node *lolo_product = phase->transform(new (phase->C, 3) MulLNode(u_lo, v_lo));

  Node *t1 = phase->transform(new (phase->C, 3) URShiftLNode(lolo_product, phase->intcon(N / 2)));
  Node *t2 = phase->transform(new (phase->C, 3) AddLNode(hilo_product, t1));
270 271 272 273 274 275 276 277

  // Construct both t3 and t4 before transforming so t2 doesn't go dead
  // prematurely.
  Node *t3 = new (phase->C, 3) RShiftLNode(t2, phase->intcon(N / 2));
  Node *t4 = new (phase->C, 3) AndLNode(t2, phase->longcon(0xFFFFFFFF));
  t3 = phase->transform(t3);
  t4 = phase->transform(t4);

R
rasbold 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  Node *t5 = phase->transform(new (phase->C, 3) AddLNode(t4, lohi_product));
  Node *t6 = phase->transform(new (phase->C, 3) RShiftLNode(t5, phase->intcon(N / 2)));
  Node *t7 = phase->transform(new (phase->C, 3) AddLNode(t3, hihi_product));

  return new (phase->C, 3) AddLNode(t7, t6);
}


//--------------------------transform_long_divide------------------------------
// Convert a division by constant divisor into an alternate Ideal graph.
// Return NULL if no transformation occurs.
static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
  // Check for invalid divisors
  assert( divisor != 0L && divisor != min_jlong,
          "bad divisor for transforming to long multiply" );

  bool d_pos = divisor >= 0;
  jlong d = d_pos ? divisor : -divisor;
  const int N = 64;

  // Result
  Node *q = NULL;

  if (d == 1) {
    // division by +/- 1
    if (!d_pos) {
      // Just negate the value
      q = new (phase->C, 3) SubLNode(phase->longcon(0), dividend);
    }
  } else if ( is_power_of_2_long(d) ) {

    // division by +/- a power of 2

    // See if we can simply do a shift without rounding
    bool needs_rounding = true;
    const Type *dt = phase->type(dividend);
    const TypeLong *dtl = dt->isa_long();

    if (dtl && dtl->_lo > 0) {
      // we don't need to round a positive dividend
      needs_rounding = false;
    } else if( dividend->Opcode() == Op_AndL ) {
      // An AND mask of sufficient size clears the low bits and
      // I can avoid rounding.
322 323 324 325 326 327 328
      const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
      if( andconl_t && andconl_t->is_con() ) {
        jlong andconl = andconl_t->get_con();
        if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
          dividend = dividend->in(1);
          needs_rounding = false;
        }
R
rasbold 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
      }
    }

    // Add rounding to the shift to handle the sign bit
    int l = log2_long(d-1)+1;
    if (needs_rounding) {
      // Divide-by-power-of-2 can be made into a shift, but you have to do
      // more math for the rounding.  You need to add 0 for positive
      // numbers, and "i-1" for negative numbers.  Example: i=4, so the
      // shift is by 2.  You need to add 3 to negative dividends and 0 to
      // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
      // (-2+3)>>2 becomes 0, etc.

      // Compute 0 or -1, based on sign bit
      Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N - 1)));
      // Mask sign bit to the low sign bits
      Node *round = phase->transform(new (phase->C, 3) URShiftLNode(sign, phase->intcon(N - l)));
      // Round up before shifting
      dividend = phase->transform(new (phase->C, 3) AddLNode(dividend, round));
    }

    // Shift for division
    q = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(l));

    if (!d_pos) {
      q = new (phase->C, 3) SubLNode(phase->longcon(0), phase->transform(q));
    }
  } else {
    // Attempt the jlong constant divide -> multiply transform found in
    //   "Division by Invariant Integers using Multiplication"
    //     by Granlund and Montgomery
    // See also "Hacker's Delight", chapter 10 by Warren.

    jlong magic_const;
    jint shift_const;
    if (magic_long_divide_constants(d, magic_const, shift_const)) {
      // Compute the high half of the dividend x magic multiplication
      Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));

