g1CollectedHeap.cpp 196.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "precompiled.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generationSpec.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/vmThread.hpp"
47

48 49
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

50 51 52
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
53
#define YOUNG_LIST_VERBOSE 0
54 55 56 57 58 59
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
60 61 62 63 64
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
J
johnc 已提交
80 81 82 83 84 85
    bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

152 153 154 155 156 157 158 159
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

160 161
YoungList::YoungList(G1CollectedHeap* g1h)
  : _g1h(g1h), _head(NULL),
162
    _length(0),
163
    _last_sampled_rs_lengths(0),
164
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
{
  guarantee( check_list_empty(false), "just making sure..." );
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

  hr->set_young();
  double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
182
  assert(hr->is_survivor(), "should be flagged as survivor region");
183 184 185 186
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
187
    _survivor_tail = hr;
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
  }
  _survivor_head = hr;

  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
213
  _survivor_tail = NULL;
214 215 216 217 218 219 220 221 222 223 224 225 226 227
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

  size_t length = 0;
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
228
    if (!curr->is_young()) {
229
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
230
                             "incorrectly tagged (y: %d, surv: %d)",
231
                             curr->bottom(), curr->end(),
232
                             curr->is_young(), curr->is_survivor());
233 234 235 236 237 238 239 240 241 242 243 244 245 246
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
    gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
                           length, _length);
  }

247
  return ret;
248 249
}

250
bool YoungList::check_list_empty(bool check_sample) {
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  bool ret = true;

  if (_length != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

270
  return ret;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
287 288 289 290 291 292 293 294 295 296 297 298
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

299 300 301 302 303 304 305 306 307 308 309 310 311 312
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
313
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
314

315 316 317 318
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    _g1h->g1_policy()->set_region_survivors(curr);
319 320 321 322 323

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
324 325 326
  }
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

327 328
  _head   = _survivor_head;
  _length = _survivor_length;
329
  if (_survivor_head != NULL) {
330 331 332
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
333 334
  }

335 336 337 338
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
339

340
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
341 342 343 344 345

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
346 347
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
348 349 350 351 352 353 354 355

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
      gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
356
                             "age: %4d, y: %d, surv: %d",
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
                             curr->bottom(), curr->end(),
                             curr->top(),
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
                             curr->top_at_conc_mark_count(),
                             curr->age_in_surv_rate_group_cond(),
                             curr->is_young(),
                             curr->is_survivor());
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

425
void G1CollectedHeap::stop_conc_gc_threads() {
426
  _cg1r->stop();
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
  _cmThread->stop();
}

void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

481
HeapRegion*
T
tonyp 已提交
482
G1CollectedHeap::new_region_try_secondary_free_list() {
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "secondary_free_list has "SIZE_FORMAT" entries",
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

    // Wait here until we get notifed either when (a) there are no
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
519

520 521 522 523 524 525
HeapRegion* G1CollectedHeap::new_region_work(size_t word_size,
                                             bool do_expand) {
  assert(!isHumongous(word_size) ||
                                  word_size <= (size_t) HeapRegion::GrainWords,
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
526

527 528 529 530 531 532 533
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
T
tonyp 已提交
534
      res = new_region_try_secondary_free_list();
535 536 537 538 539 540 541 542 543 544 545
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
T
tonyp 已提交
546
    res = new_region_try_secondary_free_list();
547
  }
548
  if (res == NULL && do_expand) {
549 550 551 552 553
    if (expand(word_size * HeapWordSize)) {
      // The expansion succeeded and so we should have at least one
      // region on the free list.
      res = _free_list.remove_head();
    }
554
  }
555 556
  if (res != NULL) {
    if (G1PrintHeapRegions) {
557 558 559
      gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT","PTR_FORMAT"], "
                             "top "PTR_FORMAT, res->hrs_index(),
                             res->bottom(), res->end(), res->top());
560 561 562 563 564
    }
  }
  return res;
}

565 566
HeapRegion* G1CollectedHeap::new_gc_alloc_region(int purpose,
                                                 size_t word_size) {
567 568
  HeapRegion* alloc_region = NULL;
  if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
569
    alloc_region = new_region_work(word_size, true /* do_expand */);
570
    if (purpose == GCAllocForSurvived && alloc_region != NULL) {
571
      alloc_region->set_survivor();
572 573 574 575 576 577 578 579
    }
    ++_gc_alloc_region_counts[purpose];
  } else {
    g1_policy()->note_alloc_region_limit_reached(purpose);
  }
  return alloc_region;
}

580 581
int G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
                                                       size_t word_size) {
T
tonyp 已提交
582 583 584
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
  int first = -1;
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
    // path. The caller will attempt the expasion if this fails, so
    // let's not try to expand here too.
    HeapRegion* hr = new_region_work(word_size, false /* do_expand */);
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
      first = -1;
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
606
    append_secondary_free_list_if_not_empty_with_lock();
607 608 609 610 611 612 613

    if (free_regions() >= num_regions) {
      first = _hrs->find_contiguous(num_regions);
      if (first != -1) {
        for (int i = first; i < first + (int) num_regions; ++i) {
          HeapRegion* hr = _hrs->at(i);
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
614
          assert(is_on_master_free_list(hr), "sanity");
615 616 617 618 619 620 621 622 623
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
HeapWord*
G1CollectedHeap::humongous_obj_allocate_initialize_regions(int first,
                                                           size_t num_regions,
                                                           size_t word_size) {
  assert(first != -1, "pre-condition");
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
  int last = first + (int) num_regions;

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
  size_t word_size_sum = num_regions * HeapRegion::GrainWords;
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
  HeapRegion* first_hr = _hrs->at(first);
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
  // should also match the end of the last region in the seriers.
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
  for (int i = first + 1; i < last; ++i) {
    hr = _hrs->at(i);
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
  for (int i = first + 1; i < last; ++i) {
    hr = _hrs->at(i);
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

744 745 746
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
747
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
748
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
749

750
  verify_region_sets_optional();
751 752

  size_t num_regions =
753
         round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
754
  size_t x_size = expansion_regions();
755 756 757 758
  size_t fs = _hrs->free_suffix();
  int first = humongous_obj_allocate_find_first(num_regions, word_size);
  if (first == -1) {
    // The only thing we can do now is attempt expansion.
759
    if (fs + x_size >= num_regions) {
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
        first = humongous_obj_allocate_find_first(num_regions, word_size);
        // If the expansion was successful then the allocation
        // should have been successful.
        assert(first != -1, "this should have worked");
      }
776 777
    }
  }
778

T
tonyp 已提交
779
  HeapWord* result = NULL;
780
  if (first != -1) {
T
tonyp 已提交
781 782 783
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
784
  }
785 786

  verify_region_sets_optional();
T
tonyp 已提交
787 788

  return result;
789 790
}

791 792
void
G1CollectedHeap::retire_cur_alloc_region(HeapRegion* cur_alloc_region) {
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
  // Other threads might still be trying to allocate using CASes out
  // of the region we are retiring, as they can do so without holding
  // the Heap_lock. So we first have to make sure that noone else can
  // allocate in it by doing a maximal allocation. Even if our CAS
  // attempt fails a few times, we'll succeed sooner or later given
  // that a failed CAS attempt mean that the region is getting closed
  // to being full (someone else succeeded in allocating into it).
  size_t free_word_size = cur_alloc_region->free() / HeapWordSize;

  // This is the minimum free chunk we can turn into a dummy
  // object. If the free space falls below this, then noone can
  // allocate in this region anyway (all allocation requests will be
  // of a size larger than this) so we won't have to perform the dummy
  // allocation.
  size_t min_word_size_to_fill = CollectedHeap::min_fill_size();

  while (free_word_size >= min_word_size_to_fill) {
    HeapWord* dummy =
      cur_alloc_region->par_allocate_no_bot_updates(free_word_size);
    if (dummy != NULL) {
      // If the allocation was successful we should fill in the space.
      CollectedHeap::fill_with_object(dummy, free_word_size);
      break;
    }

    free_word_size = cur_alloc_region->free() / HeapWordSize;
    // It's also possible that someone else beats us to the
    // allocation and they fill up the region. In that case, we can
    // just get out of the loop
  }
  assert(cur_alloc_region->free() / HeapWordSize < min_word_size_to_fill,
         "sanity");

826 827 828 829 830 831
  retire_cur_alloc_region_common(cur_alloc_region);
  assert(_cur_alloc_region == NULL, "post-condition");
}

// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
832
HeapWord*
833 834
G1CollectedHeap::replace_cur_alloc_region_and_allocate(size_t word_size,
                                                       bool at_safepoint,
835 836
                                                       bool do_dirtying,
                                                       bool can_expand) {
837
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
838 839 840 841 842
  assert(_cur_alloc_region == NULL,
         "replace_cur_alloc_region_and_allocate() should only be called "
         "after retiring the previous current alloc region");
  assert(SafepointSynchronize::is_at_safepoint() == at_safepoint,
         "at_safepoint and is_at_safepoint() should be a tautology");
843 844 845
  assert(!can_expand || g1_policy()->can_expand_young_list(),
         "we should not call this method with can_expand == true if "
         "we are not allowed to expand the young gen");
846

847
  if (can_expand || !g1_policy()->is_young_list_full()) {
848
    HeapRegion* new_cur_alloc_region = new_alloc_region(word_size);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
    if (new_cur_alloc_region != NULL) {
      assert(new_cur_alloc_region->is_empty(),
             "the newly-allocated region should be empty, "
             "as right now we only allocate new regions out of the free list");
      g1_policy()->update_region_num(true /* next_is_young */);
      set_region_short_lived_locked(new_cur_alloc_region);

      assert(!new_cur_alloc_region->isHumongous(),
             "Catch a regression of this bug.");

      // We need to ensure that the stores to _cur_alloc_region and,
      // subsequently, to top do not float above the setting of the
      // young type.
      OrderAccess::storestore();

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
      // Now, perform the allocation out of the region we just
      // allocated. Note that noone else can access that region at
      // this point (as _cur_alloc_region has not been updated yet),
      // so we can just go ahead and do the allocation without any
      // atomics (and we expect this allocation attempt to
      // suceeded). Given that other threads can attempt an allocation
      // with a CAS and without needing the Heap_lock, if we assigned
      // the new region to _cur_alloc_region before first allocating
      // into it other threads might have filled up the new region
      // before we got a chance to do the allocation ourselves. In
      // that case, we would have needed to retire the region, grab a
      // new one, and go through all this again. Allocating out of the
      // new region before assigning it to _cur_alloc_region avoids
      // all this.
      HeapWord* result =
                     new_cur_alloc_region->allocate_no_bot_updates(word_size);
880 881 882 883
      assert(result != NULL, "we just allocate out of an empty region "
             "so allocation should have been successful");
      assert(is_in(result), "result should be in the heap");

884 885 886
      // Now make sure that the store to _cur_alloc_region does not
      // float above the store to top.
      OrderAccess::storestore();
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
      _cur_alloc_region = new_cur_alloc_region;

      if (!at_safepoint) {
        Heap_lock->unlock();
      }

      // do the dirtying, if necessary, after we release the Heap_lock
      if (do_dirtying) {
        dirty_young_block(result, word_size);
      }
      return result;
    }
  }

  assert(_cur_alloc_region == NULL, "we failed to allocate a new current "
         "alloc region, it should still be NULL");
903
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
904 905 906 907 908 909 910 911 912 913 914
  return NULL;
}

// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
HeapWord*
G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
  assert_heap_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not be "
         "used for humongous allocations");

915 916 917 918
  // We should only reach here when we were unable to allocate
  // otherwise. So, we should have not active current alloc region.
  assert(_cur_alloc_region == NULL, "current alloc region should be NULL");

919 920 921 922 923 924 925 926
  // We will loop while succeeded is false, which means that we tried
  // to do a collection, but the VM op did not succeed. So, when we
  // exit the loop, either one of the allocation attempts was
  // successful, or we succeeded in doing the VM op but which was
  // unable to allocate after the collection.
  for (int try_count = 1; /* we'll return or break */; try_count += 1) {
    bool succeeded = true;

927 928 929
    // Every time we go round the loop we should be holding the Heap_lock.
    assert_heap_locked();

930
    if (GC_locker::is_active_and_needs_gc()) {
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
      // We are locked out of GC because of the GC locker. We can
      // allocate a new region only if we can expand the young gen.

      if (g1_policy()->can_expand_young_list()) {
        // Yes, we are allowed to expand the young gen. Let's try to
        // allocate a new current alloc region.
        HeapWord* result =
          replace_cur_alloc_region_and_allocate(word_size,
                                                false, /* at_safepoint */
                                                true,  /* do_dirtying */
                                                true   /* can_expand */);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }
      }
      // We could not expand the young gen further (or we could but we
      // failed to allocate a new region). We'll stall until the GC
      // locker forces a GC.
950 951 952 953 954 955 956 957 958

      // If this thread is not in a jni critical section, we stall
      // the requestor until the critical section has cleared and
      // GC allowed. When the critical section clears, a GC is
      // initiated by the last thread exiting the critical section; so
      // we retry the allocation sequence from the beginning of the loop,
      // rather than causing more, now probably unnecessary, GC attempts.
      JavaThread* jthr = JavaThread::current();
      assert(jthr != NULL, "sanity");
959
      if (jthr->in_critical()) {
960 961 962
        if (CheckJNICalls) {
          fatal("Possible deadlock due to allocating while"
                " in jni critical section");
963
        }
964 965 966
        // We are returning NULL so the protocol is that we're still
        // holding the Heap_lock.
        assert_heap_locked();
967
        return NULL;
968
      }
969 970 971 972 973 974 975

      Heap_lock->unlock();
      GC_locker::stall_until_clear();

      // No need to relock the Heap_lock. We'll fall off to the code
      // below the else-statement which assumes that we are not
      // holding the Heap_lock.
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    } else {
      // We are not locked out. So, let's try to do a GC. The VM op
      // will retry the allocation before it completes.

