stubGenerator_x86_64.cpp 145.1 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25
#include "precompiled.hpp"
26 27
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
28 29 30
#include "interpreter/interpreter.hpp"
#include "nativeInst_x86.hpp"
#include "oops/instanceOop.hpp"
31
#include "oops/method.hpp"
32 33 34 35 36 37 38 39
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
40
#include "runtime/thread.inline.hpp"
41 42 43 44
#include "utilities/top.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
D
duke 已提交
45 46 47 48 49 50

// Declaration and definition of StubGenerator (no .hpp file).
// For a more detailed description of the stub routine structure
// see the comment in stubRoutines.hpp

#define __ _masm->
51
#define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
52
#define a__ ((Assembler*)_masm)->
D
duke 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions

// Stub Code definitions

static address handle_unsafe_access() {
  JavaThread* thread = JavaThread::current();
  address pc = thread->saved_exception_pc();
  // pc is the instruction which we must emulate
  // doing a no-op is fine:  return garbage from the load
  // therefore, compute npc
  address npc = Assembler::locate_next_instruction(pc);

  // request an async exception
  thread->set_pending_unsafe_access_error();

  // return address of next instruction to execute
  return npc;
}

class StubGenerator: public StubCodeGenerator {
 private:

#ifdef PRODUCT
84
#define inc_counter_np(counter) ((void)0)
D
duke 已提交
85 86
#else
  void inc_counter_np_(int& counter) {
87
    // This can destroy rscratch1 if counter is far from the code cache
D
duke 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100
    __ incrementl(ExternalAddress((address)&counter));
  }
#define inc_counter_np(counter) \
  BLOCK_COMMENT("inc_counter " #counter); \
  inc_counter_np_(counter);
#endif

  // Call stubs are used to call Java from C
  //
  // Linux Arguments:
  //    c_rarg0:   call wrapper address                   address
  //    c_rarg1:   result                                 address
  //    c_rarg2:   result type                            BasicType
101
  //    c_rarg3:   method                                 Method*
D
duke 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  //    c_rarg4:   (interpreter) entry point              address
  //    c_rarg5:   parameters                             intptr_t*
  //    16(rbp): parameter size (in words)              int
  //    24(rbp): thread                                 Thread*
  //
  //     [ return_from_Java     ] <--- rsp
  //     [ argument word n      ]
  //      ...
  // -12 [ argument word 1      ]
  // -11 [ saved r15            ] <--- rsp_after_call
  // -10 [ saved r14            ]
  //  -9 [ saved r13            ]
  //  -8 [ saved r12            ]
  //  -7 [ saved rbx            ]
  //  -6 [ call wrapper         ]
  //  -5 [ result               ]
  //  -4 [ result type          ]
  //  -3 [ method               ]
  //  -2 [ entry point          ]
  //  -1 [ parameters           ]
  //   0 [ saved rbp            ] <--- rbp
  //   1 [ return address       ]
  //   2 [ parameter size       ]
  //   3 [ thread               ]
  //
  // Windows Arguments:
  //    c_rarg0:   call wrapper address                   address
  //    c_rarg1:   result                                 address
  //    c_rarg2:   result type                            BasicType
131
  //    c_rarg3:   method                                 Method*
D
duke 已提交
132 133 134 135 136 137 138 139
  //    48(rbp): (interpreter) entry point              address
  //    56(rbp): parameters                             intptr_t*
  //    64(rbp): parameter size (in words)              int
  //    72(rbp): thread                                 Thread*
  //
  //     [ return_from_Java     ] <--- rsp
  //     [ argument word n      ]
  //      ...
140 141 142 143 144
  // -28 [ argument word 1      ]
  // -27 [ saved xmm15          ] <--- rsp_after_call
  //     [ saved xmm7-xmm14     ]
  //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
  //  -7 [ saved r15            ]
D
duke 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  //  -6 [ saved r14            ]
  //  -5 [ saved r13            ]
  //  -4 [ saved r12            ]
  //  -3 [ saved rdi            ]
  //  -2 [ saved rsi            ]
  //  -1 [ saved rbx            ]
  //   0 [ saved rbp            ] <--- rbp
  //   1 [ return address       ]
  //   2 [ call wrapper         ]
  //   3 [ result               ]
  //   4 [ result type          ]
  //   5 [ method               ]
  //   6 [ entry point          ]
  //   7 [ parameters           ]
  //   8 [ parameter size       ]
  //   9 [ thread               ]
  //
  //    Windows reserves the callers stack space for arguments 1-4.
  //    We spill c_rarg0-c_rarg3 to this space.

  // Call stub stack layout word offsets from rbp
  enum call_stub_layout {
#ifdef _WIN64
168 169 170 171 172
    xmm_save_first     = 6,  // save from xmm6
    xmm_save_last      = 15, // to xmm15
    xmm_save_base      = -9,
    rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
    r15_off            = -7,
D
duke 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    r14_off            = -6,
    r13_off            = -5,
    r12_off            = -4,
    rdi_off            = -3,
    rsi_off            = -2,
    rbx_off            = -1,
    rbp_off            =  0,
    retaddr_off        =  1,
    call_wrapper_off   =  2,
    result_off         =  3,
    result_type_off    =  4,
    method_off         =  5,
    entry_point_off    =  6,
    parameters_off     =  7,
    parameter_size_off =  8,
    thread_off         =  9
#else
    rsp_after_call_off = -12,
    mxcsr_off          = rsp_after_call_off,
    r15_off            = -11,
    r14_off            = -10,
    r13_off            = -9,
    r12_off            = -8,
    rbx_off            = -7,
    call_wrapper_off   = -6,
    result_off         = -5,
    result_type_off    = -4,
    method_off         = -3,
    entry_point_off    = -2,
    parameters_off     = -1,
    rbp_off            =  0,
    retaddr_off        =  1,
    parameter_size_off =  2,
    thread_off         =  3
#endif
  };

210 211 212 213 214 215 216
#ifdef _WIN64
  Address xmm_save(int reg) {
    assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
    return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
  }
#endif

D
duke 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  address generate_call_stub(address& return_address) {
    assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
           (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
           "adjust this code");
    StubCodeMark mark(this, "StubRoutines", "call_stub");
    address start = __ pc();

    // same as in generate_catch_exception()!
    const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);

    const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
    const Address result        (rbp, result_off         * wordSize);
    const Address result_type   (rbp, result_type_off    * wordSize);
    const Address method        (rbp, method_off         * wordSize);
    const Address entry_point   (rbp, entry_point_off    * wordSize);
    const Address parameters    (rbp, parameters_off     * wordSize);
    const Address parameter_size(rbp, parameter_size_off * wordSize);

    // same as in generate_catch_exception()!
    const Address thread        (rbp, thread_off         * wordSize);

    const Address r15_save(rbp, r15_off * wordSize);
    const Address r14_save(rbp, r14_off * wordSize);
    const Address r13_save(rbp, r13_off * wordSize);
    const Address r12_save(rbp, r12_off * wordSize);
    const Address rbx_save(rbp, rbx_off * wordSize);

    // stub code
    __ enter();
246
    __ subptr(rsp, -rsp_after_call_off * wordSize);
D
duke 已提交
247 248 249

    // save register parameters
#ifndef _WIN64
250 251
    __ movptr(parameters,   c_rarg5); // parameters
    __ movptr(entry_point,  c_rarg4); // entry_point
D
duke 已提交
252 253
#endif

254 255 256 257
    __ movptr(method,       c_rarg3); // method
    __ movl(result_type,  c_rarg2);   // result type
    __ movptr(result,       c_rarg1); // result
    __ movptr(call_wrapper, c_rarg0); // call wrapper
D
duke 已提交
258 259

    // save regs belonging to calling function
260 261 262 263 264
    __ movptr(rbx_save, rbx);
    __ movptr(r12_save, r12);
    __ movptr(r13_save, r13);
    __ movptr(r14_save, r14);
    __ movptr(r15_save, r15);
D
duke 已提交
265
#ifdef _WIN64
266 267 268 269
    for (int i = 6; i <= 15; i++) {
      __ movdqu(xmm_save(i), as_XMMRegister(i));
    }

D
duke 已提交
270 271 272
    const Address rdi_save(rbp, rdi_off * wordSize);
    const Address rsi_save(rbp, rsi_off * wordSize);

273 274
    __ movptr(rsi_save, rsi);
    __ movptr(rdi_save, rdi);
D
duke 已提交
275 276 277 278 279 280 281
#else
    const Address mxcsr_save(rbp, mxcsr_off * wordSize);
    {
      Label skip_ldmx;
      __ stmxcsr(mxcsr_save);
      __ movl(rax, mxcsr_save);
      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
282
      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
D
duke 已提交
283 284 285 286 287 288 289 290
      __ cmp32(rax, mxcsr_std);
      __ jcc(Assembler::equal, skip_ldmx);
      __ ldmxcsr(mxcsr_std);
      __ bind(skip_ldmx);
    }
#endif

    // Load up thread register
291
    __ movptr(r15_thread, thread);
292
    __ reinit_heapbase();
D
duke 已提交
293 294 295 296 297

#ifdef ASSERT
    // make sure we have no pending exceptions
    {
      Label L;
298
      __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
D
duke 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312
      __ jcc(Assembler::equal, L);
      __ stop("StubRoutines::call_stub: entered with pending exception");
      __ bind(L);
    }
#endif

    // pass parameters if any
    BLOCK_COMMENT("pass parameters if any");
    Label parameters_done;
    __ movl(c_rarg3, parameter_size);
    __ testl(c_rarg3, c_rarg3);
    __ jcc(Assembler::zero, parameters_done);

    Label loop;
313 314
    __ movptr(c_rarg2, parameters);       // parameter pointer
    __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
D
duke 已提交
315
    __ BIND(loop);
316 317 318 319
    __ movptr(rax, Address(c_rarg2, 0));// get parameter
    __ addptr(c_rarg2, wordSize);       // advance to next parameter
    __ decrementl(c_rarg1);             // decrement counter
    __ push(rax);                       // pass parameter
D
duke 已提交
320 321 322 323
    __ jcc(Assembler::notZero, loop);

    // call Java function
    __ BIND(parameters_done);
324
    __ movptr(rbx, method);             // get Method*
325 326
    __ movptr(c_rarg1, entry_point);    // get entry_point
    __ mov(r13, rsp);                   // set sender sp
D
duke 已提交
327 328 329 330 331 332 333 334
    BLOCK_COMMENT("call Java function");
    __ call(c_rarg1);

    BLOCK_COMMENT("call_stub_return_address:");
    return_address = __ pc();

    // store result depending on type (everything that is not
    // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
335
    __ movptr(c_rarg0, result);
D
duke 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    Label is_long, is_float, is_double, exit;
    __ movl(c_rarg1, result_type);
    __ cmpl(c_rarg1, T_OBJECT);
    __ jcc(Assembler::equal, is_long);
    __ cmpl(c_rarg1, T_LONG);
    __ jcc(Assembler::equal, is_long);
    __ cmpl(c_rarg1, T_FLOAT);
    __ jcc(Assembler::equal, is_float);
    __ cmpl(c_rarg1, T_DOUBLE);
    __ jcc(Assembler::equal, is_double);

    // handle T_INT case
    __ movl(Address(c_rarg0, 0), rax);

    __ BIND(exit);

    // pop parameters
353
    __ lea(rsp, rsp_after_call);
D
duke 已提交
354 355 356 357 358

#ifdef ASSERT
    // verify that threads correspond
    {
      Label L, S;
359
      __ cmpptr(r15_thread, thread);
D
duke 已提交
360 361
      __ jcc(Assembler::notEqual, S);
      __ get_thread(rbx);
362
      __ cmpptr(r15_thread, rbx);
D
duke 已提交
363 364 365 366 367 368 369 370 371
      __ jcc(Assembler::equal, L);
      __ bind(S);
      __ jcc(Assembler::equal, L);
      __ stop("StubRoutines::call_stub: threads must correspond");
      __ bind(L);
    }
#endif

    // restore regs belonging to calling function
372 373 374 375 376
#ifdef _WIN64
    for (int i = 15; i >= 6; i--) {
      __ movdqu(as_XMMRegister(i), xmm_save(i));
    }
#endif
377 378 379 380 381
    __ movptr(r15, r15_save);
    __ movptr(r14, r14_save);
    __ movptr(r13, r13_save);
    __ movptr(r12, r12_save);
    __ movptr(rbx, rbx_save);
D
duke 已提交
382 383

#ifdef _WIN64
384 385
    __ movptr(rdi, rdi_save);
    __ movptr(rsi, rsi_save);
D
duke 已提交
386 387 388 389 390
#else
    __ ldmxcsr(mxcsr_save);
#endif

    // restore rsp
391
    __ addptr(rsp, -rsp_after_call_off * wordSize);
D
duke 已提交
392 393

    // return
394
    __ pop(rbp);
D
duke 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    __ ret(0);

    // handle return types different from T_INT
    __ BIND(is_long);
    __ movq(Address(c_rarg0, 0), rax);
    __ jmp(exit);

    __ BIND(is_float);
    __ movflt(Address(c_rarg0, 0), xmm0);
    __ jmp(exit);

    __ BIND(is_double);
    __ movdbl(Address(c_rarg0, 0), xmm0);
    __ jmp(exit);

    return start;
  }

  // Return point for a Java call if there's an exception thrown in
  // Java code.  The exception is caught and transformed into a
  // pending exception stored in JavaThread that can be tested from
  // within the VM.
  //
  // Note: Usually the parameters are removed by the callee. In case
  // of an exception crossing an activation frame boundary, that is
  // not the case if the callee is compiled code => need to setup the
  // rsp.
  //
  // rax: exception oop

  address generate_catch_exception() {
    StubCodeMark mark(this, "StubRoutines", "catch_exception");
    address start = __ pc();

    // same as in generate_call_stub():
    const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
    const Address thread        (rbp, thread_off         * wordSize);

#ifdef ASSERT
    // verify that threads correspond
    {
      Label L, S;
437
      __ cmpptr(r15_thread, thread);
D
duke 已提交
438 439
      __ jcc(Assembler::notEqual, S);
      __ get_thread(rbx);
440
      __ cmpptr(r15_thread, rbx);
D
duke 已提交
441 442 443 444 445 446 447 448 449 450
      __ jcc(Assembler::equal, L);
      __ bind(S);
      __ stop("StubRoutines::catch_exception: threads must correspond");
      __ bind(L);
    }
#endif

    // set pending exception
    __ verify_oop(rax);

451
    __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
D
duke 已提交
452
    __ lea(rscratch1, ExternalAddress((address)__FILE__));
453
    __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
D
duke 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);

    // complete return to VM
    assert(StubRoutines::_call_stub_return_address != NULL,
           "_call_stub_return_address must have been generated before");
    __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));

    return start;
  }

  // Continuation point for runtime calls returning with a pending
  // exception.  The pending exception check happened in the runtime
  // or native call stub.  The pending exception in Thread is
  // converted into a Java-level exception.
  //
  // Contract with Java-level exception handlers:
  // rax: exception
  // rdx: throwing pc
  //
  // NOTE: At entry of this stub, exception-pc must be on stack !!

  address generate_forward_exception() {
    StubCodeMark mark(this, "StubRoutines", "forward exception");
    address start = __ pc();

    // Upon entry, the sp points to the return address returning into
    // Java (interpreted or compiled) code; i.e., the return address
    // becomes the throwing pc.
    //
    // Arguments pushed before the runtime call are still on the stack
    // but the exception handler will reset the stack pointer ->
    // ignore them.  A potential result in registers can be ignored as
    // well.