      // The high half of the 128-bit multiply is computed.
      if (magic_const < 0) {
        // The magic multiplier is too large for a 64 bit constant. We've adjusted
        // it down by 2^64, but have to add 1 dividend back in after the multiplication.
        // This handles the "overflow" case described by Granlund and Montgomery.
        mul_hi = phase->transform(new (phase->C, 3) AddLNode(dividend, mul_hi));
      }

      // Shift over the (adjusted) mulhi
      if (shift_const != 0) {
        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(shift_const)));
      }

      // Get a 0 or -1 from the sign of the dividend.
      Node *addend0 = mul_hi;
      Node *addend1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N-1)));

      // If the divisor is negative, swap the order of the input addends;
      // this has the effect of negating the quotient.
      if (!d_pos) {
        Node *temp = addend0; addend0 = addend1; addend1 = temp;
      }

      // Adjust the final quotient by subtracting -1 (adding 1)
      // from the mul_hi.
      q = new (phase->C, 3) SubLNode(addend0, addend1);
    }
D
duke 已提交
395 396
  }

R
rasbold 已提交
397
  return q;
D
duke 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410
}

//=============================================================================
//------------------------------Identity---------------------------------------
// If the divisor is 1, we are an identity on the dividend.
Node *DivINode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
// Divides can be changed to multiplies and/or shifts
Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
411 412
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
413 414 415 416 417 418 419 420

  const Type *t = phase->type( in(2) );
  if( t == TypeInt::ONE )       // Identity?
    return NULL;                // Skip it

  const TypeInt *ti = t->isa_int();
  if( !ti ) return NULL;
  if( !ti->is_con() ) return NULL;
R
rasbold 已提交
421
  jint i = ti->get_con();       // Get divisor
D
duke 已提交
422 423 424 425 426 427 428 429

  if (i == 0) return NULL;      // Dividing by zero constant does not idealize

  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting

  // Dividing by MININT does not optimize as a power-of-2 shift.
  if( i == min_jint ) return NULL;

R
rasbold 已提交
430
  return transform_int_divide( phase, in(1), i );
D
duke 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
}

//------------------------------Value------------------------------------------
// A DivINode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivINode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // x/x == 1 since we always generate the dynamic divisor check for 0.
  if( phase->eqv( in(1), in(2) ) )
    return TypeInt::ONE;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Divide the two numbers.  We approximate.
  // If divisor is a constant and not zero
  const TypeInt *i1 = t1->is_int();
  const TypeInt *i2 = t2->is_int();
  int widen = MAX2(i1->_widen, i2->_widen);

  if( i2->is_con() && i2->get_con() != 0 ) {
    int32 d = i2->get_con(); // Divisor
    jint lo, hi;
    if( d >= 0 ) {
      lo = i1->_lo/d;
      hi = i1->_hi/d;
    } else {
      if( d == -1 && i1->_lo == min_jint ) {
        // 'min_jint/-1' throws arithmetic exception during compilation
        lo = min_jint;
        // do not support holes, 'hi' must go to either min_jint or max_jint:
        // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
        hi = i1->_hi == min_jint ? min_jint : max_jint;
      } else {
        lo = i1->_hi/d;
        hi = i1->_lo/d;
      }
    }
    return TypeInt::make(lo, hi, widen);
  }

  // If the dividend is a constant
  if( i1->is_con() ) {
    int32 d = i1->get_con();
    if( d < 0 ) {
      if( d == min_jint ) {
        //  (-min_jint) == min_jint == (min_jint / -1)
        return TypeInt::make(min_jint, max_jint/2 + 1, widen);
      } else {
        return TypeInt::make(d, -d, widen);
      }
    }
    return TypeInt::make(-d, d, widen);
  }

  // Otherwise we give up all hope
  return TypeInt::INT;
}


//=============================================================================
//------------------------------Identity---------------------------------------
// If the divisor is 1, we are an identity on the dividend.
Node *DivLNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
// Dividing by a power of 2 is a shift.
Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
510 511
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
512 513

  const Type *t = phase->type( in(2) );
R
rasbold 已提交
514
  if( t == TypeLong::ONE )      // Identity?
D
duke 已提交
515 516
    return NULL;                // Skip it

