cppInterpreter_zero.cpp 29.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * Copyright 2007, 2008, 2009 Red Hat, Inc.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_cppInterpreter_zero.cpp.incl"

#ifdef CC_INTERP

#define fixup_after_potential_safepoint()       \
  method = istate->method()

#define CALL_VM_NOCHECK(func)                   \
  thread->set_last_Java_frame();                \
  func;                                         \
  thread->reset_last_Java_frame();              \
  fixup_after_potential_safepoint()

void CppInterpreter::normal_entry(methodOop method, intptr_t UNUSED, TRAPS) {
  JavaThread *thread = (JavaThread *) THREAD;
  ZeroStack *stack = thread->zero_stack();

  // Adjust the caller's stack frame to accomodate any additional
  // local variables we have contiguously with our parameters.
  int extra_locals = method->max_locals() - method->size_of_parameters();
  if (extra_locals > 0) {
    if (extra_locals > stack->available_words()) {
      Unimplemented();
    }
    for (int i = 0; i < extra_locals; i++)
      stack->push(0);
  }

  // Allocate and initialize our frame.
  InterpreterFrame *frame = InterpreterFrame::build(stack, method, thread);
  thread->push_zero_frame(frame);

  // Execute those bytecodes!
  main_loop(0, THREAD);
}

void CppInterpreter::main_loop(int recurse, TRAPS) {
  JavaThread *thread = (JavaThread *) THREAD;
  ZeroStack *stack = thread->zero_stack();

  // If we are entering from a deopt we may need to call
  // ourself a few times in order to get to our frame.
  if (recurse)
    main_loop(recurse - 1, THREAD);

  InterpreterFrame *frame = thread->top_zero_frame()->as_interpreter_frame();
  interpreterState istate = frame->interpreter_state();
  methodOop method = istate->method();

  intptr_t *result = NULL;
  int result_slots = 0;

  // Check we're not about to run out of stack
  if (stack_overflow_imminent(thread)) {
    CALL_VM_NOCHECK(InterpreterRuntime::throw_StackOverflowError(thread));
    goto unwind_and_return;
  }

  while (true) {
    // We can set up the frame anchor with everything we want at
    // this point as we are thread_in_Java and no safepoints can
    // occur until we go to vm mode.  We do have to clear flags
    // on return from vm but that is it.
    thread->set_last_Java_frame();

    // Call the interpreter
    if (JvmtiExport::can_post_interpreter_events())
      BytecodeInterpreter::runWithChecks(istate);
    else
      BytecodeInterpreter::run(istate);
    fixup_after_potential_safepoint();

    // Clear the frame anchor
    thread->reset_last_Java_frame();

    // Examine the message from the interpreter to decide what to do
    if (istate->msg() == BytecodeInterpreter::call_method) {
      methodOop callee = istate->callee();

      // Trim back the stack to put the parameters at the top
      stack->set_sp(istate->stack() + 1);

      // Make the call
      Interpreter::invoke_method(callee, istate->callee_entry_point(), THREAD);
      fixup_after_potential_safepoint();

      // Convert the result
      istate->set_stack(stack->sp() - 1);

      // Restore the stack
      stack->set_sp(istate->stack_limit() + 1);

      // Resume the interpreter
      istate->set_msg(BytecodeInterpreter::method_resume);
    }
    else if (istate->msg() == BytecodeInterpreter::more_monitors) {
      int monitor_words = frame::interpreter_frame_monitor_size();

      // Allocate the space
      if (monitor_words > stack->available_words()) {
        Unimplemented();
      }
      stack->alloc(monitor_words * wordSize);

      // Move the expression stack contents
      for (intptr_t *p = istate->stack() + 1; p < istate->stack_base(); p++)
        *(p - monitor_words) = *p;

      // Move the expression stack pointers
      istate->set_stack_limit(istate->stack_limit() - monitor_words);
      istate->set_stack(istate->stack() - monitor_words);
      istate->set_stack_base(istate->stack_base() - monitor_words);

      // Zero the new monitor so the interpreter can find it.
      ((BasicObjectLock *) istate->stack_base())->set_obj(NULL);