      // Read the GC count while holding the Heap_lock
      unsigned int gc_count_before = SharedHeap::heap()->total_collections();

      Heap_lock->unlock();

      HeapWord* result =
        do_collection_pause(word_size, gc_count_before, &succeeded);
      assert_heap_not_locked();
      if (result != NULL) {
        assert(succeeded, "the VM op should have succeeded");

        // Allocations that take place on VM operations do not do any
        // card dirtying and we have to do it here.
        dirty_young_block(result, word_size);
        return result;
      }
996
    }
997

998 999
    // Both paths that get us here from above unlock the Heap_lock.
    assert_heap_not_locked();
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

    // We can reach here when we were unsuccessful in doing a GC,
    // because another thread beat us to it, or because we were locked
    // out of GC due to the GC locker. In either case a new alloc
    // region might be available so we will retry the allocation.
    HeapWord* result = attempt_allocation(word_size);
    if (result != NULL) {
      assert_heap_not_locked();
      return result;
    }

    // So far our attempts to allocate failed. The only time we'll go
    // around the loop and try again is if we tried to do a GC and the
    // VM op that we tried to schedule was not successful because
    // another thread beat us to it. If that happened it's possible
    // that by the time we grabbed the Heap_lock again and tried to
    // allocate other threads filled up the young generation, which
    // means that the allocation attempt after the GC also failed. So,
    // it's worth trying to schedule another GC pause.
    if (succeeded) {
      break;
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
      warning("G1CollectedHeap::attempt_allocation_slow() "
              "retries %d times", try_count);
    }
  }

  assert_heap_locked();
  return NULL;
}

// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
HeapWord*
G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
                                              bool at_safepoint) {
  // This is the method that will allocate a humongous object. All
  // allocation paths that attempt to allocate a humongous object
  // should eventually reach here. Currently, the only paths are from
  // mem_allocate() and attempt_allocation_at_safepoint().
1044
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be used for humongous allocations");
  assert(SafepointSynchronize::is_at_safepoint() == at_safepoint,
         "at_safepoint and is_at_safepoint() should be a tautology");

  HeapWord* result = NULL;

  // We will loop while succeeded is false, which means that we tried
  // to do a collection, but the VM op did not succeed. So, when we
  // exit the loop, either one of the allocation attempts was
  // successful, or we succeeded in doing the VM op but which was
  // unable to allocate after the collection.
  for (int try_count = 1; /* we'll return or break */; try_count += 1) {
    bool succeeded = true;

    // Given that humongous objects are not allocated in young
    // regions, we'll first try to do the allocation without doing a
    // collection hoping that there's enough space in the heap.
    result = humongous_obj_allocate(word_size);
1064
    assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
1065 1066 1067 1068 1069
           "catch a regression of this bug.");
    if (result != NULL) {
      if (!at_safepoint) {
        // If we're not at a safepoint, unlock the Heap_lock.
        Heap_lock->unlock();
1070
      }
1071
      return result;
1072 1073
    }

1074 1075 1076 1077 1078 1079
    // If we failed to allocate the humongous object, we should try to
    // do a collection pause (if we're allowed) in case it reclaims
    // enough space for the allocation to succeed after the pause.
    if (!at_safepoint) {
      // Read the GC count while holding the Heap_lock
      unsigned int gc_count_before = SharedHeap::heap()->total_collections();
1080

1081 1082
      // If we're allowed to do a collection we're not at a
      // safepoint, so it is safe to unlock the Heap_lock.
1083
      Heap_lock->unlock();
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      assert_heap_not_locked();
      if (result != NULL) {
        assert(succeeded, "the VM op should have succeeded");
        return result;
      }

      // If we get here, the VM operation either did not succeed
      // (i.e., another thread beat us to it) or it succeeded but
      // failed to allocate the object.

      // If we're allowed to do a collection we're not at a
      // safepoint, so it is safe to lock the Heap_lock.
      Heap_lock->lock();
    }

    assert(result == NULL, "otherwise we should have exited the loop earlier");

    // So far our attempts to allocate failed. The only time we'll go
    // around the loop and try again is if we tried to do a GC and the
    // VM op that we tried to schedule was not successful because
    // another thread beat us to it. That way it's possible that some
    // space was freed up by the thread that successfully scheduled a
    // GC. So it's worth trying to allocate again.
    if (succeeded) {
      break;
1111 1112
    }

1113 1114 1115 1116 1117
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
      warning("G1CollectedHeap::attempt_allocation_humongous "
              "retries %d times", try_count);
1118 1119 1120
    }
  }

1121
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
1122 1123
  return NULL;
}
1124

1125 1126
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                           bool expect_null_cur_alloc_region) {
1127
  assert_at_safepoint(true /* should_be_vm_thread */);
1128
  assert(_cur_alloc_region == NULL || !expect_null_cur_alloc_region,
1129 1130 1131 1132
         err_msg("the current alloc region was unexpectedly found "
                 "to be non-NULL, cur alloc region: "PTR_FORMAT" "
                 "expect_null_cur_alloc_region: %d word_size: "SIZE_FORMAT,
                 _cur_alloc_region, expect_null_cur_alloc_region, word_size));
1133 1134 1135 1136 1137

  if (!isHumongous(word_size)) {
    if (!expect_null_cur_alloc_region) {
      HeapRegion* cur_alloc_region = _cur_alloc_region;
      if (cur_alloc_region != NULL) {
1138 1139
        // We are at a safepoint so no reason to use the MT-safe version.
        HeapWord* result = cur_alloc_region->allocate_no_bot_updates(word_size);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        if (result != NULL) {
          assert(is_in(result), "result should be in the heap");

          // We will not do any dirtying here. This is guaranteed to be
          // called during a safepoint and the thread that scheduled the
          // pause will do the dirtying if we return a non-NULL result.
          return result;
        }

        retire_cur_alloc_region_common(cur_alloc_region);
      }
    }

    assert(_cur_alloc_region == NULL,
           "at this point we should have no cur alloc region");
    return replace_cur_alloc_region_and_allocate(word_size,
                                                 true, /* at_safepoint */
1157 1158
                                                 false /* do_dirtying */,
                                                 false /* can_expand */);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
  } else {
    return attempt_allocation_humongous(word_size,
                                        true /* at_safepoint */);
  }

  ShouldNotReachHere();
}

HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow TLABs of humongous size");

1171 1172 1173
  // First attempt: Try allocating out of the current alloc region
  // using a CAS. If that fails, take the Heap_lock and retry the
  // allocation, potentially replacing the current alloc region.
1174 1175 1176 1177 1178 1179
  HeapWord* result = attempt_allocation(word_size);
  if (result != NULL) {
    assert_heap_not_locked();
    return result;
  }

1180 1181
  // Second attempt: Go to the slower path where we might try to
  // schedule a collection.
1182 1183 1184 1185 1186 1187 1188
  result = attempt_allocation_slow(word_size);
  if (result != NULL) {
    assert_heap_not_locked();
    return result;
  }

  assert_heap_locked();
1189
  // Need to unlock the Heap_lock before returning.
1190 1191
  Heap_lock->unlock();
  return NULL;
1192 1193 1194 1195 1196 1197
}

HeapWord*
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool   is_noref,
                              bool   is_tlab,
1198 1199 1200 1201
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!is_tlab, "mem_allocate() this should not be called directly "
         "to allocate TLABs");
1202 1203 1204

  // Loop until the allocation is satisified,
  // or unsatisfied after GC.
1205 1206
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    unsigned int gc_count_before;
1207
    {
1208
      if (!isHumongous(word_size)) {
1209 1210 1211
        // First attempt: Try allocating out of the current alloc region
        // using a CAS. If that fails, take the Heap_lock and retry the
        // allocation, potentially replacing the current alloc region.
1212 1213 1214 1215 1216 1217 1218 1219
        HeapWord* result = attempt_allocation(word_size);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }

        assert_heap_locked();

1220 1221
        // Second attempt: Go to the slower path where we might try to
        // schedule a collection.
1222 1223 1224 1225 1226 1227
        result = attempt_allocation_slow(word_size);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }
      } else {
1228 1229 1230
        // attempt_allocation_humongous() requires the Heap_lock to be held.
        Heap_lock->lock();

1231 1232 1233 1234 1235 1236
        HeapWord* result = attempt_allocation_humongous(word_size,
                                                     false /* at_safepoint */);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }
1237
      }
1238 1239

      assert_heap_locked();
1240 1241
      // Read the gc count while the heap lock is held.
      gc_count_before = SharedHeap::heap()->total_collections();
1242 1243

      // Release the Heap_lock before attempting the collection.
1244 1245 1246 1247
      Heap_lock->unlock();
    }

    // Create the garbage collection operation...
1248
    VM_G1CollectForAllocation op(gc_count_before, word_size);
1249 1250
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

    assert_heap_not_locked();
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
        // Allocations that take place on VM operations do not do any
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
        dirty_young_block(result, word_size);
      }
1264
      return result;
1265 1266 1267
    } else {
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
1268 1269 1270 1271 1272
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1273
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
1274 1275
    }
  }
1276 1277

  ShouldNotReachHere();
1278 1279 1280
}

void G1CollectedHeap::abandon_cur_alloc_region() {
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
  assert_at_safepoint(true /* should_be_vm_thread */);

  HeapRegion* cur_alloc_region = _cur_alloc_region;
  if (cur_alloc_region != NULL) {
    assert(!cur_alloc_region->is_empty(),
           "the current alloc region can never be empty");
    assert(cur_alloc_region->is_young(),
           "the current alloc region should be young");

    retire_cur_alloc_region_common(cur_alloc_region);
1291
  }
1292
  assert(_cur_alloc_region == NULL, "post-condition");
1293 1294
}

1295 1296 1297 1298 1299 1300
void G1CollectedHeap::abandon_gc_alloc_regions() {
  // first, make sure that the GC alloc region list is empty (it should!)
  assert(_gc_alloc_region_list == NULL, "invariant");
  release_gc_alloc_regions(true /* totally */);
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
class PostMCRemSetClearClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    r->reset_gc_time_stamp();
    if (r->continuesHumongous())
      return false;
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};


class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->used_region().word_size() != 0) {
      _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
    }
    return false;
  }
};

1335 1336 1337 1338 1339 1340
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1341
    _cl(g1->g1_rem_set(), worker_i),
1342 1343 1344
    _worker_i(worker_i),
    _g1h(g1)
  { }
1345

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

  void work(int i) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1370
bool G1CollectedHeap::do_collection(bool explicit_gc,
1371
                                    bool clear_all_soft_refs,
1372
                                    size_t word_size) {
1373 1374
  assert_at_safepoint(true /* should_be_vm_thread */);

1375
  if (GC_locker::check_active_before_gc()) {
1376
    return false;
1377 1378
  }

1379
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1380 1381
  ResourceMark rm;

1382 1383 1384 1385
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

1386
  verify_region_sets_optional();
1387

1388 1389 1390 1391 1392
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1393 1394 1395 1396
  {
    IsGCActiveMark x;

    // Timing
1397 1398
    bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
    assert(!system_gc || explicit_gc, "invariant");
1399 1400
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1401
    TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1402
                PrintGC, true, gclog_or_tty);
1403

1404 1405
    TraceMemoryManagerStats tms(true /* fullGC */);

1406 1407 1408
    double start = os::elapsedTime();
    g1_policy()->record_full_collection_start();

1409
    wait_while_free_regions_coming();
T
tonyp 已提交
1410
    append_secondary_free_list_if_not_empty_with_lock();
1411

1412
    gc_prologue(true);
1413
    increment_total_collections(true /* full gc */);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

    size_t g1h_prev_used = used();
    assert(used() == recalculate_used(), "Should be equal");

    if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      prepare_for_verify();
      gclog_or_tty->print(" VerifyBeforeGC:");
      Universe::verify(true);
    }

    COMPILER2_PRESENT(DerivedPointerTable::clear());

    // We want to discover references, but not process them yet.
    // This mode is disabled in
    // instanceRefKlass::process_discovered_references if the
    // generation does some collection work, or
    // instanceRefKlass::enqueue_discovered_references if the
    // generation returns without doing any work.
    ref_processor()->disable_discovery();
    ref_processor()->abandon_partial_discovery();
    ref_processor()->verify_no_references_recorded();

    // Abandon current iterations of concurrent marking and concurrent
    // refinement, if any are in progress.
    concurrent_mark()->abort();

    // Make sure we'll choose a new allocation region afterwards.
    abandon_cur_alloc_region();
1443
    abandon_gc_alloc_regions();
1444
    assert(_cur_alloc_region == NULL, "Invariant.");
1445
    g1_rem_set()->cleanupHRRS();
1446
    tear_down_region_lists();
1447 1448 1449 1450 1451 1452 1453 1454 1455

    // We may have added regions to the current incremental collection
    // set between the last GC or pause and now. We need to clear the
    // incremental collection set and then start rebuilding it afresh
    // after this full GC.
    abandon_collection_set(g1_policy()->inc_cset_head());
    g1_policy()->clear_incremental_cset();
    g1_policy()->stop_incremental_cset_building();

1456 1457 1458 1459 1460
    if (g1_policy()->in_young_gc_mode()) {
      empty_young_list();
      g1_policy()->set_full_young_gcs(true);
    }

1461 1462 1463
    // See the comment in G1CollectedHeap::ref_processing_init() about
    // how reference processing currently works in G1.