R
rasbold 已提交
517 518 519 520
  const TypeLong *tl = t->isa_long();
  if( !tl ) return NULL;
  if( !tl->is_con() ) return NULL;
  jlong l = tl->get_con();      // Get divisor
D
duke 已提交
521

R
rasbold 已提交
522
  if (l == 0) return NULL;      // Dividing by zero constant does not idealize
D
duke 已提交
523

R
rasbold 已提交
524
  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
D
duke 已提交
525

R
rasbold 已提交
526 527
  // Dividing by MININT does not optimize as a power-of-2 shift.
  if( l == min_jlong ) return NULL;
D
duke 已提交
528

R
rasbold 已提交
529
  return transform_long_divide( phase, in(1), l );
D
duke 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
}

//------------------------------Value------------------------------------------
// A DivLNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // x/x == 1 since we always generate the dynamic divisor check for 0.
  if( phase->eqv( in(1), in(2) ) )
    return TypeLong::ONE;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Divide the two numbers.  We approximate.
  // If divisor is a constant and not zero
  const TypeLong *i1 = t1->is_long();
  const TypeLong *i2 = t2->is_long();
  int widen = MAX2(i1->_widen, i2->_widen);

  if( i2->is_con() && i2->get_con() != 0 ) {
    jlong d = i2->get_con();    // Divisor
    jlong lo, hi;
    if( d >= 0 ) {
      lo = i1->_lo/d;
      hi = i1->_hi/d;
    } else {
      if( d == CONST64(-1) && i1->_lo == min_jlong ) {
        // 'min_jlong/-1' throws arithmetic exception during compilation
        lo = min_jlong;
        // do not support holes, 'hi' must go to either min_jlong or max_jlong:
        // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
        hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
      } else {
        lo = i1->_hi/d;
        hi = i1->_lo/d;
      }
    }
    return TypeLong::make(lo, hi, widen);
  }

  // If the dividend is a constant
  if( i1->is_con() ) {
    jlong d = i1->get_con();
    if( d < 0 ) {
      if( d == min_jlong ) {
        //  (-min_jlong) == min_jlong == (min_jlong / -1)
        return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
      } else {
        return TypeLong::make(d, -d, widen);
      }
    }
    return TypeLong::make(-d, d, widen);
  }

  // Otherwise we give up all hope
  return TypeLong::LONG;
}


//=============================================================================
//------------------------------Value------------------------------------------
// An DivFNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivFNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // x/x == 1, we ignore 0/0.
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
617
  // Does not work for variables because of NaN's
D
duke 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
    if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
      return TypeF::ONE;

  if( t2 == TypeF::ONE )
    return t1;

  // If divisor is a constant and not zero, divide them numbers
  if( t1->base() == Type::FloatCon &&
      t2->base() == Type::FloatCon &&
      t2->getf() != 0.0 ) // could be negative zero
    return TypeF::make( t1->getf()/t2->getf() );

  // If the dividend is a constant zero
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Test TypeF::ZERO is not sufficient as it could be negative zero

  if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
    return TypeF::ZERO;

  // Otherwise we give up all hope
  return Type::FLOAT;
}

//------------------------------isA_Copy---------------------------------------
// Dividing by self is 1.
// If the divisor is 1, we are an identity on the dividend.
Node *DivFNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
}


//------------------------------Idealize---------------------------------------
Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
653 654
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

  const Type *t2 = phase->type( in(2) );
  if( t2 == TypeF::ONE )         // Identity?
    return NULL;                // Skip it

  const TypeF *tf = t2->isa_float_constant();
  if( !tf ) return NULL;
  if( tf->base() != Type::FloatCon ) return NULL;

  // Check for out of range values
  if( tf->is_nan() || !tf->is_finite() ) return NULL;

  // Get the value
  float f = tf->getf();
  int exp;