#ifdef ASSERT
    // make sure this code is only executed if there is a pending exception
    {
      Label L;
492
      __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
D
duke 已提交
493 494 495 496 497 498 499
      __ jcc(Assembler::notEqual, L);
      __ stop("StubRoutines::forward exception: no pending exception (1)");
      __ bind(L);
    }
#endif

    // compute exception handler into rbx
500
    __ movptr(c_rarg0, Address(rsp, 0));
D
duke 已提交
501 502 503
    BLOCK_COMMENT("call exception_handler_for_return_address");
    __ call_VM_leaf(CAST_FROM_FN_PTR(address,
                         SharedRuntime::exception_handler_for_return_address),
504
                    r15_thread, c_rarg0);
505
    __ mov(rbx, rax);
D
duke 已提交
506 507

    // setup rax & rdx, remove return address & clear pending exception
508 509
    __ pop(rdx);
    __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
510
    __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
D
duke 已提交
511 512 513 514 515

#ifdef ASSERT
    // make sure exception is set
    {
      Label L;
516
      __ testptr(rax, rax);
D
duke 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
      __ jcc(Assembler::notEqual, L);
      __ stop("StubRoutines::forward exception: no pending exception (2)");
      __ bind(L);
    }
#endif

    // continue at exception handler (return address removed)
    // rax: exception
    // rbx: exception handler
    // rdx: throwing pc
    __ verify_oop(rax);
    __ jmp(rbx);

    return start;
  }

  // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
  //
  // Arguments :
  //    c_rarg0: exchange_value
  //    c_rarg0: dest
  //
  // Result:
  //    *dest <- ex, return (orig *dest)
  address generate_atomic_xchg() {
    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
    address start = __ pc();

    __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
    __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
    __ ret(0);

    return start;
  }

  // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
  //
  // Arguments :
  //    c_rarg0: exchange_value
  //    c_rarg1: dest
  //
  // Result:
  //    *dest <- ex, return (orig *dest)
  address generate_atomic_xchg_ptr() {
    StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
    address start = __ pc();

564 565
    __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
    __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
D
duke 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    __ ret(0);

    return start;
  }

  // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
  //                                         jint compare_value)
  //
  // Arguments :
  //    c_rarg0: exchange_value
  //    c_rarg1: dest
  //    c_rarg2: compare_value
  //
  // Result:
  //    if ( compare_value == *dest ) {
  //       *dest = exchange_value
  //       return compare_value;
  //    else
  //       return *dest;
  address generate_atomic_cmpxchg() {
    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
    address start = __ pc();

    __ movl(rax, c_rarg2);
   if ( os::is_MP() ) __ lock();
    __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
    __ ret(0);

    return start;
  }

  // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
  //                                             volatile jlong* dest,
  //                                             jlong compare_value)
  // Arguments :
  //    c_rarg0: exchange_value
  //    c_rarg1: dest
  //    c_rarg2: compare_value
  //
  // Result:
  //    if ( compare_value == *dest ) {
  //       *dest = exchange_value
  //       return compare_value;
  //    else
  //       return *dest;
  address generate_atomic_cmpxchg_long() {
    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
    address start = __ pc();

    __ movq(rax, c_rarg2);
   if ( os::is_MP() ) __ lock();
    __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
    __ ret(0);

    return start;
  }

  // Support for jint atomic::add(jint add_value, volatile jint* dest)
  //
  // Arguments :
  //    c_rarg0: add_value
  //    c_rarg1: dest
  //
  // Result:
  //    *dest += add_value
  //    return *dest;
  address generate_atomic_add() {
    StubCodeMark mark(this, "StubRoutines", "atomic_add");
    address start = __ pc();

    __ movl(rax, c_rarg0);
   if ( os::is_MP() ) __ lock();
    __ xaddl(Address(c_rarg1, 0), c_rarg0);
    __ addl(rax, c_rarg0);
    __ ret(0);

    return start;
  }

  // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
  //
  // Arguments :
  //    c_rarg0: add_value
  //    c_rarg1: dest
  //
  // Result:
  //    *dest += add_value
  //    return *dest;
  address generate_atomic_add_ptr() {
    StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
    address start = __ pc();

658
    __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
D
duke 已提交
659
   if ( os::is_MP() ) __ lock();
660 661
    __ xaddptr(Address(c_rarg1, 0), c_rarg0);
    __ addptr(rax, c_rarg0);
D
duke 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674
    __ ret(0);

    return start;
  }

  // Support for intptr_t OrderAccess::fence()
  //
  // Arguments :
  //
  // Result:
  address generate_orderaccess_fence() {
    StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
    address start = __ pc();
675
    __ membar(Assembler::StoreLoad);
D
duke 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    __ ret(0);

    return start;
  }

  // Support for intptr_t get_previous_fp()
  //
  // This routine is used to find the previous frame pointer for the
  // caller (current_frame_guess). This is used as part of debugging
  // ps() is seemingly lost trying to find frames.
  // This code assumes that caller current_frame_guess) has a frame.
  address generate_get_previous_fp() {
    StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
    const Address old_fp(rbp, 0);
    const Address older_fp(rax, 0);
    address start = __ pc();

    __ enter();
694 695 696
    __ movptr(rax, old_fp); // callers fp
    __ movptr(rax, older_fp); // the frame for ps()
    __ pop(rbp);
D
duke 已提交
697 698 699 700 701
    __ ret(0);

    return start;
  }

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
  // Support for intptr_t get_previous_sp()
  //
  // This routine is used to find the previous stack pointer for the
  // caller.
  address generate_get_previous_sp() {
    StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
    address start = __ pc();

    __ movptr(rax, rsp);
    __ addptr(rax, 8); // return address is at the top of the stack.
    __ ret(0);

    return start;
  }

D
duke 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  //----------------------------------------------------------------------------------------------------
  // Support for void verify_mxcsr()
  //
  // This routine is used with -Xcheck:jni to verify that native
  // JNI code does not return to Java code without restoring the
  // MXCSR register to our expected state.

  address generate_verify_mxcsr() {
    StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
    address start = __ pc();

    const Address mxcsr_save(rsp, 0);

    if (CheckJNICalls) {
      Label ok_ret;
732
      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
733 734
      __ push(rax);
      __ subptr(rsp, wordSize);      // allocate a temp location
D
duke 已提交
735 736 737
      __ stmxcsr(mxcsr_save);
      __ movl(rax, mxcsr_save);
      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
738
      __ cmp32(rax, mxcsr_std);
D
duke 已提交
739 740 741 742
      __ jcc(Assembler::equal, ok_ret);

      __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");

743
      __ ldmxcsr(mxcsr_std);
D
duke 已提交
744 745

      __ bind(ok_ret);
746 747
      __ addptr(rsp, wordSize);
      __ pop(rax);
D
duke 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
    }

    __ ret(0);

    return start;
  }

  address generate_f2i_fixup() {
    StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
    Address inout(rsp, 5 * wordSize); // return address + 4 saves

    address start = __ pc();

    Label L;

763 764 765 766
    __ push(rax);
    __ push(c_rarg3);
    __ push(c_rarg2);
    __ push(c_rarg1);
D
duke 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780

    __ movl(rax, 0x7f800000);
    __ xorl(c_rarg3, c_rarg3);
    __ movl(c_rarg2, inout);
    __ movl(c_rarg1, c_rarg2);
    __ andl(c_rarg1, 0x7fffffff);
    __ cmpl(rax, c_rarg1); // NaN? -> 0
    __ jcc(Assembler::negative, L);
    __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
    __ movl(c_rarg3, 0x80000000);
    __ movl(rax, 0x7fffffff);
    __ cmovl(Assembler::positive, c_rarg3, rax);

    __ bind(L);
781
    __ movptr(inout, c_rarg3);
D
duke 已提交
782

783 784 785 786
    __ pop(c_rarg1);
    __ pop(c_rarg2);
    __ pop(c_rarg3);
    __ pop(rax);
D
duke 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799

    __ ret(0);

    return start;
  }

  address generate_f2l_fixup() {
    StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
    Address inout(rsp, 5 * wordSize); // return address + 4 saves
    address start = __ pc();

    Label L;

800 801 802 803
    __ push(rax);
    __ push(c_rarg3);
    __ push(c_rarg2);
    __ push(c_rarg1);
D
duke 已提交
804 805 806 807 808 809 810 811 812 813 814

    __ movl(rax, 0x7f800000);
    __ xorl(c_rarg3, c_rarg3);
    __ movl(c_rarg2, inout);
    __ movl(c_rarg1, c_rarg2);
    __ andl(c_rarg1, 0x7fffffff);
    __ cmpl(rax, c_rarg1); // NaN? -> 0
    __ jcc(Assembler::negative, L);
    __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
    __ mov64(c_rarg3, 0x8000000000000000);
    __ mov64(rax, 0x7fffffffffffffff);
815
    __ cmov(Assembler::positive, c_rarg3, rax);
D
duke 已提交
816 817

    __ bind(L);
818
    __ movptr(inout, c_rarg3);
D
duke 已提交
819

820 821 822 823
    __ pop(c_rarg1);
    __ pop(c_rarg2);
    __ pop(c_rarg3);
    __ pop(rax);
D
duke 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837

    __ ret(0);

    return start;
  }

  address generate_d2i_fixup() {
    StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
    Address inout(rsp, 6 * wordSize); // return address + 5 saves

    address start = __ pc();

    Label L;

838 839 840 841 842
    __ push(rax);
    __ push(c_rarg3);
    __ push(c_rarg2);
    __ push(c_rarg1);
    __ push(c_rarg0);
D
duke 已提交
843 844 845 846

    __ movl(rax, 0x7ff00000);
    __ movq(c_rarg2, inout);
    __ movl(c_rarg3, c_rarg2);
847 848
    __ mov(c_rarg1, c_rarg2);
    __ mov(c_rarg0, c_rarg2);
D
duke 已提交
849
    __ negl(c_rarg3);
850
    __ shrptr(c_rarg1, 0x20);
D
duke 已提交
851 852 853 854 855 856 857
    __ orl(c_rarg3, c_rarg2);
    __ andl(c_rarg1, 0x7fffffff);
    __ xorl(c_rarg2, c_rarg2);
    __ shrl(c_rarg3, 0x1f);
    __ orl(c_rarg1, c_rarg3);
    __ cmpl(rax, c_rarg1);
    __ jcc(Assembler::negative, L); // NaN -> 0
858
    __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
D
duke 已提交
859 860
    __ movl(c_rarg2, 0x80000000);
    __ movl(rax, 0x7fffffff);
861
    __ cmov(Assembler::positive, c_rarg2, rax);
D
duke 已提交
862 863

    __ bind(L);
864
    __ movptr(inout, c_rarg2);
D
duke 已提交
865

866 867 868 869 870
    __ pop(c_rarg0);
    __ pop(c_rarg1);
    __ pop(c_rarg2);
    __ pop(c_rarg3);
    __ pop(rax);
D
duke 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884

    __ ret(0);

    return start;
  }

  address generate_d2l_fixup() {
    StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
    Address inout(rsp, 6 * wordSize); // return address + 5 saves

    address start = __ pc();

    Label L;

885 886 887 888 889
    __ push(rax);
    __ push(c_rarg3);
    __ push(c_rarg2);
    __ push(c_rarg1);
    __ push(c_rarg0);
D
duke 已提交
890 891 892 893

    __ movl(rax, 0x7ff00000);
    __ movq(c_rarg2, inout);
    __ movl(c_rarg3, c_rarg2);
894 895
    __ mov(c_rarg1, c_rarg2);
    __ mov(c_rarg0, c_rarg2);
D
duke 已提交
896
    __ negl(c_rarg3);
897
    __ shrptr(c_rarg1, 0x20);
D
duke 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
    __ orl(c_rarg3, c_rarg2);
    __ andl(c_rarg1, 0x7fffffff);
    __ xorl(c_rarg2, c_rarg2);
    __ shrl(c_rarg3, 0x1f);
    __ orl(c_rarg1, c_rarg3);
    __ cmpl(rax, c_rarg1);
    __ jcc(Assembler::negative, L); // NaN -> 0
    __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
    __ mov64(c_rarg2, 0x8000000000000000);
    __ mov64(rax, 0x7fffffffffffffff);
    __ cmovq(Assembler::positive, c_rarg2, rax);

    __ bind(L);
    __ movq(inout, c_rarg2);

913 914 915 916 917
    __ pop(c_rarg0);
    __ pop(c_rarg1);
    __ pop(c_rarg2);
    __ pop(c_rarg3);
    __ pop(rax);
D
duke 已提交
918 919 920 921 922 923 924

    __ ret(0);

    return start;
  }

  address generate_fp_mask(const char *stub_name, int64_t mask) {
925
    __ align(CodeEntryAlignment);
D
duke 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
    StubCodeMark mark(this, "StubRoutines", stub_name);
    address start = __ pc();

    __ emit_data64( mask, relocInfo::none );
    __ emit_data64( mask, relocInfo::none );

    return start;
  }

  // The following routine generates a subroutine to throw an
  // asynchronous UnknownError when an unsafe access gets a fault that
  // could not be reasonably prevented by the programmer.  (Example:
  // SIGBUS/OBJERR.)
  address generate_handler_for_unsafe_access() {
    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
    address start = __ pc();

943 944
    __ push(0);                       // hole for return address-to-be
    __ pusha();                       // push registers
D
duke 已提交
945 946
    Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);

947 948
    // FIXME: this probably needs alignment logic

949
    __ subptr(rsp, frame::arg_reg_save_area_bytes);
D
duke 已提交
950 951
    BLOCK_COMMENT("call handle_unsafe_access");
    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
952
    __ addptr(rsp, frame::arg_reg_save_area_bytes);
D
duke 已提交
953

954 955
    __ movptr(next_pc, rax);          // stuff next address
    __ popa();
D
duke 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968
    __ ret(0);                        // jump to next address

    return start;
  }

  // Non-destructive plausibility checks for oops
  //
  // Arguments:
  //    all args on stack!
  //
  // Stack after saving c_rarg3:
  //    [tos + 0]: saved c_rarg3
  //    [tos + 1]: saved c_rarg2
969 970 971 972 973 974
  //    [tos + 2]: saved r12 (several TemplateTable methods use it)
  //    [tos + 3]: saved flags
  //    [tos + 4]: return address
  //  * [tos + 5]: error message (char*)
  //  * [tos + 6]: object to verify (oop)
  //  * [tos + 7]: saved rax - saved by caller and bashed
K
kvn 已提交
975
  //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
D
duke 已提交
976 977 978 979 980 981 982
  //  * = popped on exit
  address generate_verify_oop() {
    StubCodeMark mark(this, "StubRoutines", "verify_oop");
    address start = __ pc();

    Label exit, error;

983
    __ pushf();
D
duke 已提交
984 985
    __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));

986
    __ push(r12);
987

D
duke 已提交
988
    // save c_rarg2 and c_rarg3
989 990
    __ push(c_rarg2);
    __ push(c_rarg3);
D
duke 已提交
991

992 993 994 995
    enum {
           // After previous pushes.
           oop_to_verify = 6 * wordSize,
           saved_rax     = 7 * wordSize,
K
kvn 已提交
996
           saved_r10     = 8 * wordSize,
997 998 999 1000 1001 1002

           // Before the call to MacroAssembler::debug(), see below.
           return_addr   = 16 * wordSize,
           error_msg     = 17 * wordSize
    };

D
duke 已提交
1003
    // get object
1004
    __ movptr(rax, Address(rsp, oop_to_verify));
D
duke 已提交
1005 1006

    // make sure object is 'reasonable'
1007
    __ testptr(rax, rax);
D
duke 已提交
1008 1009
    __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
    // Check if the oop is in the right area of memory
1010
    __ movptr(c_rarg2, rax);
1011
    __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
1012
    __ andptr(c_rarg2, c_rarg3);
1013
    __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
1014
    __ cmpptr(c_rarg2, c_rarg3);
D
duke 已提交
1015 1016
    __ jcc(Assembler::notZero, error);

1017 1018 1019
    // set r12 to heapbase for load_klass()
    __ reinit_heapbase();

1020
    // make sure klass is 'reasonable', which is not zero.
1021
    __ load_klass(rax, rax);  // get klass
1022
    __ testptr(rax, rax);
D
duke 已提交
1023
    __ jcc(Assembler::zero, error); // if klass is NULL it is broken
1024
    // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
D
duke 已提交
1025 1026 1027