1464
    // Temporarily make reference _discovery_ single threaded (non-MT).
1465
    ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
1466 1467 1468 1469 1470 1471 1472 1473

    // Temporarily make refs discovery atomic
    ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);

    // Temporarily clear _is_alive_non_header
    ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);

    ref_processor()->enable_discovery();
1474
    ref_processor()->setup_policy(do_clear_all_soft_refs);
1475 1476 1477 1478

    // Do collection work
    {
      HandleMark hm;  // Discard invalid handles created during gc
1479
      G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
1480
    }
1481
    assert(free_regions() == 0, "we should not have added any free regions");
1482 1483 1484 1485 1486 1487 1488 1489
    rebuild_region_lists();

    _summary_bytes_used = recalculate_used();

    ref_processor()->enqueue_discovered_references();

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

1490 1491
    MemoryService::track_memory_usage();

1492 1493 1494
    if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyAfterGC:");
1495
      prepare_for_verify();
1496 1497 1498 1499 1500 1501
      Universe::verify(false);
    }
    NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

    reset_gc_time_stamp();
    // Since everything potentially moved, we will clear all remembered
1502 1503
    // sets, and clear all cards.  Later we will rebuild remebered
    // sets. We will also reset the GC time stamps of the regions.
1504 1505 1506 1507
    PostMCRemSetClearClosure rs_clear(mr_bs());
    heap_region_iterate(&rs_clear);

    // Resize the heap if necessary.
1508
    resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1509 1510 1511 1512 1513 1514

    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }

1515
    // Rebuild remembered sets of all regions.
1516 1517

    if (G1CollectedHeap::use_parallel_gc_threads()) {
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
      ParRebuildRSTask rebuild_rs_task(this);
      assert(check_heap_region_claim_values(
             HeapRegion::InitialClaimValue), "sanity check");
      set_par_threads(workers()->total_workers());
      workers()->run_task(&rebuild_rs_task);
      set_par_threads(0);
      assert(check_heap_region_claim_values(
             HeapRegion::RebuildRSClaimValue), "sanity check");
      reset_heap_region_claim_values();
    } else {
      RebuildRSOutOfRegionClosure rebuild_rs(this);
      heap_region_iterate(&rebuild_rs);
    }

1532 1533 1534 1535 1536 1537 1538 1539 1540
    if (PrintGC) {
      print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
    }

    if (true) { // FIXME
      // Ask the permanent generation to adjust size for full collections
      perm()->compute_new_size();
    }

1541 1542 1543 1544 1545 1546 1547 1548 1549
    // Start a new incremental collection set for the next pause
    assert(g1_policy()->collection_set() == NULL, "must be");
    g1_policy()->start_incremental_cset_building();

    // Clear the _cset_fast_test bitmap in anticipation of adding
    // regions to the incremental collection set for the next
    // evacuation pause.
    clear_cset_fast_test();

1550 1551 1552
    double end = os::elapsedTime();
    g1_policy()->record_full_collection_end();

1553 1554 1555 1556
#ifdef TRACESPINNING
    ParallelTaskTerminator::print_termination_counts();
#endif

1557 1558
    gc_epilogue(true);

1559 1560
    // Discard all rset updates
    JavaThread::dirty_card_queue_set().abandon_logs();
1561 1562
    assert(!G1DeferredRSUpdate
           || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1563 1564 1565 1566
  }

  if (g1_policy()->in_young_gc_mode()) {
    _young_list->reset_sampled_info();
1567 1568 1569
    // At this point there should be no regions in the
    // entire heap tagged as young.
    assert( check_young_list_empty(true /* check_heap */),
1570 1571
            "young list should be empty at this point");
  }
1572

1573
  // Update the number of full collections that have been completed.
1574
  increment_full_collections_completed(false /* concurrent */);
1575

1576 1577
  verify_region_sets_optional();

1578 1579 1580
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
1581 1582

  return true;
1583 1584 1585
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1586 1587 1588 1589 1590 1591 1592 1593
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1608 1609 1610 1611
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1612
  // We don't have floating point command-line arguments
1613
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1614
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1615
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1616 1617
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1654 1655

  if (PrintGC && Verbose) {
1656 1657
    const double free_percentage =
      (double) free_after_gc / (double) capacity_after_gc;
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
    gclog_or_tty->print_cr("Computing new size after full GC ");
    gclog_or_tty->print_cr("  "
                           "  minimum_free_percentage: %6.2f",
                           minimum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  maximum_free_percentage: %6.2f",
                           maximum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  capacity: %6.1fK"
                           "  minimum_desired_capacity: %6.1fK"
                           "  maximum_desired_capacity: %6.1fK",
1669 1670 1671
                           (double) capacity_after_gc / (double) K,
                           (double) minimum_desired_capacity / (double) K,
                           (double) maximum_desired_capacity / (double) K);
1672
    gclog_or_tty->print_cr("  "
1673 1674 1675 1676
                           "  free_after_gc: %6.1fK"
                           "  used_after_gc: %6.1fK",
                           (double) free_after_gc / (double) K,
                           (double) used_after_gc / (double) K);
1677 1678 1679 1680
    gclog_or_tty->print_cr("  "
                           "   free_percentage: %6.2f",
                           free_percentage);
  }
1681
  if (capacity_after_gc < minimum_desired_capacity) {
1682 1683
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
    if (expand(expand_bytes)) {
      if (PrintGC && Verbose) {
        gclog_or_tty->print_cr("  "
                               "  expanding:"
                               "  max_heap_size: %6.1fK"
                               "  minimum_desired_capacity: %6.1fK"
                               "  expand_bytes: %6.1fK",
                               (double) max_heap_size / (double) K,
                               (double) minimum_desired_capacity / (double) K,
                               (double) expand_bytes / (double) K);
      }
1695 1696 1697
    }

    // No expansion, now see if we want to shrink
1698
  } else if (capacity_after_gc > maximum_desired_capacity) {
1699 1700 1701 1702 1703 1704
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
    shrink(shrink_bytes);
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("  "
                             "  shrinking:"
1705 1706 1707 1708 1709 1710
                             "  min_heap_size: %6.1fK"
                             "  maximum_desired_capacity: %6.1fK"
                             "  shrink_bytes: %6.1fK",
                             (double) min_heap_size / (double) K,
                             (double) maximum_desired_capacity / (double) K,
                             (double) shrink_bytes / (double) K);
1711 1712 1713 1714 1715 1716
    }
  }
}


HeapWord*
1717 1718
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1719
  assert_at_safepoint(true /* should_be_vm_thread */);
1720 1721 1722 1723 1724 1725 1726 1727 1728

  *succeeded = true;
  // Let's attempt the allocation first.
  HeapWord* result = attempt_allocation_at_safepoint(word_size,
                                     false /* expect_null_cur_alloc_region */);
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1729 1730 1731 1732 1733 1734 1735

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1736
    assert(*succeeded, "sanity");
1737 1738 1739
    return result;
  }

1740 1741 1742 1743 1744 1745 1746 1747
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1748

1749 1750 1751
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
                                      true /* expect_null_cur_alloc_region */);
1752
  if (result != NULL) {
1753
    assert(*succeeded, "sanity");
1754 1755 1756
    return result;
  }

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
                                      true /* expect_null_cur_alloc_region */);
1769
  if (result != NULL) {
1770
    assert(*succeeded, "sanity");
1771 1772 1773
    return result;
  }

1774
  assert(!collector_policy()->should_clear_all_soft_refs(),
1775
         "Flag should have been handled and cleared prior to this point");
1776

1777 1778 1779 1780
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1781
  assert(*succeeded, "sanity");
1782 1783 1784 1785 1786 1787 1788 1789 1790
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1791 1792 1793
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1794

1795 1796 1797 1798 1799
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  if (expand(expand_bytes)) {
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
                                          false /* expect_null_cur_alloc_region */);
1800
  }
1801
  return NULL;
1802 1803
}

1804
bool G1CollectedHeap::expand(size_t expand_bytes) {
1805
  size_t old_mem_size = _g1_storage.committed_size();
1806
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1807 1808
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

  if (Verbose && PrintGC) {
    gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
                           old_mem_size/K, aligned_expand_bytes/K);
  }

  HeapWord* old_end = (HeapWord*)_g1_storage.high();
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
    HeapWord* new_end = (HeapWord*)_g1_storage.high();

    // Expand the committed region.
    _g1_committed.set_end(new_end);

    // Tell the cardtable about the expansion.
    Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);

    // And the offset table as well.
    _bot_shared->resize(_g1_committed.word_size());

    expand_bytes = aligned_expand_bytes;
    HeapWord* base = old_end;

    // Create the heap regions for [old_end, new_end)
    while (expand_bytes > 0) {
      HeapWord* high = base + HeapRegion::GrainWords;

1836 1837 1838 1839 1840 1841 1842
      // Create a new HeapRegion.
      MemRegion mr(base, high);
      bool is_zeroed = !_g1_max_committed.contains(base);
      HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);

      // Add it to the HeapRegionSeq.
      _hrs->insert(hr);
1843
      _free_list.add_as_tail(hr);
1844

1845 1846
      // And we used up an expansion region to create it.
      _expansion_regions--;
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

      expand_bytes -= HeapRegion::GrainBytes;
      base += HeapRegion::GrainWords;
    }
    assert(base == new_end, "sanity");

    // Now update max_committed if necessary.
    _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), new_end));

  } else {
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
      vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1863 1864
    }
  }
1865

1866 1867
  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
1868 1869
    gclog_or_tty->print_cr("...%s, expanded to %ldK",
                           (successful ? "Successful" : "Failed"),
1870 1871
                           new_mem_size/K);
  }
1872
  return successful;
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
}

void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
{
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
  size_t num_regions_deleted = 0;
  MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);

  assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  if (mr.byte_size() > 0)
    _g1_storage.shrink_by(mr.byte_size());
  assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");

  _g1_committed.set_end(mr.start());
  _expansion_regions += num_regions_deleted;

  // Tell the cardtable about it.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);

  // And the offset table as well.
  _bot_shared->resize(_g1_committed.word_size());

  HeapRegionRemSet::shrink_heap(n_regions());

  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
    gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
                           old_mem_size/K, aligned_shrink_bytes/K,
                           new_mem_size/K);
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1910 1911
  verify_region_sets_optional();

1912
  release_gc_alloc_regions(true /* totally */);
1913 1914 1915
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
1916 1917 1918
  tear_down_region_lists();  // We will rebuild them in a moment.
  shrink_helper(shrink_bytes);
  rebuild_region_lists();
1919 1920

  verify_region_sets_optional();
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1933
  _dirty_card_queue_set(false),
J
johnc 已提交
1934
  _into_cset_dirty_card_queue_set(false),
1935
  _is_alive_closure(this),
1936 1937 1938 1939 1940 1941
  _ref_processor(NULL),
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
1942
  _cg1r(NULL), _summary_bytes_used(0),
1943 1944 1945
  _cur_alloc_region(NULL),
  _refine_cte_cl(NULL),
  _full_collection(false),
1946 1947 1948 1949
  _free_list("Master Free List"),
  _secondary_free_list("Secondary Free List"),
  _humongous_set("Master Humongous Set"),
  _free_regions_coming(false),
1950 1951
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1952
  _surviving_young_words(NULL),
1953
  _full_collections_completed(0),
1954
  _in_cset_fast_test(NULL),
1955 1956
  _in_cset_fast_test_base(NULL),
  _dirty_cards_region_list(NULL) {
1957 1958 1959 1960
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1961 1962 1963

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1984 1985 1986 1987 1988 1989
    _gc_alloc_regions[ap]          = NULL;
    _gc_alloc_region_counts[ap]    = 0;
    _retained_gc_alloc_regions[ap] = NULL;
    // by default, we do not retain a GC alloc region for each ap;
    // we'll override this, when appropriate, below
    _retain_gc_alloc_region[ap]    = false;
1990
  }
1991 1992 1993 1994 1995 1996

  // We will try to remember the last half-full tenured region we
  // allocated to at the end of a collection so that we can re-use it
  // during the next collection.
  _retain_gc_alloc_region[GCAllocForTenured]  = true;

1997 1998 1999 2000
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
2001
  CollectedHeap::pre_initialize();
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
  os::enable_vtime();

  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
  PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  // Includes the perm-gen.
2027 2028 2029 2030

  const size_t total_reserved = max_byte_size + pgs->max_size();
  char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);

2031 2032
  ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
                        HeapRegion::GrainBytes,
2033
                        UseLargePages, addr);
2034 2035 2036 2037 2038 2039 2040 2041

  if (UseCompressedOops) {
    if (addr != NULL && !heap_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
      ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
2042
                             UseLargePages, addr);
2043 2044 2045 2046 2047
      if (addr != NULL && !heap_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");
        ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
2048
                               UseLargePages, addr);
2049 2050 2051 2052 2053 2054
        heap_rs = heap_rs1;
      } else {
        heap_rs = heap_rs0;
      }
    }
  }
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

  if (!heap_rs.is_reserved()) {
    vm_exit_during_initialization("Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  _expansion_regions = max_byte_size/HeapRegion::GrainBytes;

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
2081 2082
  if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
    _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2083
  } else {
2084 2085
    vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
    return JNI_ENOMEM;
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);
  ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);

  _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  _g1_max_committed = _g1_committed;
I
iveresov 已提交
2100
  _hrs = new HeapRegionSeq(_expansion_regions);
2101 2102 2103
  guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  guarantee(_cur_alloc_region == NULL, "from constructor");

2104 2105 2106 2107 2108 2109
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
  const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2110 2111 2112
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
            "too many cards per region");
2113

2114 2115
  HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);

2116 2117 2118 2119 2120
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
   _in_cset_fast_test_length = max_regions();
   _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);

   // We're biasing _in_cset_fast_test to avoid subtracting the
   // beginning of the heap every time we want to index; basically
   // it's the same with what we do with the card table.
   _in_cset_fast_test = _in_cset_fast_test_base -
                ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);

   // Clear the _cset_fast_test bitmap in anticipation of adding
   // regions to the incremental collection set for the first
   // evacuation pause.
   clear_cset_fast_test();

2135 2136 2137 2138 2139 2140 2141 2142
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
  _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2143
  // Now expand into the initial heap size.
2144 2145 2146 2147
  if (!expand(init_byte_size)) {
    vm_exit_during_initialization("Failed to allocate initial heap.");
    return JNI_ENOMEM;
  }
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  g1_policy()->note_start_of_mark_thread();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2162
                                               G1SATBProcessCompletedThreshold,
2163
                                               Shared_SATB_Q_lock);
2164 2165 2166

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2167 2168
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2169 2170
                                                Shared_DirtyCardQ_lock);

2171 2172 2173
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2174 2175
                                      -1, // never trigger processing
                                      -1, // no limit on length
2176 2177 2178
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  _gc_alloc_region_list = NULL;

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
  // Reference processing in G1 currently works as follows:
  //
  // * There is only one reference processor instance that
  //   'spans' the entire heap. It is created by the code
  //   below.
  // * Reference discovery is not enabled during an incremental
  //   pause (see 6484982).
  // * Discoverered refs are not enqueued nor are they processed
  //   during an incremental pause (see 6484982).
  // * Reference discovery is enabled at initial marking.
  // * Reference discovery is disabled and the discovered
  //   references processed etc during remarking.
  // * Reference discovery is MT (see below).
  // * Reference discovery requires a barrier (see below).
  // * Reference processing is currently not MT (see 6608385).
  // * A full GC enables (non-MT) reference discovery and
  //   processes any discovered references.