  // Only for special case of dividing by a power of 2
  if( frexp((double)f, &exp) != 0.5 ) return NULL;

  // Limit the range of acceptable exponents
  if( exp < -126 || exp > 126 ) return NULL;

  // Compute the reciprocal
  float reciprocal = ((float)1.0) / f;

  assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );

  // return multiplication by the reciprocal
  return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
}

//=============================================================================
//------------------------------Value------------------------------------------
// An DivDNode divides its inputs.  The third input is a Control input, used to
689
// prevent hoisting the divide above an unsafe test.
D
duke 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
const Type *DivDNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // x/x == 1, we ignore 0/0.
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Does not work for variables because of NaN's
  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
    if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
      return TypeD::ONE;

  if( t2 == TypeD::ONE )
    return t1;

713 714 715 716 717 718 719 720 721 722 723 724
#if defined(IA32)
  if (!phase->C->method()->is_strict())
    // Can't trust native compilers to properly fold strict double
    // division with round-to-zero on this platform.
#endif
    {
      // If divisor is a constant and not zero, divide them numbers
      if( t1->base() == Type::DoubleCon &&
          t2->base() == Type::DoubleCon &&
          t2->getd() != 0.0 ) // could be negative zero
        return TypeD::make( t1->getd()/t2->getd() );
    }
D
duke 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

  // If the dividend is a constant zero
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Test TypeF::ZERO is not sufficient as it could be negative zero
  if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
    return TypeD::ZERO;

  // Otherwise we give up all hope
  return Type::DOUBLE;
}


//------------------------------isA_Copy---------------------------------------
// Dividing by self is 1.
// If the divisor is 1, we are an identity on the dividend.
Node *DivDNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
747 748
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

  const Type *t2 = phase->type( in(2) );
  if( t2 == TypeD::ONE )         // Identity?
    return NULL;                // Skip it

  const TypeD *td = t2->isa_double_constant();
  if( !td ) return NULL;
  if( td->base() != Type::DoubleCon ) return NULL;

  // Check for out of range values
  if( td->is_nan() || !td->is_finite() ) return NULL;

  // Get the value
  double d = td->getd();
  int exp;

  // Only for special case of dividing by a power of 2
  if( frexp(d, &exp) != 0.5 ) return NULL;

  // Limit the range of acceptable exponents
  if( exp < -1021 || exp > 1022 ) return NULL;

  // Compute the reciprocal
  double reciprocal = 1.0 / d;

  assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );

  // return multiplication by the reciprocal
  return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
}

//=============================================================================
//------------------------------Idealize---------------------------------------
Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Check for dead control input
784 785 786
  if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

  // Get the modulus
  const Type *t = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;
  const TypeInt *ti = t->is_int();

  // Check for useless control input
  // Check for excluding mod-zero case
  if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
    set_req(0, NULL);        // Yank control input
    return this;
  }

  // See if we are MOD'ing by 2^k or 2^k-1.
  if( !ti->is_con() ) return NULL;
  jint con = ti->get_con();

  Node *hook = new (phase->C, 1) Node(1);

  // First, special check for modulo 2^k-1
  if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
    uint k = exact_log2(con+1);  // Extract k

    // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
    static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
    int trip_count = 1;
    if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];

    // If the unroll factor is not too large, and if conditional moves are
    // ok, then use this case
    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
      Node *x = in(1);            // Value being mod'd
      Node *divisor = in(2);      // Also is mask

      hook->init_req(0, x);       // Add a use to x to prevent him from dying
      // Generate code to reduce X rapidly to nearly 2^k-1.
      for( int i = 0; i < trip_count; i++ ) {
R
rasbold 已提交
824 825 826 827
        Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
        Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
        x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
        hook->set_req(0, x);
D
duke 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
      }

      // Generate sign-fixup code.  Was original value positive?
      // int hack_res = (i >= 0) ? divisor : 1;
      Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
      Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
      Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
      // if( x >= hack_res ) x -= divisor;
      Node *sub  = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
      Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
      Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
      // Convention is to not transform the return value of an Ideal
      // since Ideal is expected to return a modified 'this' or a new node.
      Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
      // cmov2 is now the mod

