deoptimization.cpp 69.9 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
/*
 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_deoptimization.cpp.incl"

bool DeoptimizationMarker::_is_active = false;

Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
                                         int  caller_adjustment,
                                         int  number_of_frames,
                                         intptr_t* frame_sizes,
                                         address* frame_pcs,
                                         BasicType return_type) {
  _size_of_deoptimized_frame = size_of_deoptimized_frame;
  _caller_adjustment         = caller_adjustment;
  _number_of_frames          = number_of_frames;
  _frame_sizes               = frame_sizes;
  _frame_pcs                 = frame_pcs;
  _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
  _return_type               = return_type;
  // PD (x86 only)
  _counter_temp              = 0;
  _initial_fp                = 0;
  _unpack_kind               = 0;
  _sender_sp_temp            = 0;

  _total_frame_sizes         = size_of_frames();
}


Deoptimization::UnrollBlock::~UnrollBlock() {
  FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  FREE_C_HEAP_ARRAY(intptr_t, _register_block);
}


intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
  assert(register_number < RegisterMap::reg_count, "checking register number");
  return &_register_block[register_number * 2];
}



int Deoptimization::UnrollBlock::size_of_frames() const {
  // Acount first for the adjustment of the initial frame
  int result = _caller_adjustment;
  for (int index = 0; index < number_of_frames(); index++) {
    result += frame_sizes()[index];
  }
  return result;
}


void Deoptimization::UnrollBlock::print() {
  ttyLocker ttyl;
  tty->print_cr("UnrollBlock");
  tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
  tty->print(   "  frame_sizes: ");
  for (int index = 0; index < number_of_frames(); index++) {
    tty->print("%d ", frame_sizes()[index]);
  }
  tty->cr();
}


// In order to make fetch_unroll_info work properly with escape
// analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
// ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
// of previously eliminated objects occurs in realloc_objects, which is
// called from the method fetch_unroll_info_helper below.
JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
  // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
  // but makes the entry a little slower. There is however a little dance we have to
  // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro

  // fetch_unroll_info() is called at the beginning of the deoptimization
  // handler. Note this fact before we start generating temporary frames
  // that can confuse an asynchronous stack walker. This counter is
  // decremented at the end of unpack_frames().
  thread->inc_in_deopt_handler();

  return fetch_unroll_info_helper(thread);
JRT_END


// This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {

  // Note: there is a safepoint safety issue here. No matter whether we enter
  // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
  // the vframeArray is created.
  //

  // Allocate our special deoptimization ResourceMark
  DeoptResourceMark* dmark = new DeoptResourceMark(thread);
  assert(thread->deopt_mark() == NULL, "Pending deopt!");
  thread->set_deopt_mark(dmark);

  frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
  RegisterMap map(thread, true);
  RegisterMap dummy_map(thread, false);
  // Now get the deoptee with a valid map
  frame deoptee = stub_frame.sender(&map);

  // Create a growable array of VFrames where each VFrame represents an inlined
  // Java frame.  This storage is allocated with the usual system arena.
  assert(deoptee.is_compiled_frame(), "Wrong frame type");
  GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
  vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
  while (!vf->is_top()) {
    assert(vf->is_compiled_frame(), "Wrong frame type");
    chunk->push(compiledVFrame::cast(vf));
    vf = vf->sender();
  }
  assert(vf->is_compiled_frame(), "Wrong frame type");
  chunk->push(compiledVFrame::cast(vf));

#ifdef COMPILER2
  // Reallocate the non-escaping objects and restore their fields. Then
  // relock objects if synchronization on them was eliminated.
  if (DoEscapeAnalysis && EliminateAllocations) {
    GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
    bool reallocated = false;
    if (objects != NULL) {
      JRT_BLOCK
        reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
      JRT_END
    }
    if (reallocated) {
      reassign_fields(&deoptee, &map, objects);
#ifndef PRODUCT
      if (TraceDeoptimization) {
        ttyLocker ttyl;
        tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
        print_objects(objects);
      }
#endif
    }
    for (int i = 0; i < chunk->length(); i++) {
      GrowableArray<MonitorValue*>* monitors = chunk->at(i)->scope()->monitors();
      if (monitors != NULL) {
        relock_objects(&deoptee, &map, monitors);
#ifndef PRODUCT
        if (TraceDeoptimization) {
          ttyLocker ttyl;
          tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
          for (int j = 0; i < monitors->length(); i++) {
            MonitorValue* mv = monitors->at(i);
            if (mv->eliminated()) {
              StackValue* owner = StackValue::create_stack_value(&deoptee, &map, mv->owner());
              tty->print_cr("     object <" INTPTR_FORMAT "> locked", owner->get_obj()());
            }
          }
        }
#endif
      }
    }
  }
#endif // COMPILER2
  // Ensure that no safepoint is taken after pointers have been stored
  // in fields of rematerialized objects.  If a safepoint occurs from here on
  // out the java state residing in the vframeArray will be missed.
  No_Safepoint_Verifier no_safepoint;

  vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);

  assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
  thread->set_vframe_array_head(array);

  // Now that the vframeArray has been created if we have any deferred local writes
  // added by jvmti then we can free up that structure as the data is now in the
  // vframeArray

  if (thread->deferred_locals() != NULL) {
    GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
    int i = 0;
    do {
      // Because of inlining we could have multiple vframes for a single frame
      // and several of the vframes could have deferred writes. Find them all.
      if (list->at(i)->id() == array->original().id()) {
        jvmtiDeferredLocalVariableSet* dlv = list->at(i);
        list->remove_at(i);
        // individual jvmtiDeferredLocalVariableSet are CHeapObj's
        delete dlv;
      } else {
        i++;
      }
    } while ( i < list->length() );
    if (list->length() == 0) {
      thread->set_deferred_locals(NULL);
      // free the list and elements back to C heap.
      delete list;
    }

  }

  // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
  CodeBlob* cb = stub_frame.cb();
  // Verify we have the right vframeArray
  assert(cb->frame_size() >= 0, "Unexpected frame size");
  intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();

#ifdef ASSERT
  assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
  Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
#endif
  // This is a guarantee instead of an assert because if vframe doesn't match
  // we will unpack the wrong deoptimized frame and wind up in strange places
  // where it will be very difficult to figure out what went wrong. Better
  // to die an early death here than some very obscure death later when the
  // trail is cold.
  // Note: on ia64 this guarantee can be fooled by frames with no memory stack
  // in that it will fail to detect a problem when there is one. This needs
  // more work in tiger timeframe.
  guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");

  int number_of_frames = array->frames();

  // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
  // virtual activation, which is the reverse of the elements in the vframes array.
  intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
  // +1 because we always have an interpreter return address for the final slot.
  address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
  int callee_parameters = 0;
  int callee_locals = 0;
  int popframe_extra_args = 0;
  // Create an interpreter return address for the stub to use as its return
  // address so the skeletal frames are perfectly walkable
  frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);

  // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
  // activation be put back on the expression stack of the caller for reexecution
  if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
    popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
  }

  //
  // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
  // frame_sizes/frame_pcs[1] next oldest frame (int)
  // frame_sizes/frame_pcs[n] youngest frame (int)
  //
  // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
  // owns the space for the return address to it's caller).  Confusing ain't it.
  //
  // The vframe array can address vframes with indices running from
  // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
  // When we create the skeletal frames we need the oldest frame to be in the zero slot
  // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
  // so things look a little strange in this loop.
  //
  for (int index = 0; index < array->frames(); index++ ) {
    // frame[number_of_frames - 1 ] = on_stack_size(youngest)
    // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
    // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
    frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
                                                                                                    callee_locals,
                                                                                                    index == 0,
                                                                                                    popframe_extra_args);
    // This pc doesn't have to be perfect just good enough to identify the frame
    // as interpreted so the skeleton frame will be walkable
    // The correct pc will be set when the skeleton frame is completely filled out
    // The final pc we store in the loop is wrong and will be overwritten below
    frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;

    callee_parameters = array->element(index)->method()->size_of_parameters();
    callee_locals = array->element(index)->method()->max_locals();
    popframe_extra_args = 0;
  }

  // Compute whether the root vframe returns a float or double value.
  BasicType return_type;
  {
    HandleMark hm;
    methodHandle method(thread, array->element(0)->method());
    Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
    return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
  }

  // Compute information for handling adapters and adjusting the frame size of the caller.
  int caller_adjustment = 0;

  // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
  // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
  // than simply use array->sender.pc(). This requires us to walk the current set of frames
  //
  frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
  deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller

  // Compute the amount the oldest interpreter frame will have to adjust
  // its caller's stack by. If the caller is a compiled frame then
  // we pretend that the callee has no parameters so that the
  // extension counts for the full amount of locals and not just
  // locals-parms. This is because without a c2i adapter the parm
  // area as created by the compiled frame will not be usable by
  // the interpreter. (Depending on the calling convention there
  // may not even be enough space).

  // QQQ I'd rather see this pushed down into last_frame_adjust
  // and have it take the sender (aka caller).

  if (deopt_sender.is_compiled_frame()) {
    caller_adjustment = last_frame_adjust(0, callee_locals);
  } else if (callee_locals > callee_parameters) {
    // The caller frame may need extending to accommodate
    // non-parameter locals of the first unpacked interpreted frame.
    // Compute that adjustment.
    caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
  }


  // If the sender is deoptimized the we must retrieve the address of the handler
  // since the frame will "magically" show the original pc before the deopt
  // and we'd undo the deopt.

  frame_pcs[0] = deopt_sender.raw_pc();

  assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");

  UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
                                      caller_adjustment * BytesPerWord,
                                      number_of_frames,
                                      frame_sizes,
                                      frame_pcs,
                                      return_type);
#if defined(IA32) || defined(AMD64)
  // We need a way to pass fp to the unpacking code so the skeletal frames
  // come out correct. This is only needed for x86 because of c2 using ebp
  // as an allocatable register. So this update is useless (and harmless)
  // on the other platforms. It would be nice to do this in a different
  // way but even the old style deoptimization had a problem with deriving
  // this value. NEEDS_CLEANUP
  // Note: now that c1 is using c2's deopt blob we must do this on all
  // x86 based platforms
  intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
  *fp_addr = array->sender().fp(); // was adapter_caller
#endif /* IA32 || AMD64 */

  if (array->frames() > 1) {
    if (VerifyStack && TraceDeoptimization) {
      tty->print_cr("Deoptimizing method containing inlining");
    }
  }

  array->set_unroll_block(info);
  return info;
}

// Called to cleanup deoptimization data structures in normal case
// after unpacking to stack and when stack overflow error occurs
void Deoptimization::cleanup_deopt_info(JavaThread *thread,
                                        vframeArray *array) {

  // Get array if coming from exception
  if (array == NULL) {
    array = thread->vframe_array_head();
  }
  thread->set_vframe_array_head(NULL);

  // Free the previous UnrollBlock
  vframeArray* old_array = thread->vframe_array_last();
  thread->set_vframe_array_last(array);

  if (old_array != NULL) {
    UnrollBlock* old_info = old_array->unroll_block();
    old_array->set_unroll_block(NULL);
    delete old_info;
    delete old_array;
  }

  // Deallocate any resource creating in this routine and any ResourceObjs allocated
  // inside the vframeArray (StackValueCollections)

  delete thread->deopt_mark();
  thread->set_deopt_mark(NULL);


  if (JvmtiExport::can_pop_frame()) {
#ifndef CC_INTERP
    // Regardless of whether we entered this routine with the pending
    // popframe condition bit set, we should always clear it now
    thread->clear_popframe_condition();
#else
    // C++ interpeter will clear has_pending_popframe when it enters
    // with method_resume. For deopt_resume2 we clear it now.
    if (thread->popframe_forcing_deopt_reexecution())
        thread->clear_popframe_condition();
#endif /* CC_INTERP */
  }

  // unpack_frames() is called at the end of the deoptimization handler
  // and (in C2) at the end of the uncommon trap handler. Note this fact
  // so that an asynchronous stack walker can work again. This counter is
  // incremented at the beginning of fetch_unroll_info() and (in C2) at
  // the beginning of uncommon_trap().
  thread->dec_in_deopt_handler();
}


// Return BasicType of value being returned
JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))

  // We are already active int he special DeoptResourceMark any ResourceObj's we
  // allocate will be freed at the end of the routine.

  // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
  // but makes the entry a little slower. There is however a little dance we have to
  // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
  ResetNoHandleMark rnhm; // No-op in release/product versions
  HandleMark hm;

  frame stub_frame = thread->last_frame();

  // Since the frame to unpack is the top frame of this thread, the vframe_array_head
  // must point to the vframeArray for the unpack frame.
  vframeArray* array = thread->vframe_array_head();

#ifndef PRODUCT
  if (TraceDeoptimization) {
    tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
  }
#endif

  UnrollBlock* info = array->unroll_block();

  // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
  array->unpack_to_stack(stub_frame, exec_mode);

  BasicType bt = info->return_type();

  // If we have an exception pending, claim that the return type is an oop
  // so the deopt_blob does not overwrite the exception_oop.

  if (exec_mode == Unpack_exception)
    bt = T_OBJECT;

  // Cleanup thread deopt data
  cleanup_deopt_info(thread, array);

#ifndef PRODUCT
  if (VerifyStack) {
    ResourceMark res_mark;