    // return if everything seems ok
    __ bind(exit);
1028
    __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
K
kvn 已提交
1029
    __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1030 1031 1032 1033
    __ pop(c_rarg3);                             // restore c_rarg3
    __ pop(c_rarg2);                             // restore c_rarg2
    __ pop(r12);                                 // restore r12
    __ popf();                                   // restore flags
K
kvn 已提交
1034
    __ ret(4 * wordSize);                        // pop caller saved stuff
D
duke 已提交
1035 1036 1037

    // handle errors
    __ bind(error);
1038
    __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
K
kvn 已提交
1039
    __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1040 1041 1042 1043
    __ pop(c_rarg3);                             // get saved c_rarg3 back
    __ pop(c_rarg2);                             // get saved c_rarg2 back
    __ pop(r12);                                 // get saved r12 back
    __ popf();                                   // get saved flags off stack --
D
duke 已提交
1044 1045
                                                 // will be ignored

1046
    __ pusha();                                  // push registers
D
duke 已提交
1047 1048
                                                 // (rip is already
                                                 // already pushed)
1049
    // debug(char* msg, int64_t pc, int64_t regs[])
D
duke 已提交
1050 1051 1052 1053
    // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
    // pushed all the registers, so now the stack looks like:
    //     [tos +  0] 16 saved registers
    //     [tos + 16] return address
1054 1055 1056
    //   * [tos + 17] error message (char*)
    //   * [tos + 18] object to verify (oop)
    //   * [tos + 19] saved rax - saved by caller and bashed
K
kvn 已提交
1057
    //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1058 1059
    //   * = popped on exit

1060 1061 1062 1063 1064 1065
    __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
    __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
    __ movq(c_rarg2, rsp);                          // pass address of regs on stack
    __ mov(r12, rsp);                               // remember rsp
    __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
    __ andptr(rsp, -16);                            // align stack as required by ABI
D
duke 已提交
1066
    BLOCK_COMMENT("call MacroAssembler::debug");
1067 1068 1069
    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
    __ mov(rsp, r12);                               // restore rsp
    __ popa();                                      // pop registers (includes r12)
K
kvn 已提交
1070
    __ ret(4 * wordSize);                           // pop caller saved stuff
D
duke 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

    return start;
  }

  //
  // Verify that a register contains clean 32-bits positive value
  // (high 32-bits are 0) so it could be used in 64-bits shifts.
  //
  //  Input:
  //    Rint  -  32-bits value
  //    Rtmp  -  scratch
  //
  void assert_clean_int(Register Rint, Register Rtmp) {
#ifdef ASSERT
    Label L;
    assert_different_registers(Rtmp, Rint);
    __ movslq(Rtmp, Rint);
    __ cmpq(Rtmp, Rint);
1089
    __ jcc(Assembler::equal, L);
D
duke 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    __ stop("high 32-bits of int value are not 0");
    __ bind(L);
#endif
  }

  //  Generate overlap test for array copy stubs
  //
  //  Input:
  //     c_rarg0 - from
  //     c_rarg1 - to
  //     c_rarg2 - element count
  //
  //  Output:
  //     rax   - &from[element count - 1]
  //
  void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
    assert(no_overlap_target != NULL, "must be generated");
    array_overlap_test(no_overlap_target, NULL, sf);
  }
  void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
    array_overlap_test(NULL, &L_no_overlap, sf);
  }
  void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
    const Register from     = c_rarg0;
    const Register to       = c_rarg1;
    const Register count    = c_rarg2;
    const Register end_from = rax;

1118 1119
    __ cmpptr(to, from);
    __ lea(end_from, Address(from, count, sf, 0));
D
duke 已提交
1120 1121 1122
    if (NOLp == NULL) {
      ExternalAddress no_overlap(no_overlap_target);
      __ jump_cc(Assembler::belowEqual, no_overlap);
1123
      __ cmpptr(to, end_from);
D
duke 已提交
1124 1125 1126
      __ jump_cc(Assembler::aboveEqual, no_overlap);
    } else {
      __ jcc(Assembler::belowEqual, (*NOLp));
1127
      __ cmpptr(to, end_from);
D
duke 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
      __ jcc(Assembler::aboveEqual, (*NOLp));
    }
  }

  // Shuffle first three arg regs on Windows into Linux/Solaris locations.
  //
  // Outputs:
  //    rdi - rcx
  //    rsi - rdx
  //    rdx - r8
  //    rcx - r9
  //
  // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
  // are non-volatile.  r9 and r10 should not be used by the caller.
  //
  void setup_arg_regs(int nargs = 3) {
    const Register saved_rdi = r9;
    const Register saved_rsi = r10;
    assert(nargs == 3 || nargs == 4, "else fix");
#ifdef _WIN64
    assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
           "unexpected argument registers");
    if (nargs >= 4)
1151 1152 1153 1154 1155 1156
      __ mov(rax, r9);  // r9 is also saved_rdi
    __ movptr(saved_rdi, rdi);
    __ movptr(saved_rsi, rsi);
    __ mov(rdi, rcx); // c_rarg0
    __ mov(rsi, rdx); // c_rarg1
    __ mov(rdx, r8);  // c_rarg2
D
duke 已提交
1157
    if (nargs >= 4)
1158
      __ mov(rcx, rax); // c_rarg3 (via rax)
D
duke 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
#else
    assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
           "unexpected argument registers");
#endif
  }

  void restore_arg_regs() {
    const Register saved_rdi = r9;
    const Register saved_rsi = r10;
#ifdef _WIN64
1169 1170
    __ movptr(rdi, saved_rdi);
    __ movptr(rsi, saved_rsi);
D
duke 已提交
1171 1172 1173 1174 1175 1176
#endif
  }

  // Generate code for an array write pre barrier
  //
  //     addr    -  starting address
1177 1178
  //     count   -  element count
  //     tmp     - scratch register
D
duke 已提交
1179 1180 1181
  //
  //     Destroy no registers!
  //
1182
  void  gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
D
duke 已提交
1183 1184 1185 1186
    BarrierSet* bs = Universe::heap()->barrier_set();
    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
        // With G1, don't generate the call if we statically know that the target in uninitialized
        if (!dest_uninitialized) {
           __ pusha();                      // push registers
           if (count == c_rarg0) {
             if (addr == c_rarg1) {
               // exactly backwards!!
               __ xchgptr(c_rarg1, c_rarg0);
             } else {
               __ movptr(c_rarg1, count);
               __ movptr(c_rarg0, addr);
             }
           } else {
             __ movptr(c_rarg0, addr);
             __ movptr(c_rarg1, count);
           }
           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
           __ popa();
D
duke 已提交
1204
        }
1205
         break;
D
duke 已提交
1206 1207 1208 1209
      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
      case BarrierSet::ModRef:
        break;
1210
      default:
D
duke 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        ShouldNotReachHere();

    }
  }

  //
  // Generate code for an array write post barrier
  //
  //  Input:
  //     start    - register containing starting address of destination array
1221
  //     count    - elements count
D
duke 已提交
1222 1223 1224
  //     scratch  - scratch register
  //
  //  The input registers are overwritten.
1225 1226 1227
  //
  void  gen_write_ref_array_post_barrier(Register start, Register count, Register scratch) {
    assert_different_registers(start, count, scratch);
D
duke 已提交
1228 1229 1230 1231 1232
    BarrierSet* bs = Universe::heap()->barrier_set();
    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
        {
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
          __ pusha();             // push registers (overkill)
          if (c_rarg0 == count) { // On win64 c_rarg0 == rcx
            assert_different_registers(c_rarg1, start);
            __ mov(c_rarg1, count);
            __ mov(c_rarg0, start);
          } else {
            assert_different_registers(c_rarg0, count);
            __ mov(c_rarg0, start);
            __ mov(c_rarg1, count);
          }
1243
          __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
1244
          __ popa();
D
duke 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253
        }
        break;
      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
        {
          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");

          Label L_loop;
1254
          const Register end = count;
D
duke 已提交
1255

1256 1257 1258 1259 1260
          __ leaq(end, Address(start, count, TIMES_OOP, 0));  // end == start+count*oop_size
          __ subptr(end, BytesPerHeapOop); // end - 1 to make inclusive
          __ shrptr(start, CardTableModRefBS::card_shift);
          __ shrptr(end,   CardTableModRefBS::card_shift);
          __ subptr(end, start); // end --> cards count
1261

1262 1263
          int64_t disp = (int64_t) ct->byte_map_base;
          __ mov64(scratch, disp);
1264
          __ addptr(start, scratch);
D
duke 已提交
1265 1266
        __ BIND(L_loop);
          __ movb(Address(start, count, Address::times_1), 0);
1267
          __ decrement(count);
D
duke 已提交
1268 1269
          __ jcc(Assembler::greaterEqual, L_loop);
        }
1270 1271 1272 1273 1274 1275
        break;
      default:
        ShouldNotReachHere();

    }
  }
D
duke 已提交
1276

1277

D
duke 已提交
1278 1279 1280 1281 1282 1283 1284
  // Copy big chunks forward
  //
  // Inputs:
  //   end_from     - source arrays end address
  //   end_to       - destination array end address
  //   qword_count  - 64-bits element count, negative
  //   to           - scratch
1285
  //   L_copy_bytes - entry label
D
duke 已提交
1286 1287
  //   L_copy_8_bytes  - exit  label
  //
1288
  void copy_bytes_forward(Register end_from, Register end_to,
D
duke 已提交
1289
                             Register qword_count, Register to,
1290
                             Label& L_copy_bytes, Label& L_copy_8_bytes) {
D
duke 已提交
1291 1292
    DEBUG_ONLY(__ stop("enter at entry label, not here"));
    Label L_loop;
1293
    __ align(OptoLoopAlignment);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    if (UseUnalignedLoadStores) {
      Label L_end;
      // Copy 64-bytes per iteration
      __ BIND(L_loop);
      if (UseAVX >= 2) {
        __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
        __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
        __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24));
        __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
      } else {
        __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
        __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
        __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40));
        __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1);
        __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24));
        __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2);
        __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8));
        __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3);
      }
      __ BIND(L_copy_bytes);
      __ addptr(qword_count, 8);
      __ jcc(Assembler::lessEqual, L_loop);
      __ subptr(qword_count, 4);  // sub(8) and add(4)
      __ jccb(Assembler::greater, L_end);
      // Copy trailing 32 bytes
      if (UseAVX >= 2) {
        __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
        __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
      } else {
        __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
        __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
        __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
        __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
      }
      __ addptr(qword_count, 4);
      __ BIND(L_end);
1330 1331 1332 1333
      if (UseAVX >= 2) {
        // clean upper bits of YMM registers
        __ vzeroupper();
      }
1334
    } else {
1335 1336
      // Copy 32-bytes per iteration
      __ BIND(L_loop);
1337 1338 1339 1340 1341 1342 1343 1344
      __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
      __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
      __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
      __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
      __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
      __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
      __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
      __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1345 1346 1347 1348

      __ BIND(L_copy_bytes);
      __ addptr(qword_count, 4);
      __ jcc(Assembler::lessEqual, L_loop);
1349
    }
1350
    __ subptr(qword_count, 4);
D
duke 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
    __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
  }

  // Copy big chunks backward
  //
  // Inputs:
  //   from         - source arrays address
  //   dest         - destination array address
  //   qword_count  - 64-bits element count
  //   to           - scratch
1361
  //   L_copy_bytes - entry label
D
duke 已提交
1362 1363
  //   L_copy_8_bytes  - exit  label
  //
1364
  void copy_bytes_backward(Register from, Register dest,
D
duke 已提交
1365
                              Register qword_count, Register to,
1366
                              Label& L_copy_bytes, Label& L_copy_8_bytes) {
D
duke 已提交
1367 1368
    DEBUG_ONLY(__ stop("enter at entry label, not here"));
    Label L_loop;
1369
    __ align(OptoLoopAlignment);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    if (UseUnalignedLoadStores) {
      Label L_end;
      // Copy 64-bytes per iteration
      __ BIND(L_loop);
      if (UseAVX >= 2) {
        __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
        __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
        __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
        __ vmovdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
      } else {
        __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48));
        __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0);
        __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32));
        __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1);
        __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16));
        __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2);
        __ movdqu(xmm3, Address(from, qword_count, Address::times_8,  0));
        __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm3);
      }
      __ BIND(L_copy_bytes);
      __ subptr(qword_count, 8);
      __ jcc(Assembler::greaterEqual, L_loop);

      __ addptr(qword_count, 4);  // add(8) and sub(4)
      __ jccb(Assembler::less, L_end);
      // Copy trailing 32 bytes
      if (UseAVX >= 2) {
        __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0));
        __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0);
      } else {
        __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
        __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
        __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
        __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
      }
      __ subptr(qword_count, 4);
      __ BIND(L_end);
1407 1408 1409 1410
      if (UseAVX >= 2) {
        // clean upper bits of YMM registers
        __ vzeroupper();
      }
1411
    } else {
1412 1413
      // Copy 32-bytes per iteration
      __ BIND(L_loop);
1414 1415 1416 1417 1418 1419 1420 1421
      __ movq(to, Address(from, qword_count, Address::times_8, 24));
      __ movq(Address(dest, qword_count, Address::times_8, 24), to);
      __ movq(to, Address(from, qword_count, Address::times_8, 16));
      __ movq(Address(dest, qword_count, Address::times_8, 16), to);
      __ movq(to, Address(from, qword_count, Address::times_8,  8));
      __ movq(Address(dest, qword_count, Address::times_8,  8), to);
      __ movq(to, Address(from, qword_count, Address::times_8,  0));
      __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1422 1423 1424 1425

      __ BIND(L_copy_bytes);
      __ subptr(qword_count, 4);
      __ jcc(Assembler::greaterEqual, L_loop);
1426
    }
1427
    __ addptr(qword_count, 4);
D
duke 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
  }


  // Arguments:
  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  //             ignored
  //   name    - stub name string
  //
  // Inputs:
  //   c_rarg0   - source array address
  //   c_rarg1   - destination array address
  //   c_rarg2   - element count, treated as ssize_t, can be zero
  //
  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  // we let the hardware handle it.  The one to eight bytes within words,
  // dwords or qwords that span cache line boundaries will still be loaded
  // and stored atomically.
  //
  // Side Effects:
  //   disjoint_byte_copy_entry is set to the no-overlap entry point
  //   used by generate_conjoint_byte_copy().
  //
1451
  address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
D
duke 已提交
1452 1453 1454 1455
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

1456
    Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
D
duke 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
    Label L_copy_byte, L_exit;
    const Register from        = rdi;  // source array address
    const Register to          = rsi;  // destination array address
    const Register count       = rdx;  // elements count
    const Register byte_count  = rcx;
    const Register qword_count = count;
    const Register end_from    = from; // source array end address
    const Register end_to      = to;   // destination array end address
    // End pointers are inclusive, and if count is not zero they point
    // to the last unit copied:  end_to[0] := end_from[0]

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.