      // Now remove the bogus extra edges used to keep things alive
      if (can_reshape) {
        phase->is_IterGVN()->remove_dead_node(hook);
      } else {
        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
      }
      return cmov2;
    }
  }

  // Fell thru, the unroll case is not appropriate. Transform the modulo
  // into a long multiply/int multiply/subtract case

  // Cannot handle mod 0, and min_jint isn't handled by the transform
  if( con == 0 || con == min_jint ) return NULL;

  // Get the absolute value of the constant; at this point, we can use this
  jint pos_con = (con >= 0) ? con : -con;

  // integer Mod 1 is always 0
  if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);

  int log2_con = -1;

  // If this is a power of two, they maybe we can mask it
  if( is_power_of_2(pos_con) ) {
    log2_con = log2_intptr((intptr_t)pos_con);

    const Type *dt = phase->type(in(1));
    const TypeInt *dti = dt->isa_int();

    // See if this can be masked, if the dividend is non-negative
    if( dti && dti->_lo >= 0 )
      return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
  }

  // Save in(1) so that it cannot be changed or deleted
  hook->init_req(0, in(1));

  // Divide using the transform from DivI to MulL
R
rasbold 已提交
884 885 886
  Node *result = transform_int_divide( phase, in(1), pos_con );
  if (result != NULL) {
    Node *divide = phase->transform(result);
D
duke 已提交
887

R
rasbold 已提交
888 889
    // Re-multiply, using a shift if this is a power of two
    Node *mult = NULL;
D
duke 已提交
890

R
rasbold 已提交
891 892 893 894
    if( log2_con >= 0 )
      mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
    else
      mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
D
duke 已提交
895

R
rasbold 已提交
896 897 898
    // Finally, subtract the multiplied divided value from the original
    result = new (phase->C, 3) SubINode( in(1), mult );
  }
D
duke 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

  // Now remove the bogus extra edges used to keep things alive
  if (can_reshape) {
    phase->is_IterGVN()->remove_dead_node(hook);
  } else {
    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  }

  // return the value
  return result;
}

//------------------------------Value------------------------------------------
const Type *ModINode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // We always generate the dynamic check for 0.
  // 0 MOD X is 0
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // X MOD X is 0
  if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  const TypeInt *i1 = t1->is_int();
  const TypeInt *i2 = t2->is_int();
  if( !i1->is_con() || !i2->is_con() ) {
    if( i1->_lo >= 0 && i2->_lo >= 0 )
      return TypeInt::POS;
    // If both numbers are not constants, we know little.
    return TypeInt::INT;
  }
  // Mod by zero?  Throw exception at runtime!
  if( !i2->get_con() ) return TypeInt::POS;

  // We must be modulo'ing 2 float constants.
  // Check for min_jint % '-1', result is defined to be '0'.
  if( i1->get_con() == min_jint && i2->get_con() == -1 )
    return TypeInt::ZERO;

  return TypeInt::make( i1->get_con() % i2->get_con() );
}


//=============================================================================
//------------------------------Idealize---------------------------------------
Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Check for dead control input
955 956 957
  if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
958 959 960 961

  // Get the modulus
  const Type *t = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;
R
rasbold 已提交
962
  const TypeLong *tl = t->is_long();
D
duke 已提交
963 964 965

  // Check for useless control input
  // Check for excluding mod-zero case
R
rasbold 已提交
966
  if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
D
duke 已提交
967 968 969 970 971
    set_req(0, NULL);        // Yank control input
    return this;
  }

  // See if we are MOD'ing by 2^k or 2^k-1.
R
rasbold 已提交
972 973 974 975
  if( !tl->is_con() ) return NULL;
  jlong con = tl->get_con();

  Node *hook = new (phase->C, 1) Node(1);
D
duke 已提交
976 977

  // Expand mod
R
rasbold 已提交
978 979 980
  if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
    uint k = log2_long(con);       // Extract k