      // Resume the interpreter
      istate->set_msg(BytecodeInterpreter::got_monitors);
    }
    else if (istate->msg() == BytecodeInterpreter::return_from_method) {
      // Copy the result into the caller's frame
      result_slots = type2size[method->result_type()];
      assert(result_slots >= 0 && result_slots <= 2, "what?");
      result = istate->stack() + result_slots;
      break;
    }
    else if (istate->msg() == BytecodeInterpreter::throwing_exception) {
      assert(HAS_PENDING_EXCEPTION, "should do");
      break;
    }
    else if (istate->msg() == BytecodeInterpreter::do_osr) {
      // Unwind the current frame
      thread->pop_zero_frame();

      // Remove any extension of the previous frame
      int extra_locals = method->max_locals() - method->size_of_parameters();
      stack->set_sp(stack->sp() + extra_locals);

      // Jump into the OSR method
      Interpreter::invoke_osr(
        method, istate->osr_entry(), istate->osr_buf(), THREAD);
      return;
    }
    else {
      ShouldNotReachHere();
    }
  }

 unwind_and_return:

  // Unwind the current frame
  thread->pop_zero_frame();

  // Pop our local variables
  stack->set_sp(stack->sp() + method->max_locals());

  // Push our result
  for (int i = 0; i < result_slots; i++)
    stack->push(result[-i]);
}

void CppInterpreter::native_entry(methodOop method, intptr_t UNUSED, TRAPS) {
  // Make sure method is native and not abstract
  assert(method->is_native() && !method->is_abstract(), "should be");

  JavaThread *thread = (JavaThread *) THREAD;
  ZeroStack *stack = thread->zero_stack();

  // Allocate and initialize our frame
  InterpreterFrame *frame = InterpreterFrame::build(stack, method, thread);
  thread->push_zero_frame(frame);
  interpreterState istate = frame->interpreter_state();
  intptr_t *locals = istate->locals();

  // Check we're not about to run out of stack
  if (stack_overflow_imminent(thread)) {
    CALL_VM_NOCHECK(InterpreterRuntime::throw_StackOverflowError(thread));
    goto unwind_and_return;
  }

T
twisti 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220
  // Update the invocation counter
  if ((UseCompiler || CountCompiledCalls) && !method->is_synchronized()) {
    thread->set_do_not_unlock();
    InvocationCounter *counter = method->invocation_counter();
    counter->increment();
    if (counter->reached_InvocationLimit()) {
      CALL_VM_NOCHECK(
        InterpreterRuntime::frequency_counter_overflow(thread, NULL));
      if (HAS_PENDING_EXCEPTION)
        goto unwind_and_return;
    }
    thread->clr_do_not_unlock();
  }

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  // Lock if necessary
  BasicObjectLock *monitor;
  monitor = NULL;
  if (method->is_synchronized()) {
    monitor = (BasicObjectLock*) istate->stack_base();
    oop lockee = monitor->obj();
    markOop disp = lockee->mark()->set_unlocked();

    monitor->lock()->set_displaced_header(disp);
    if (Atomic::cmpxchg_ptr(monitor, lockee->mark_addr(), disp) != disp) {
      if (thread->is_lock_owned((address) disp->clear_lock_bits())) {
        monitor->lock()->set_displaced_header(NULL);
      }
      else {
        CALL_VM_NOCHECK(InterpreterRuntime::monitorenter(thread, monitor));
        if (HAS_PENDING_EXCEPTION)
          goto unwind_and_return;
      }
    }
  }

  // Get the signature handler
  InterpreterRuntime::SignatureHandler *handler; {
    address handlerAddr = method->signature_handler();
    if (handlerAddr == NULL) {
      CALL_VM_NOCHECK(InterpreterRuntime::prepare_native_call(thread, method));
      if (HAS_PENDING_EXCEPTION)
248
        goto unlock_unwind_and_return;
249 250 251 252 253 254 255 256

      handlerAddr = method->signature_handler();
      assert(handlerAddr != NULL, "eh?");
    }
    if (handlerAddr == (address) InterpreterRuntime::slow_signature_handler) {
      CALL_VM_NOCHECK(handlerAddr =
        InterpreterRuntime::slow_signature_handler(thread, method, NULL,NULL));
      if (HAS_PENDING_EXCEPTION)
257
        goto unlock_unwind_and_return;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    }
    handler = \
      InterpreterRuntime::SignatureHandler::from_handlerAddr(handlerAddr);
  }