1471 1472 1473 1474 1475
    if (entry != NULL) {
      *entry = __ pc();
       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
1476 1477 1478 1479 1480

    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
                      // r9 and r10 may be used to save non-volatile registers

    // 'from', 'to' and 'count' are now valid
1481 1482
    __ movptr(byte_count, count);
    __ shrptr(count, 3); // count => qword_count
D
duke 已提交
1483 1484

    // Copy from low to high addresses.  Use 'to' as scratch.
1485 1486 1487
    __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
    __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
    __ negptr(qword_count); // make the count negative
1488
    __ jmp(L_copy_bytes);
D
duke 已提交
1489 1490 1491 1492 1493

    // Copy trailing qwords
  __ BIND(L_copy_8_bytes);
    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1494
    __ increment(qword_count);
D
duke 已提交
1495 1496 1497 1498
    __ jcc(Assembler::notZero, L_copy_8_bytes);

    // Check for and copy trailing dword
  __ BIND(L_copy_4_bytes);
1499
    __ testl(byte_count, 4);
D
duke 已提交
1500 1501 1502 1503
    __ jccb(Assembler::zero, L_copy_2_bytes);
    __ movl(rax, Address(end_from, 8));
    __ movl(Address(end_to, 8), rax);

1504 1505
    __ addptr(end_from, 4);
    __ addptr(end_to, 4);
D
duke 已提交
1506 1507 1508

    // Check for and copy trailing word
  __ BIND(L_copy_2_bytes);
1509
    __ testl(byte_count, 2);
D
duke 已提交
1510 1511 1512 1513
    __ jccb(Assembler::zero, L_copy_byte);
    __ movw(rax, Address(end_from, 8));
    __ movw(Address(end_to, 8), rax);

1514 1515
    __ addptr(end_from, 2);
    __ addptr(end_to, 2);
D
duke 已提交
1516 1517 1518

    // Check for and copy trailing byte
  __ BIND(L_copy_byte);
1519
    __ testl(byte_count, 1);
D
duke 已提交
1520 1521 1522 1523 1524 1525
    __ jccb(Assembler::zero, L_exit);
    __ movb(rax, Address(end_from, 8));
    __ movb(Address(end_to, 8), rax);

  __ BIND(L_exit);
    restore_arg_regs();
1526
    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1527
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1528 1529 1530
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

1531 1532
    // Copy in multi-bytes chunks
    copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
D
duke 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    __ jmp(L_copy_4_bytes);

    return start;
  }

  // Arguments:
  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  //             ignored
  //   name    - stub name string
  //
  // Inputs:
  //   c_rarg0   - source array address
  //   c_rarg1   - destination array address
  //   c_rarg2   - element count, treated as ssize_t, can be zero
  //
  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  // we let the hardware handle it.  The one to eight bytes within words,
  // dwords or qwords that span cache line boundaries will still be loaded
  // and stored atomically.
  //
1553 1554
  address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
                                      address* entry, const char *name) {
D
duke 已提交
1555 1556 1557 1558
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

1559
    Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
D
duke 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568
    const Register from        = rdi;  // source array address
    const Register to          = rsi;  // destination array address
    const Register count       = rdx;  // elements count
    const Register byte_count  = rcx;
    const Register qword_count = count;

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.

1569 1570 1571 1572 1573
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
1574

1575
    array_overlap_test(nooverlap_target, Address::times_1);
D
duke 已提交
1576 1577 1578 1579
    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
                      // r9 and r10 may be used to save non-volatile registers

    // 'from', 'to' and 'count' are now valid
1580 1581
    __ movptr(byte_count, count);
    __ shrptr(count, 3);   // count => qword_count
D
duke 已提交
1582 1583 1584 1585

    // Copy from high to low addresses.

    // Check for and copy trailing byte
1586
    __ testl(byte_count, 1);
D
duke 已提交
1587 1588 1589
    __ jcc(Assembler::zero, L_copy_2_bytes);
    __ movb(rax, Address(from, byte_count, Address::times_1, -1));
    __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1590
    __ decrement(byte_count); // Adjust for possible trailing word
D
duke 已提交
1591 1592 1593

    // Check for and copy trailing word
  __ BIND(L_copy_2_bytes);
1594
    __ testl(byte_count, 2);
D
duke 已提交
1595 1596 1597 1598 1599 1600
    __ jcc(Assembler::zero, L_copy_4_bytes);
    __ movw(rax, Address(from, byte_count, Address::times_1, -2));
    __ movw(Address(to, byte_count, Address::times_1, -2), rax);

    // Check for and copy trailing dword
  __ BIND(L_copy_4_bytes);
1601
    __ testl(byte_count, 4);
1602
    __ jcc(Assembler::zero, L_copy_bytes);
D
duke 已提交
1603 1604
    __ movl(rax, Address(from, qword_count, Address::times_8));
    __ movl(Address(to, qword_count, Address::times_8), rax);
1605
    __ jmp(L_copy_bytes);
D
duke 已提交
1606 1607 1608 1609 1610

    // Copy trailing qwords
  __ BIND(L_copy_8_bytes);
    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1611
    __ decrement(qword_count);
D
duke 已提交
1612 1613 1614
    __ jcc(Assembler::notZero, L_copy_8_bytes);

    restore_arg_regs();
1615
    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1616
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1617 1618 1619
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

1620 1621
    // Copy in multi-bytes chunks
    copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
D
duke 已提交
1622 1623

    restore_arg_regs();
1624
    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1625
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }

  // Arguments:
  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  //             ignored
  //   name    - stub name string
  //
  // Inputs:
  //   c_rarg0   - source array address
  //   c_rarg1   - destination array address
  //   c_rarg2   - element count, treated as ssize_t, can be zero
  //
  // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  // let the hardware handle it.  The two or four words within dwords
  // or qwords that span cache line boundaries will still be loaded
  // and stored atomically.
  //
  // Side Effects:
  //   disjoint_short_copy_entry is set to the no-overlap entry point
  //   used by generate_conjoint_short_copy().
  //
1651
  address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
D
duke 已提交
1652 1653 1654 1655
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

1656
    Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
D
duke 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
    const Register from        = rdi;  // source array address
    const Register to          = rsi;  // destination array address
    const Register count       = rdx;  // elements count
    const Register word_count  = rcx;
    const Register qword_count = count;
    const Register end_from    = from; // source array end address
    const Register end_to      = to;   // destination array end address
    // End pointers are inclusive, and if count is not zero they point
    // to the last unit copied:  end_to[0] := end_from[0]

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.

1670 1671 1672 1673 1674
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
1675 1676 1677 1678 1679

    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
                      // r9 and r10 may be used to save non-volatile registers

    // 'from', 'to' and 'count' are now valid
1680 1681
    __ movptr(word_count, count);
    __ shrptr(count, 2); // count => qword_count
D
duke 已提交
1682 1683

    // Copy from low to high addresses.  Use 'to' as scratch.
1684 1685 1686
    __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
    __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
    __ negptr(qword_count);
1687
    __ jmp(L_copy_bytes);
D
duke 已提交
1688 1689 1690 1691 1692

    // Copy trailing qwords
  __ BIND(L_copy_8_bytes);
    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1693
    __ increment(qword_count);
D
duke 已提交
1694 1695 1696 1697 1698 1699 1700
    __ jcc(Assembler::notZero, L_copy_8_bytes);

    // Original 'dest' is trashed, so we can't use it as a
    // base register for a possible trailing word copy

    // Check for and copy trailing dword
  __ BIND(L_copy_4_bytes);
1701
    __ testl(word_count, 2);
D
duke 已提交
1702 1703 1704 1705
    __ jccb(Assembler::zero, L_copy_2_bytes);
    __ movl(rax, Address(end_from, 8));
    __ movl(Address(end_to, 8), rax);

1706 1707
    __ addptr(end_from, 4);
    __ addptr(end_to, 4);
D
duke 已提交
1708 1709 1710

    // Check for and copy trailing word
  __ BIND(L_copy_2_bytes);
1711
    __ testl(word_count, 1);
D
duke 已提交
1712 1713 1714 1715 1716 1717
    __ jccb(Assembler::zero, L_exit);
    __ movw(rax, Address(end_from, 8));
    __ movw(Address(end_to, 8), rax);

  __ BIND(L_exit);
    restore_arg_regs();
1718
    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1719
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1720 1721 1722
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

1723 1724
    // Copy in multi-bytes chunks
    copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
D
duke 已提交
1725 1726 1727 1728 1729
    __ jmp(L_copy_4_bytes);

    return start;
  }

N
never 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
  address generate_fill(BasicType t, bool aligned, const char *name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    BLOCK_COMMENT("Entry:");

    const Register to       = c_rarg0;  // source array address
    const Register value    = c_rarg1;  // value
    const Register count    = c_rarg2;  // elements count

    __ enter(); // required for proper stackwalking of RuntimeStub frame

    __ generate_fill(t, aligned, to, value, count, rax, xmm0);

    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);
    return start;
  }

D
duke 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
  // Arguments:
  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  //             ignored
  //   name    - stub name string
  //
  // Inputs:
  //   c_rarg0   - source array address
  //   c_rarg1   - destination array address
  //   c_rarg2   - element count, treated as ssize_t, can be zero
  //
  // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  // let the hardware handle it.  The two or four words within dwords
  // or qwords that span cache line boundaries will still be loaded
  // and stored atomically.
  //
1765 1766
  address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
                                       address *entry, const char *name) {
D
duke 已提交
1767 1768 1769 1770
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

1771
    Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
D
duke 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780
    const Register from        = rdi;  // source array address
    const Register to          = rsi;  // destination array address
    const Register count       = rdx;  // elements count
    const Register word_count  = rcx;
    const Register qword_count = count;

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.

1781 1782 1783 1784 1785
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
1786

1787
    array_overlap_test(nooverlap_target, Address::times_2);
D
duke 已提交
1788 1789 1790 1791
    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
                      // r9 and r10 may be used to save non-volatile registers

    // 'from', 'to' and 'count' are now valid
1792 1793
    __ movptr(word_count, count);
    __ shrptr(count, 2); // count => qword_count
D
duke 已提交
1794 1795 1796 1797

    // Copy from high to low addresses.  Use 'to' as scratch.

    // Check for and copy trailing word
1798
    __ testl(word_count, 1);
D
duke 已提交
1799 1800 1801 1802 1803 1804
    __ jccb(Assembler::zero, L_copy_4_bytes);
    __ movw(rax, Address(from, word_count, Address::times_2, -2));
    __ movw(Address(to, word_count, Address::times_2, -2), rax);

    // Check for and copy trailing dword
  __ BIND(L_copy_4_bytes);
1805
    __ testl(word_count, 2);
1806
    __ jcc(Assembler::zero, L_copy_bytes);
D
duke 已提交
1807 1808
    __ movl(rax, Address(from, qword_count, Address::times_8));
    __ movl(Address(to, qword_count, Address::times_8), rax);
1809
    __ jmp(L_copy_bytes);
D
duke 已提交
1810 1811 1812 1813 1814

    // Copy trailing qwords
  __ BIND(L_copy_8_bytes);
    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1815
    __ decrement(qword_count);
D
duke 已提交
1816 1817 1818
    __ jcc(Assembler::notZero, L_copy_8_bytes);

    restore_arg_regs();
1819
    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1820
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1821 1822 1823
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

1824 1825
    // Copy in multi-bytes chunks
    copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
D
duke 已提交
1826 1827

    restore_arg_regs();
1828
    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1829
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }

  // Arguments:
  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  //             ignored
1839
  //   is_oop  - true => oop array, so generate store check code
D
duke 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
  //   name    - stub name string
  //
  // Inputs:
  //   c_rarg0   - source array address
  //   c_rarg1   - destination array address
  //   c_rarg2   - element count, treated as ssize_t, can be zero
  //
  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  // the hardware handle it.  The two dwords within qwords that span
  // cache line boundaries will still be loaded and stored atomicly.
  //
  // Side Effects:
  //   disjoint_int_copy_entry is set to the no-overlap entry point
1853
  //   used by generate_conjoint_int_oop_copy().
D
duke 已提交
1854
  //
1855 1856
  address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
                                         const char *name, bool dest_uninitialized = false) {
D
duke 已提交
1857 1858 1859 1860
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

1861
    Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
D
duke 已提交
1862 1863 1864 1865 1866 1867 1868
    const Register from        = rdi;  // source array address
    const Register to          = rsi;  // destination array address
    const Register count       = rdx;  // elements count
    const Register dword_count = rcx;
    const Register qword_count = count;
    const Register end_from    = from; // source array end address
    const Register end_to      = to;   // destination array end address
1869
    const Register saved_to    = r11;  // saved destination array address
D
duke 已提交
1870 1871 1872 1873 1874 1875
    // End pointers are inclusive, and if count is not zero they point
    // to the last unit copied:  end_to[0] := end_from[0]

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.

1876 1877 1878 1879
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
1880 1881
    }

D
duke 已提交
1882 1883
    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
                      // r9 and r10 may be used to save non-volatile registers
1884 1885
    if (is_oop) {
      __ movq(saved_to, to);
1886
      gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1887 1888
    }

D
duke 已提交
1889
    // 'from', 'to' and 'count' are now valid
1890 1891
    __ movptr(dword_count, count);
    __ shrptr(count, 1); // count => qword_count
D
duke 已提交
1892 1893

    // Copy from low to high addresses.  Use 'to' as scratch.
1894 1895 1896
    __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
    __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
    __ negptr(qword_count);
1897
    __ jmp(L_copy_bytes);
D
duke 已提交
1898 1899 1900 1901 1902

    // Copy trailing qwords
  __ BIND(L_copy_8_bytes);
    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1903
    __ increment(qword_count);
D
duke 已提交
1904 1905 1906 1907
    __ jcc(Assembler::notZero, L_copy_8_bytes);

    // Check for and copy trailing dword
  __ BIND(L_copy_4_bytes);
1908
    __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
D
duke 已提交
1909 1910 1911 1912 1913
    __ jccb(Assembler::zero, L_exit);
    __ movl(rax, Address(end_from, 8));
    __ movl(Address(end_to, 8), rax);

  __ BIND(L_exit);
1914
    if (is_oop) {
1915
      gen_write_ref_array_post_barrier(saved_to, dword_count, rax);
1916
    }
D
duke 已提交
1917
    restore_arg_regs();
1918
    inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1919
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1920 1921 1922
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

1923 1924
    // Copy in multi-bytes chunks
    copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
D
duke 已提交
1925 1926 1927 1928 1929 1930 1931 1932
    __ jmp(L_copy_4_bytes);

    return start;
  }

  // Arguments:
  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  //             ignored
1933
  //   is_oop  - true => oop array, so generate store check code
D
duke 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
  //   name    - stub name string
  //
  // Inputs:
  //   c_rarg0   - source array address
  //   c_rarg1   - destination array address
  //   c_rarg2   - element count, treated as ssize_t, can be zero
  //
  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  // the hardware handle it.  The two dwords within qwords that span
  // cache line boundaries will still be loaded and stored atomicly.
  //
1945
  address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
1946 1947
                                         address *entry, const char *name,
                                         bool dest_uninitialized = false) {
D
duke 已提交
1948 1949 1950 1951
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

1952
    Label L_copy_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
D
duke 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961
    const Register from        = rdi;  // source array address
    const Register to          = rsi;  // destination array address
    const Register count       = rdx;  // elements count
    const Register dword_count = rcx;
    const Register qword_count = count;

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.

1962 1963 1964 1965
    if (entry != NULL) {
      *entry = __ pc();
       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
1966 1967
    }

1968
    array_overlap_test(nooverlap_target, Address::times_4);
D
duke 已提交
1969 1970 1971
    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
                      // r9 and r10 may be used to save non-volatile registers

1972 1973
    if (is_oop) {
      // no registers are destroyed by this call
1974
      gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1975 1976
    }

1977
    assert_clean_int(count, rax); // Make sure 'count' is clean int.
D
duke 已提交
1978
    // 'from', 'to' and 'count' are now valid
1979 1980
    __ movptr(dword_count, count);
    __ shrptr(count, 1); // count => qword_count
D
duke 已提交
1981 1982 1983 1984

    // Copy from high to low addresses.  Use 'to' as scratch.