    // Verify that the just-unpacked frames match the interpreter's
    // notions of expression stack and locals
    vframeArray* cur_array = thread->vframe_array_last();
    RegisterMap rm(thread, false);
    rm.set_include_argument_oops(false);
    bool is_top_frame = true;
    int callee_size_of_parameters = 0;
    int callee_max_locals = 0;
    for (int i = 0; i < cur_array->frames(); i++) {
      vframeArrayElement* el = cur_array->element(i);
      frame* iframe = el->iframe();
      guarantee(iframe->is_interpreted_frame(), "Wrong frame type");

      // Get the oop map for this bci
      InterpreterOopMap mask;
      int cur_invoke_parameter_size = 0;
      bool try_next_mask = false;
      int next_mask_expression_stack_size = -1;
      int top_frame_expression_stack_adjustment = 0;
      methodHandle mh(thread, iframe->interpreter_frame_method());
      OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
      BytecodeStream str(mh);
      str.set_start(iframe->interpreter_frame_bci());
      int max_bci = mh->code_size();
      // Get to the next bytecode if possible
      assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
      // Check to see if we can grab the number of outgoing arguments
      // at an uncommon trap for an invoke (where the compiler
      // generates debug info before the invoke has executed)
      Bytecodes::Code cur_code = str.next();
      if (cur_code == Bytecodes::_invokevirtual ||
          cur_code == Bytecodes::_invokespecial ||
          cur_code == Bytecodes::_invokestatic  ||
          cur_code == Bytecodes::_invokeinterface) {
        Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
        symbolHandle signature(thread, invoke->signature());
        ArgumentSizeComputer asc(signature);
        cur_invoke_parameter_size = asc.size();
        if (cur_code != Bytecodes::_invokestatic) {
          // Add in receiver
          ++cur_invoke_parameter_size;
        }
      }
      if (str.bci() < max_bci) {
        Bytecodes::Code bc = str.next();
        if (bc >= 0) {
          // The interpreter oop map generator reports results before
          // the current bytecode has executed except in the case of
          // calls. It seems to be hard to tell whether the compiler
          // has emitted debug information matching the "state before"
          // a given bytecode or the state after, so we try both
          switch (cur_code) {
            case Bytecodes::_invokevirtual:
            case Bytecodes::_invokespecial:
            case Bytecodes::_invokestatic:
            case Bytecodes::_invokeinterface:
            case Bytecodes::_athrow:
              break;
            default: {
              InterpreterOopMap next_mask;
              OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
              next_mask_expression_stack_size = next_mask.expression_stack_size();
              // Need to subtract off the size of the result type of
              // the bytecode because this is not described in the
              // debug info but returned to the interpreter in the TOS
              // caching register
              BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
              if (bytecode_result_type != T_ILLEGAL) {
                top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
              }
              assert(top_frame_expression_stack_adjustment >= 0, "");
              try_next_mask = true;
              break;
            }
          }
        }
      }

      // Verify stack depth and oops in frame
      // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
      if (!(
            /* SPARC */
            (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
            /* x86 */
            (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
            (try_next_mask &&
             (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
                                                                    top_frame_expression_stack_adjustment))) ||
            (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
            (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
            )) {
        ttyLocker ttyl;

        // Print out some information that will help us debug the problem
        tty->print_cr("Wrong number of expression stack elements during deoptimization");
        tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
        tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
                      iframe->interpreter_frame_expression_stack_size());
        tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
        tty->print_cr("  try_next_mask = %d", try_next_mask);
        tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
        tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
        tty->print_cr("  callee_max_locals = %d", callee_max_locals);
        tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
        tty->print_cr("  exec_mode = %d", exec_mode);
        tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
        tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
        tty->print_cr("  Interpreted frames:");
        for (int k = 0; k < cur_array->frames(); k++) {
          vframeArrayElement* el = cur_array->element(k);
          tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
        }
        cur_array->print_on_2(tty);
        guarantee(false, "wrong number of expression stack elements during deopt");
      }
      VerifyOopClosure verify;
      iframe->oops_interpreted_do(&verify, &rm, false);
      callee_size_of_parameters = mh->size_of_parameters();
      callee_max_locals = mh->max_locals();
      is_top_frame = false;
    }
  }
#endif /* !PRODUCT */


  return bt;
JRT_END


int Deoptimization::deoptimize_dependents() {
  Threads::deoptimized_wrt_marked_nmethods();
  return 0;
}


#ifdef COMPILER2
bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
  Handle pending_exception(thread->pending_exception());
  const char* exception_file = thread->exception_file();
  int exception_line = thread->exception_line();
  thread->clear_pending_exception();

  for (int i = 0; i < objects->length(); i++) {
    assert(objects->at(i)->is_object(), "invalid debug information");
    ObjectValue* sv = (ObjectValue*) objects->at(i);

    KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
    oop obj = NULL;

    if (k->oop_is_instance()) {
      instanceKlass* ik = instanceKlass::cast(k());
      obj = ik->allocate_instance(CHECK_(false));
    } else if (k->oop_is_typeArray()) {
      typeArrayKlass* ak = typeArrayKlass::cast(k());
      assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
      int len = sv->field_size() / type2size[ak->element_type()];
      obj = ak->allocate(len, CHECK_(false));
    } else if (k->oop_is_objArray()) {
      objArrayKlass* ak = objArrayKlass::cast(k());
      obj = ak->allocate(sv->field_size(), CHECK_(false));
    }

    assert(obj != NULL, "allocation failed");
    assert(sv->value().is_null(), "redundant reallocation");
    sv->set_value(obj);
  }

  if (pending_exception.not_null()) {
    thread->set_pending_exception(pending_exception(), exception_file, exception_line);
  }

  return true;
}

// This assumes that the fields are stored in ObjectValue in the same order
// they are yielded by do_nonstatic_fields.
class FieldReassigner: public FieldClosure {
  frame* _fr;
  RegisterMap* _reg_map;
  ObjectValue* _sv;
  instanceKlass* _ik;
  oop _obj;

  int _i;
public:
  FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
    _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}

  int i() const { return _i; }


  void do_field(fieldDescriptor* fd) {
    StackValue* value =
      StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
    int offset = fd->offset();
    switch (fd->field_type()) {
    case T_OBJECT: case T_ARRAY:
      assert(value->type() == T_OBJECT, "Agreement.");
      _obj->obj_field_put(offset, value->get_obj()());
      break;

    case T_LONG: case T_DOUBLE: {
      assert(value->type() == T_INT, "Agreement.");
      StackValue* low =
        StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
      jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
      _obj->long_field_put(offset, res);
      break;
    }

    case T_INT: case T_FLOAT: // 4 bytes.
      assert(value->type() == T_INT, "Agreement.");
      _obj->int_field_put(offset, (jint)value->get_int());
      break;

    case T_SHORT: case T_CHAR: // 2 bytes
      assert(value->type() == T_INT, "Agreement.");
      _obj->short_field_put(offset, (jshort)value->get_int());
      break;

    case T_BOOLEAN: // 1 byte
      assert(value->type() == T_INT, "Agreement.");
      _obj->bool_field_put(offset, (jboolean)value->get_int());
      break;

    default:
      ShouldNotReachHere();
    }
    _i++;
  }
};