  // Get the native function entry point
  address function;
  function = method->native_function();
  assert(function != NULL, "should be set if signature handler is");

  // Build the argument list
  if (handler->argument_count() * 2 > stack->available_words()) {
    Unimplemented();
  }
  void **arguments;
  void *mirror; {
    arguments =
      (void **) stack->alloc(handler->argument_count() * sizeof(void **));
    void **dst = arguments;

    void *env = thread->jni_environment();
    *(dst++) = &env;

    if (method->is_static()) {
      istate->set_oop_temp(
        method->constants()->pool_holder()->klass_part()->java_mirror());
      mirror = istate->oop_temp_addr();
      *(dst++) = &mirror;
    }

    intptr_t *src = locals;
    for (int i = dst - arguments; i < handler->argument_count(); i++) {
      ffi_type *type = handler->argument_type(i);
      if (type == &ffi_type_pointer) {
        if (*src) {
          stack->push((intptr_t) src);
          *(dst++) = stack->sp();
        }
        else {
          *(dst++) = src;
        }
        src--;
      }
      else if (type->size == 4) {
        *(dst++) = src--;
      }
      else if (type->size == 8) {
        src--;
        *(dst++) = src--;
      }
      else {
        ShouldNotReachHere();
      }
    }
  }

  // Set up the Java frame anchor
  thread->set_last_Java_frame();

  // Change the thread state to _thread_in_native
  ThreadStateTransition::transition_from_java(thread, _thread_in_native);

  // Make the call
  intptr_t result[4 - LogBytesPerWord];
  ffi_call(handler->cif(), (void (*)()) function, result, arguments);

  // Change the thread state back to _thread_in_Java.
  // ThreadStateTransition::transition_from_native() cannot be used
  // here because it does not check for asynchronous exceptions.
  // We have to manage the transition ourself.
  thread->set_thread_state(_thread_in_native_trans);

  // Make sure new state is visible in the GC thread
  if (os::is_MP()) {
    if (UseMembar) {
      OrderAccess::fence();
    }
    else {
      InterfaceSupport::serialize_memory(thread);
    }
  }

  // Handle safepoint operations, pending suspend requests,
  // and pending asynchronous exceptions.
  if (SafepointSynchronize::do_call_back() ||
      thread->has_special_condition_for_native_trans()) {
    JavaThread::check_special_condition_for_native_trans(thread);
    CHECK_UNHANDLED_OOPS_ONLY(thread->clear_unhandled_oops());
  }

  // Finally we can change the thread state to _thread_in_Java.
  thread->set_thread_state(_thread_in_Java);
  fixup_after_potential_safepoint();

  // Clear the frame anchor
  thread->reset_last_Java_frame();

  // If the result was an oop then unbox it and store it in
  // oop_temp where the garbage collector can see it before
  // we release the handle it might be protected by.
  if (handler->result_type() == &ffi_type_pointer) {
    if (result[0])
      istate->set_oop_temp(*(oop *) result[0]);
    else
      istate->set_oop_temp(NULL);
  }

  // Reset handle block
  thread->active_handles()->clear();

368 369 370 371
 unlock_unwind_and_return:

  // Unlock if necessary
  if (monitor) {
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
    BasicLock *lock = monitor->lock();
    markOop header = lock->displaced_header();
    oop rcvr = monitor->obj();
    monitor->set_obj(NULL);

    if (header != NULL) {
      if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
        monitor->set_obj(rcvr); {
          HandleMark hm(thread);
          CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(thread, monitor));
        }
      }
    }
  }

 unwind_and_return:

  // Unwind the current activation
  thread->pop_zero_frame();

  // Pop our parameters
  stack->set_sp(stack->sp() + method->size_of_parameters());