    // Check for and copy trailing dword
1985
    __ testl(dword_count, 1);
1986
    __ jcc(Assembler::zero, L_copy_bytes);
D
duke 已提交
1987 1988
    __ movl(rax, Address(from, dword_count, Address::times_4, -4));
    __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1989
    __ jmp(L_copy_bytes);
D
duke 已提交
1990 1991 1992 1993 1994

    // Copy trailing qwords
  __ BIND(L_copy_8_bytes);
    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1995
    __ decrement(qword_count);
D
duke 已提交
1996 1997
    __ jcc(Assembler::notZero, L_copy_8_bytes);

1998 1999 2000
    if (is_oop) {
      __ jmp(L_exit);
    }
D
duke 已提交
2001
    restore_arg_regs();
2002
    inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
2003
    __ xorptr(rax, rax); // return 0
D
duke 已提交
2004 2005 2006
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

2007 2008
    // Copy in multi-bytes chunks
    copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
D
duke 已提交
2009

2010 2011 2012 2013
  __ BIND(L_exit);
    if (is_oop) {
      gen_write_ref_array_post_barrier(to, dword_count, rax);
    }
D
duke 已提交
2014
    restore_arg_regs();
2015
    inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
2016
    __ xorptr(rax, rax); // return 0
D
duke 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }

  // Arguments:
  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  //             ignored
  //   is_oop  - true => oop array, so generate store check code
  //   name    - stub name string
  //
  // Inputs:
  //   c_rarg0   - source array address
  //   c_rarg1   - destination array address
  //   c_rarg2   - element count, treated as ssize_t, can be zero
  //
2034
 // Side Effects:
D
duke 已提交
2035 2036 2037
  //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
  //   no-overlap entry point used by generate_conjoint_long_oop_copy().
  //
2038 2039
  address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
                                          const char *name, bool dest_uninitialized = false) {
D
duke 已提交
2040 2041 2042 2043
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

2044
    Label L_copy_bytes, L_copy_8_bytes, L_exit;
D
duke 已提交
2045 2046 2047 2048 2049 2050
    const Register from        = rdi;  // source array address
    const Register to          = rsi;  // destination array address
    const Register qword_count = rdx;  // elements count
    const Register end_from    = from; // source array end address
    const Register end_to      = rcx;  // destination array end address
    const Register saved_to    = to;
2051
    const Register saved_count = r11;
D
duke 已提交
2052 2053 2054 2055 2056 2057 2058
    // End pointers are inclusive, and if count is not zero they point
    // to the last unit copied:  end_to[0] := end_from[0]

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    // Save no-overlap entry point for generate_conjoint_long_oop_copy()
    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.

2059 2060 2061 2062
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
D
duke 已提交
2063 2064 2065 2066 2067
    }

    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
                      // r9 and r10 may be used to save non-volatile registers
    // 'from', 'to' and 'qword_count' are now valid
2068
    if (is_oop) {
2069 2070
      // Save to and count for store barrier
      __ movptr(saved_count, qword_count);
2071
      // no registers are destroyed by this call
2072
      gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
2073
    }
D
duke 已提交
2074 2075

    // Copy from low to high addresses.  Use 'to' as scratch.
2076 2077 2078
    __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
    __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
    __ negptr(qword_count);
2079
    __ jmp(L_copy_bytes);
D
duke 已提交
2080 2081 2082 2083 2084

    // Copy trailing qwords
  __ BIND(L_copy_8_bytes);
    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
2085
    __ increment(qword_count);
D
duke 已提交
2086 2087 2088 2089 2090 2091
    __ jcc(Assembler::notZero, L_copy_8_bytes);

    if (is_oop) {
      __ jmp(L_exit);
    } else {
      restore_arg_regs();
2092
      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2093
      __ xorptr(rax, rax); // return 0
D
duke 已提交
2094 2095 2096 2097
      __ leave(); // required for proper stackwalking of RuntimeStub frame
      __ ret(0);
    }

2098 2099
    // Copy in multi-bytes chunks
    copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
D
duke 已提交
2100 2101 2102

    if (is_oop) {
    __ BIND(L_exit);
2103
      gen_write_ref_array_post_barrier(saved_to, saved_count, rax);
D
duke 已提交
2104 2105
    }
    restore_arg_regs();
2106 2107 2108 2109 2110
    if (is_oop) {
      inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
    } else {
      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
    }
2111
    __ xorptr(rax, rax); // return 0
D
duke 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }

  // Arguments:
  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  //             ignored
  //   is_oop  - true => oop array, so generate store check code
  //   name    - stub name string
  //
  // Inputs:
  //   c_rarg0   - source array address
  //   c_rarg1   - destination array address
  //   c_rarg2   - element count, treated as ssize_t, can be zero
  //
2129 2130 2131
  address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
                                          address nooverlap_target, address *entry,
                                          const char *name, bool dest_uninitialized = false) {
D
duke 已提交
2132 2133 2134 2135
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

2136
    Label L_copy_bytes, L_copy_8_bytes, L_exit;
D
duke 已提交
2137 2138 2139 2140 2141 2142 2143 2144
    const Register from        = rdi;  // source array address
    const Register to          = rsi;  // destination array address
    const Register qword_count = rdx;  // elements count
    const Register saved_count = rcx;

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.

2145 2146 2147 2148
    if (entry != NULL) {
      *entry = __ pc();
      // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
      BLOCK_COMMENT("Entry:");
D
duke 已提交
2149 2150
    }

2151
    array_overlap_test(nooverlap_target, Address::times_8);
D
duke 已提交
2152 2153 2154 2155 2156
    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
                      // r9 and r10 may be used to save non-volatile registers
    // 'from', 'to' and 'qword_count' are now valid
    if (is_oop) {
      // Save to and count for store barrier
2157
      __ movptr(saved_count, qword_count);
D
duke 已提交
2158
      // No registers are destroyed by this call
2159
      gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
D
duke 已提交
2160 2161
    }

2162
    __ jmp(L_copy_bytes);
D
duke 已提交
2163 2164 2165 2166 2167

    // Copy trailing qwords
  __ BIND(L_copy_8_bytes);
    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2168
    __ decrement(qword_count);
D
duke 已提交
2169 2170 2171 2172 2173 2174
    __ jcc(Assembler::notZero, L_copy_8_bytes);

    if (is_oop) {
      __ jmp(L_exit);
    } else {
      restore_arg_regs();
2175
      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2176
      __ xorptr(rax, rax); // return 0
D
duke 已提交
2177 2178 2179 2180
      __ leave(); // required for proper stackwalking of RuntimeStub frame
      __ ret(0);
    }

2181 2182
    // Copy in multi-bytes chunks
    copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
D
duke 已提交
2183 2184 2185

    if (is_oop) {
    __ BIND(L_exit);
2186
      gen_write_ref_array_post_barrier(to, saved_count, rax);
D
duke 已提交
2187 2188
    }
    restore_arg_regs();
2189 2190 2191 2192 2193
    if (is_oop) {
      inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
    } else {
      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
    }
2194
    __ xorptr(rax, rax); // return 0
D
duke 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }


  // Helper for generating a dynamic type check.
  // Smashes no registers.
  void generate_type_check(Register sub_klass,
                           Register super_check_offset,
                           Register super_klass,
                           Label& L_success) {
    assert_different_registers(sub_klass, super_check_offset, super_klass);

    BLOCK_COMMENT("type_check:");

    Label L_miss;

2214 2215 2216
    __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
                                     super_check_offset);
    __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
D
duke 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

    // Fall through on failure!
    __ BIND(L_miss);
  }

  //
  //  Generate checkcasting array copy stub
  //
  //  Input:
  //    c_rarg0   - source array address
  //    c_rarg1   - destination array address
  //    c_rarg2   - element count, treated as ssize_t, can be zero
  //    c_rarg3   - size_t ckoff (super_check_offset)
  // not Win64
  //    c_rarg4   - oop ckval (super_klass)
  // Win64
  //    rsp+40    - oop ckval (super_klass)
  //
  //  Output:
  //    rax ==  0  -  success
  //    rax == -1^K - failure, where K is partial transfer count
  //
2239 2240
  address generate_checkcast_copy(const char *name, address *entry,
                                  bool dest_uninitialized = false) {
D
duke 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

    Label L_load_element, L_store_element, L_do_card_marks, L_done;

    // Input registers (after setup_arg_regs)
    const Register from        = rdi;   // source array address
    const Register to          = rsi;   // destination array address
    const Register length      = rdx;   // elements count
    const Register ckoff       = rcx;   // super_check_offset
    const Register ckval       = r8;    // super_klass

    // Registers used as temps (r13, r14 are save-on-entry)
    const Register end_from    = from;  // source array end address
    const Register end_to      = r13;   // destination array end address
    const Register count       = rdx;   // -(count_remaining)
    const Register r14_length  = r14;   // saved copy of length
    // End pointers are inclusive, and if length is not zero they point
    // to the last unit copied:  end_to[0] := end_from[0]

    const Register rax_oop    = rax;    // actual oop copied
    const Register r11_klass  = r11;    // oop._klass

    //---------------------------------------------------------------
    // Assembler stub will be used for this call to arraycopy
    // if the two arrays are subtypes of Object[] but the
    // destination array type is not equal to or a supertype
    // of the source type.  Each element must be separately
    // checked.

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    __ enter(); // required for proper stackwalking of RuntimeStub frame

#ifdef ASSERT
    // caller guarantees that the arrays really are different
    // otherwise, we would have to make conjoint checks
    { Label L;
2279
      array_overlap_test(L, TIMES_OOP);
D
duke 已提交
2280 2281 2282 2283 2284
      __ stop("checkcast_copy within a single array");
      __ bind(L);
    }
#endif //ASSERT

2285 2286 2287 2288 2289 2290 2291 2292 2293
    setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
                       // ckoff => rcx, ckval => r8
                       // r9 and r10 may be used to save non-volatile registers
#ifdef _WIN64
    // last argument (#4) is on stack on Win64
    __ movptr(ckval, Address(rsp, 6 * wordSize));
#endif

    // Caller of this entry point must set up the argument registers.
2294 2295 2296 2297
    if (entry != NULL) {
      *entry = __ pc();
      BLOCK_COMMENT("Entry:");
    }
2298

D
duke 已提交
2299 2300 2301 2302
    // allocate spill slots for r13, r14
    enum {
      saved_r13_offset,
      saved_r14_offset,
2303
      saved_rbp_offset
D
duke 已提交
2304
    };
2305 2306 2307
    __ subptr(rsp, saved_rbp_offset * wordSize);
    __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
    __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
D
duke 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

    // check that int operands are properly extended to size_t
    assert_clean_int(length, rax);
    assert_clean_int(ckoff, rax);

#ifdef ASSERT
    BLOCK_COMMENT("assert consistent ckoff/ckval");
    // The ckoff and ckval must be mutually consistent,
    // even though caller generates both.
    { Label L;
2318
      int sco_offset = in_bytes(Klass::super_check_offset_offset());
D
duke 已提交
2319 2320 2321 2322 2323 2324 2325 2326
      __ cmpl(ckoff, Address(ckval, sco_offset));
      __ jcc(Assembler::equal, L);
      __ stop("super_check_offset inconsistent");
      __ bind(L);
    }
#endif //ASSERT

    // Loop-invariant addresses.  They are exclusive end pointers.
2327 2328
    Address end_from_addr(from, length, TIMES_OOP, 0);
    Address   end_to_addr(to,   length, TIMES_OOP, 0);
D
duke 已提交
2329
    // Loop-variant addresses.  They assume post-incremented count < 0.
2330 2331
    Address from_element_addr(end_from, count, TIMES_OOP, 0);
    Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
D
duke 已提交
2332

2333
    gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
D
duke 已提交
2334 2335

    // Copy from low to high addresses, indexed from the end of each array.
2336 2337 2338 2339 2340
    __ lea(end_from, end_from_addr);
    __ lea(end_to,   end_to_addr);
    __ movptr(r14_length, length);        // save a copy of the length
    assert(length == count, "");          // else fix next line:
    __ negptr(count);                     // negate and test the length
D
duke 已提交
2341 2342 2343
    __ jcc(Assembler::notZero, L_load_element);

    // Empty array:  Nothing to do.
2344
    __ xorptr(rax, rax);                  // return 0 on (trivial) success
D
duke 已提交
2345 2346 2347 2348 2349 2350 2351
    __ jmp(L_done);

    // ======== begin loop ========
    // (Loop is rotated; its entry is L_load_element.)
    // Loop control:
    //   for (count = -count; count != 0; count++)
    // Base pointers src, dst are biased by 8*(count-1),to last element.
2352
    __ align(OptoLoopAlignment);
D
duke 已提交
2353 2354

    __ BIND(L_store_element);
2355
    __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2356
    __ increment(count);               // increment the count toward zero
D
duke 已提交
2357 2358 2359 2360
    __ jcc(Assembler::zero, L_do_card_marks);

    // ======== loop entry is here ========
    __ BIND(L_load_element);
2361
    __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2362
    __ testptr(rax_oop, rax_oop);
D
duke 已提交
2363 2364
    __ jcc(Assembler::zero, L_store_element);

2365
    __ load_klass(r11_klass, rax_oop);// query the object klass
D
duke 已提交
2366 2367 2368 2369 2370 2371 2372
    generate_type_check(r11_klass, ckoff, ckval, L_store_element);
    // ======== end loop ========

    // It was a real error; we must depend on the caller to finish the job.
    // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
    // Emit GC store barriers for the oops we have copied (r14 + rdx),
    // and report their number to the caller.
2373 2374 2375 2376 2377 2378 2379
    assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1);
    Label L_post_barrier;
    __ addptr(r14_length, count);     // K = (original - remaining) oops
    __ movptr(rax, r14_length);       // save the value
    __ notptr(rax);                   // report (-1^K) to caller (does not affect flags)
    __ jccb(Assembler::notZero, L_post_barrier);
    __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
D
duke 已提交
2380 2381 2382

    // Come here on success only.
    __ BIND(L_do_card_marks);
2383 2384 2385 2386
    __ xorptr(rax, rax);              // return 0 on success

    __ BIND(L_post_barrier);
    gen_write_ref_array_post_barrier(to, r14_length, rscratch1);
D
duke 已提交
2387 2388 2389

    // Common exit point (success or failure).
    __ BIND(L_done);
2390 2391
    __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
    __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
D
duke 已提交
2392
    restore_arg_regs();
2393
    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
D
duke 已提交
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }

  //
  //  Generate 'unsafe' array copy stub
  //  Though just as safe as the other stubs, it takes an unscaled
  //  size_t argument instead of an element count.
  //
  //  Input:
  //    c_rarg0   - source array address
  //    c_rarg1   - destination array address
  //    c_rarg2   - byte count, treated as ssize_t, can be zero
  //
  // Examines the alignment of the operands and dispatches
  // to a long, int, short, or byte copy loop.
  //
2413 2414 2415
  address generate_unsafe_copy(const char *name,
                               address byte_copy_entry, address short_copy_entry,
                               address int_copy_entry, address long_copy_entry) {
D
duke 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435

    Label L_long_aligned, L_int_aligned, L_short_aligned;

    // Input registers (before setup_arg_regs)
    const Register from        = c_rarg0;  // source array address
    const Register to          = c_rarg1;  // destination array address
    const Register size        = c_rarg2;  // byte count (size_t)

    // Register used as a temp
    const Register bits        = rax;      // test copy of low bits

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    __ enter(); // required for proper stackwalking of RuntimeStub frame

    // bump this on entry, not on exit:
    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);

2436 2437 2438
    __ mov(bits, from);
    __ orptr(bits, to);
    __ orptr(bits, size);
D
duke 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

    __ testb(bits, BytesPerLong-1);
    __ jccb(Assembler::zero, L_long_aligned);

    __ testb(bits, BytesPerInt-1);
    __ jccb(Assembler::zero, L_int_aligned);

    __ testb(bits, BytesPerShort-1);
    __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));

    __ BIND(L_short_aligned);
2450
    __ shrptr(size, LogBytesPerShort); // size => short_count
D
duke 已提交
2451 2452 2453
    __ jump(RuntimeAddress(short_copy_entry));

    __ BIND(L_int_aligned);
2454
    __ shrptr(size, LogBytesPerInt); // size => int_count
D
duke 已提交
2455 2456 2457
    __ jump(RuntimeAddress(int_copy_entry));

    __ BIND(L_long_aligned);
2458
    __ shrptr(size, LogBytesPerLong); // size => qword_count
D
duke 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
    __ jump(RuntimeAddress(long_copy_entry));

    return start;
  }

  // Perform range checks on the proposed arraycopy.
  // Kills temp, but nothing else.
  // Also, clean the sign bits of src_pos and dst_pos.
  void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
                              Register src_pos, // source position (c_rarg1)
                              Register dst,     // destination array oo (c_rarg2)
                              Register dst_pos, // destination position (c_rarg3)
                              Register length,
                              Register temp,
                              Label& L_failed) {
    BLOCK_COMMENT("arraycopy_range_checks:");

    //  if (src_pos + length > arrayOop(src)->length())  FAIL;
    __ movl(temp, length);
    __ addl(temp, src_pos);             // src_pos + length
    __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
    __ jcc(Assembler::above, L_failed);