2220 2221
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
  _ref_processor =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
                           (int) ParallelGCThreads,   // degree of mt processing
                           ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
                           false,                     // Reference discovery is not atomic
                           &_is_alive_closure,        // is alive closure for efficiency
                           true);                     // Setting next fields of discovered
                                                      // lists requires a barrier.
2232 2233 2234 2235 2236 2237
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

J
johnc 已提交
2238 2239 2240
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2241
                                                 int worker_i) {
2242
  // Clean cards in the hot card cache
J
johnc 已提交
2243
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2244

2245 2246
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2247
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
    n_completed_buffers++;
  }
  g1_policy()->record_update_rs_processed_buffers(worker_i,
                                                  (double) n_completed_buffers);
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2260 2261
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2262
  size_t result = _summary_bytes_used;
2263 2264 2265 2266
  // Read only once in case it is set to NULL concurrently
  HeapRegion* hr = _cur_alloc_region;
  if (hr != NULL)
    result += hr->used();
2267 2268 2269
  return result;
}

2270 2271 2272 2273 2274
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
  _hrs->iterate(&blk);
  return blk.result();
}

#ifndef PRODUCT
class SumUsedRegionsClosure: public HeapRegionClosure {
  size_t _num;
public:
2298
  SumUsedRegionsClosure() : _num(0) {}
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
      _num += 1;
    }
    return false;
  }
  size_t result() { return _num; }
};

size_t G1CollectedHeap::recalculate_used_regions() const {
  SumUsedRegionsClosure blk;
  _hrs->iterate(&blk);
  return blk.result();
}
#endif // PRODUCT

size_t G1CollectedHeap::unsafe_max_alloc() {
2316
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
  HeapRegion* car = _cur_alloc_region;

  // FIXME: should iterate over all regions?
  if (car == NULL) {
    return 0;
  }
  return car->free();
}

2336 2337 2338 2339 2340 2341
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  return
    ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
     (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
}

2342
void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2343 2344
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2345 2346 2347 2348 2349
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
  // We have already incremented _total_full_collections at the start
  // of the GC, so total_full_collections() represents how many full
  // collections have been started.
  unsigned int full_collections_started = total_full_collections();

  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2363
  assert(concurrent ||
2364 2365
         (full_collections_started == _full_collections_completed + 1) ||
         (full_collections_started == _full_collections_completed + 2),
2366
         err_msg("for inner caller (Full GC): full_collections_started = %u "
2367 2368 2369 2370
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  // This is the case for the outer caller, i.e. the concurrent cycle.
2371
  assert(!concurrent ||
2372
         (full_collections_started == _full_collections_completed + 1),
2373 2374
         err_msg("for outer caller (concurrent cycle): "
                 "full_collections_started = %u "
2375 2376 2377 2378 2379
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  _full_collections_completed += 1;

2380 2381 2382 2383
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cyle is still in progress.
2384
  if (concurrent) {
2385 2386 2387
    _cmThread->clear_in_progress();
  }

2388 2389 2390 2391 2392 2393 2394
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2395
void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2396
  assert_at_safepoint(true /* should_be_vm_thread */);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump: {
      HandleMark hm;
      do_full_collection(false);         // don't clear all soft refs
      break;
    }
    default: // XXX FIX ME
      ShouldNotReachHere(); // Unexpected use of this function
  }
}

2410 2411 2412
void G1CollectedHeap::collect(GCCause::Cause cause) {
  // The caller doesn't have the Heap_lock
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2413

2414 2415
  unsigned int gc_count_before;
  unsigned int full_gc_count_before;
2416
  {
2417 2418
    MutexLocker ml(Heap_lock);

2419 2420 2421
    // Read the GC count while holding the Heap_lock
    gc_count_before = SharedHeap::heap()->total_collections();
    full_gc_count_before = SharedHeap::heap()->total_full_collections();
2422 2423 2424 2425
  }

  if (should_do_concurrent_full_gc(cause)) {
    // Schedule an initial-mark evacuation pause that will start a
2426 2427
    // concurrent cycle. We're setting word_size to 0 which means that
    // we are not requesting a post-GC allocation.
2428
    VM_G1IncCollectionPause op(gc_count_before,
2429 2430
                               0,     /* word_size */
                               true,  /* should_initiate_conc_mark */
2431 2432 2433 2434 2435 2436 2437
                               g1_policy()->max_pause_time_ms(),
                               cause);
    VMThread::execute(&op);
  } else {
    if (cause == GCCause::_gc_locker
        DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

2438 2439
      // Schedule a standard evacuation pause. We're setting word_size
      // to 0 which means that we are not requesting a post-GC allocation.
2440
      VM_G1IncCollectionPause op(gc_count_before,
2441
                                 0,     /* word_size */
2442 2443 2444
                                 false, /* should_initiate_conc_mark */
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2445
      VMThread::execute(&op);
2446 2447 2448
    } else {
      // Schedule a Full GC.
      VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2449 2450
      VMThread::execute(&op);
    }
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
  }
}

bool G1CollectedHeap::is_in(const void* p) const {
  if (_g1_committed.contains(p)) {
    HeapRegion* hr = _hrs->addr_to_region(p);
    return hr->is_in(p);
  } else {
    return _perm_gen->as_gen()->is_in(p);
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
  OopClosure* _cl;
public:
  IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2482
void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2483 2484
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
  _hrs->iterate(&blk);
2485 2486 2487
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2488 2489
}

2490
void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2491 2492
  IterateOopClosureRegionClosure blk(mr, cl);
  _hrs->iterate(&blk);
2493 2494 2495
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2512
void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2513 2514
  IterateObjectClosureRegionClosure blk(cl);
  _hrs->iterate(&blk);
2515 2516 2517
  if (do_perm) {
    perm_gen()->object_iterate(cl);
  }
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
  _hrs->iterate(&blk);
}

void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  _hrs->iterate(cl);
}

void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
                                               HeapRegionClosure* cl) {
  _hrs->iterate_from(r, cl);
}

void
G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  _hrs->iterate_from(idx, cl);
}

HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
                                                 int worker,
                                                 jint claim_value) {
2562
  const size_t regions = n_regions();
2563
  const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
  // try to spread out the starting points of the workers
  const size_t start_index = regions / worker_num * (size_t) worker;

  // each worker will actually look at all regions
  for (size_t count = 0; count < regions; ++count) {
    const size_t index = (start_index + count) % regions;
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2579
    if (r->claimHeapRegion(claim_value)) {
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
        for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2623
      }
2624 2625 2626 2627

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2628 2629 2630 2631
    }
  }
}

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

void
G1CollectedHeap::reset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
  size_t _failures;
  HeapRegion* _sh_region;
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                             "claim value = %d, should be %d",
                             r->bottom(), r->end(), r->claim_value(),
                             _claim_value);
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
        gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
                               r->bottom(), r->end(),
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
  size_t failures() {
    return _failures;
  }
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
#endif // ASSERT

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2710 2711 2712 2713 2714
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  return _hrs->length() > 0 ? _hrs->at(0) : NULL;
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  if (res == NULL)
    res = perm_gen()->space_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2780 2781 2782 2783 2784 2785
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

  // We need to store the cur alloc region locally, since it might change
  // between when we test for NULL and when we use it later.
2786
  ContiguousSpace* cur_alloc_space = _cur_alloc_region;
2787 2788
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;

2789
  if (cur_alloc_space == NULL) {
2790
    return max_tlab_size;
2791
  } else {
2792 2793
    return MIN2(MAX2(cur_alloc_space->free(), (size_t)MinTLABSize),
                max_tlab_size);
2794 2795 2796 2797 2798 2799 2800 2801 2802
  }
}

size_t G1CollectedHeap::large_typearray_limit() {
  // FIXME
  return HeapRegion::GrainBytes/HeapWordSize;
}

size_t G1CollectedHeap::max_capacity() const {
2803
  return _g1_reserved.byte_size();
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

class VerifyLivenessOopClosure: public OopClosure {
  G1CollectedHeap* g1h;
public:
  VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
    g1h = _g1h;
  }
2824 2825 2826 2827 2828 2829 2830
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    guarantee(obj == NULL || !g1h->is_obj_dead(obj),
              "Dead object referenced by a not dead object");
2831 2832 2833 2834
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
2835
private:
2836 2837 2838
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
2839
  bool _use_prev_marking;
2840
public:
2841 2842 2843 2844
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
    : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
2845 2846 2847 2848 2849
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
    VerifyLivenessOopClosure isLive(_g1h);
    assert(o != NULL, "Huh?");
2850
    if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
2851
      o->oop_iterate(&isLive);
2852 2853 2854 2855
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
2891
private:
2892
  bool _allow_dirty;
2893
  bool _par;
2894
  bool _use_prev_marking;
2895
  bool _failures;
2896 2897 2898 2899
public:
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
2900 2901
    : _allow_dirty(allow_dirty),
      _par(par),
2902 2903 2904 2905 2906 2907
      _use_prev_marking(use_prev_marking),
      _failures(false) {}

  bool failures() {
    return _failures;
  }
2908

2909
  bool doHeapRegion(HeapRegion* r) {
2910 2911
    guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
              "Should be unclaimed at verify points.");
2912
    if (!r->continuesHumongous()) {
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
      bool failures = false;
      r->verify(_allow_dirty, _use_prev_marking, &failures);
      if (failures) {
        _failures = true;
      } else {
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
        r->object_iterate(&not_dead_yet_cl);
        if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
          gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                 "max_live_bytes "SIZE_FORMAT" "
                                 "< calculated "SIZE_FORMAT,
                                 r->bottom(), r->end(),
                                 r->max_live_bytes(),
                                 not_dead_yet_cl.live_bytes());
          _failures = true;
        }
      }
2930
    }
2931
    return false; // stop the region iteration if we hit a failure
2932 2933 2934 2935 2936 2937
  }
};

class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
2938
  bool             _use_prev_marking;
2939
  bool             _failures;
2940
public:
2941 2942 2943
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyRootsClosure(bool use_prev_marking) :
2944
    _g1h(G1CollectedHeap::heap()),
2945 2946
    _use_prev_marking(use_prev_marking),
    _failures(false) { }
2947 2948 2949

  bool failures() { return _failures; }

2950 2951 2952 2953
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2954
      if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
2955
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2956
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
2957 2958 2959 2960 2961
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
2962 2963 2964

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
2965 2966
};

2967 2968 2969 2970 2971 2972
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
  bool _allow_dirty;
2973
  bool _use_prev_marking;
2974
  bool _failures;
2975 2976

public:
2977 2978 2979 2980
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
                  bool use_prev_marking) :
2981
    AbstractGangTask("Parallel verify task"),
2982 2983
    _g1h(g1h),
    _allow_dirty(allow_dirty),
2984 2985 2986 2987 2988 2989
    _use_prev_marking(use_prev_marking),
    _failures(false) { }

  bool failures() {
    return _failures;
  }
2990 2991

  void work(int worker_i) {
2992
    HandleMark hm;
2993
    VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
2994 2995
    _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
                                          HeapRegion::ParVerifyClaimValue);
2996 2997 2998
    if (blk.failures()) {
      _failures = true;
    }
2999 3000 3001
  }
};

3002
void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
3003 3004 3005 3006 3007 3008
  verify(allow_dirty, silent, /* use_prev_marking */ true);
}

void G1CollectedHeap::verify(bool allow_dirty,
                             bool silent,
                             bool use_prev_marking) {
3009 3010
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    if (!silent) { gclog_or_tty->print("roots "); }
3011
    VerifyRootsClosure rootsCl(use_prev_marking);
3012 3013 3014
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
    process_strong_roots(true,  // activate StrongRootsScope
                         false,
3015 3016
                         SharedHeap::SO_AllClasses,
                         &rootsCl,
3017
                         &blobsCl,
3018
                         &rootsCl);
3019
    bool failures = rootsCl.failures();
3020
    rem_set()->invalidate(perm_gen()->used_region(), false);
3021 3022 3023
    if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
    verify_region_sets();
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3024 3025 3026 3027
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3028
      G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
3029 3030 3031 3032
      int n_workers = workers()->total_workers();
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3033 3034 3035
      if (task.failures()) {
        failures = true;
      }
3036 3037 3038 3039 3040 3041 3042 3043 3044

      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3045
      VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
3046
      _hrs->iterate(&blk);
3047 3048 3049
      if (blk.failures()) {
        failures = true;
      }
3050
    }
3051
    if (!silent) gclog_or_tty->print("RemSet ");
3052
    rem_set()->verify();
3053 3054 3055 3056 3057