  // Push our result
  if (!HAS_PENDING_EXCEPTION) {
    stack->set_sp(stack->sp() - type2size[method->result_type()]);

    switch (method->result_type()) {
    case T_VOID:
      break;

    case T_BOOLEAN:
#ifndef VM_LITTLE_ENDIAN
      result[0] <<= (BitsPerWord - BitsPerByte);
#endif
      SET_LOCALS_INT(*(jboolean *) result != 0, 0);
      break;

    case T_CHAR:
#ifndef VM_LITTLE_ENDIAN
      result[0] <<= (BitsPerWord - BitsPerShort);
#endif
      SET_LOCALS_INT(*(jchar *) result, 0);
      break;

    case T_BYTE:
#ifndef VM_LITTLE_ENDIAN
      result[0] <<= (BitsPerWord - BitsPerByte);
#endif
      SET_LOCALS_INT(*(jbyte *) result, 0);
      break;

    case T_SHORT:
#ifndef VM_LITTLE_ENDIAN
      result[0] <<= (BitsPerWord - BitsPerShort);
#endif
      SET_LOCALS_INT(*(jshort *) result, 0);
      break;

    case T_INT:
#ifndef VM_LITTLE_ENDIAN
      result[0] <<= (BitsPerWord - BitsPerInt);
#endif
      SET_LOCALS_INT(*(jint *) result, 0);
      break;

    case T_LONG:
      SET_LOCALS_LONG(*(jlong *) result, 0);
      break;

    case T_FLOAT:
      SET_LOCALS_FLOAT(*(jfloat *) result, 0);
      break;

    case T_DOUBLE:
      SET_LOCALS_DOUBLE(*(jdouble *) result, 0);
      break;

    case T_OBJECT:
    case T_ARRAY:
      SET_LOCALS_OBJECT(istate->oop_temp(), 0);
      break;

    default:
      ShouldNotReachHere();
    }
  }
}

void CppInterpreter::accessor_entry(methodOop method, intptr_t UNUSED, TRAPS) {
  JavaThread *thread = (JavaThread *) THREAD;
  ZeroStack *stack = thread->zero_stack();
  intptr_t *locals = stack->sp();

  // Drop into the slow path if we need a safepoint check
  if (SafepointSynchronize::do_call_back()) {
    normal_entry(method, 0, THREAD);
    return;
  }

  // Load the object pointer and drop into the slow path
  // if we have a NullPointerException
  oop object = LOCALS_OBJECT(0);
  if (object == NULL) {
    normal_entry(method, 0, THREAD);
    return;
  }

  // Read the field index from the bytecode, which looks like this:
  //  0:  aload_0
  //  1:  getfield
  //  2:    index
  //  3:    index
  //  4:  ireturn/areturn
  // NB this is not raw bytecode: index is in machine order
  u1 *code = method->code_base();
  assert(code[0] == Bytecodes::_aload_0 &&
         code[1] == Bytecodes::_getfield &&
         (code[4] == Bytecodes::_ireturn ||
          code[4] == Bytecodes::_areturn), "should do");
  u2 index = Bytes::get_native_u2(&code[2]);

  // Get the entry from the constant pool cache, and drop into
  // the slow path if it has not been resolved
  constantPoolCacheOop cache = method->constants()->cache();
  ConstantPoolCacheEntry* entry = cache->entry_at(index);
  if (!entry->is_resolved(Bytecodes::_getfield)) {
    normal_entry(method, 0, THREAD);
    return;
  }

  // Get the result and push it onto the stack
  switch (entry->flag_state()) {
  case ltos:
  case dtos:
    if (stack->available_words() < 1) {
      Unimplemented();
    }
    stack->alloc(wordSize);
    break;
  }
  if (entry->is_volatile()) {
    switch (entry->flag_state()) {
    case ctos:
      SET_LOCALS_INT(object->char_field_acquire(entry->f2()), 0);
      break;

    case btos:
      SET_LOCALS_INT(object->byte_field_acquire(entry->f2()), 0);
      break;

    case stos:
      SET_LOCALS_INT(object->short_field_acquire(entry->f2()), 0);
      break;

    case itos:
      SET_LOCALS_INT(object->int_field_acquire(entry->f2()), 0);
      break;

    case ltos:
      SET_LOCALS_LONG(object->long_field_acquire(entry->f2()), 0);
      break;

    case ftos:
      SET_LOCALS_FLOAT(object->float_field_acquire(entry->f2()), 0);
      break;

    case dtos:
      SET_LOCALS_DOUBLE(object->double_field_acquire(entry->f2()), 0);
      break;

    case atos:
      SET_LOCALS_OBJECT(object->obj_field_acquire(entry->f2()), 0);
      break;

    default:
      ShouldNotReachHere();
    }
  }
  else {
    switch (entry->flag_state()) {
    case ctos:
      SET_LOCALS_INT(object->char_field(entry->f2()), 0);
      break;