    //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
    __ movl(temp, length);
    __ addl(temp, dst_pos);             // dst_pos + length
    __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
    __ jcc(Assembler::above, L_failed);

    // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
    // Move with sign extension can be used since they are positive.
    __ movslq(src_pos, src_pos);
    __ movslq(dst_pos, dst_pos);

    BLOCK_COMMENT("arraycopy_range_checks done");
  }

  //
  //  Generate generic array copy stubs
  //
  //  Input:
  //    c_rarg0    -  src oop
  //    c_rarg1    -  src_pos (32-bits)
  //    c_rarg2    -  dst oop
  //    c_rarg3    -  dst_pos (32-bits)
  // not Win64
  //    c_rarg4    -  element count (32-bits)
  // Win64
  //    rsp+40     -  element count (32-bits)
  //
  //  Output:
  //    rax ==  0  -  success
  //    rax == -1^K - failure, where K is partial transfer count
  //
2513 2514
  address generate_generic_copy(const char *name,
                                address byte_copy_entry, address short_copy_entry,
2515 2516
                                address int_copy_entry, address oop_copy_entry,
                                address long_copy_entry, address checkcast_copy_entry) {
D
duke 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525

    Label L_failed, L_failed_0, L_objArray;
    Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;

    // Input registers
    const Register src        = c_rarg0;  // source array oop
    const Register src_pos    = c_rarg1;  // source position
    const Register dst        = c_rarg2;  // destination array oop
    const Register dst_pos    = c_rarg3;  // destination position
2526 2527
#ifndef _WIN64
    const Register length     = c_rarg4;
D
duke 已提交
2528
#else
2529
    const Address  length(rsp, 6 * wordSize);  // elements count is on stack on Win64
D
duke 已提交
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
#endif

    { int modulus = CodeEntryAlignment;
      int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
      int advance = target - (__ offset() % modulus);
      if (advance < 0)  advance += modulus;
      if (advance > 0)  __ nop(advance);
    }
    StubCodeMark mark(this, "StubRoutines", name);

    // Short-hop target to L_failed.  Makes for denser prologue code.
    __ BIND(L_failed_0);
    __ jmp(L_failed);
    assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");

    __ align(CodeEntryAlignment);
    address start = __ pc();

    __ enter(); // required for proper stackwalking of RuntimeStub frame

    // bump this on entry, not on exit:
    inc_counter_np(SharedRuntime::_generic_array_copy_ctr);

    //-----------------------------------------------------------------------
    // Assembler stub will be used for this call to arraycopy
    // if the following conditions are met:
    //
    // (1) src and dst must not be null.
    // (2) src_pos must not be negative.
    // (3) dst_pos must not be negative.
    // (4) length  must not be negative.
    // (5) src klass and dst klass should be the same and not NULL.
    // (6) src and dst should be arrays.
    // (7) src_pos + length must not exceed length of src.
    // (8) dst_pos + length must not exceed length of dst.
    //

    //  if (src == NULL) return -1;
2568
    __ testptr(src, src);         // src oop
D
duke 已提交
2569 2570 2571 2572 2573 2574 2575 2576
    size_t j1off = __ offset();
    __ jccb(Assembler::zero, L_failed_0);

    //  if (src_pos < 0) return -1;
    __ testl(src_pos, src_pos); // src_pos (32-bits)
    __ jccb(Assembler::negative, L_failed_0);

    //  if (dst == NULL) return -1;
2577
    __ testptr(dst, dst);         // dst oop
D
duke 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
    __ jccb(Assembler::zero, L_failed_0);

    //  if (dst_pos < 0) return -1;
    __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
    size_t j4off = __ offset();
    __ jccb(Assembler::negative, L_failed_0);

    // The first four tests are very dense code,
    // but not quite dense enough to put four
    // jumps in a 16-byte instruction fetch buffer.
    // That's good, because some branch predicters
    // do not like jumps so close together.
    // Make sure of this.
    guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");

    // registers used as temp
    const Register r11_length    = r11; // elements count to copy
    const Register r10_src_klass = r10; // array klass

    //  if (length < 0) return -1;
2598
    __ movl(r11_length, length);        // length (elements count, 32-bits value)
D
duke 已提交
2599 2600 2601
    __ testl(r11_length, r11_length);
    __ jccb(Assembler::negative, L_failed_0);

2602
    __ load_klass(r10_src_klass, src);
D
duke 已提交
2603 2604
#ifdef ASSERT
    //  assert(src->klass() != NULL);
2605 2606 2607
    {
      BLOCK_COMMENT("assert klasses not null {");
      Label L1, L2;
2608
      __ testptr(r10_src_klass, r10_src_klass);
D
duke 已提交
2609 2610 2611 2612
      __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
      __ bind(L1);
      __ stop("broken null klass");
      __ bind(L2);
2613 2614
      __ load_klass(rax, dst);
      __ cmpq(rax, 0);
D
duke 已提交
2615
      __ jcc(Assembler::equal, L1);     // this would be broken also
2616
      BLOCK_COMMENT("} assert klasses not null done");
D
duke 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
    }
#endif

    // Load layout helper (32-bits)
    //
    //  |array_tag|     | header_size | element_type |     |log2_element_size|
    // 32        30    24            16              8     2                 0
    //
    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
    //

2628
    const int lh_offset = in_bytes(Klass::layout_helper_offset());
D
duke 已提交
2629 2630

    // Handle objArrays completely differently...
2631 2632
    const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
    __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
D
duke 已提交
2633 2634 2635
    __ jcc(Assembler::equal, L_objArray);

    //  if (src->klass() != dst->klass()) return -1;
2636 2637
    __ load_klass(rax, dst);
    __ cmpq(r10_src_klass, rax);
D
duke 已提交
2638 2639
    __ jcc(Assembler::notEqual, L_failed);

2640 2641 2642
    const Register rax_lh = rax;  // layout helper
    __ movl(rax_lh, Address(r10_src_klass, lh_offset));

D
duke 已提交
2643 2644 2645 2646 2647 2648
    //  if (!src->is_Array()) return -1;
    __ cmpl(rax_lh, Klass::_lh_neutral_value);
    __ jcc(Assembler::greaterEqual, L_failed);

    // At this point, it is known to be a typeArray (array_tag 0x3).
#ifdef ASSERT
2649 2650 2651
    {
      BLOCK_COMMENT("assert primitive array {");
      Label L;
D
duke 已提交
2652 2653 2654 2655
      __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
      __ jcc(Assembler::greaterEqual, L);
      __ stop("must be a primitive array");
      __ bind(L);
2656
      BLOCK_COMMENT("} assert primitive array done");
D
duke 已提交
2657 2658 2659 2660 2661 2662
    }
#endif

    arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
                           r10, L_failed);

2663
    // TypeArrayKlass
D
duke 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
    //
    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
    //

    const Register r10_offset = r10;    // array offset
    const Register rax_elsize = rax_lh; // element size

    __ movl(r10_offset, rax_lh);
    __ shrl(r10_offset, Klass::_lh_header_size_shift);
2674 2675 2676
    __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
    __ addptr(src, r10_offset);           // src array offset
    __ addptr(dst, r10_offset);           // dst array offset
D
duke 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
    BLOCK_COMMENT("choose copy loop based on element size");
    __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize

    // next registers should be set before the jump to corresponding stub
    const Register from     = c_rarg0;  // source array address
    const Register to       = c_rarg1;  // destination array address
    const Register count    = c_rarg2;  // elements count

    // 'from', 'to', 'count' registers should be set in such order
    // since they are the same as 'src', 'src_pos', 'dst'.

  __ BIND(L_copy_bytes);
    __ cmpl(rax_elsize, 0);
    __ jccb(Assembler::notEqual, L_copy_shorts);
2691 2692 2693
    __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
    __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
    __ movl2ptr(count, r11_length); // length
D
duke 已提交
2694 2695 2696 2697 2698
    __ jump(RuntimeAddress(byte_copy_entry));

  __ BIND(L_copy_shorts);
    __ cmpl(rax_elsize, LogBytesPerShort);
    __ jccb(Assembler::notEqual, L_copy_ints);
2699 2700 2701
    __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
    __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
    __ movl2ptr(count, r11_length); // length
D
duke 已提交
2702 2703 2704 2705 2706
    __ jump(RuntimeAddress(short_copy_entry));

  __ BIND(L_copy_ints);
    __ cmpl(rax_elsize, LogBytesPerInt);
    __ jccb(Assembler::notEqual, L_copy_longs);
2707 2708 2709
    __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
    __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
    __ movl2ptr(count, r11_length); // length
D
duke 已提交
2710 2711 2712 2713
    __ jump(RuntimeAddress(int_copy_entry));

  __ BIND(L_copy_longs);
#ifdef ASSERT
2714 2715 2716
    {
      BLOCK_COMMENT("assert long copy {");
      Label L;
D
duke 已提交
2717 2718 2719 2720
      __ cmpl(rax_elsize, LogBytesPerLong);
      __ jcc(Assembler::equal, L);
      __ stop("must be long copy, but elsize is wrong");
      __ bind(L);
2721
      BLOCK_COMMENT("} assert long copy done");
D
duke 已提交
2722 2723
    }
#endif
2724 2725 2726
    __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
    __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
    __ movl2ptr(count, r11_length); // length
D
duke 已提交
2727 2728
    __ jump(RuntimeAddress(long_copy_entry));

2729
    // ObjArrayKlass
D
duke 已提交
2730
  __ BIND(L_objArray);
2731
    // live at this point:  r10_src_klass, r11_length, src[_pos], dst[_pos]
D
duke 已提交
2732 2733 2734

    Label L_plain_copy, L_checkcast_copy;
    //  test array classes for subtyping
2735 2736
    __ load_klass(rax, dst);
    __ cmpq(r10_src_klass, rax); // usual case is exact equality
D
duke 已提交
2737 2738 2739 2740 2741 2742
    __ jcc(Assembler::notEqual, L_checkcast_copy);

    // Identically typed arrays can be copied without element-wise checks.
    arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
                           r10, L_failed);

2743
    __ lea(from, Address(src, src_pos, TIMES_OOP,
D
duke 已提交
2744
                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2745 2746 2747
    __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
    __ movl2ptr(count, r11_length); // length
D
duke 已提交
2748 2749 2750 2751
  __ BIND(L_plain_copy);
    __ jump(RuntimeAddress(oop_copy_entry));

  __ BIND(L_checkcast_copy);
2752
    // live at this point:  r10_src_klass, r11_length, rax (dst_klass)
D
duke 已提交
2753 2754
    {
      // Before looking at dst.length, make sure dst is also an objArray.
2755
      __ cmpl(Address(rax, lh_offset), objArray_lh);
D
duke 已提交
2756 2757 2758 2759 2760
      __ jcc(Assembler::notEqual, L_failed);

      // It is safe to examine both src.length and dst.length.
      arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
                             rax, L_failed);
2761 2762

      const Register r11_dst_klass = r11;
2763
      __ load_klass(r11_dst_klass, dst); // reload
D
duke 已提交
2764 2765

      // Marshal the base address arguments now, freeing registers.
2766
      __ lea(from, Address(src, src_pos, TIMES_OOP,
D
duke 已提交
2767
                   arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2768
      __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
D
duke 已提交
2769
                   arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2770
      __ movl(count, length);           // length (reloaded)
D
duke 已提交
2771 2772 2773 2774 2775 2776
      Register sco_temp = c_rarg3;      // this register is free now
      assert_different_registers(from, to, count, sco_temp,
                                 r11_dst_klass, r10_src_klass);
      assert_clean_int(count, sco_temp);

      // Generate the type check.
2777
      const int sco_offset = in_bytes(Klass::super_check_offset_offset());
D
duke 已提交
2778 2779 2780 2781
      __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
      assert_clean_int(sco_temp, rax);
      generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);

2782 2783
      // Fetch destination element klass from the ObjArrayKlass header.
      int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2784
      __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2785
      __ movl(  sco_temp,      Address(r11_dst_klass, sco_offset));
D
duke 已提交
2786 2787 2788 2789
      assert_clean_int(sco_temp, rax);

      // the checkcast_copy loop needs two extra arguments:
      assert(c_rarg3 == sco_temp, "#3 already in place");
2790 2791 2792
      // Set up arguments for checkcast_copy_entry.
      setup_arg_regs(4);
      __ movptr(r8, r11_dst_klass);  // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
D
duke 已提交
2793 2794 2795 2796
      __ jump(RuntimeAddress(checkcast_copy_entry));
    }

  __ BIND(L_failed);
2797 2798
    __ xorptr(rax, rax);
    __ notptr(rax); // return -1
D
duke 已提交
2799 2800 2801 2802 2803 2804 2805
    __ leave();   // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }

  void generate_arraycopy_stubs() {
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
    address entry;
    address entry_jbyte_arraycopy;
    address entry_jshort_arraycopy;
    address entry_jint_arraycopy;
    address entry_oop_arraycopy;
    address entry_jlong_arraycopy;
    address entry_checkcast_arraycopy;

    StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, &entry,
                                                                           "jbyte_disjoint_arraycopy");
    StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
                                                                           "jbyte_arraycopy");

    StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
                                                                            "jshort_disjoint_arraycopy");
    StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
                                                                            "jshort_arraycopy");

    StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, &entry,
                                                                              "jint_disjoint_arraycopy");
    StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, entry,
                                                                              &entry_jint_arraycopy, "jint_arraycopy");

    StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, &entry,
                                                                               "jlong_disjoint_arraycopy");
    StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, entry,
                                                                               &entry_jlong_arraycopy, "jlong_arraycopy");
D
duke 已提交
2833

2834 2835

    if (UseCompressedOops) {
2836 2837 2838 2839
      StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, &entry,
                                                                              "oop_disjoint_arraycopy");
      StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, entry,
                                                                              &entry_oop_arraycopy, "oop_arraycopy");
2840 2841 2842 2843 2844 2845
      StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_int_oop_copy(false, true, &entry,
                                                                                     "oop_disjoint_arraycopy_uninit",
                                                                                     /*dest_uninitialized*/true);
      StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_int_oop_copy(false, true, entry,
                                                                                     NULL, "oop_arraycopy_uninit",
                                                                                     /*dest_uninitialized*/true);
2846
    } else {
2847 2848 2849 2850
      StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, &entry,
                                                                               "oop_disjoint_arraycopy");
      StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, entry,
                                                                               &entry_oop_arraycopy, "oop_arraycopy");
2851 2852 2853 2854 2855 2856
      StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_long_oop_copy(false, true, &entry,
                                                                                      "oop_disjoint_arraycopy_uninit",
                                                                                      /*dest_uninitialized*/true);
      StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_long_oop_copy(false, true, entry,
                                                                                      NULL, "oop_arraycopy_uninit",
                                                                                      /*dest_uninitialized*/true);
2857
    }
D
duke 已提交
2858

2859 2860 2861 2862
    StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
    StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
                                                                        /*dest_uninitialized*/true);

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
    StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
                                                              entry_jbyte_arraycopy,
                                                              entry_jshort_arraycopy,
                                                              entry_jint_arraycopy,
                                                              entry_jlong_arraycopy);
    StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
                                                               entry_jbyte_arraycopy,
                                                               entry_jshort_arraycopy,
                                                               entry_jint_arraycopy,
                                                               entry_oop_arraycopy,
                                                               entry_jlong_arraycopy,
                                                               entry_checkcast_arraycopy);
D
duke 已提交
2875

N
never 已提交
2876 2877 2878 2879 2880 2881 2882
    StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
    StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
    StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
    StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
    StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
    StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");

D
duke 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
    // We don't generate specialized code for HeapWord-aligned source
    // arrays, so just use the code we've already generated
    StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
    StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;

    StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
    StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;

    StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
    StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;

    StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
    StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;

    StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
    StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2899 2900 2901

    StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit    = StubRoutines::_oop_disjoint_arraycopy_uninit;
    StubRoutines::_arrayof_oop_arraycopy_uninit             = StubRoutines::_oop_arraycopy_uninit;
D
duke 已提交
2902 2903
  }

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
  void generate_math_stubs() {
    {
      StubCodeMark mark(this, "StubRoutines", "log");
      StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();