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
      print_on(gclog_or_tty, true /* extended */);
      gclog_or_tty->print_cr("");
3058
#ifndef PRODUCT
3059
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3060 3061
        concurrent_mark()->print_reachable("at-verification-failure",
                                           use_prev_marking, false /* all */);
3062
      }
3063
#endif
3064 3065 3066
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
  } else {
    if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3082
void G1CollectedHeap::print() const { print_on(tty); }
3083 3084

void G1CollectedHeap::print_on(outputStream* st) const {
3085 3086 3087 3088 3089 3090
  print_on(st, PrintHeapAtGCExtended);
}

void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3091
            capacity()/K, used_unlocked()/K);
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
  st->print("  region size " SIZE_FORMAT "K, ",
            HeapRegion::GrainBytes/K);
  size_t young_regions = _young_list->length();
  st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
            young_regions, young_regions * HeapRegion::GrainBytes / K);
  size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
            survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  st->cr();
  perm()->as_gen()->print_on(st);
  if (extended) {
3108
    st->cr();
3109 3110 3111 3112 3113
    print_on_extended(st);
  }
}

void G1CollectedHeap::print_on_extended(outputStream* st) const {
3114 3115 3116 3117 3118
  PrintRegionClosure blk(st);
  _hrs->iterate(&blk);
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3119
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3120
    workers()->print_worker_threads_on(st);
3121
  }
T
tonyp 已提交
3122
  _cmThread->print_on(st);
3123
  st->cr();
T
tonyp 已提交
3124 3125
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
3126 3127 3128 3129
  st->cr();
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3130
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3131 3132 3133
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3134
  _cg1r->threads_do(tc);
3135 3136 3137 3138 3139 3140 3141 3142 3143
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3144
  if (G1SummarizeRSetStats) {
3145 3146
    g1_rem_set()->print_summary_info();
  }
3147
  if (G1SummarizeConcMark) {
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  HeapRegion* hr = heap_region_containing(addr);
  if (hr == NULL) {
    return 0;
  } else {
    return 1;
  }
}

G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3170
  // always_do_update_barrier = false;
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3184
  // always_do_update_barrier = true;
3185 3186
}

3187 3188 3189 3190
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
                                               bool* succeeded) {
  assert_heap_not_locked_and_not_at_safepoint();
3191
  g1_policy()->record_stop_world_start();
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             GCCause::_g1_inc_collection_pause);
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3207 3208 3209 3210
}

void
G1CollectedHeap::doConcurrentMark() {
3211 3212 3213 3214
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
  }
}

class VerifyMarkedObjsClosure: public ObjectClosure {
    G1CollectedHeap* _g1h;
    public:
    VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
    void do_object(oop obj) {
      assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
             "markandsweep mark should agree with concurrent deadness");
    }
};

void
G1CollectedHeap::checkConcurrentMark() {
    VerifyMarkedObjsClosure verifycl(this);
    //    MutexLockerEx x(getMarkBitMapLock(),
    //              Mutex::_no_safepoint_check_flag);
3233
    object_iterate(&verifycl, false);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
}

void G1CollectedHeap::do_sync_mark() {
  _cm->checkpointRootsInitial();
  _cm->markFromRoots();
  _cm->checkpointRootsFinal(false);
}

// <NEW PREDICTION>

double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
                                                       bool young) {
  return _g1_policy->predict_region_elapsed_time_ms(hr, young);
}

void G1CollectedHeap::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();
  return buffer_size * buffer_num + extra_cards;
}

size_t G1CollectedHeap::max_pending_card_num() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num  = dcqs.completed_buffers_num();
  int thread_num  = Threads::number_of_threads();
  return (buffer_num + thread_num) * buffer_size;
}

size_t G1CollectedHeap::cards_scanned() {
3277
  return g1_rem_set()->cardsScanned();
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
}

void
G1CollectedHeap::setup_surviving_young_words() {
  guarantee( _surviving_young_words == NULL, "pre-condition" );
  size_t array_length = g1_policy()->young_cset_length();
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words == NULL) {
    vm_exit_out_of_memory(sizeof(size_t) * array_length,
                          "Not enough space for young surv words summary.");
  }
  memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3290
#ifdef ASSERT
3291
  for (size_t i = 0;  i < array_length; ++i) {
3292
    assert( _surviving_young_words[i] == 0, "memset above" );
3293
  }
3294
#endif // !ASSERT
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  size_t array_length = g1_policy()->young_cset_length();
  for (size_t i = 0; i < array_length; ++i)
    _surviving_young_words[i] += surv_young_words[i];
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  _surviving_young_words = NULL;
}

// </NEW PREDICTION>

3314 3315 3316 3317 3318 3319 3320
struct PrepareForRSScanningClosure : public HeapRegionClosure {
  bool doHeapRegion(HeapRegion *r) {
    r->rem_set()->set_iter_claimed(0);
    return false;
  }
};

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3332
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3343
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3344 3345 3346 3347 3348 3349
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3350
bool
3351
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3352 3353 3354
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3355
  if (GC_locker::check_active_before_gc()) {
3356
    return false;
3357 3358
  }

3359
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3360 3361
  ResourceMark rm;

3362 3363
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
3364 3365
  }

3366 3367
  verify_region_sets_optional();

3368
  {
3369 3370 3371 3372 3373
    // This call will decide whether this pause is an initial-mark
    // pause. If it is, during_initial_mark_pause() will return true
    // for the duration of this pause.
    g1_policy()->decide_on_conc_mark_initiation();

3374 3375 3376 3377 3378 3379 3380 3381
    char verbose_str[128];
    sprintf(verbose_str, "GC pause ");
    if (g1_policy()->in_young_gc_mode()) {
      if (g1_policy()->full_young_gcs())
        strcat(verbose_str, "(young)");
      else
        strcat(verbose_str, "(partial)");
    }
3382
    if (g1_policy()->during_initial_mark_pause()) {
3383
      strcat(verbose_str, " (initial-mark)");
3384 3385 3386 3387
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
      increment_total_full_collections();
    }
3388

3389 3390 3391 3392 3393 3394
    // if PrintGCDetails is on, we'll print long statistics information
    // in the collector policy code, so let's not print this as the output
    // is messy if we do.
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3395

3396 3397
    TraceMemoryManagerStats tms(false /* fullGC */);

T
tonyp 已提交
3398 3399 3400 3401 3402 3403
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3404
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3405
      append_secondary_free_list_if_not_empty_with_lock();
3406
    }
3407

3408
    increment_gc_time_stamp();
3409

3410 3411 3412 3413
    if (g1_policy()->in_young_gc_mode()) {
      assert(check_young_list_well_formed(),
             "young list should be well formed");
    }
3414

3415 3416 3417 3418 3419
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3420 3421

#if G1_REM_SET_LOGGING
3422 3423
      gclog_or_tty->print_cr("\nJust chose CS, heap:");
      print();
3424 3425
#endif

3426 3427 3428 3429 3430 3431
      if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        prepare_for_verify();
        gclog_or_tty->print(" VerifyBeforeGC:");
        Universe::verify(false);
      }
3432

3433
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3434

3435 3436 3437
      // Please see comment in G1CollectedHeap::ref_processing_init()
      // to see how reference processing currently works in G1.
      //
3438
      // We want to turn off ref discovery, if necessary, and turn it back on
3439
      // on again later if we do. XXX Dubious: why is discovery disabled?
3440 3441
      bool was_enabled = ref_processor()->discovery_enabled();
      if (was_enabled) ref_processor()->disable_discovery();
3442

3443 3444 3445
      // Forget the current alloc region (we might even choose it to be part
      // of the collection set!).
      abandon_cur_alloc_region();
3446

3447 3448 3449 3450
      // The elapsed time induced by the start time below deliberately elides
      // the possible verification above.
      double start_time_sec = os::elapsedTime();
      size_t start_used_bytes = used();
3451

3452 3453 3454 3455 3456 3457
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
      _young_list->print();
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE

3458 3459
      g1_policy()->record_collection_pause_start(start_time_sec,
                                                 start_used_bytes);
3460

3461 3462
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3463
      _young_list->print();
3464
#endif // YOUNG_LIST_VERBOSE
3465

3466
      if (g1_policy()->during_initial_mark_pause()) {
3467 3468 3469
        concurrent_mark()->checkpointRootsInitialPre();
      }
      save_marks();
3470

3471 3472 3473 3474
      // We must do this before any possible evacuation that should propagate
      // marks.
      if (mark_in_progress()) {
        double start_time_sec = os::elapsedTime();
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484
        _cm->drainAllSATBBuffers();
        double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
        g1_policy()->record_satb_drain_time(finish_mark_ms);
      }
      // Record the number of elements currently on the mark stack, so we
      // only iterate over these.  (Since evacuation may add to the mark
      // stack, doing more exposes race conditions.)  If no mark is in
      // progress, this will be zero.
      _cm->set_oops_do_bound();
3485

3486 3487
      if (mark_in_progress())
        concurrent_mark()->newCSet();
3488

3489 3490 3491 3492 3493
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
      _young_list->print();
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
3494

3495
      g1_policy()->choose_collection_set(target_pause_time_ms);
3496

3497
      // Nothing to do if we were unable to choose a collection set.
3498
#if G1_REM_SET_LOGGING
3499 3500
      gclog_or_tty->print_cr("\nAfter pause, heap:");
      print();
3501
#endif
3502 3503
      PrepareForRSScanningClosure prepare_for_rs_scan;
      collection_set_iterate(&prepare_for_rs_scan);
3504

3505
      setup_surviving_young_words();
3506

3507 3508
      // Set up the gc allocation regions.
      get_gc_alloc_regions();
3509

3510 3511
      // Actually do the work...
      evacuate_collection_set();
3512

3513 3514
      free_collection_set(g1_policy()->collection_set());
      g1_policy()->clear_collection_set();
3515

3516
      cleanup_surviving_young_words();
3517

3518 3519
      // Start a new incremental collection set for the next pause.
      g1_policy()->start_incremental_cset_building();
3520

3521 3522 3523 3524
      // Clear the _cset_fast_test bitmap in anticipation of adding
      // regions to the incremental collection set for the next
      // evacuation pause.
      clear_cset_fast_test();
3525

3526 3527
      if (g1_policy()->in_young_gc_mode()) {
        _young_list->reset_sampled_info();
3528

3529 3530 3531 3532 3533 3534
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
               "young list should be empty");
3535 3536

#if YOUNG_LIST_VERBOSE
3537 3538
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
3539
#endif // YOUNG_LIST_VERBOSE
3540

3541
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3542 3543
                                          _young_list->first_survivor_region(),
                                          _young_list->last_survivor_region());
3544

3545
        _young_list->reset_auxilary_lists();
3546 3547
      }

3548 3549 3550 3551 3552 3553 3554
      if (evacuation_failed()) {
        _summary_bytes_used = recalculate_used();
      } else {
        // The "used" of the the collection set have already been subtracted
        // when they were freed.  Add in the bytes evacuated.
        _summary_bytes_used += g1_policy()->bytes_in_to_space();
      }
3555

3556
      if (g1_policy()->in_young_gc_mode() &&
3557
          g1_policy()->during_initial_mark_pause()) {
3558 3559
        concurrent_mark()->checkpointRootsInitialPost();
        set_marking_started();
3560 3561 3562 3563 3564 3565 3566
        // CAUTION: after the doConcurrentMark() call below,
        // the concurrent marking thread(s) could be running
        // concurrently with us. Make sure that anything after
        // this point does not assume that we are the only GC thread
        // running. Note: of course, the actual marking work will
        // not start until the safepoint itself is released in
        // ConcurrentGCThread::safepoint_desynchronize().
3567 3568
        doConcurrentMark();
      }
3569

3570 3571
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3572
      _young_list->print();
3573 3574
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
3575

3576 3577 3578
      double end_time_sec = os::elapsedTime();
      double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
      g1_policy()->record_pause_time_ms(pause_time_ms);
3579
      g1_policy()->record_collection_pause_end();
3580

3581 3582
      MemoryService::track_memory_usage();

3583 3584 3585 3586 3587 3588
      if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyAfterGC:");
        prepare_for_verify();
        Universe::verify(false);
      }
3589

3590
      if (was_enabled) ref_processor()->enable_discovery();
3591

3592 3593 3594 3595
      {
        size_t expand_bytes = g1_policy()->expansion_amount();
        if (expand_bytes > 0) {
          size_t bytes_before = capacity();
3596 3597 3598 3599 3600 3601
          if (!expand(expand_bytes)) {
            // We failed to expand the heap so let's verify that
            // committed/uncommitted amount match the backing store
            assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
            assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
          }
3602
        }
3603 3604
      }

3605 3606 3607
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
3608 3609

#ifdef TRACESPINNING
3610
      ParallelTaskTerminator::print_termination_counts();
3611
#endif
3612

3613 3614 3615 3616 3617 3618 3619 3620 3621
      gc_epilogue(false);
    }

    if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
      gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
      print_tracing_info();
      vm_exit(-1);
    }
  }
3622

3623 3624
  verify_region_sets_optional();

3625 3626 3627
  TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());

3628 3629
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
3630
  }
3631 3632 3633 3634 3635
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
3636 3637

  return true;
3638 3639
}

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
      gclab_word_size = YoungPLABSize;
      break;
    case GCAllocForTenured:
      gclab_word_size = OldPLABSize;
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
      gclab_word_size = OldPLABSize;
      break;
  }
  return gclab_word_size;
}


3659 3660
void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
3661 3662 3663 3664
  // make sure we don't call set_gc_alloc_region() multiple times on
  // the same region
  assert(r == NULL || !r->is_gc_alloc_region(),
         "shouldn't already be a GC alloc region");
3665 3666 3667
  assert(r == NULL || !r->isHumongous(),
         "humongous regions shouldn't be used as GC alloc regions");

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
  HeapWord* original_top = NULL;
  if (r != NULL)
    original_top = r->top();

  // We will want to record the used space in r as being there before gc.
  // One we install it as a GC alloc region it's eligible for allocation.
  // So record it now and use it later.
  size_t r_used = 0;
  if (r != NULL) {
    r_used = r->used();