// restore elements of an eliminated type array
void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
  StackValue* low;
  jlong lval;
  int index = 0;

  for (int i = 0; i < sv->field_size(); i++) {
    StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
    switch(type) {
      case T_BOOLEAN: obj->bool_at_put (index, (jboolean) value->get_int()); break;
      case T_BYTE:    obj->byte_at_put (index, (jbyte)    value->get_int()); break;
      case T_CHAR:    obj->char_at_put (index, (jchar)    value->get_int()); break;
      case T_SHORT:   obj->short_at_put(index, (jshort)   value->get_int()); break;
      case T_INT:     obj->int_at_put  (index, (jint)     value->get_int()); break;
      case T_FLOAT:   obj->float_at_put(index, (jfloat)   value->get_int()); break;
      case T_LONG:
      case T_DOUBLE:
        low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
        lval = jlong_from((jint)value->get_int(), (jint)low->get_int());
        sv->value()->long_field_put(index, lval);
        break;
      default:
        ShouldNotReachHere();
    }
    index++;
  }
}


// restore fields of an eliminated object array
void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
  for (int i = 0; i < sv->field_size(); i++) {
    StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
    assert(value->type() == T_OBJECT, "object element expected");
    obj->obj_at_put(i, value->get_obj()());
  }
}


// restore fields of all eliminated objects and arrays
void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
  for (int i = 0; i < objects->length(); i++) {
    ObjectValue* sv = (ObjectValue*) objects->at(i);
    KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
    Handle obj = sv->value();
    assert(obj.not_null(), "reallocation was missed");

    if (k->oop_is_instance()) {
      instanceKlass* ik = instanceKlass::cast(k());
      FieldReassigner reassign(fr, reg_map, sv, obj());
      ik->do_nonstatic_fields(&reassign);
    } else if (k->oop_is_typeArray()) {
      typeArrayKlass* ak = typeArrayKlass::cast(k());
      reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
    } else if (k->oop_is_objArray()) {
      reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
    }
  }
}


// relock objects for which synchronization was eliminated
void Deoptimization::relock_objects(frame* fr, RegisterMap* reg_map, GrowableArray<MonitorValue*>* monitors) {
  for (int i = 0; i < monitors->length(); i++) {
    MonitorValue* mv = monitors->at(i);
    StackValue* owner = StackValue::create_stack_value(fr, reg_map, mv->owner());
    if (mv->eliminated()) {
      Handle obj = owner->get_obj();
      assert(obj.not_null(), "reallocation was missed");
      BasicLock* lock = StackValue::resolve_monitor_lock(fr, mv->basic_lock());
      lock->set_displaced_header(obj->mark());
      obj->set_mark((markOop) lock);
    }
    assert(owner->get_obj()->is_locked(), "object must be locked now");
  }
}


#ifndef PRODUCT
// print information about reallocated objects
void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
  fieldDescriptor fd;

  for (int i = 0; i < objects->length(); i++) {
    ObjectValue* sv = (ObjectValue*) objects->at(i);
    KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
    Handle obj = sv->value();

    tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
    k->as_klassOop()->print_value();
    tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
    tty->cr();

    if (Verbose) {
      k->oop_print_on(obj(), tty);
    }
  }
}
#endif
#endif // COMPILER2

vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {

#ifndef PRODUCT
  if (TraceDeoptimization) {
    ttyLocker ttyl;
    tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
    fr.print_on(tty);
    tty->print_cr("     Virtual frames (innermost first):");
    for (int index = 0; index < chunk->length(); index++) {
      compiledVFrame* vf = chunk->at(index);
      tty->print("       %2d - ", index);
      vf->print_value();
      int bci = chunk->at(index)->raw_bci();
      const char* code_name;
      if (bci == SynchronizationEntryBCI) {
        code_name = "sync entry";
      } else {
        Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
        code_name = Bytecodes::name(code);
      }
      tty->print(" - %s", code_name);
      tty->print_cr(" @ bci %d ", bci);
      if (Verbose) {
        vf->print();
        tty->cr();
      }
    }
  }
#endif

  // Register map for next frame (used for stack crawl).  We capture
  // the state of the deopt'ing frame's caller.  Thus if we need to
  // stuff a C2I adapter we can properly fill in the callee-save
  // register locations.
  frame caller = fr.sender(reg_map);
  int frame_size = caller.sp() - fr.sp();

  frame sender = caller;

  // Since the Java thread being deoptimized will eventually adjust it's own stack,
  // the vframeArray containing the unpacking information is allocated in the C heap.
  // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
  vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);

  // Compare the vframeArray to the collected vframes
  assert(array->structural_compare(thread, chunk), "just checking");
  Events::log("# vframes = %d", (intptr_t)chunk->length());

#ifndef PRODUCT
  if (TraceDeoptimization) {
    ttyLocker ttyl;
    tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
    if (Verbose) {
      int count = 0;
      // this used to leak deoptimizedVFrame like it was going out of style!!!
      for (int index = 0; index < array->frames(); index++ ) {
        vframeArrayElement* e = array->element(index);
        e->print(tty);

        /*
          No printing yet.
        array->vframe_at(index)->print_activation(count++);
        // better as...
        array->print_activation_for(index, count++);
        */
      }
    }
  }
#endif // PRODUCT

  return array;
}


static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  for (int i = 0; i < monitors->length(); i++) {
    MonitorInfo* mon_info = monitors->at(i);
    if (mon_info->owner() != NULL) {
      objects_to_revoke->append(Handle(mon_info->owner()));
    }
  }
}


void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  if (!UseBiasedLocking) {
    return;
  }

  GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();