D
duke 已提交
981 982 983 984 985 986 987
    // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
    // Used to help a popular random number generator which does a long-mod
    // of 2^31-1 and shows up in SpecJBB and SciMark.
    static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
    int trip_count = 1;
    if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];

R
rasbold 已提交
988 989 990 991 992
    // If the unroll factor is not too large, and if conditional moves are
    // ok, then use this case
    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
      Node *x = in(1);            // Value being mod'd
      Node *divisor = in(2);      // Also is mask
D
duke 已提交
993

R
rasbold 已提交
994 995 996
      hook->init_req(0, x);       // Add a use to x to prevent him from dying
      // Generate code to reduce X rapidly to nearly 2^k-1.
      for( int i = 0; i < trip_count; i++ ) {
D
duke 已提交
997 998 999 1000
        Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
        Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
        x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
        hook->set_req(0, x);    // Add a use to x to prevent him from dying
R
rasbold 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
      }

      // Generate sign-fixup code.  Was original value positive?
      // long hack_res = (i >= 0) ? divisor : CONST64(1);
      Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
      Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
      Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
      // if( x >= hack_res ) x -= divisor;
      Node *sub  = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
      Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
      Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
      // Convention is to not transform the return value of an Ideal
      // since Ideal is expected to return a modified 'this' or a new node.
      Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
      // cmov2 is now the mod

      // Now remove the bogus extra edges used to keep things alive
      if (can_reshape) {
        phase->is_IterGVN()->remove_dead_node(hook);
      } else {
        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
      }
      return cmov2;
D
duke 已提交
1024 1025
    }
  }
R
rasbold 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

  // Fell thru, the unroll case is not appropriate. Transform the modulo
  // into a long multiply/int multiply/subtract case

  // Cannot handle mod 0, and min_jint isn't handled by the transform
  if( con == 0 || con == min_jlong ) return NULL;

  // Get the absolute value of the constant; at this point, we can use this
  jlong pos_con = (con >= 0) ? con : -con;

  // integer Mod 1 is always 0
  if( pos_con == 1 ) return new (phase->C, 1) ConLNode(TypeLong::ZERO);

  int log2_con = -1;

  // If this is a power of two, they maybe we can mask it
  if( is_power_of_2_long(pos_con) ) {
    log2_con = log2_long(pos_con);

    const Type *dt = phase->type(in(1));
    const TypeLong *dtl = dt->isa_long();

    // See if this can be masked, if the dividend is non-negative
    if( dtl && dtl->_lo >= 0 )
      return ( new (phase->C, 3) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
  }

  // Save in(1) so that it cannot be changed or deleted
  hook->init_req(0, in(1));

  // Divide using the transform from DivI to MulL
  Node *result = transform_long_divide( phase, in(1), pos_con );
  if (result != NULL) {
    Node *divide = phase->transform(result);

    // Re-multiply, using a shift if this is a power of two
    Node *mult = NULL;

    if( log2_con >= 0 )
      mult = phase->transform( new (phase->C, 3) LShiftLNode( divide, phase->intcon( log2_con ) ) );
    else
      mult = phase->transform( new (phase->C, 3) MulLNode( divide, phase->longcon( pos_con ) ) );

    // Finally, subtract the multiplied divided value from the original
    result = new (phase->C, 3) SubLNode( in(1), mult );
  }

  // Now remove the bogus extra edges used to keep things alive
  if (can_reshape) {
    phase->is_IterGVN()->remove_dead_node(hook);
  } else {
    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  }

  // return the value
  return result;
D
duke 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
}

//------------------------------Value------------------------------------------
const Type *ModLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // We always generate the dynamic check for 0.
  // 0 MOD X is 0
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // X MOD X is 0
  if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  const TypeLong *i1 = t1->is_long();
  const TypeLong *i2 = t2->is_long();
  if( !i1->is_con() || !i2->is_con() ) {
    if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
      return TypeLong::POS;
    // If both numbers are not constants, we know little.
    return TypeLong::LONG;
  }
  // Mod by zero?  Throw exception at runtime!
  if( !i2->get_con() ) return TypeLong::POS;