3679
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
      // need to take the lock to guard against two threads calling
      // get_gc_alloc_region concurrently (very unlikely but...)
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      r->save_marks();
    }
  }
  HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  _gc_alloc_regions[purpose] = r;
  if (old_alloc_region != NULL) {
    // Replace aliases too.
    for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
      if (_gc_alloc_regions[ap] == old_alloc_region) {
        _gc_alloc_regions[ap] = r;
      }
    }
  }
  if (r != NULL) {
    push_gc_alloc_region(r);
    if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
      // We are using a region as a GC alloc region after it has been used
      // as a mutator allocation region during the current marking cycle.
      // The mutator-allocated objects are currently implicitly marked, but
      // when we move hr->next_top_at_mark_start() forward at the the end
      // of the GC pause, they won't be.  We therefore mark all objects in
      // the "gap".  We do this object-by-object, since marking densely
      // does not currently work right with marking bitmap iteration.  This
      // means we rely on TLAB filling at the start of pauses, and no
      // "resuscitation" of filled TLAB's.  If we want to do this, we need
      // to fix the marking bitmap iteration.
      HeapWord* curhw = r->next_top_at_mark_start();
      HeapWord* t = original_top;

      while (curhw < t) {
        oop cur = (oop)curhw;
        // We'll assume parallel for generality.  This is rare code.
        concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
        curhw = curhw + cur->size();
      }
      assert(curhw == t, "Should have parsed correctly.");
    }
    if (G1PolicyVerbose > 1) {
      gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
                          "for survivors:", r->bottom(), original_top, r->end());
      r->print();
    }
    g1_policy()->record_before_bytes(r_used);
  }
}

void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  assert(Thread::current()->is_VM_thread() ||
3731
         FreeList_lock->owned_by_self(), "Precondition");
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
  assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
         "Precondition.");
  hr->set_is_gc_alloc_region(true);
  hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  _gc_alloc_region_list = hr;
}

#ifdef G1_DEBUG
class FindGCAllocRegion: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_gc_alloc_region()) {
      gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
                             r->hrs_index(), r->bottom());
    }
    return false;
  }
};
#endif // G1_DEBUG

void G1CollectedHeap::forget_alloc_region_list() {
3753
  assert_at_safepoint(true /* should_be_vm_thread */);
3754 3755 3756
  while (_gc_alloc_region_list != NULL) {
    HeapRegion* r = _gc_alloc_region_list;
    assert(r->is_gc_alloc_region(), "Invariant.");
3757 3758 3759 3760 3761 3762
    // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
    // newly allocated data in order to be able to apply deferred updates
    // before the GC is done for verification purposes (i.e to allow
    // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
    // collection.
    r->ContiguousSpace::set_saved_mark();
3763 3764 3765
    _gc_alloc_region_list = r->next_gc_alloc_region();
    r->set_next_gc_alloc_region(NULL);
    r->set_is_gc_alloc_region(false);
3766 3767 3768 3769 3770 3771 3772
    if (r->is_survivor()) {
      if (r->is_empty()) {
        r->set_not_young();
      } else {
        _young_list->add_survivor_region(r);
      }
    }
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
  }
#ifdef G1_DEBUG
  FindGCAllocRegion fa;
  heap_region_iterate(&fa);
#endif // G1_DEBUG
}


bool G1CollectedHeap::check_gc_alloc_regions() {
  // TODO: allocation regions check
  return true;
}

void G1CollectedHeap::get_gc_alloc_regions() {
3787 3788 3789
  // First, let's check that the GC alloc region list is empty (it should)
  assert(_gc_alloc_region_list == NULL, "invariant");

3790
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3791
    assert(_gc_alloc_regions[ap] == NULL, "invariant");
3792
    assert(_gc_alloc_region_counts[ap] == 0, "invariant");
3793

3794
    // Create new GC alloc regions.
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
    HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
    _retained_gc_alloc_regions[ap] = NULL;

    if (alloc_region != NULL) {
      assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");

      // let's make sure that the GC alloc region is not tagged as such
      // outside a GC operation
      assert(!alloc_region->is_gc_alloc_region(), "sanity");

      if (alloc_region->in_collection_set() ||
          alloc_region->top() == alloc_region->end() ||
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
          alloc_region->top() == alloc_region->bottom() ||
          alloc_region->isHumongous()) {
        // we will discard the current GC alloc region if
        // * it's in the collection set (it can happen!),
        // * it's already full (no point in using it),
        // * it's empty (this means that it was emptied during
        // a cleanup and it should be on the free list now), or
        // * it's humongous (this means that it was emptied
        // during a cleanup and was added to the free list, but
        // has been subseqently used to allocate a humongous
        // object that may be less than the region size).
3818 3819 3820 3821 3822 3823 3824

        alloc_region = NULL;
      }
    }

    if (alloc_region == NULL) {
      // we will get a new GC alloc region
3825
      alloc_region = new_gc_alloc_region(ap, HeapRegion::GrainWords);
3826 3827 3828
    } else {
      // the region was retained from the last collection
      ++_gc_alloc_region_counts[ap];
3829 3830 3831 3832 3833
      if (G1PrintHeapRegions) {
        gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
                               "top "PTR_FORMAT,
                               alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
      }
3834
    }
3835

3836
    if (alloc_region != NULL) {
3837
      assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
3838 3839
      set_gc_alloc_region(ap, alloc_region);
    }
3840 3841 3842 3843 3844 3845 3846

    assert(_gc_alloc_regions[ap] == NULL ||
           _gc_alloc_regions[ap]->is_gc_alloc_region(),
           "the GC alloc region should be tagged as such");
    assert(_gc_alloc_regions[ap] == NULL ||
           _gc_alloc_regions[ap] == _gc_alloc_region_list,
           "the GC alloc region should be the same as the GC alloc list head");
3847 3848
  }
  // Set alternative regions for allocation purposes that have reached
3849
  // their limit.
3850 3851 3852 3853 3854 3855 3856 3857 3858
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
    if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
      _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
    }
  }
  assert(check_gc_alloc_regions(), "alloc regions messed up");
}

3859
void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
3860
  // We keep a separate list of all regions that have been alloc regions in
3861 3862 3863 3864
  // the current collection pause. Forget that now. This method will
  // untag the GC alloc regions and tear down the GC alloc region
  // list. It's desirable that no regions are tagged as GC alloc
  // outside GCs.
3865

3866 3867 3868 3869 3870 3871
  forget_alloc_region_list();

  // The current alloc regions contain objs that have survived
  // collection. Make them no longer GC alloc regions.
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
3872
    _retained_gc_alloc_regions[ap] = NULL;
3873
    _gc_alloc_region_counts[ap] = 0;
3874 3875 3876 3877 3878 3879

    if (r != NULL) {
      // we retain nothing on _gc_alloc_regions between GCs
      set_gc_alloc_region(ap, NULL);

      if (r->is_empty()) {
3880 3881 3882
        // We didn't actually allocate anything in it; let's just put
        // it back on the free list.
        _free_list.add_as_tail(r);
3883 3884 3885
      } else if (_retain_gc_alloc_region[ap] && !totally) {
        // retain it so that we can use it at the beginning of the next GC
        _retained_gc_alloc_regions[ap] = r;
3886 3887 3888 3889 3890
      }
    }
  }
}

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
#ifndef PRODUCT
// Useful for debugging

void G1CollectedHeap::print_gc_alloc_regions() {
  gclog_or_tty->print_cr("GC alloc regions");
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    if (r == NULL) {
      gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
    } else {
      gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
                             ap, r->bottom(), r->used());
    }
  }
}
#endif // PRODUCT

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
3919
  delete _evac_failure_scan_stack;
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
  _evac_failure_scan_stack = NULL;
}



// *** Sequential G1 Evacuation

class G1IsAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    // It is reachable if it is outside the collection set, or is inside
    // and forwarded.

#ifdef G1_DEBUG
    gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
                           (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
                           !_g1->obj_in_cs(p) || p->is_forwarded());
#endif // G1_DEBUG

    return !_g1->obj_in_cs(p) || p->is_forwarded();
  }
};

class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3950 3951
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
    oop obj = *p;
#ifdef G1_DEBUG
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
                             p, (void*) obj, (void*) *p);
    }
#endif // G1_DEBUG

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
#ifdef G1_DEBUG
      gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
                             (void*) obj, (void*) *p);
#endif // G1_DEBUG
    }
  }
};

3971 3972 3973 3974 3975 3976 3977 3978 3979
class UpdateRSetDeferred : public OopsInHeapRegionClosure {
private:
  G1CollectedHeap* _g1;
  DirtyCardQueue *_dcq;
  CardTableModRefBS* _ct_bs;

public:
  UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
    _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3980

3981 3982 3983
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
  template <class T> void do_oop_work(T* p) {
3984
    assert(_from->is_in_reserved(p), "paranoia");
3985 3986
    if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
        !_from->is_survivor()) {
3987 3988 3989 3990
      size_t card_index = _ct_bs->index_for(p);
      if (_ct_bs->mark_card_deferred(card_index)) {
        _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
      }
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
    }
  }
};

class RemoveSelfPointerClosure: public ObjectClosure {
private:
  G1CollectedHeap* _g1;
  ConcurrentMark* _cm;
  HeapRegion* _hr;
  size_t _prev_marked_bytes;
  size_t _next_marked_bytes;
4002
  OopsInHeapRegionClosure *_cl;
4003
public:
4004 4005 4006
  RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
                           OopsInHeapRegionClosure* cl) :
    _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
4007
    _next_marked_bytes(0), _cl(cl) {}
4008 4009 4010 4011

  size_t prev_marked_bytes() { return _prev_marked_bytes; }
  size_t next_marked_bytes() { return _next_marked_bytes; }

4012
  // <original comment>
4013 4014 4015 4016 4017 4018 4019 4020 4021
  // The original idea here was to coalesce evacuated and dead objects.
  // However that caused complications with the block offset table (BOT).
  // In particular if there were two TLABs, one of them partially refined.
  // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  // The BOT entries of the unrefined part of TLAB_2 point to the start
  // of TLAB_2. If the last object of the TLAB_1 and the first object
  // of TLAB_2 are coalesced, then the cards of the unrefined part
  // would point into middle of the filler object.
  // The current approach is to not coalesce and leave the BOT contents intact.
4022 4023 4024 4025 4026 4027
  // </original comment>
  //
  // We now reset the BOT when we start the object iteration over the
  // region and refine its entries for every object we come across. So
  // the above comment is not really relevant and we should be able
  // to coalesce dead objects if we want to.
4028
  void do_object(oop obj) {
4029 4030 4031 4032
    HeapWord* obj_addr = (HeapWord*) obj;
    assert(_hr->is_in(obj_addr), "sanity");
    size_t obj_size = obj->size();
    _hr->update_bot_for_object(obj_addr, obj_size);
4033 4034 4035 4036 4037
    if (obj->is_forwarded() && obj->forwardee() == obj) {
      // The object failed to move.
      assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
      _cm->markPrev(obj);
      assert(_cm->isPrevMarked(obj), "Should be marked!");
4038
      _prev_marked_bytes += (obj_size * HeapWordSize);
4039 4040
      if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
        _cm->markAndGrayObjectIfNecessary(obj);
4041
      }
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
      obj->set_mark(markOopDesc::prototype());
      // While we were processing RSet buffers during the
      // collection, we actually didn't scan any cards on the
      // collection set, since we didn't want to update remebered
      // sets with entries that point into the collection set, given
      // that live objects fromthe collection set are about to move
      // and such entries will be stale very soon. This change also
      // dealt with a reliability issue which involved scanning a
      // card in the collection set and coming across an array that
      // was being chunked and looking malformed. The problem is
      // that, if evacuation fails, we might have remembered set
      // entries missing given that we skipped cards on the
      // collection set. So, we'll recreate such entries now.
4055
      obj->oop_iterate(_cl);
4056 4057 4058 4059
      assert(_cm->isPrevMarked(obj), "Should be marked!");
    } else {
      // The object has been either evacuated or is dead. Fill it with a
      // dummy object.
4060
      MemRegion mr((HeapWord*)obj, obj_size);
4061
      CollectedHeap::fill_with_object(mr);
4062
      _cm->clearRangeBothMaps(mr);
4063 4064 4065 4066 4067
    }
  }
};

void G1CollectedHeap::remove_self_forwarding_pointers() {
J
johnc 已提交
4068
  UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
4069 4070 4071 4072 4073 4074 4075 4076
  DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  UpdateRSetDeferred deferred_update(_g1h, &dcq);
  OopsInHeapRegionClosure *cl;
  if (G1DeferredRSUpdate) {
    cl = &deferred_update;
  } else {
    cl = &immediate_update;
  }
4077 4078 4079
  HeapRegion* cur = g1_policy()->collection_set();
  while (cur != NULL) {
    assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
4080
    assert(!cur->isHumongous(), "sanity");
4081 4082 4083

    if (cur->evacuation_failed()) {
      assert(cur->in_collection_set(), "bad CS");
4084 4085 4086
      RemoveSelfPointerClosure rspc(_g1h, cur, cl);

      cur->reset_bot();
4087
      cl->set_region(cur);
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
      cur->object_iterate(&rspc);

      // A number of manipulations to make the TAMS be the current top,
      // and the marked bytes be the ones observed in the iteration.
      if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
        // The comments below are the postconditions achieved by the
        // calls.  Note especially the last such condition, which says that
        // the count of marked bytes has been properly restored.
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        cur->add_to_marked_bytes(rspc.prev_marked_bytes());
        // _next_marked_bytes == prev_marked_bytes.
        cur->note_end_of_marking();
        // _prev_top_at_mark_start == top(),
        // _prev_marked_bytes == prev_marked_bytes
      }
      // If there is no mark in progress, we modified the _next variables
      // above needlessly, but harmlessly.
      if (_g1h->mark_in_progress()) {
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        // _next_marked_bytes == next_marked_bytes.
      }

      // Now make sure the region has the right index in the sorted array.
      g1_policy()->note_change_in_marked_bytes(cur);
    }
    cur = cur->next_in_collection_set();
  }
  assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");