  // Unfortunately we don't have a RegisterMap available in most of
  // the places we want to call this routine so we need to walk the
  // stack again to update the register map.
  if (map == NULL || !map->update_map()) {
    StackFrameStream sfs(thread, true);
    bool found = false;
    while (!found && !sfs.is_done()) {
      frame* cur = sfs.current();
      sfs.next();
      found = cur->id() == fr.id();
    }
    assert(found, "frame to be deoptimized not found on target thread's stack");
    map = sfs.register_map();
  }

  vframe* vf = vframe::new_vframe(&fr, map, thread);
  compiledVFrame* cvf = compiledVFrame::cast(vf);
  // Revoke monitors' biases in all scopes
  while (!cvf->is_top()) {
    collect_monitors(cvf, objects_to_revoke);
    cvf = compiledVFrame::cast(cvf->sender());
  }
  collect_monitors(cvf, objects_to_revoke);

  if (SafepointSynchronize::is_at_safepoint()) {
    BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  } else {
    BiasedLocking::revoke(objects_to_revoke);
  }
}


void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  if (!UseBiasedLocking) {
    return;
  }

  assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
    if (jt->has_last_Java_frame()) {
      StackFrameStream sfs(jt, true);
      while (!sfs.is_done()) {
        frame* cur = sfs.current();
        if (cb->contains(cur->pc())) {
          vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
          compiledVFrame* cvf = compiledVFrame::cast(vf);
          // Revoke monitors' biases in all scopes
          while (!cvf->is_top()) {
            collect_monitors(cvf, objects_to_revoke);
            cvf = compiledVFrame::cast(cvf->sender());
          }
          collect_monitors(cvf, objects_to_revoke);
        }
        sfs.next();
      }
    }
  }
  BiasedLocking::revoke_at_safepoint(objects_to_revoke);
}


void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  assert(fr.can_be_deoptimized(), "checking frame type");

  gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);

  EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());

  // Patch the nmethod so that when execution returns to it we will
  // deopt the execution state and return to the interpreter.
  fr.deoptimize(thread);
}

void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  // Deoptimize only if the frame comes from compile code.
  // Do not deoptimize the frame which is already patched
  // during the execution of the loops below.
  if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
    return;
  }
  ResourceMark rm;
  DeoptimizationMarker dm;
  if (UseBiasedLocking) {
    revoke_biases_of_monitors(thread, fr, map);
  }
  deoptimize_single_frame(thread, fr);

}


void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  // Compute frame and register map based on thread and sp.
  RegisterMap reg_map(thread, UseBiasedLocking);
  frame fr = thread->last_frame();
  while (fr.id() != id) {
    fr = fr.sender(&reg_map);
  }
  deoptimize(thread, fr, &reg_map);
}


// JVMTI PopFrame support
JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
{
  thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
}
JRT_END


#ifdef COMPILER2
void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  // in case of an unresolved klass entry, load the class.
  if (constant_pool->tag_at(index).is_unresolved_klass()) {
    klassOop tk = constant_pool->klass_at(index, CHECK);
    return;
  }

  if (!constant_pool->tag_at(index).is_symbol()) return;

  Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
  symbolHandle symbol (THREAD, constant_pool->symbol_at(index));

  // class name?
  if (symbol->byte_at(0) != '(') {
    Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
    SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
    return;
  }

  // then it must be a signature!
  for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
    if (ss.is_object()) {
      symbolOop s = ss.as_symbol(CHECK);
      symbolHandle class_name (THREAD, s);
      Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
      SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
    }
  }
}


void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  EXCEPTION_MARK;
  load_class_by_index(constant_pool, index, THREAD);
  if (HAS_PENDING_EXCEPTION) {
    // Exception happened during classloading. We ignore the exception here, since it
    // is going to be rethrown since the current activation is going to be deoptimzied and
    // the interpreter will re-execute the bytecode.
    CLEAR_PENDING_EXCEPTION;
  }
}

JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  HandleMark hm;

  // uncommon_trap() is called at the beginning of the uncommon trap
  // handler. Note this fact before we start generating temporary frames
  // that can confuse an asynchronous stack walker. This counter is
  // decremented at the end of unpack_frames().
  thread->inc_in_deopt_handler();

  // We need to update the map if we have biased locking.
  RegisterMap reg_map(thread, UseBiasedLocking);
  frame stub_frame = thread->last_frame();
  frame fr = stub_frame.sender(&reg_map);
  // Make sure the calling nmethod is not getting deoptimized and removed
  // before we are done with it.
  nmethodLocker nl(fr.pc());

  {
    ResourceMark rm;

    // Revoke biases of any monitors in the frame to ensure we can migrate them
    revoke_biases_of_monitors(thread, fr, &reg_map);

    DeoptReason reason = trap_request_reason(trap_request);
    DeoptAction action = trap_request_action(trap_request);
    jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1

    Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
    vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
    compiledVFrame* cvf = compiledVFrame::cast(vf);

    nmethod* nm = cvf->code();

    ScopeDesc*      trap_scope  = cvf->scope();
    methodHandle    trap_method = trap_scope->method();
    int             trap_bci    = trap_scope->bci();
    Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();

    // Record this event in the histogram.
    gather_statistics(reason, action, trap_bc);

    // Ensure that we can record deopt. history:
    bool create_if_missing = ProfileTraps;

    methodDataHandle trap_mdo
      (THREAD, get_method_data(thread, trap_method, create_if_missing));

    // Print a bunch of diagnostics, if requested.
    if (TraceDeoptimization || LogCompilation) {
      ResourceMark rm;
      ttyLocker ttyl;
      char buf[100];
      if (xtty != NULL) {
        xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
                         os::current_thread_id(),
                         format_trap_request(buf, sizeof(buf), trap_request));
        nm->log_identity(xtty);
      }
      symbolHandle class_name;
      bool unresolved = false;
      if (unloaded_class_index >= 0) {
        constantPoolHandle constants (THREAD, trap_method->constants());
        if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
          class_name = symbolHandle(THREAD,
            constants->klass_name_at(unloaded_class_index));
          unresolved = true;
          if (xtty != NULL)
            xtty->print(" unresolved='1'");
        } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
          class_name = symbolHandle(THREAD,
            constants->symbol_at(unloaded_class_index));
        }
        if (xtty != NULL)
          xtty->name(class_name);
      }
      if (xtty != NULL && trap_mdo.not_null()) {
        // Dump the relevant MDO state.
        // This is the deopt count for the current reason, any previous
        // reasons or recompiles seen at this point.
        int dcnt = trap_mdo->trap_count(reason);
        if (dcnt != 0)
          xtty->print(" count='%d'", dcnt);
        ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
        int dos = (pdata == NULL)? 0: pdata->trap_state();
        if (dos != 0) {
          xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
          if (trap_state_is_recompiled(dos)) {
            int recnt2 = trap_mdo->overflow_recompile_count();
            if (recnt2 != 0)
              xtty->print(" recompiles2='%d'", recnt2);
          }
        }
      }
      if (xtty != NULL) {
        xtty->stamp();
        xtty->end_head();
      }
      if (TraceDeoptimization) {  // make noise on the tty
        tty->print("Uncommon trap occurred in");
        nm->method()->print_short_name(tty);
        tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
                   fr.pc(),
                   (int) os::current_thread_id(),
                   trap_reason_name(reason),
                   trap_action_name(action),
                   unloaded_class_index);
        if (class_name.not_null()) {
          tty->print(unresolved ? " unresolved class: " : " symbol: ");
          class_name->print_symbol_on(tty);
        }
        tty->cr();
      }
      if (xtty != NULL) {
        // Log the precise location of the trap.
        for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
          xtty->begin_elem("jvms bci='%d'", sd->bci());
          xtty->method(sd->method());
          xtty->end_elem();
          if (sd->is_top())  break;
        }
        xtty->tail("uncommon_trap");
      }
    }
    // (End diagnostic printout.)