      __ subq(rsp, 8);
      __ movdbl(Address(rsp, 0), xmm0);
      __ fld_d(Address(rsp, 0));
      __ flog();
      __ fstp_d(Address(rsp, 0));
      __ movdbl(xmm0, Address(rsp, 0));
      __ addq(rsp, 8);
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "log10");
      StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();

      __ subq(rsp, 8);
      __ movdbl(Address(rsp, 0), xmm0);
      __ fld_d(Address(rsp, 0));
      __ flog10();
      __ fstp_d(Address(rsp, 0));
      __ movdbl(xmm0, Address(rsp, 0));
      __ addq(rsp, 8);
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "sin");
      StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();

      __ subq(rsp, 8);
      __ movdbl(Address(rsp, 0), xmm0);
      __ fld_d(Address(rsp, 0));
      __ trigfunc('s');
      __ fstp_d(Address(rsp, 0));
      __ movdbl(xmm0, Address(rsp, 0));
      __ addq(rsp, 8);
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "cos");
      StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();

      __ subq(rsp, 8);
      __ movdbl(Address(rsp, 0), xmm0);
      __ fld_d(Address(rsp, 0));
      __ trigfunc('c');
      __ fstp_d(Address(rsp, 0));
      __ movdbl(xmm0, Address(rsp, 0));
      __ addq(rsp, 8);
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "tan");
      StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();

      __ subq(rsp, 8);
      __ movdbl(Address(rsp, 0), xmm0);
      __ fld_d(Address(rsp, 0));
      __ trigfunc('t');
      __ fstp_d(Address(rsp, 0));
      __ movdbl(xmm0, Address(rsp, 0));
      __ addq(rsp, 8);
      __ ret(0);
    }
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
    {
      StubCodeMark mark(this, "StubRoutines", "exp");
      StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();

      __ subq(rsp, 8);
      __ movdbl(Address(rsp, 0), xmm0);
      __ fld_d(Address(rsp, 0));
      __ exp_with_fallback(0);
      __ fstp_d(Address(rsp, 0));
      __ movdbl(xmm0, Address(rsp, 0));
      __ addq(rsp, 8);
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "pow");
      StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
2986

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
      __ subq(rsp, 8);
      __ movdbl(Address(rsp, 0), xmm1);
      __ fld_d(Address(rsp, 0));
      __ movdbl(Address(rsp, 0), xmm0);
      __ fld_d(Address(rsp, 0));
      __ pow_with_fallback(0);
      __ fstp_d(Address(rsp, 0));
      __ movdbl(xmm0, Address(rsp, 0));
      __ addq(rsp, 8);
      __ ret(0);
    }
2998 2999
  }

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
  // AES intrinsic stubs
  enum {AESBlockSize = 16};

  address generate_key_shuffle_mask() {
    __ align(16);
    StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
    address start = __ pc();
    __ emit_data64( 0x0405060700010203, relocInfo::none );
    __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none );
    return start;
  }

  // Utility routine for loading a 128-bit key word in little endian format
  // can optionally specify that the shuffle mask is already in an xmmregister
  void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
    __ movdqu(xmmdst, Address(key, offset));
    if (xmm_shuf_mask != NULL) {
      __ pshufb(xmmdst, xmm_shuf_mask);
    } else {
      __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    }
  }

  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //
  address generate_aescrypt_encryptBlock() {
K
kvn 已提交
3031
    assert(UseAES, "need AES instructions and misaligned SSE support");
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
    Label L_doLast;
    address start = __ pc();

    const Register from        = c_rarg0;  // source array address
    const Register to          = c_rarg1;  // destination array address
    const Register key         = c_rarg2;  // key array address
    const Register keylen      = rax;

    const XMMRegister xmm_result = xmm0;
K
kvn 已提交
3043 3044 3045 3046 3047 3048
    const XMMRegister xmm_key_shuf_mask = xmm1;
    // On win64 xmm6-xmm15 must be preserved so don't use them.
    const XMMRegister xmm_temp1  = xmm2;
    const XMMRegister xmm_temp2  = xmm3;
    const XMMRegister xmm_temp3  = xmm4;
    const XMMRegister xmm_temp4  = xmm5;
3049 3050 3051

    __ enter(); // required for proper stackwalking of RuntimeStub frame

K
kvn 已提交
3052
    // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
3053 3054 3055 3056 3057 3058 3059 3060
    __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));

    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input

    // For encryption, the java expanded key ordering is just what we need
    // we don't know if the key is aligned, hence not using load-execute form

K
kvn 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
    load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
    __ pxor(xmm_result, xmm_temp1);

    load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
    load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
    load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);

    __ aesenc(xmm_result, xmm_temp1);
    __ aesenc(xmm_result, xmm_temp2);
    __ aesenc(xmm_result, xmm_temp3);
    __ aesenc(xmm_result, xmm_temp4);

    load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
    load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
    load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);

    __ aesenc(xmm_result, xmm_temp1);
    __ aesenc(xmm_result, xmm_temp2);
    __ aesenc(xmm_result, xmm_temp3);
    __ aesenc(xmm_result, xmm_temp4);

    load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);

    __ cmpl(keylen, 44);
    __ jccb(Assembler::equal, L_doLast);

    __ aesenc(xmm_result, xmm_temp1);
    __ aesenc(xmm_result, xmm_temp2);

    load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);

    __ cmpl(keylen, 52);
    __ jccb(Assembler::equal, L_doLast);

    __ aesenc(xmm_result, xmm_temp1);
    __ aesenc(xmm_result, xmm_temp2);

    load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
3104 3105

    __ BIND(L_doLast);
K
kvn 已提交
3106 3107
    __ aesenc(xmm_result, xmm_temp1);
    __ aesenclast(xmm_result, xmm_temp2);
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
    __ movdqu(Address(to, 0), xmm_result);        // store the result
    __ xorptr(rax, rax); // return 0
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }


  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //
  address generate_aescrypt_decryptBlock() {
K
kvn 已提交
3125
    assert(UseAES, "need AES instructions and misaligned SSE support");
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
    Label L_doLast;
    address start = __ pc();

    const Register from        = c_rarg0;  // source array address
    const Register to          = c_rarg1;  // destination array address
    const Register key         = c_rarg2;  // key array address
    const Register keylen      = rax;

    const XMMRegister xmm_result = xmm0;
K
kvn 已提交
3137 3138 3139 3140 3141 3142
    const XMMRegister xmm_key_shuf_mask = xmm1;
    // On win64 xmm6-xmm15 must be preserved so don't use them.
    const XMMRegister xmm_temp1  = xmm2;
    const XMMRegister xmm_temp2  = xmm3;
    const XMMRegister xmm_temp3  = xmm4;
    const XMMRegister xmm_temp4  = xmm5;
3143 3144 3145

    __ enter(); // required for proper stackwalking of RuntimeStub frame

K
kvn 已提交
3146
    // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
3147 3148 3149 3150 3151 3152 3153 3154
    __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));

    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    __ movdqu(xmm_result, Address(from, 0));

    // for decryption java expanded key ordering is rotated one position from what we want
    // so we start from 0x10 here and hit 0x00 last
    // we don't know if the key is aligned, hence not using load-execute form
K
kvn 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
    load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
    load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
    load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);

    __ pxor  (xmm_result, xmm_temp1);
    __ aesdec(xmm_result, xmm_temp2);
    __ aesdec(xmm_result, xmm_temp3);
    __ aesdec(xmm_result, xmm_temp4);

    load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
    load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
    load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);

    __ aesdec(xmm_result, xmm_temp1);
    __ aesdec(xmm_result, xmm_temp2);
    __ aesdec(xmm_result, xmm_temp3);
    __ aesdec(xmm_result, xmm_temp4);

    load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
    load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);

    __ cmpl(keylen, 44);
    __ jccb(Assembler::equal, L_doLast);

    __ aesdec(xmm_result, xmm_temp1);
    __ aesdec(xmm_result, xmm_temp2);

    load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);

    __ cmpl(keylen, 52);
    __ jccb(Assembler::equal, L_doLast);

    __ aesdec(xmm_result, xmm_temp1);
    __ aesdec(xmm_result, xmm_temp2);

    load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
3196 3197

    __ BIND(L_doLast);
K
kvn 已提交
3198 3199
    __ aesdec(xmm_result, xmm_temp1);
    __ aesdec(xmm_result, xmm_temp2);
3200

K
kvn 已提交
3201 3202
    // for decryption the aesdeclast operation is always on key+0x00
    __ aesdeclast(xmm_result, xmm_temp3);
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
    __ movdqu(Address(to, 0), xmm_result);  // store the result
    __ xorptr(rax, rax); // return 0
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }


  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //   c_rarg3   - r vector byte array address
  //   c_rarg4   - input length
  //
  address generate_cipherBlockChaining_encryptAESCrypt() {
K
kvn 已提交
3222
    assert(UseAES, "need AES instructions and misaligned SSE support");
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
    address start = __ pc();

    Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
    const Register from        = c_rarg0;  // source array address
    const Register to          = c_rarg1;  // destination array address
    const Register key         = c_rarg2;  // key array address
    const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
                                           // and left with the results of the last encryption block
#ifndef _WIN64
    const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
#else
    const Address  len_mem(rsp, 6 * wordSize);  // length is on stack on Win64
    const Register len_reg     = r10;      // pick the first volatile windows register
#endif
    const Register pos         = rax;

    // xmm register assignments for the loops below
    const XMMRegister xmm_result = xmm0;
    const XMMRegister xmm_temp   = xmm1;
    // keys 0-10 preloaded into xmm2-xmm12
    const int XMM_REG_NUM_KEY_FIRST = 2;
K
kvn 已提交
3246
    const int XMM_REG_NUM_KEY_LAST  = 15;
3247
    const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
K
kvn 已提交
3248 3249 3250 3251
    const XMMRegister xmm_key10  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10);
    const XMMRegister xmm_key11  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11);
    const XMMRegister xmm_key12  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12);
    const XMMRegister xmm_key13  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13);
3252 3253 3254 3255 3256 3257

    __ enter(); // required for proper stackwalking of RuntimeStub frame

#ifdef _WIN64
    // on win64, fill len_reg from stack position
    __ movl(len_reg, len_mem);
K
kvn 已提交
3258
    // save the xmm registers which must be preserved 6-15
3259 3260 3261 3262 3263 3264 3265 3266
    __ subptr(rsp, -rsp_after_call_off * wordSize);
    for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
      __ movdqu(xmm_save(i), as_XMMRegister(i));
    }
#endif

    const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
K
kvn 已提交
3267 3268
    // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0
    for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) {
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
      load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
      offset += 0x10;
    }
    __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec

    // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
    __ cmpl(rax, 44);
    __ jcc(Assembler::notEqual, L_key_192_256);

    // 128 bit code follows here
    __ movptr(pos, 0);
    __ align(OptoLoopAlignment);
K
kvn 已提交
3282

3283 3284 3285 3286
    __ BIND(L_loopTop_128);
    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
    __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
    __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
K
kvn 已提交
3287
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) {
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
      __ aesenc(xmm_result, as_XMMRegister(rnum));
    }
    __ aesenclast(xmm_result, xmm_key10);
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual, L_loopTop_128);

    __ BIND(L_exit);
    __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object

#ifdef _WIN64
    // restore xmm regs belonging to calling function
    for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
      __ movdqu(as_XMMRegister(i), xmm_save(i));
    }
#endif
    __ movl(rax, 0); // return 0 (why?)
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    __ BIND(L_key_192_256);
    // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
K
kvn 已提交
3312 3313
    load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask);
    load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask);
3314 3315 3316 3317 3318 3319
    __ cmpl(rax, 52);
    __ jcc(Assembler::notEqual, L_key_256);

    // 192-bit code follows here (could be changed to use more xmm registers)
    __ movptr(pos, 0);
    __ align(OptoLoopAlignment);
K
kvn 已提交
3320

3321 3322 3323 3324
    __ BIND(L_loopTop_192);
    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
    __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
    __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
K
kvn 已提交
3325
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) {
3326 3327
      __ aesenc(xmm_result, as_XMMRegister(rnum));
    }
K
kvn 已提交
3328
    __ aesenclast(xmm_result, xmm_key12);
3329 3330 3331 3332 3333 3334 3335 3336 3337
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual, L_loopTop_192);
    __ jmp(L_exit);

    __ BIND(L_key_256);
    // 256-bit code follows here (could be changed to use more xmm registers)
K
kvn 已提交
3338
    load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask);
3339 3340
    __ movptr(pos, 0);
    __ align(OptoLoopAlignment);
K
kvn 已提交
3341

3342 3343 3344 3345
    __ BIND(L_loopTop_256);
    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
    __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
    __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
K
kvn 已提交
3346
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) {
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
      __ aesenc(xmm_result, as_XMMRegister(rnum));
    }
    load_key(xmm_temp, key, 0xe0);
    __ aesenclast(xmm_result, xmm_temp);
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual, L_loopTop_256);
    __ jmp(L_exit);

    return start;
  }

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
  // Safefetch stubs.
  void generate_safefetch(const char* name, int size, address* entry,
                          address* fault_pc, address* continuation_pc) {
    // safefetch signatures:
    //   int      SafeFetch32(int*      adr, int      errValue);
    //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
    //
    // arguments:
    //   c_rarg0 = adr
    //   c_rarg1 = errValue
    //
    // result:
    //   PPC_RET  = *adr or errValue

    StubCodeMark mark(this, "StubRoutines", name);

    // Entry point, pc or function descriptor.
    *entry = __ pc();

    // Load *adr into c_rarg1, may fault.
    *fault_pc = __ pc();
    switch (size) {
      case 4:
        // int32_t
        __ movl(c_rarg1, Address(c_rarg0, 0));
        break;
      case 8:
        // int64_t
        __ movq(c_rarg1, Address(c_rarg0, 0));
        break;
      default:
        ShouldNotReachHere();
    }
3394

3395 3396 3397 3398 3399
    // return errValue or *adr
    *continuation_pc = __ pc();
    __ movq(rax, c_rarg1);
    __ ret(0);
  }
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414

  // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time
  // to hide instruction latency
  //
  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //   c_rarg3   - r vector byte array address
  //   c_rarg4   - input length
  //

  address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
K
kvn 已提交
3415
    assert(UseAES, "need AES instructions and misaligned SSE support");
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
    address start = __ pc();

    Label L_exit, L_key_192_256, L_key_256;
    Label L_singleBlock_loopTop_128, L_multiBlock_loopTop_128;
    Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
    const Register from        = c_rarg0;  // source array address
    const Register to          = c_rarg1;  // destination array address
    const Register key         = c_rarg2;  // key array address
    const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
                                           // and left with the results of the last encryption block
#ifndef _WIN64
    const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
#else
    const Address  len_mem(rsp, 6 * wordSize);  // length is on stack on Win64
    const Register len_reg     = r10;      // pick the first volatile windows register
#endif
    const Register pos         = rax;

    // keys 0-10 preloaded into xmm2-xmm12
    const int XMM_REG_NUM_KEY_FIRST = 5;
    const int XMM_REG_NUM_KEY_LAST  = 15;
K
kvn 已提交
3439
    const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
    const XMMRegister xmm_key_last  = as_XMMRegister(XMM_REG_NUM_KEY_LAST);

    __ enter(); // required for proper stackwalking of RuntimeStub frame

#ifdef _WIN64
    // on win64, fill len_reg from stack position
    __ movl(len_reg, len_mem);
    // save the xmm registers which must be preserved 6-15
    __ subptr(rsp, -rsp_after_call_off * wordSize);
    for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
      __ movdqu(xmm_save(i), as_XMMRegister(i));
    }
#endif
    // the java expanded key ordering is rotated one position from what we want
    // so we start from 0x10 here and hit 0x00 last
    const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00
K
kvn 已提交
3458
    for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) {
3459 3460 3461
      load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
      offset += 0x10;
    }
K
kvn 已提交
3462
    load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask);
3463 3464

    const XMMRegister xmm_prev_block_cipher = xmm1;  // holds cipher of previous block
K
kvn 已提交
3465