    case btos:
      SET_LOCALS_INT(object->byte_field(entry->f2()), 0);
      break;

    case stos:
      SET_LOCALS_INT(object->short_field(entry->f2()), 0);
      break;

    case itos:
      SET_LOCALS_INT(object->int_field(entry->f2()), 0);
      break;

    case ltos:
      SET_LOCALS_LONG(object->long_field(entry->f2()), 0);
      break;

    case ftos:
      SET_LOCALS_FLOAT(object->float_field(entry->f2()), 0);
      break;

    case dtos:
      SET_LOCALS_DOUBLE(object->double_field(entry->f2()), 0);
      break;

    case atos:
      SET_LOCALS_OBJECT(object->obj_field(entry->f2()), 0);
      break;

    default:
      ShouldNotReachHere();
    }
  }
}

void CppInterpreter::empty_entry(methodOop method, intptr_t UNUSED, TRAPS) {
  JavaThread *thread = (JavaThread *) THREAD;
  ZeroStack *stack = thread->zero_stack();

  // Drop into the slow path if we need a safepoint check
  if (SafepointSynchronize::do_call_back()) {
    normal_entry(method, 0, THREAD);
    return;
  }

  // Pop our parameters
  stack->set_sp(stack->sp() + method->size_of_parameters());
}

bool CppInterpreter::stack_overflow_imminent(JavaThread *thread) {
  // How is the ABI stack?
  address stack_top = thread->stack_base() - thread->stack_size();
  int free_stack = os::current_stack_pointer() - stack_top;
  if (free_stack < StackShadowPages * os::vm_page_size()) {
    return true;
  }

  // How is the Zero stack?
  // Throwing a StackOverflowError involves a VM call, which means
  // we need a frame on the stack.  We should be checking here to
  // ensure that methods we call have enough room to install the
  // largest possible frame, but that's more than twice the size
  // of the entire Zero stack we get by default, so we just check
  // we have *some* space instead...
  free_stack = thread->zero_stack()->available_words() * wordSize;
  if (free_stack < StackShadowPages * os::vm_page_size()) {
    return true;
  }

  return false;
}

InterpreterFrame *InterpreterFrame::build(ZeroStack*       stack,
                                          const methodOop  method,
                                          JavaThread*      thread) {
  int monitor_words =
    method->is_synchronized() ? frame::interpreter_frame_monitor_size() : 0;
  int stack_words = method->is_native() ? 0 : method->max_stack();

  if (header_words + monitor_words + stack_words > stack->available_words()) {
    Unimplemented();
  }

  intptr_t *locals;
  if (method->is_native())
    locals = stack->sp() + (method->size_of_parameters() - 1);
  else
    locals = stack->sp() + (method->max_locals() - 1);

  stack->push(0); // next_frame, filled in later
  intptr_t *fp = stack->sp();
  assert(fp - stack->sp() == next_frame_off, "should be");

  stack->push(INTERPRETER_FRAME);
  assert(fp - stack->sp() == frame_type_off, "should be");

  interpreterState istate =
    (interpreterState) stack->alloc(sizeof(BytecodeInterpreter));
  assert(fp - stack->sp() == istate_off, "should be");

  istate->set_locals(locals);
  istate->set_method(method);
  istate->set_self_link(istate);
  istate->set_prev_link(NULL);
  istate->set_thread(thread);
  istate->set_bcp(method->is_native() ? NULL : method->code_base());
  istate->set_constants(method->constants()->cache());
  istate->set_msg(BytecodeInterpreter::method_entry);
  istate->set_oop_temp(NULL);
  istate->set_mdx(NULL);
  istate->set_callee(NULL);

  istate->set_monitor_base((BasicObjectLock *) stack->sp());
  if (method->is_synchronized()) {
    BasicObjectLock *monitor =
      (BasicObjectLock *) stack->alloc(monitor_words * wordSize);
    oop object;
    if (method->is_static())
      object = method->constants()->pool_holder()->klass_part()->java_mirror();
    else
      object = (oop) locals[0];
    monitor->set_obj(object);
  }

  istate->set_stack_base(stack->sp());
  istate->set_stack(stack->sp() - 1);
  if (stack_words)
    stack->alloc(stack_words * wordSize);
  istate->set_stack_limit(stack->sp() - 1);