    // Load class if necessary
    if (unloaded_class_index >= 0) {
      constantPoolHandle constants(THREAD, trap_method->constants());
      load_class_by_index(constants, unloaded_class_index);
    }

    // Flush the nmethod if necessary and desirable.
    //
    // We need to avoid situations where we are re-flushing the nmethod
    // because of a hot deoptimization site.  Repeated flushes at the same
    // point need to be detected by the compiler and avoided.  If the compiler
    // cannot avoid them (or has a bug and "refuses" to avoid them), this
    // module must take measures to avoid an infinite cycle of recompilation
    // and deoptimization.  There are several such measures:
    //
    //   1. If a recompilation is ordered a second time at some site X
    //   and for the same reason R, the action is adjusted to 'reinterpret',
    //   to give the interpreter time to exercise the method more thoroughly.
    //   If this happens, the method's overflow_recompile_count is incremented.
    //
    //   2. If the compiler fails to reduce the deoptimization rate, then
    //   the method's overflow_recompile_count will begin to exceed the set
    //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
    //   is adjusted to 'make_not_compilable', and the method is abandoned
    //   to the interpreter.  This is a performance hit for hot methods,
    //   but is better than a disastrous infinite cycle of recompilations.
    //   (Actually, only the method containing the site X is abandoned.)
    //
    //   3. In parallel with the previous measures, if the total number of
    //   recompilations of a method exceeds the much larger set limit
    //   PerMethodRecompilationCutoff, the method is abandoned.
    //   This should only happen if the method is very large and has
    //   many "lukewarm" deoptimizations.  The code which enforces this
    //   limit is elsewhere (class nmethod, class methodOopDesc).
    //
    // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
    // to recompile at each bytecode independently of the per-BCI cutoff.
    //
    // The decision to update code is up to the compiler, and is encoded
    // in the Action_xxx code.  If the compiler requests Action_none
    // no trap state is changed, no compiled code is changed, and the
    // computation suffers along in the interpreter.
    //
    // The other action codes specify various tactics for decompilation
    // and recompilation.  Action_maybe_recompile is the loosest, and
    // allows the compiled code to stay around until enough traps are seen,
    // and until the compiler gets around to recompiling the trapping method.
    //
    // The other actions cause immediate removal of the present code.

    bool update_trap_state = true;
    bool make_not_entrant = false;
    bool make_not_compilable = false;
    bool reset_counters = false;
    switch (action) {
    case Action_none:
      // Keep the old code.
      update_trap_state = false;
      break;
    case Action_maybe_recompile:
      // Do not need to invalidate the present code, but we can
      // initiate another
      // Start compiler without (necessarily) invalidating the nmethod.
      // The system will tolerate the old code, but new code should be
      // generated when possible.
      break;
    case Action_reinterpret:
      // Go back into the interpreter for a while, and then consider
      // recompiling form scratch.
      make_not_entrant = true;
      // Reset invocation counter for outer most method.
      // This will allow the interpreter to exercise the bytecodes
      // for a while before recompiling.
      // By contrast, Action_make_not_entrant is immediate.
      //
      // Note that the compiler will track null_check, null_assert,
      // range_check, and class_check events and log them as if they
      // had been traps taken from compiled code.  This will update
      // the MDO trap history so that the next compilation will
      // properly detect hot trap sites.
      reset_counters = true;
      break;
    case Action_make_not_entrant:
      // Request immediate recompilation, and get rid of the old code.
      // Make them not entrant, so next time they are called they get
      // recompiled.  Unloaded classes are loaded now so recompile before next
      // time they are called.  Same for uninitialized.  The interpreter will
      // link the missing class, if any.
      make_not_entrant = true;
      break;
    case Action_make_not_compilable:
      // Give up on compiling this method at all.
      make_not_entrant = true;
      make_not_compilable = true;
      break;
    default:
      ShouldNotReachHere();
    }

    // Setting +ProfileTraps fixes the following, on all platforms:
    // 4852688: ProfileInterpreter is off by default for ia64.  The result is
    // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
    // recompile relies on a methodDataOop to record heroic opt failures.

    // Whether the interpreter is producing MDO data or not, we also need
    // to use the MDO to detect hot deoptimization points and control
    // aggressive optimization.
    if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
      assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
      uint this_trap_count = 0;
      bool maybe_prior_trap = false;
      bool maybe_prior_recompile = false;
      ProfileData* pdata
        = query_update_method_data(trap_mdo, trap_bci, reason,
                                   //outputs:
                                   this_trap_count,
                                   maybe_prior_trap,
                                   maybe_prior_recompile);
      // Because the interpreter also counts null, div0, range, and class
      // checks, these traps from compiled code are double-counted.
      // This is harmless; it just means that the PerXTrapLimit values
      // are in effect a little smaller than they look.

      DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
      if (per_bc_reason != Reason_none) {
        // Now take action based on the partially known per-BCI history.
        if (maybe_prior_trap
            && this_trap_count >= (uint)PerBytecodeTrapLimit) {
          // If there are too many traps at this BCI, force a recompile.
          // This will allow the compiler to see the limit overflow, and
          // take corrective action, if possible.  The compiler generally
          // does not use the exact PerBytecodeTrapLimit value, but instead
          // changes its tactics if it sees any traps at all.  This provides
          // a little hysteresis, delaying a recompile until a trap happens
          // several times.
          //
          // Actually, since there is only one bit of counter per BCI,
          // the possible per-BCI counts are {0,1,(per-method count)}.
          // This produces accurate results if in fact there is only
          // one hot trap site, but begins to get fuzzy if there are
          // many sites.  For example, if there are ten sites each
          // trapping two or more times, they each get the blame for
          // all of their traps.
          make_not_entrant = true;
        }

        // Detect repeated recompilation at the same BCI, and enforce a limit.
        if (make_not_entrant && maybe_prior_recompile) {
          // More than one recompile at this point.
          trap_mdo->inc_overflow_recompile_count();
          if (maybe_prior_trap
              && ((uint)trap_mdo->overflow_recompile_count()
                  > (uint)PerBytecodeRecompilationCutoff)) {
            // Give up on the method containing the bad BCI.
            if (trap_method() == nm->method()) {
              make_not_compilable = true;
            } else {
              trap_method->set_not_compilable();
              // But give grace to the enclosing nm->method().
            }
          }
        }
      } else {
        // For reasons which are not recorded per-bytecode, we simply
        // force recompiles unconditionally.
        // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
        make_not_entrant = true;
      }