  // Now restore saved marks, if any.
  if (_objs_with_preserved_marks != NULL) {
    assert(_preserved_marks_of_objs != NULL, "Both or none.");
    guarantee(_objs_with_preserved_marks->length() ==
              _preserved_marks_of_objs->length(), "Both or none.");
    for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
      oop obj   = _objs_with_preserved_marks->at(i);
      markOop m = _preserved_marks_of_objs->at(i);
      obj->set_mark(m);
    }
    // Delete the preserved marks growable arrays (allocated on the C heap).
    delete _objs_with_preserved_marks;
    delete _preserved_marks_of_objs;
    _objs_with_preserved_marks = NULL;
    _preserved_marks_of_objs = NULL;
  }
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
                                               oop old) {
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
    // Someone else had a place to copy it.
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4189
    if (G1PrintHeapRegions) {
4190
      gclog_or_tty->print("overflow in heap region "PTR_FORMAT" "
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
                          "["PTR_FORMAT","PTR_FORMAT")\n",
                          r, r->bottom(), r->end());
    }
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4207 4208 4209 4210
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
    if (_objs_with_preserved_marks == NULL) {
      assert(_preserved_marks_of_objs == NULL, "Both or none.");
      _objs_with_preserved_marks =
        new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
      _preserved_marks_of_objs =
        new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
    }
    _objs_with_preserved_marks->push(obj);
    _preserved_marks_of_objs->push(m);
  }
}

// *** Parallel G1 Evacuation

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4227 4228 4229 4230
  assert(!isHumongous(word_size),
         err_msg("we should not be seeing humongous allocation requests "
                 "during GC, word_size = "SIZE_FORMAT, word_size));

4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
  HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  // let the caller handle alloc failure
  if (alloc_region == NULL) return NULL;

  HeapWord* block = alloc_region->par_allocate(word_size);
  if (block == NULL) {
    block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  }
  return block;
}

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
                                            bool par) {
  // Another thread might have obtained alloc_region for the given
  // purpose, and might be attempting to allocate in it, and might
  // succeed.  Therefore, we can't do the "finalization" stuff on the
  // region below until we're sure the last allocation has happened.
  // We ensure this by allocating the remaining space with a garbage
  // object.
  if (par) par_allocate_remaining_space(alloc_region);
  // Now we can do the post-GC stuff on the region.
  alloc_region->note_end_of_copying();
  g1_policy()->record_after_bytes(alloc_region->used());
}

4256 4257 4258 4259 4260
HeapWord*
G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
                                         HeapRegion*    alloc_region,
                                         bool           par,
                                         size_t         word_size) {
4261 4262 4263 4264
  assert(!isHumongous(word_size),
         err_msg("we should not be seeing humongous allocation requests "
                 "during GC, word_size = "SIZE_FORMAT, word_size));

4265 4266 4267 4268 4269 4270
  // We need to make sure we serialize calls to this method. Given
  // that the FreeList_lock guards accesses to the free_list anyway,
  // and we need to potentially remove a region from it, we'll use it
  // to protect the whole call.
  MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
  HeapWord* block = NULL;
  // In the parallel case, a previous thread to obtain the lock may have
  // already assigned a new gc_alloc_region.
  if (alloc_region != _gc_alloc_regions[purpose]) {
    assert(par, "But should only happen in parallel case.");
    alloc_region = _gc_alloc_regions[purpose];
    if (alloc_region == NULL) return NULL;
    block = alloc_region->par_allocate(word_size);
    if (block != NULL) return block;
    // Otherwise, continue; this new region is empty, too.
  }
  assert(alloc_region != NULL, "We better have an allocation region");
4283
  retire_alloc_region(alloc_region, par);
4284 4285 4286 4287 4288 4289 4290 4291

  if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
    // Cannot allocate more regions for the given purpose.
    GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
    // Is there an alternative?
    if (purpose != alt_purpose) {
      HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
      // Has not the alternative region been aliased?
4292
      if (alloc_region != alt_region && alt_region != NULL) {
4293 4294 4295 4296 4297 4298 4299 4300
        // Try to allocate in the alternative region.
        if (par) {
          block = alt_region->par_allocate(word_size);
        } else {
          block = alt_region->allocate(word_size);
        }
        // Make an alias.
        _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
4301 4302 4303 4304
        if (block != NULL) {
          return block;
        }
        retire_alloc_region(alt_region, par);
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
      }
      // Both the allocation region and the alternative one are full
      // and aliased, replace them with a new allocation region.
      purpose = alt_purpose;
    } else {
      set_gc_alloc_region(purpose, NULL);
      return NULL;
    }
  }

  // Now allocate a new region for allocation.
4316
  alloc_region = new_gc_alloc_region(purpose, word_size);
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

  // let the caller handle alloc failure
  if (alloc_region != NULL) {

    assert(check_gc_alloc_regions(), "alloc regions messed up");
    assert(alloc_region->saved_mark_at_top(),
           "Mark should have been saved already.");
    // This must be done last: once it's installed, other regions may
    // allocate in it (without holding the lock.)
    set_gc_alloc_region(purpose, alloc_region);

    if (par) {
      block = alloc_region->par_allocate(word_size);
    } else {
      block = alloc_region->allocate(word_size);
    }
    // Caller handles alloc failure.
  } else {
    // This sets other apis using the same old alloc region to NULL, also.
    set_gc_alloc_region(purpose, NULL);
  }
  return block;  // May be NULL.
}

void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  HeapWord* block = NULL;
  size_t free_words;
  do {
    free_words = r->free()/HeapWordSize;
    // If there's too little space, no one can allocate, so we're done.
4347
    if (free_words < CollectedHeap::min_fill_size()) return;
4348 4349 4350
    // Otherwise, try to claim it.
    block = r->par_allocate(free_words);
  } while (block == NULL);
4351
  fill_with_object(block, free_words);
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
}

#ifndef PRODUCT
bool GCLabBitMapClosure::do_bit(size_t offset) {
  HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  guarantee(_cm->isMarked(oop(addr)), "it should be!");
  return true;
}
#endif // PRODUCT

4362 4363 4364 4365 4366 4367 4368 4369
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4370 4371
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
    _alloc_buffer_waste(0), _undo_waste(0)
{
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
  size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  size_t array_length = PADDING_ELEM_NUM +
                        real_length +
                        PADDING_ELEM_NUM;
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t),
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  memset(_surviving_young_words, 0, real_length * sizeof(size_t));

4392 4393 4394
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4395 4396
  _start = os::elapsedTime();
}
4397

4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4475 4476 4477 4478
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  _par_scan_state(par_scan_state) { }

4479
template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
4480 4481 4482 4483
  // This is called _after_ do_oop_work has been called, hence after
  // the object has been relocated to its new location and *p points
  // to its new location.

4484 4485 4486 4487
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop(heap_oop);
    assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
4488
           "shouldn't still be in the CSet if evacuation didn't fail.");
4489
    HeapWord* addr = (HeapWord*)obj;
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
    if (_g1->is_in_g1_reserved(addr))
      _cm->grayRoot(oop(addr));
  }
}

oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  size_t    word_sz = old->size();
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
  assert( (from_region->is_young() && young_index > 0) ||
          (!from_region->is_young() && young_index == 0), "invariant" );
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4504 4505 4506
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  oop       obj     = oop(obj_ptr);

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    return _g1->handle_evacuation_failure_par(cl, old);
  }

4518 4519 4520
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4521 4522 4523 4524
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4544
        obj->set_mark(m);
4545
      }
4546 4547 4548
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4549
    }
4550

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
    // preserve "next" mark bit
    if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
      if (!use_local_bitmaps ||
          !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
        // if we couldn't mark it on the local bitmap (this happens when
        // the object was not allocated in the GCLab), we have to bite
        // the bullet and do the standard parallel mark
        _cm->markAndGrayObjectIfNecessary(obj);
      }
#if 1
      if (_g1->isMarkedNext(old)) {
        _cm->nextMarkBitMap()->parClear((HeapWord*)old);
      }
#endif
    }

    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
      arrayOop(old)->set_length(0);
4572 4573
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4574
    } else {
4575 4576 4577
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
      _scanner->set_region(_g1->heap_region_containing_raw(obj));
4578 4579 4580 4581 4582 4583 4584 4585 4586
      obj->oop_iterate_backwards(_scanner);
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4587
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
4588
template <class T>
4589
void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
4590 4591
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4592 4593 4594
  assert(barrier != G1BarrierRS || obj != NULL,
         "Precondition: G1BarrierRS implies obj is nonNull");

4595
  // here the null check is implicit in the cset_fast_test() test
4596
  if (_g1->in_cset_fast_test(obj)) {
4597
#if G1_REM_SET_LOGGING
4598 4599
    gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
                           "into CS.", p, (void*) obj);
4600
#endif
4601
    if (obj->is_forwarded()) {
4602
      oopDesc::encode_store_heap_oop(p, obj->forwardee());
4603
    } else {
4604 4605
      oop copy_oop = copy_to_survivor_space(obj);
      oopDesc::encode_store_heap_oop(p, copy_oop);
4606
    }
4607 4608
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
4609
      _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4610
    }
4611
  }
4612

4613
  if (barrier == G1BarrierEvac && obj != NULL) {
4614
    _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4615 4616 4617 4618
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
4619 4620 4621
  }
}

4622 4623
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4624

4625
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4626 4627
  assert(has_partial_array_mask(p), "invariant");
  oop old = clear_partial_array_mask(p);
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
  assert(old->is_objArray(), "must be obj array");
  assert(old->is_forwarded(), "must be forwarded");
  assert(Universe::heap()->is_in_reserved(old), "must be in heap.");

  objArrayOop obj = objArrayOop(old->forwardee());
  assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  // Process ParGCArrayScanChunk elements now
  // and push the remainder back onto queue
  int start     = arrayOop(old)->length();
  int end       = obj->length();
  int remainder = end - start;
  assert(start <= end, "just checking");
  if (remainder > 2 * ParGCArrayScanChunk) {
    // Test above combines last partial chunk with a full chunk
    end = start + ParGCArrayScanChunk;
    arrayOop(old)->set_length(end);
    // Push remainder.
4645 4646 4647
    oop* old_p = set_partial_array_mask(old);
    assert(arrayOop(old)->length() < obj->length(), "Empty push?");
    _par_scan_state->push_on_queue(old_p);
4648 4649 4650 4651 4652
  } else {
    // Restore length so that the heap remains parsable in
    // case of evacuation failure.
    arrayOop(old)->set_length(end);
  }
4653
  _scanner.set_region(_g1->heap_region_containing_raw(obj));
4654
  // process our set of indices (include header in first chunk)
4655
  obj->oop_iterate_range(&_scanner, start, end);
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4677
  void do_void();
4678

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4700
        pss->deal_with_reference((narrowOop*) stolen_task);
4701
      } else {
4702
        pss->deal_with_reference((oop*) stolen_task);
4703
      }
4704 4705 4706 4707

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4708
      pss->trim_queue();
4709
    }
4710 4711 4712 4713
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4714 4715 4716 4717 4718 4719

class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4720
  int _n_workers;
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
  G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
      _terminator(workers, _queues),
4736 4737
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
      _n_workers(workers)
4738 4739 4740 4741 4742 4743 4744 4745 4746
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

  void work(int i) {
4747
    if (i >= _n_workers) return;  // no work needed this round
4748 4749 4750 4751

    double start_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);

4752 4753 4754
    ResourceMark rm;
    HandleMark   hm;

4755 4756 4757 4758
    G1ParScanThreadState            pss(_g1h, i);
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4759 4760 4761 4762 4763 4764 4765 4766

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
    G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
    G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4767
    G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4768

4769 4770 4771 4772 4773 4774 4775
    G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
    G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
    G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);

    OopsInHeapRegionClosure        *scan_root_cl;
    OopsInHeapRegionClosure        *scan_perm_cl;

4776
    if (_g1h->g1_policy()->during_initial_mark_pause()) {
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
      scan_root_cl = &scan_mark_root_cl;
      scan_perm_cl = &scan_mark_perm_cl;
    } else {
      scan_root_cl = &only_scan_root_cl;
      scan_perm_cl = &only_scan_perm_cl;
    }

    pss.start_strong_roots();
    _g1h->g1_process_strong_roots(/* not collecting perm */ false,
                                  SharedHeap::SO_AllClasses,
                                  scan_root_cl,
4788
                                  &push_heap_rs_cl,
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
                                  scan_perm_cl,
                                  i);
    pss.end_strong_roots();
    {
      double start = os::elapsedTime();
      G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
      evac.do_void();
      double elapsed_ms = (os::elapsedTime()-start)*1000.0;
      double term_ms = pss.term_time()*1000.0;
      _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4799
      _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4800
    }
4801
    _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4802 4803 4804 4805 4806 4807
    _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

    // Clean up any par-expanded rem sets.
    HeapRegionRemSet::par_cleanup();

    if (ParallelGCVerbose) {
4808 4809
      MutexLocker x(stats_lock());
      pss.print_termination_stats(i);
4810 4811
    }

4812
    assert(pss.refs()->is_empty(), "should be empty");
4813 4814
    double end_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4815 4816 4817 4818 4819
  }
};

// *** Common G1 Evacuation Stuff

4820 4821
// This method is run in a GC worker.