  return (InterpreterFrame *) fp;
}

int AbstractInterpreter::BasicType_as_index(BasicType type) {
  int i = 0;
  switch (type) {
    case T_BOOLEAN: i = 0; break;
    case T_CHAR   : i = 1; break;
    case T_BYTE   : i = 2; break;
    case T_SHORT  : i = 3; break;
    case T_INT    : i = 4; break;
    case T_LONG   : i = 5; break;
    case T_VOID   : i = 6; break;
    case T_FLOAT  : i = 7; break;
    case T_DOUBLE : i = 8; break;
    case T_OBJECT : i = 9; break;
    case T_ARRAY  : i = 9; break;
    default       : ShouldNotReachHere();
  }
  assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
         "index out of bounds");
  return i;
}

address InterpreterGenerator::generate_empty_entry() {
  if (!UseFastEmptyMethods)
    return NULL;

  return generate_entry((address) CppInterpreter::empty_entry);
}

address InterpreterGenerator::generate_accessor_entry() {
  if (!UseFastAccessorMethods)
    return NULL;

  return generate_entry((address) CppInterpreter::accessor_entry);
}

address InterpreterGenerator::generate_native_entry(bool synchronized) {
  assert(synchronized == false, "should be");

  return generate_entry((address) CppInterpreter::native_entry);
}

address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  assert(synchronized == false, "should be");

  return generate_entry((address) CppInterpreter::normal_entry);
}

address AbstractInterpreterGenerator::generate_method_entry(
    AbstractInterpreter::MethodKind kind) {
  address entry_point = NULL;

  switch (kind) {
  case Interpreter::zerolocals:
  case Interpreter::zerolocals_synchronized:
    break;

  case Interpreter::native:
    entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false);
    break;

  case Interpreter::native_synchronized:
    entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false);
    break;

  case Interpreter::empty:
    entry_point = ((InterpreterGenerator*) this)->generate_empty_entry();
    break;

  case Interpreter::accessor:
    entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry();
    break;

  case Interpreter::abstract:
    entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry();
    break;

  case Interpreter::method_handle:
    entry_point = ((InterpreterGenerator*) this)->generate_method_handle_entry();
    break;

  case Interpreter::java_lang_math_sin:
  case Interpreter::java_lang_math_cos:
  case Interpreter::java_lang_math_tan:
  case Interpreter::java_lang_math_abs:
  case Interpreter::java_lang_math_log:
  case Interpreter::java_lang_math_log10:
  case Interpreter::java_lang_math_sqrt:
    entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind);
    break;

  default:
    ShouldNotReachHere();
  }

  if (entry_point == NULL)
    entry_point = ((InterpreterGenerator*) this)->generate_normal_entry(false);

  return entry_point;
}

InterpreterGenerator::InterpreterGenerator(StubQueue* code)
 : CppInterpreterGenerator(code) {
   generate_all();
}

// Deoptimization helpers

InterpreterFrame *InterpreterFrame::build(ZeroStack* stack, int size) {
  int size_in_words = size >> LogBytesPerWord;
  assert(size_in_words * wordSize == size, "unaligned");
  assert(size_in_words >= header_words, "too small");

  if (size_in_words > stack->available_words()) {
    Unimplemented();
  }

  stack->push(0); // next_frame, filled in later
  intptr_t *fp = stack->sp();
  assert(fp - stack->sp() == next_frame_off, "should be");

  stack->push(INTERPRETER_FRAME);
  assert(fp - stack->sp() == frame_type_off, "should be");

  interpreterState istate =
    (interpreterState) stack->alloc(sizeof(BytecodeInterpreter));
  assert(fp - stack->sp() == istate_off, "should be");
  istate->set_self_link(NULL); // mark invalid

  stack->alloc((size_in_words - header_words) * wordSize);

  return (InterpreterFrame *) fp;
}

int AbstractInterpreter::layout_activation(methodOop method,
                                           int       tempcount,
                                           int       popframe_extra_args,
                                           int       moncount,
                                           int       callee_param_count,
                                           int       callee_locals,
                                           frame*    caller,
                                           frame*    interpreter_frame,
                                           bool      is_top_frame) {
  assert(popframe_extra_args == 0, "what to do?");
  assert(!is_top_frame || (!callee_locals && !callee_param_count),
         "top frame should have no caller")