      // Go back to the compiler if there are too many traps in this method.
      if (this_trap_count >= (uint)PerMethodTrapLimit) {
        // If there are too many traps in this method, force a recompile.
        // This will allow the compiler to see the limit overflow, and
        // take corrective action, if possible.
        // (This condition is an unlikely backstop only, because the
        // PerBytecodeTrapLimit is more likely to take effect first,
        // if it is applicable.)
        make_not_entrant = true;
      }

      // Here's more hysteresis:  If there has been a recompile at
      // this trap point already, run the method in the interpreter
      // for a while to exercise it more thoroughly.
      if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
        reset_counters = true;
      }

      if (make_not_entrant && pdata != NULL) {
        // Record the recompilation event, if any.
        int tstate0 = pdata->trap_state();
        int tstate1 = trap_state_set_recompiled(tstate0, true);
        if (tstate1 != tstate0)
          pdata->set_trap_state(tstate1);
      }
    }

    // Take requested actions on the method:

    // Reset invocation counters
    if (reset_counters) {
      if (nm->is_osr_method())
        reset_invocation_counter(trap_scope, CompileThreshold);
      else
        reset_invocation_counter(trap_scope);
    }

    // Recompile
    if (make_not_entrant) {
      nm->make_not_entrant();
    }

    // Give up compiling
    if (make_not_compilable) {
      assert(make_not_entrant, "consistent");
      nm->method()->set_not_compilable();
    }

  } // Free marked resources

}
JRT_END

methodDataOop
Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
                                bool create_if_missing) {
  Thread* THREAD = thread;
  methodDataOop mdo = m()->method_data();
  if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
    // Build an MDO.  Ignore errors like OutOfMemory;
    // that simply means we won't have an MDO to update.
    methodOopDesc::build_interpreter_method_data(m, THREAD);
    if (HAS_PENDING_EXCEPTION) {
      assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
      CLEAR_PENDING_EXCEPTION;
    }
    mdo = m()->method_data();
  }
  return mdo;
}

ProfileData*
Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
                                         int trap_bci,
                                         Deoptimization::DeoptReason reason,
                                         //outputs:
                                         uint& ret_this_trap_count,
                                         bool& ret_maybe_prior_trap,
                                         bool& ret_maybe_prior_recompile) {
  uint prior_trap_count = trap_mdo->trap_count(reason);
  uint this_trap_count  = trap_mdo->inc_trap_count(reason);

  // If the runtime cannot find a place to store trap history,
  // it is estimated based on the general condition of the method.
  // If the method has ever been recompiled, or has ever incurred
  // a trap with the present reason , then this BCI is assumed
  // (pessimistically) to be the culprit.
  bool maybe_prior_trap      = (prior_trap_count != 0);
  bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  ProfileData* pdata = NULL;


  // For reasons which are recorded per bytecode, we check per-BCI data.
  DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  if (per_bc_reason != Reason_none) {
    // Find the profile data for this BCI.  If there isn't one,
    // try to allocate one from the MDO's set of spares.
    // This will let us detect a repeated trap at this point.
    pdata = trap_mdo->allocate_bci_to_data(trap_bci);

    if (pdata != NULL) {
      // Query the trap state of this profile datum.
      int tstate0 = pdata->trap_state();
      if (!trap_state_has_reason(tstate0, per_bc_reason))
        maybe_prior_trap = false;
      if (!trap_state_is_recompiled(tstate0))
        maybe_prior_recompile = false;

      // Update the trap state of this profile datum.
      int tstate1 = tstate0;
      // Record the reason.
      tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
      // Store the updated state on the MDO, for next time.
      if (tstate1 != tstate0)
        pdata->set_trap_state(tstate1);
    } else {
      if (LogCompilation && xtty != NULL)
        // Missing MDP?  Leave a small complaint in the log.
        xtty->elem("missing_mdp bci='%d'", trap_bci);
    }
  }

  // Return results:
  ret_this_trap_count = this_trap_count;
  ret_maybe_prior_trap = maybe_prior_trap;
  ret_maybe_prior_recompile = maybe_prior_recompile;
  return pdata;
}

void
Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  ResourceMark rm;
  // Ignored outputs:
  uint ignore_this_trap_count;
  bool ignore_maybe_prior_trap;
  bool ignore_maybe_prior_recompile;
  query_update_method_data(trap_mdo, trap_bci,
                           (DeoptReason)reason,
                           ignore_this_trap_count,
                           ignore_maybe_prior_trap,
                           ignore_maybe_prior_recompile);
}

void Deoptimization::reset_invocation_counter(ScopeDesc* trap_scope, jint top_count) {
  ScopeDesc* sd = trap_scope;
  for (; !sd->is_top(); sd = sd->sender()) {
    // Reset ICs of inlined methods, since they can trigger compilations also.
    sd->method()->invocation_counter()->reset();
  }
  InvocationCounter* c = sd->method()->invocation_counter();
  if (top_count != _no_count) {
    // It was an OSR method, so bump the count higher.
    c->set(c->state(), top_count);
  } else {
    c->reset();
  }
  sd->method()->backedge_counter()->reset();
}

Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {

  // Still in Java no safepoints
  {
    // This enters VM and may safepoint
    uncommon_trap_inner(thread, trap_request);
  }
  return fetch_unroll_info_helper(thread);
}

// Local derived constants.
// Further breakdown of DataLayout::trap_state, as promised by DataLayout.
const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;