  // We must be modulo'ing 2 float constants.
  // Check for min_jint % '-1', result is defined to be '0'.
  if( i1->get_con() == min_jlong && i2->get_con() == -1 )
    return TypeLong::ZERO;

  return TypeLong::make( i1->get_con() % i2->get_con() );
}


//=============================================================================
//------------------------------Value------------------------------------------
const Type *ModFNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

1139 1140 1141 1142
  // If either number is not a constant, we know nothing.
  if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
    return Type::FLOAT;         // note: x%x can be either NaN or 0
  }
D
duke 已提交
1143

1144 1145 1146 1147
  float f1 = t1->getf();
  float f2 = t2->getf();
  jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
  jint  x2 = jint_cast(f2);
D
duke 已提交
1148

1149 1150 1151
  // If either is a NaN, return an input NaN
  if (g_isnan(f1))    return t1;
  if (g_isnan(f2))    return t2;
D
duke 已提交
1152

1153 1154
  // If an operand is infinity or the divisor is +/- zero, punt.
  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
D
duke 已提交
1155 1156 1157 1158
    return Type::FLOAT;

  // We must be modulo'ing 2 float constants.
  // Make sure that the sign of the fmod is equal to the sign of the dividend
1159 1160 1161
  jint xr = jint_cast(fmod(f1, f2));
  if ((x1 ^ xr) < 0) {
    xr ^= min_jint;
D
duke 已提交
1162
  }
1163 1164

  return TypeF::make(jfloat_cast(xr));
D
duke 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
}


//=============================================================================
//------------------------------Value------------------------------------------
const Type *ModDNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

1183 1184 1185
  // If either number is not a constant, we know nothing.
  if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
    return Type::DOUBLE;        // note: x%x can be either NaN or 0
D
duke 已提交
1186 1187
  }

1188 1189 1190 1191
  double f1 = t1->getd();
  double f2 = t2->getd();
  jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
  jlong  x2 = jlong_cast(f2);
D
duke 已提交
1192

1193 1194 1195
  // If either is a NaN, return an input NaN
  if (g_isnan(f1))    return t1;
  if (g_isnan(f2))    return t2;
D
duke 已提交
1196

1197 1198
  // If an operand is infinity or the divisor is +/- zero, punt.
  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
D
duke 已提交
1199 1200 1201
    return Type::DOUBLE;

  // We must be modulo'ing 2 double constants.
1202 1203 1204 1205 1206 1207 1208
  // Make sure that the sign of the fmod is equal to the sign of the dividend
  jlong xr = jlong_cast(fmod(f1, f2));
  if ((x1 ^ xr) < 0) {
    xr ^= min_jlong;
  }

  return TypeD::make(jdouble_cast(xr));
D
duke 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
}

//=============================================================================

DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
  init_req(0, c);
  init_req(1, dividend);
  init_req(2, divisor);
}

//------------------------------make------------------------------------------
DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
  Node* n = div_or_mod;
  assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
         "only div or mod input pattern accepted");

  DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
  Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  return divmod;
}

//------------------------------make------------------------------------------
DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
  Node* n = div_or_mod;
  assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
         "only div or mod input pattern accepted");

  DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
  Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  return divmod;
}

//------------------------------match------------------------------------------
// return result(s) along with their RegMask info
Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
  uint ideal_reg = proj->ideal_reg();
  RegMask rm;
  if (proj->_con == div_proj_num) {
    rm = match->divI_proj_mask();
  } else {
    assert(proj->_con == mod_proj_num, "must be div or mod projection");
    rm = match->modI_proj_mask();
  }
  return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
}


//------------------------------match------------------------------------------
// return result(s) along with their RegMask info
Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
  uint ideal_reg = proj->ideal_reg();
  RegMask rm;
  if (proj->_con == div_proj_num) {
    rm = match->divL_proj_mask();
  } else {
    assert(proj->_con == mod_proj_num, "must be div or mod projection");
    rm = match->modL_proj_mask();
  }
  return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
}