  // This code must exactly match what InterpreterFrame::build
  // does (the full InterpreterFrame::build, that is, not the
  // one that creates empty frames for the deoptimizer).
  //
  // If interpreter_frame is not NULL then it will be filled in.
  // It's size is determined by a previous call to this method,
  // so it should be correct.
  //
  // Note that tempcount is the current size of the expression
  // stack.  For top most frames we will allocate a full sized
  // expression stack and not the trimmed version that non-top
  // frames have.

  int header_words        = InterpreterFrame::header_words;
  int monitor_words       = moncount * frame::interpreter_frame_monitor_size();
  int stack_words         = is_top_frame ? method->max_stack() : tempcount;
  int callee_extra_locals = callee_locals - callee_param_count;

  if (interpreter_frame) {
    intptr_t *locals        = interpreter_frame->sp() + method->max_locals();
    interpreterState istate = interpreter_frame->get_interpreterState();
    intptr_t *monitor_base  = (intptr_t*) istate;
    intptr_t *stack_base    = monitor_base - monitor_words;
    intptr_t *stack         = stack_base - tempcount - 1;

    BytecodeInterpreter::layout_interpreterState(istate,
                                                 caller,
                                                 NULL,
                                                 method,
                                                 locals,
                                                 stack,
                                                 stack_base,
                                                 monitor_base,
                                                 NULL,
                                                 is_top_frame);
  }
  return header_words + monitor_words + stack_words + callee_extra_locals;
}

void BytecodeInterpreter::layout_interpreterState(interpreterState istate,
                                                  frame*    caller,
                                                  frame*    current,
                                                  methodOop method,
                                                  intptr_t* locals,
                                                  intptr_t* stack,
                                                  intptr_t* stack_base,
                                                  intptr_t* monitor_base,
                                                  intptr_t* frame_bottom,
                                                  bool      is_top_frame) {
  istate->set_locals(locals);
  istate->set_method(method);
  istate->set_self_link(istate);
  istate->set_prev_link(NULL);
  // thread will be set by a hacky repurposing of frame::patch_pc()
  // bcp will be set by vframeArrayElement::unpack_on_stack()
  istate->set_constants(method->constants()->cache());
  istate->set_msg(BytecodeInterpreter::method_resume);
  istate->set_bcp_advance(0);
  istate->set_oop_temp(NULL);
  istate->set_mdx(NULL);
  if (caller->is_interpreted_frame()) {
    interpreterState prev = caller->get_interpreterState();
    prev->set_callee(method);
    if (*prev->bcp() == Bytecodes::_invokeinterface)
      prev->set_bcp_advance(5);
    else
      prev->set_bcp_advance(3);
  }
  istate->set_callee(NULL);
  istate->set_monitor_base((BasicObjectLock *) monitor_base);
  istate->set_stack_base(stack_base);
  istate->set_stack(stack);
  istate->set_stack_limit(stack_base - method->max_stack() - 1);
}

address CppInterpreter::return_entry(TosState state, int length) {
  ShouldNotCallThis();
}

address CppInterpreter::deopt_entry(TosState state, int length) {
  return NULL;
}

// Helper for (runtime) stack overflow checks

int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  return 0;
}

// Helper for figuring out if frames are interpreter frames

bool CppInterpreter::contains(address pc) {
#ifdef PRODUCT
  ShouldNotCallThis();
#else
  return false; // make frame::print_value_on work
#endif // !PRODUCT
}

// Result handlers and convertors

address CppInterpreterGenerator::generate_result_handler_for(
    BasicType type) {
  assembler()->advance(1);
  return ShouldNotCallThisStub();
}

address CppInterpreterGenerator::generate_tosca_to_stack_converter(
    BasicType type) {
  assembler()->advance(1);
  return ShouldNotCallThisStub();
}

address CppInterpreterGenerator::generate_stack_to_stack_converter(
    BasicType type) {
  assembler()->advance(1);
  return ShouldNotCallThisStub();
}

address CppInterpreterGenerator::generate_stack_to_native_abi_converter(
    BasicType type) {
  assembler()->advance(1);
  return ShouldNotCallThisStub();
}

#endif // CC_INTERP