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
    // registers holding the four results in the parallelized loop
    const XMMRegister xmm_result0 = xmm0;
    const XMMRegister xmm_result1 = xmm2;
    const XMMRegister xmm_result2 = xmm3;
    const XMMRegister xmm_result3 = xmm4;

    __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00));   // initialize with initial rvec

    // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
    __ cmpl(rax, 44);
    __ jcc(Assembler::notEqual, L_key_192_256);


    // 128-bit code follows here, parallelized
    __ movptr(pos, 0);
    __ align(OptoLoopAlignment);
    __ BIND(L_multiBlock_loopTop_128);
    __ cmpptr(len_reg, 4*AESBlockSize);           // see if at least 4 blocks left
    __ jcc(Assembler::less, L_singleBlock_loopTop_128);

    __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0*AESBlockSize));   // get next 4 blocks into xmmresult registers
    __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1*AESBlockSize));
    __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2*AESBlockSize));
    __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3*AESBlockSize));

#define DoFour(opc, src_reg)                    \
    __ opc(xmm_result0, src_reg);               \
    __ opc(xmm_result1, src_reg);               \
    __ opc(xmm_result2, src_reg);               \
    __ opc(xmm_result3, src_reg);

    DoFour(pxor, xmm_key_first);
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
      DoFour(aesdec, as_XMMRegister(rnum));
    }
    DoFour(aesdeclast, xmm_key_last);
    // for each result, xor with the r vector of previous cipher block
    __ pxor(xmm_result0, xmm_prev_block_cipher);
    __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0*AESBlockSize));
    __ pxor(xmm_result1, xmm_prev_block_cipher);
    __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1*AESBlockSize));
    __ pxor(xmm_result2, xmm_prev_block_cipher);
    __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2*AESBlockSize));
    __ pxor(xmm_result3, xmm_prev_block_cipher);
    __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3*AESBlockSize));   // this will carry over to next set of blocks

    __ movdqu(Address(to, pos, Address::times_1, 0*AESBlockSize), xmm_result0);     // store 4 results into the next 64 bytes of output
    __ movdqu(Address(to, pos, Address::times_1, 1*AESBlockSize), xmm_result1);
    __ movdqu(Address(to, pos, Address::times_1, 2*AESBlockSize), xmm_result2);
    __ movdqu(Address(to, pos, Address::times_1, 3*AESBlockSize), xmm_result3);

    __ addptr(pos, 4*AESBlockSize);
    __ subptr(len_reg, 4*AESBlockSize);
    __ jmp(L_multiBlock_loopTop_128);

    // registers used in the non-parallelized loops
K
kvn 已提交
3523 3524
    // xmm register assignments for the loops below
    const XMMRegister xmm_result = xmm0;
3525
    const XMMRegister xmm_prev_block_cipher_save = xmm2;
K
kvn 已提交
3526 3527 3528
    const XMMRegister xmm_key11 = xmm3;
    const XMMRegister xmm_key12 = xmm4;
    const XMMRegister xmm_temp  = xmm4;
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565

    __ align(OptoLoopAlignment);
    __ BIND(L_singleBlock_loopTop_128);
    __ cmpptr(len_reg, 0);           // any blocks left??
    __ jcc(Assembler::equal, L_exit);
    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
    __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
    __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
      __ aesdec(xmm_result, as_XMMRegister(rnum));
    }
    __ aesdeclast(xmm_result, xmm_key_last);
    __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);              // set up next r vector with cipher input from this block

    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jmp(L_singleBlock_loopTop_128);


    __ BIND(L_exit);
    __ movdqu(Address(rvec, 0), xmm_prev_block_cipher);     // final value of r stored in rvec of CipherBlockChaining object
#ifdef _WIN64
    // restore regs belonging to calling function
    for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
      __ movdqu(as_XMMRegister(i), xmm_save(i));
    }
#endif
    __ movl(rax, 0); // return 0 (why?)
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);


    __ BIND(L_key_192_256);
    // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
K
kvn 已提交
3566
    load_key(xmm_key11, key, 0xb0);
3567 3568 3569 3570
    __ cmpl(rax, 52);
    __ jcc(Assembler::notEqual, L_key_256);

    // 192-bit code follows here (could be optimized to use parallelism)
K
kvn 已提交
3571
    load_key(xmm_key12, key, 0xc0);     // 192-bit key goes up to c0
3572 3573
    __ movptr(pos, 0);
    __ align(OptoLoopAlignment);
K
kvn 已提交
3574

3575 3576 3577 3578 3579 3580 3581
    __ BIND(L_singleBlock_loopTop_192);
    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
    __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
    __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
      __ aesdec(xmm_result, as_XMMRegister(rnum));
    }
K
kvn 已提交
3582 3583
    __ aesdec(xmm_result, xmm_key11);
    __ aesdec(xmm_result, xmm_key12);
3584 3585
    __ aesdeclast(xmm_result, xmm_key_last);                    // xmm15 always came from key+0
    __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
K
kvn 已提交
3586
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);  // store into the next 16 bytes of output
3587
    // no need to store r to memory until we exit
K
kvn 已提交
3588
    __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);  // set up next r vector with cipher input from this block
3589 3590 3591 3592 3593 3594 3595 3596 3597
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
    __ jmp(L_exit);

    __ BIND(L_key_256);
    // 256-bit code follows here (could be optimized to use parallelism)
    __ movptr(pos, 0);
    __ align(OptoLoopAlignment);
K
kvn 已提交
3598

3599
    __ BIND(L_singleBlock_loopTop_256);
K
kvn 已提交
3600
    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
3601 3602 3603 3604 3605
    __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
    __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
      __ aesdec(xmm_result, as_XMMRegister(rnum));
    }
K
kvn 已提交
3606 3607 3608 3609 3610 3611 3612 3613
    __ aesdec(xmm_result, xmm_key11);
    load_key(xmm_temp, key, 0xc0);
    __ aesdec(xmm_result, xmm_temp);
    load_key(xmm_temp, key, 0xd0);
    __ aesdec(xmm_result, xmm_temp);
    load_key(xmm_temp, key, 0xe0);     // 256-bit key goes up to e0
    __ aesdec(xmm_result, xmm_temp);
    __ aesdeclast(xmm_result, xmm_key_last);          // xmm15 came from key+0
3614
    __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
K
kvn 已提交
3615
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);  // store into the next 16 bytes of output
3616
    // no need to store r to memory until we exit
K
kvn 已提交
3617
    __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);  // set up next r vector with cipher input from this block
3618 3619 3620 3621 3622 3623 3624 3625
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
    __ jmp(L_exit);

    return start;
  }

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
  /**
   *  Arguments:
   *
   * Inputs:
   *   c_rarg0   - int crc
   *   c_rarg1   - byte* buf
   *   c_rarg2   - int length
   *
   * Ouput:
   *       rax   - int crc result
   */
  address generate_updateBytesCRC32() {
    assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3639

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");

    address start = __ pc();
    // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    // rscratch1: r10
    const Register crc   = c_rarg0;  // crc
    const Register buf   = c_rarg1;  // source java byte array address
    const Register len   = c_rarg2;  // length
    const Register table = c_rarg3;  // crc_table address (reuse register)
    const Register tmp   = r11;
    assert_different_registers(crc, buf, len, table, tmp, rax);

    BLOCK_COMMENT("Entry:");
    __ enter(); // required for proper stackwalking of RuntimeStub frame

    __ kernel_crc32(crc, buf, len, table, tmp);

    __ movl(rax, crc);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }
3665

D
duke 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
#undef __
#define __ masm->

  // Continuation point for throwing of implicit exceptions that are
  // not handled in the current activation. Fabricates an exception
  // oop and initiates normal exception dispatching in this
  // frame. Since we need to preserve callee-saved values (currently
  // only for C2, but done for C1 as well) we need a callee-saved oop
  // map and therefore have to make these stubs into RuntimeStubs
  // rather than BufferBlobs.  If the compiler needs all registers to
  // be preserved between the fault point and the exception handler
  // then it must assume responsibility for that in
  // AbstractCompiler::continuation_for_implicit_null_exception or
  // continuation_for_implicit_division_by_zero_exception. All other
  // implicit exceptions (e.g., NullPointerException or
  // AbstractMethodError on entry) are either at call sites or
  // otherwise assume that stack unwinding will be initiated, so
  // caller saved registers were assumed volatile in the compiler.
  address generate_throw_exception(const char* name,
                                   address runtime_entry,
3686 3687
                                   Register arg1 = noreg,
                                   Register arg2 = noreg) {
D
duke 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
    // Information about frame layout at time of blocking runtime call.
    // Note that we only have to preserve callee-saved registers since
    // the compilers are responsible for supplying a continuation point
    // if they expect all registers to be preserved.
    enum layout {
      rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
      rbp_off2,
      return_off,
      return_off2,
      framesize // inclusive of return address
    };

    int insts_size = 512;
    int locs_size  = 64;

    CodeBuffer code(name, insts_size, locs_size);
    OopMapSet* oop_maps  = new OopMapSet();
    MacroAssembler* masm = new MacroAssembler(&code);

    address start = __ pc();

    // This is an inlined and slightly modified version of call_VM
    // which has the ability to fetch the return PC out of
    // thread-local storage and also sets up last_Java_sp slightly
    // differently than the real call_VM

    __ enter(); // required for proper stackwalking of RuntimeStub frame

    assert(is_even(framesize/2), "sp not 16-byte aligned");

    // return address and rbp are already in place
3719
    __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
D
duke 已提交
3720 3721 3722 3723

    int frame_complete = __ pc() - start;

    // Set up last_Java_sp and last_Java_fp
3724 3725 3726
    address the_pc = __ pc();
    __ set_last_Java_frame(rsp, rbp, the_pc);
    __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
D
duke 已提交
3727 3728

    // Call runtime
3729 3730 3731 3732 3733 3734 3735
    if (arg1 != noreg) {
      assert(arg2 != c_rarg1, "clobbered");
      __ movptr(c_rarg1, arg1);
    }
    if (arg2 != noreg) {
      __ movptr(c_rarg2, arg2);
    }
3736
    __ movptr(c_rarg0, r15_thread);
D
duke 已提交
3737 3738 3739 3740 3741 3742
    BLOCK_COMMENT("call runtime_entry");
    __ call(RuntimeAddress(runtime_entry));

    // Generate oop map
    OopMap* map = new OopMap(framesize, 0);

3743
    oop_maps->add_gc_map(the_pc - start, map);
D
duke 已提交
3744

3745
    __ reset_last_Java_frame(true, true);
D
duke 已提交
3746 3747 3748 3749 3750 3751

    __ leave(); // required for proper stackwalking of RuntimeStub frame

    // check for pending exceptions
#ifdef ASSERT
    Label L;
3752 3753
    __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
            (int32_t) NULL_WORD);
D
duke 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
    __ jcc(Assembler::notEqual, L);
    __ should_not_reach_here();
    __ bind(L);
#endif // ASSERT
    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));


    // codeBlob framesize is in words (not VMRegImpl::slot_size)
    RuntimeStub* stub =
      RuntimeStub::new_runtime_stub(name,
                                    &code,
                                    frame_complete,
                                    (framesize >> (LogBytesPerWord - LogBytesPerInt)),
                                    oop_maps, false);
    return stub->entry_point();
  }

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
  void create_control_words() {
    // Round to nearest, 53-bit mode, exceptions masked
    StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
    // Round to zero, 53-bit mode, exception mased
    StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
    // Round to nearest, 24-bit mode, exceptions masked
    StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
    // Round to nearest, 64-bit mode, exceptions masked
    StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
    // Round to nearest, 64-bit mode, exceptions masked
    StubRoutines::_mxcsr_std           = 0x1F80;
    // Note: the following two constants are 80-bit values
    //       layout is critical for correct loading by FPU.
    // Bias for strict fp multiply/divide
    StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
    StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
    StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
    // Un-Bias for strict fp multiply/divide
    StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
    StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
    StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  }

D
duke 已提交
3794 3795 3796 3797
  // Initialization
  void generate_initial() {
    // Generates all stubs and initializes the entry points

3798 3799
    // This platform-specific settings are needed by generate_call_stub()
    create_control_words();
D
duke 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827

    // entry points that exist in all platforms Note: This is code
    // that could be shared among different platforms - however the
    // benefit seems to be smaller than the disadvantage of having a
    // much more complicated generator structure. See also comment in
    // stubRoutines.hpp.

    StubRoutines::_forward_exception_entry = generate_forward_exception();

    StubRoutines::_call_stub_entry =
      generate_call_stub(StubRoutines::_call_stub_return_address);

    // is referenced by megamorphic call
    StubRoutines::_catch_exception_entry = generate_catch_exception();

    // atomic calls
    StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
    StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
    StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
    StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
    StubRoutines::_atomic_add_entry          = generate_atomic_add();
    StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
    StubRoutines::_fence_entry               = generate_orderaccess_fence();

    StubRoutines::_handler_for_unsafe_access_entry =
      generate_handler_for_unsafe_access();

    // platform dependent
3828
    StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
3829
    StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
D
duke 已提交
3830

3831
    StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
3832

B
bdelsart 已提交
3833 3834 3835 3836 3837 3838
    // Build this early so it's available for the interpreter.
    StubRoutines::_throw_StackOverflowError_entry =
      generate_throw_exception("StackOverflowError throw_exception",
                               CAST_FROM_FN_PTR(address,
                                                SharedRuntime::
                                                throw_StackOverflowError));
3839 3840 3841 3842 3843
    if (UseCRC32Intrinsics) {
      // set table address before stub generation which use it
      StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
      StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
    }
D
duke 已提交
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
  }

  void generate_all() {
    // Generates all stubs and initializes the entry points

    // These entry points require SharedInfo::stack0 to be set up in
    // non-core builds and need to be relocatable, so they each
    // fabricate a RuntimeStub internally.
    StubRoutines::_throw_AbstractMethodError_entry =
      generate_throw_exception("AbstractMethodError throw_exception",
                               CAST_FROM_FN_PTR(address,
                                                SharedRuntime::
3856
                                                throw_AbstractMethodError));
D
duke 已提交
3857

3858 3859 3860 3861
    StubRoutines::_throw_IncompatibleClassChangeError_entry =
      generate_throw_exception("IncompatibleClassChangeError throw_exception",
                               CAST_FROM_FN_PTR(address,
                                                SharedRuntime::
3862
                                                throw_IncompatibleClassChangeError));
D
duke 已提交
3863 3864 3865 3866 3867

    StubRoutines::_throw_NullPointerException_at_call_entry =
      generate_throw_exception("NullPointerException at call throw_exception",
                               CAST_FROM_FN_PTR(address,
                                                SharedRuntime::
3868
                                                throw_NullPointerException_at_call));
D
duke 已提交
3869 3870

    // entry points that are platform specific
3871 3872 3873 3874 3875 3876 3877 3878 3879
    StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
    StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
    StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
    StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();

    StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
    StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
    StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
    StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
D
duke 已提交
3880 3881 3882 3883 3884 3885

    // support for verify_oop (must happen after universe_init)
    StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();

    // arraycopy stubs used by compilers
    generate_arraycopy_stubs();
3886

3887
    generate_math_stubs();
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897

    // don't bother generating these AES intrinsic stubs unless global flag is set
    if (UseAESIntrinsics) {
      StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // needed by the others

      StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
      StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
      StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
      StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
    }
3898 3899 3900 3901 3902 3903 3904 3905

    // Safefetch stubs.
    generate_safefetch("SafeFetch32", sizeof(int),     &StubRoutines::_safefetch32_entry,
                                                       &StubRoutines::_safefetch32_fault_pc,
                                                       &StubRoutines::_safefetch32_continuation_pc);
    generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
                                                       &StubRoutines::_safefetchN_fault_pc,
                                                       &StubRoutines::_safefetchN_continuation_pc);
D
duke 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
  }

 public:
  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
    if (all) {
      generate_all();
    } else {
      generate_initial();
    }
  }
}; // end class declaration

void StubGenerator_generate(CodeBuffer* code, bool all) {
  StubGenerator g(code, all);
}