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
void
G1CollectedHeap::
g1_process_strong_roots(bool collecting_perm_gen,
                        SharedHeap::ScanningOption so,
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
                        OopsInGenClosure* scan_perm,
                        int worker_i) {
  // First scan the strong roots, including the perm gen.
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  buf_scan_perm.set_generation(perm_gen());

4838 4839 4840 4841 4842 4843
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);

  process_strong_roots(false, // no scoping; this is parallel code
                       collecting_perm_gen, so,
4844
                       &buf_scan_non_heap_roots,
4845
                       &eager_scan_code_roots,
4846
                       &buf_scan_perm);
4847

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
  // Finish up any enqueued closure apps.
  buf_scan_non_heap_roots.done();
  buf_scan_perm.done();
  double ext_roots_end = os::elapsedTime();
  g1_policy()->reset_obj_copy_time(worker_i);
  double obj_copy_time_sec =
    buf_scan_non_heap_roots.closure_app_seconds() +
    buf_scan_perm.closure_app_seconds();
  g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  double ext_root_time_ms =
    ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);

  // Scan strong roots in mark stack.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
    concurrent_mark()->oops_do(scan_non_heap_roots);
  }
  double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);

  // XXX What should this be doing in the parallel case?
  g1_policy()->record_collection_pause_end_CH_strong_roots();
  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
  // Finish with the ref_processor roots.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4876 4877 4878 4879
    // We need to treat the discovered reference lists as roots and
    // keep entries (which are added by the marking threads) on them
    // live until they can be processed at the end of marking.
    ref_processor()->weak_oops_do(scan_non_heap_roots);
4880 4881 4882 4883 4884 4885 4886 4887 4888
    ref_processor()->oops_do(scan_non_heap_roots);
  }
  g1_policy()->record_collection_pause_end_G1_strong_roots();
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
4889 4890
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
}


class SaveMarksClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->save_marks();
    return false;
  }
};

void G1CollectedHeap::save_marks() {
4903
  if (!CollectedHeap::use_parallel_gc_threads()) {
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
    SaveMarksClosure sm;
    heap_region_iterate(&sm);
  }
  // We do this even in the parallel case
  perm_gen()->save_marks();
}

void G1CollectedHeap::evacuate_collection_set() {
  set_evacuation_failed(false);

  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
4916 4917
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

4918 4919 4920 4921 4922 4923 4924 4925
  int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  set_par_threads(n_workers);
  G1ParTask g1_par_task(this, n_workers, _task_queues);

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

4926 4927
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  double start_par = os::elapsedTime();
4928
  if (G1CollectedHeap::use_parallel_gc_threads()) {
4929
    // The individual threads will set their evac-failure closures.
4930
    StrongRootsScope srs(this);
4931
    if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4932 4933
    workers()->run_task(&g1_par_task);
  } else {
4934
    StrongRootsScope srs(this);
4935 4936 4937 4938 4939 4940 4941 4942 4943
    g1_par_task.work(0);
  }

  double par_time = (os::elapsedTime() - start_par) * 1000.0;
  g1_policy()->record_par_time(par_time);
  set_par_threads(0);
  // Is this the right thing to do here?  We don't save marks
  // on individual heap regions when we allocate from
  // them in parallel, so this seems like the correct place for this.
4944
  retire_all_alloc_regions();
4945 4946 4947 4948 4949

  // Weak root processing.
  // Note: when JSR 292 is enabled and code blobs can contain
  // non-perm oops then we will need to process the code blobs
  // here too.
4950 4951 4952 4953 4954
  {
    G1IsAliveClosure is_alive(this);
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
4955
  release_gc_alloc_regions(false /* totally */);
4956
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4957

4958
  concurrent_g1_refine()->clear_hot_cache();
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

  // Must do this before removing self-forwarding pointers, which clears
  // the per-region evac-failure flags.
  concurrent_mark()->complete_marking_in_collection_set();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
    if (PrintGCDetails) {
4970
      gclog_or_tty->print(" (to-space overflow)");
4971 4972 4973 4974 4975
    } else if (PrintGC) {
      gclog_or_tty->print("--");
    }
  }

4976 4977 4978 4979
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4980 4981 4982

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
4983 4984
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
4985 4986 4987
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

T
tonyp 已提交
4988
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
4989 4990 4991
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
T
tonyp 已提交
4992
                                     HRRSCleanupTask* hrrs_cleanup_task,
4993 4994 4995 4996 4997 4998 4999 5000
                                     bool par) {
  if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
    if (hr->isHumongous()) {
      assert(hr->startsHumongous(), "we should only see starts humongous");
      free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
    } else {
      free_region(hr, pre_used, free_list, par);
    }
T
tonyp 已提交
5001 5002
  } else {
    hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5003 5004 5005
  }
}

5006 5007 5008
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  size_t* pre_used,
                                  FreeRegionList* free_list,
5009
                                  bool par) {
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

  *pre_used += hr->used();
  hr->hr_clear(par, true /* clear_space */);
  free_list->add_as_tail(hr);
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");
  assert(humongous_proxy_set != NULL, "pre-condition");

  size_t hr_used = hr->used();
  size_t hr_capacity = hr->capacity();
  size_t hr_pre_used = 0;
  _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  hr->set_notHumongous();
  free_region(hr, &hr_pre_used, free_list, par);

  int i = hr->hrs_index() + 1;
  size_t num = 1;
  while ((size_t) i < n_regions()) {
    HeapRegion* curr_hr = _hrs->at(i);
    if (!curr_hr->continuesHumongous()) {
      break;
5041
    }
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
    curr_hr->set_notHumongous();
    free_region(curr_hr, &hr_pre_used, free_list, par);
    num += 1;
    i += 1;
  }
  assert(hr_pre_used == hr_used,
         err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
                 "should be the same", hr_pre_used, hr_used));
  *pre_used += hr_pre_used;
}

void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par) {
  if (pre_used > 0) {
    Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5059
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5060 5061 5062 5063
    assert(_summary_bytes_used >= pre_used,
           err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
                   "should be >= pre_used: "SIZE_FORMAT,
                   _summary_bytes_used, pre_used));
5064
    _summary_bytes_used -= pre_used;
5065 5066 5067 5068 5069 5070 5071 5072
  }
  if (free_list != NULL && !free_list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_list.add_as_tail(free_list);
  }
  if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _humongous_set.update_from_proxy(humongous_proxy_set);
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
  }
}

void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  while (list != NULL) {
    guarantee( list->is_young(), "invariant" );

    HeapWord* bottom = list->bottom();
    HeapWord* end = list->end();
    MemRegion mr(bottom, end);
    ct_bs->dirty(mr);

    list = list->get_next_young_region();
  }
}

5089 5090 5091 5092

class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
5093
  HeapRegion* volatile _su_head;
5094 5095
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5096 5097
                     G1CollectedHeap* g1h,
                     HeapRegion* survivor_list) :
5098 5099
    AbstractGangTask("G1 Par Cleanup CT Task"),
    _ct_bs(ct_bs),
5100 5101
    _g1h(g1h),
    _su_head(survivor_list)
5102 5103 5104 5105 5106 5107 5108
  { }

  void work(int i) {
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
5109
    // Redirty the cards of the survivor regions.
5110
    dirty_list(&this->_su_head);
5111
  }
5112

5113
  void clear_cards(HeapRegion* r) {
5114 5115
    // Cards for Survivor regions will be dirtied later.
    if (!r->is_survivor()) {
5116 5117 5118
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134

  void dirty_list(HeapRegion* volatile * head_ptr) {
    HeapRegion* head;
    do {
      // Pop region off the list.
      head = *head_ptr;
      if (head != NULL) {
        HeapRegion* r = (HeapRegion*)
          Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
        if (r == head) {
          assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
          _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
        }
      }
    } while (*head_ptr != NULL);
  }
5135 5136 5137
};


5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
  CardTableModRefBS* _ct_bs;
public:
  G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
    : _ct_bs(ct_bs)
  { }
  virtual bool doHeapRegion(HeapRegion* r)
  {
    MemRegion mr(r->bottom(), r->end());
5148
    if (r->is_survivor()) {
5149 5150 5151 5152 5153 5154 5155 5156 5157
      _ct_bs->verify_dirty_region(mr);
    } else {
      _ct_bs->verify_clean_region(mr);
    }
    return false;
  }
};
#endif

5158 5159 5160 5161
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

5162
  // Iterate over the dirty cards region list.
5163 5164
  G1ParCleanupCTTask cleanup_task(ct_bs, this,
                                  _young_list->first_survivor_region());
5165

5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
  if (ParallelGCThreads > 0) {
    set_par_threads(workers()->total_workers());
    workers()->run_task(&cleanup_task);
    set_par_threads(0);
  } else {
    while (_dirty_cards_region_list) {
      HeapRegion* r = _dirty_cards_region_list;
      cleanup_task.clear_cards(r);
      _dirty_cards_region_list = r->get_next_dirty_cards_region();
      if (_dirty_cards_region_list == r) {
        // The last region.
        _dirty_cards_region_list = NULL;
      }
      r->set_next_dirty_cards_region(NULL);
    }
5181
    // now, redirty the cards of the survivor regions
5182 5183 5184
    // (it seemed faster to do it this way, instead of iterating over
    // all regions and then clearing / dirtying as appropriate)
    dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
5185
  }
5186

5187 5188
  double elapsed = os::elapsedTime() - start;
  g1_policy()->record_clear_ct_time( elapsed * 1000.0);
5189 5190 5191 5192 5193 5194
#ifndef PRODUCT
  if (G1VerifyCTCleanup || VerifyAfterGC) {
    G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
    heap_region_iterate(&cleanup_verifier);
  }
#endif
5195 5196 5197
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5198 5199 5200
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

5201 5202 5203
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

5204 5205 5206 5207 5208
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
5219
    assert(!is_on_master_free_list(cur), "sanity");
5220

5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
5231 5232 5233
      double end_sec = os::elapsedTime();
      double elapsed_ms = (end_sec - start_sec) * 1000.0;
      young_time_ms += elapsed_ms;
5234

5235 5236
      start_sec = os::elapsedTime();
      non_young = true;
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
      guarantee( index != -1, "invariant" );
      guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
5252 5253 5254 5255 5256 5257

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
    } else {
      int index = cur->young_index_in_cset();
      guarantee( index == -1, "invariant" );
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
      // And the region is empty.
5269 5270
      assert(!cur->is_empty(), "Should not have empty regions in a CS.");
      free_region(cur, &pre_used, &local_free_list, false /* par */);
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
    } else {
      cur->uninstall_surv_rate_group();
      if (cur->is_young())
        cur->set_young_index_in_cset(-1);
      cur->set_not_young();
      cur->set_evacuation_failed(false);
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
  if (non_young)
    non_young_time_ms += elapsed_ms;
  else
    young_time_ms += elapsed_ms;

5291 5292 5293
  update_sets_after_freeing_regions(pre_used, &local_free_list,
                                    NULL /* humongous_proxy_set */,
                                    false /* par */);
5294 5295 5296 5297
  policy->record_young_free_cset_time_ms(young_time_ms);
  policy->record_non_young_free_cset_time_ms(non_young_time_ms);
}

5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

5319 5320 5321 5322
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
5323 5324
  }

5325 5326
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
5327 5328
}

5329 5330 5331 5332 5333 5334
void G1CollectedHeap::reset_free_regions_coming() {
  {
    assert(free_regions_coming(), "pre-condition");
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
5335 5336
  }

5337 5338 5339
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
5340 5341 5342
  }
}

5343 5344 5345 5346 5347
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
5348 5349
  }

5350 5351 5352
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
5353 5354 5355
  }

  {
5356 5357 5358
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5359 5360 5361
    }
  }

5362 5363 5364
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
5365 5366 5367 5368 5369 5370 5371 5372 5373
  }
}

size_t G1CollectedHeap::n_regions() {
  return _hrs->length();
}

size_t G1CollectedHeap::max_regions() {
  return
5374
    (size_t)align_size_up(max_capacity(), HeapRegion::GrainBytes) /
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
    HeapRegion::GrainBytes;
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
  g1_policy()->set_region_short_lived(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

5401 5402
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
5403

5404
  if (check_heap) {
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

void G1CollectedHeap::empty_young_list() {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");

  _young_list->empty_list();
}

bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  bool no_allocs = true;
  for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    no_allocs = r == NULL || r->saved_mark_at_top();
  }
  return no_allocs;
}

5430
void G1CollectedHeap::retire_all_alloc_regions() {
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    if (r != NULL) {
      // Check for aliases.
      bool has_processed_alias = false;
      for (int i = 0; i < ap; ++i) {
        if (_gc_alloc_regions[i] == r) {
          has_processed_alias = true;
          break;
        }
      }
      if (!has_processed_alias) {
5443
        retire_alloc_region(r, false /* par */);
5444 5445 5446 5447 5448 5449 5450
      }
    }
  }
}

// Done at the start of full GC.
void G1CollectedHeap::tear_down_region_lists() {
5451
  _free_list.remove_all();
5452 5453 5454
}

class RegionResetter: public HeapRegionClosure {
5455 5456 5457
  G1CollectedHeap* _g1h;
  FreeRegionList _local_free_list;

5458
public:
5459 5460 5461
  RegionResetter() : _g1h(G1CollectedHeap::heap()),
                     _local_free_list("Local Free List for RegionResetter") { }

5462 5463 5464 5465 5466 5467 5468 5469 5470
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->top() > r->bottom()) {
      if (r->top() < r->end()) {
        Copy::fill_to_words(r->top(),
                          pointer_delta(r->end(), r->top()));
      }
    } else {
      assert(r->is_empty(), "tautology");
5471
      _local_free_list.add_as_tail(r);
5472 5473 5474 5475
    }
    return false;
  }

5476 5477 5478 5479
  void update_free_lists() {
    _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
                                            false /* par */);
  }
5480 5481 5482 5483 5484 5485 5486
};

// Done at the end of full GC.
void G1CollectedHeap::rebuild_region_lists() {
  // This needs to go at the end of the full GC.
  RegionResetter rs;
  heap_region_iterate(&rs);
5487
  rs.update_free_lists();
5488 5489 5490 5491 5492 5493
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

5494 5495 5496 5497 5498 5499
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
    return is_in_permanent(p);
  } else {
    return hr->is_in(p);
5500
  }
5501 5502 5503 5504 5505 5506 5507
}

class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  HumongousRegionSet* _humongous_set;
  FreeRegionList*     _free_list;
  size_t              _region_count;
5508 5509

public:
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
  VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
                           FreeRegionList* free_list) :
    _humongous_set(humongous_set), _free_list(free_list),
    _region_count(0) { }

  size_t region_count()      { return _region_count;      }

  bool doHeapRegion(HeapRegion* hr) {
    _region_count += 1;

    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
      _humongous_set->verify_next_region(hr);
    } else if (hr->is_empty()) {
      _free_list->verify_next_region(hr);
    }
5531 5532 5533 5534
    return false;
  }
};

5535 5536
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5537

5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
  // First, check the explicit lists.
  _free_list.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify();
  }
  _humongous_set.verify();

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
5562

T
tonyp 已提交
5563 5564 5565 5566
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
5567

5568 5569 5570 5571
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
  _humongous_set.verify_start();
  _free_list.verify_start();
5572

5573 5574
  VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
  heap_region_iterate(&cl);
5575

5576 5577
  _humongous_set.verify_end();
  _free_list.verify_end();
5578
}