//---------------------------trap_state_reason---------------------------------
Deoptimization::DeoptReason
Deoptimization::trap_state_reason(int trap_state) {
  // This assert provides the link between the width of DataLayout::trap_bits
  // and the encoding of "recorded" reasons.  It ensures there are enough
  // bits to store all needed reasons in the per-BCI MDO profile.
  assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  trap_state -= recompile_bit;
  if (trap_state == DS_REASON_MASK) {
    return Reason_many;
  } else {
    assert((int)Reason_none == 0, "state=0 => Reason_none");
    return (DeoptReason)trap_state;
  }
}
//-------------------------trap_state_has_reason-------------------------------
int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  trap_state -= recompile_bit;
  if (trap_state == DS_REASON_MASK) {
    return -1;  // true, unspecifically (bottom of state lattice)
  } else if (trap_state == reason) {
    return 1;   // true, definitely
  } else if (trap_state == 0) {
    return 0;   // false, definitely (top of state lattice)
  } else {
    return 0;   // false, definitely
  }
}
//-------------------------trap_state_add_reason-------------------------------
int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  trap_state -= recompile_bit;
  if (trap_state == DS_REASON_MASK) {
    return trap_state + recompile_bit;     // already at state lattice bottom
  } else if (trap_state == reason) {
    return trap_state + recompile_bit;     // the condition is already true
  } else if (trap_state == 0) {
    return reason + recompile_bit;          // no condition has yet been true
  } else {
    return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  }
}
//-----------------------trap_state_is_recompiled------------------------------
bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  return (trap_state & DS_RECOMPILE_BIT) != 0;
}
//-----------------------trap_state_set_recompiled-----------------------------
int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  if (z)  return trap_state |  DS_RECOMPILE_BIT;
  else    return trap_state & ~DS_RECOMPILE_BIT;
}
//---------------------------format_trap_state---------------------------------
// This is used for debugging and diagnostics, including hotspot.log output.
const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
                                              int trap_state) {
  DeoptReason reason      = trap_state_reason(trap_state);
  bool        recomp_flag = trap_state_is_recompiled(trap_state);
  // Re-encode the state from its decoded components.
  int decoded_state = 0;
  if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
    decoded_state = trap_state_add_reason(decoded_state, reason);
  if (recomp_flag)
    decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  // If the state re-encodes properly, format it symbolically.
  // Because this routine is used for debugging and diagnostics,
  // be robust even if the state is a strange value.
  size_t len;
  if (decoded_state != trap_state) {
    // Random buggy state that doesn't decode??
    len = jio_snprintf(buf, buflen, "#%d", trap_state);
  } else {
    len = jio_snprintf(buf, buflen, "%s%s",
                       trap_reason_name(reason),
                       recomp_flag ? " recompiled" : "");
  }
  if (len >= buflen)
    buf[buflen-1] = '\0';
  return buf;
}


//--------------------------------statics--------------------------------------
Deoptimization::DeoptAction Deoptimization::_unloaded_action
  = Deoptimization::Action_reinterpret;
const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  // Note:  Keep this in sync. with enum DeoptReason.
  "none",
  "null_check",
  "null_assert",
  "range_check",
  "class_check",
  "array_check",
  "intrinsic",
  "unloaded",
  "uninitialized",
  "unreached",
  "unhandled",
  "constraint",
  "div0_check",
  "age"
};
const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  // Note:  Keep this in sync. with enum DeoptAction.
  "none",
  "maybe_recompile",
  "reinterpret",
  "make_not_entrant",
  "make_not_compilable"
};

const char* Deoptimization::trap_reason_name(int reason) {
  if (reason == Reason_many)  return "many";
  if ((uint)reason < Reason_LIMIT)
    return _trap_reason_name[reason];
  static char buf[20];
  sprintf(buf, "reason%d", reason);
  return buf;
}
const char* Deoptimization::trap_action_name(int action) {
  if ((uint)action < Action_LIMIT)
    return _trap_action_name[action];
  static char buf[20];
  sprintf(buf, "action%d", action);
  return buf;
}

// This is used for debugging and diagnostics, including hotspot.log output.
const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
                                                int trap_request) {
  jint unloaded_class_index = trap_request_index(trap_request);
  const char* reason = trap_reason_name(trap_request_reason(trap_request));
  const char* action = trap_action_name(trap_request_action(trap_request));
  size_t len;
  if (unloaded_class_index < 0) {
    len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
                       reason, action);
  } else {
    len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
                       reason, action, unloaded_class_index);
  }
  if (len >= buflen)
    buf[buflen-1] = '\0';
  return buf;
}

juint Deoptimization::_deoptimization_hist
        [Deoptimization::Reason_LIMIT]
    [1 + Deoptimization::Action_LIMIT]
        [Deoptimization::BC_CASE_LIMIT]
  = {0};

enum {
  LSB_BITS = 8,
  LSB_MASK = right_n_bits(LSB_BITS)
};

void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
                                       Bytecodes::Code bc) {
  assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  assert(action >= 0 && action < Action_LIMIT, "oob");
  _deoptimization_hist[Reason_none][0][0] += 1;  // total
  _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  juint* cases = _deoptimization_hist[reason][1+action];
  juint* bc_counter_addr = NULL;
  juint  bc_counter      = 0;
  // Look for an unused counter, or an exact match to this BC.
  if (bc != Bytecodes::_illegal) {
    for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
      juint* counter_addr = &cases[bc_case];
      juint  counter = *counter_addr;
      if ((counter == 0 && bc_counter_addr == NULL)
          || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
        // this counter is either free or is already devoted to this BC
        bc_counter_addr = counter_addr;
        bc_counter = counter | bc;
      }
    }
  }
  if (bc_counter_addr == NULL) {
    // Overflow, or no given bytecode.
    bc_counter_addr = &cases[BC_CASE_LIMIT-1];
    bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  }
  *bc_counter_addr = bc_counter + (1 << LSB_BITS);
}

jint Deoptimization::total_deoptimization_count() {
  return _deoptimization_hist[Reason_none][0][0];
}

jint Deoptimization::deoptimization_count(DeoptReason reason) {
  assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  return _deoptimization_hist[reason][0][0];
}

void Deoptimization::print_statistics() {
  juint total = total_deoptimization_count();
  juint account = total;
  if (total != 0) {
    ttyLocker ttyl;
    if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
    tty->print_cr("Deoptimization traps recorded:");
    #define PRINT_STAT_LINE(name, r) \
      tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
    PRINT_STAT_LINE("total", total);
    // For each non-zero entry in the histogram, print the reason,
    // the action, and (if specifically known) the type of bytecode.
    for (int reason = 0; reason < Reason_LIMIT; reason++) {
      for (int action = 0; action < Action_LIMIT; action++) {
        juint* cases = _deoptimization_hist[reason][1+action];
        for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
          juint counter = cases[bc_case];
          if (counter != 0) {
            char name[1*K];
            Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
            if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
              bc = Bytecodes::_illegal;
            sprintf(name, "%s/%s/%s",
                    trap_reason_name(reason),
                    trap_action_name(action),
                    Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
            juint r = counter >> LSB_BITS;
            tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
            account -= r;
          }
        }
      }
    }
    if (account != 0) {
      PRINT_STAT_LINE("unaccounted", account);
    }
    #undef PRINT_STAT_LINE
    if (xtty != NULL)  xtty->tail("statistics");
  }
}
#else // COMPILER2


// Stubs for C1 only system.
bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  return false;
}

const char* Deoptimization::trap_reason_name(int reason) {
  return "unknown";
}

void Deoptimization::print_statistics() {
  // no output
}

void
Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  // no udpate
}

int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  return 0;
}

void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
                                       Bytecodes::Code bc) {
  // no update
}

const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
                                              int trap_state) {
  jio_snprintf(buf, buflen, "#%d", trap_state);
  return buf;
}

#endif // COMPILER2