heapRegion.cpp 34.0 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34
#include "precompiled.hpp"
#include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/heapRegion.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/iterator.hpp"
#include "oops/oop.inline.hpp"
35

36 37 38 39 40
int    HeapRegion::LogOfHRGrainBytes = 0;
int    HeapRegion::LogOfHRGrainWords = 0;
size_t HeapRegion::GrainBytes        = 0;
size_t HeapRegion::GrainWords        = 0;
size_t HeapRegion::CardsPerRegion    = 0;
41

42 43 44 45 46
HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
                                 HeapRegion* hr, OopClosure* cl,
                                 CardTableModRefBS::PrecisionStyle precision,
                                 FilterKind fk) :
  ContiguousSpaceDCTOC(hr, cl, precision, NULL),
47
  _hr(hr), _fk(fk), _g1(g1) { }
48 49 50

FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
                                                   OopClosure* oc) :
51
  _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
52 53

class VerifyLiveClosure: public OopClosure {
54
private:
55 56 57 58 59
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _bs;
  oop _containing_obj;
  bool _failures;
  int _n_failures;
60
  VerifyOption _vo;
61
public:
62 63 64 65
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
66
    _g1h(g1h), _bs(NULL), _containing_obj(NULL),
67
    _failures(false), _n_failures(0), _vo(vo)
68 69 70 71 72 73 74 75 76 77 78 79 80
  {
    BarrierSet* bs = _g1h->barrier_set();
    if (bs->is_a(BarrierSet::CardTableModRef))
      _bs = (CardTableModRefBS*)bs;
  }

  void set_containing_obj(oop obj) {
    _containing_obj = obj;
  }

  bool failures() { return _failures; }
  int n_failures() { return _n_failures; }

81 82
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
83

84 85 86 87 88 89 90 91 92 93
  void print_object(outputStream* out, oop obj) {
#ifdef PRODUCT
    klassOop k = obj->klass();
    const char* class_name = instanceKlass::cast(k)->external_name();
    out->print_cr("class name %s", class_name);
#else // PRODUCT
    obj->print_on(out);
#endif // PRODUCT
  }

94 95
  template <class T>
  void do_oop_work(T* p) {
96
    assert(_containing_obj != NULL, "Precondition");
97
    assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
98
           "Precondition");
99 100 101
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
102
      bool failed = false;
103 104 105 106
      if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
        MutexLockerEx x(ParGCRareEvent_lock,
                        Mutex::_no_safepoint_check_flag);

107 108 109 110 111
        if (!_failures) {
          gclog_or_tty->print_cr("");
          gclog_or_tty->print_cr("----------");
        }
        if (!_g1h->is_in_closed_subset(obj)) {
112
          HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
113
          gclog_or_tty->print_cr("Field "PTR_FORMAT
114 115 116 117 118 119 120
                                 " of live obj "PTR_FORMAT" in region "
                                 "["PTR_FORMAT", "PTR_FORMAT")",
                                 p, (void*) _containing_obj,
                                 from->bottom(), from->end());
          print_object(gclog_or_tty, _containing_obj);
          gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
                                 (void*) obj);
121
        } else {
122 123
          HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
          HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
124
          gclog_or_tty->print_cr("Field "PTR_FORMAT
125 126 127 128 129 130 131 132 133
                                 " of live obj "PTR_FORMAT" in region "
                                 "["PTR_FORMAT", "PTR_FORMAT")",
                                 p, (void*) _containing_obj,
                                 from->bottom(), from->end());
          print_object(gclog_or_tty, _containing_obj);
          gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
                                 "["PTR_FORMAT", "PTR_FORMAT")",
                                 (void*) obj, to->bottom(), to->end());
          print_object(gclog_or_tty, obj);
134 135
        }
        gclog_or_tty->print_cr("----------");
136
        gclog_or_tty->flush();
137 138 139 140 141 142
        _failures = true;
        failed = true;
        _n_failures++;
      }

      if (!_g1h->full_collection()) {
143 144
        HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
        HeapRegion* to   = _g1h->heap_region_containing(obj);
145 146 147 148 149 150 151 152 153 154 155 156 157 158
        if (from != NULL && to != NULL &&
            from != to &&
            !to->isHumongous()) {
          jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
          jbyte cv_field = *_bs->byte_for_const(p);
          const jbyte dirty = CardTableModRefBS::dirty_card_val();

          bool is_bad = !(from->is_young()
                          || to->rem_set()->contains_reference(p)
                          || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
                              (_containing_obj->is_objArray() ?
                                  cv_field == dirty
                               : cv_obj == dirty || cv_field == dirty));
          if (is_bad) {
159 160 161
            MutexLockerEx x(ParGCRareEvent_lock,
                            Mutex::_no_safepoint_check_flag);

162 163 164 165 166
            if (!_failures) {
              gclog_or_tty->print_cr("");
              gclog_or_tty->print_cr("----------");
            }
            gclog_or_tty->print_cr("Missing rem set entry:");
167 168 169 170 171
            gclog_or_tty->print_cr("Field "PTR_FORMAT" "
                                   "of obj "PTR_FORMAT", "
                                   "in region "HR_FORMAT,
                                   p, (void*) _containing_obj,
                                   HR_FORMAT_PARAMS(from));
172
            _containing_obj->print_on(gclog_or_tty);
173 174 175 176
            gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
                                   "in region "HR_FORMAT,
                                   (void*) obj,
                                   HR_FORMAT_PARAMS(to));
177 178 179 180
            obj->print_on(gclog_or_tty);
            gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
                          cv_obj, cv_field);
            gclog_or_tty->print_cr("----------");
181
            gclog_or_tty->flush();
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
            _failures = true;
            if (!failed) _n_failures++;
          }
        }
      }
    }
  }
};

template<class ClosureType>
HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
                               HeapRegion* hr,
                               HeapWord* cur, HeapWord* top) {
  oop cur_oop = oop(cur);
  int oop_size = cur_oop->size();
  HeapWord* next_obj = cur + oop_size;
  while (next_obj < top) {
    // Keep filtering the remembered set.
    if (!g1h->is_obj_dead(cur_oop, hr)) {
      // Bottom lies entirely below top, so we can call the
      // non-memRegion version of oop_iterate below.
      cur_oop->oop_iterate(cl);
    }
    cur = next_obj;
    cur_oop = oop(cur);
    oop_size = cur_oop->size();
    next_obj = cur + oop_size;
  }
  return cur;
}

void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
                                              HeapWord* bottom,
                                              HeapWord* top,
                                              OopClosure* cl) {
  G1CollectedHeap* g1h = _g1;
  int oop_size;
219
  OopClosure* cl2 = NULL;
220

221
  FilterIntoCSClosure intoCSFilt(this, g1h, cl);
222
  FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
223

224
  switch (_fk) {
225
  case NoFilterKind:          cl2 = cl; break;
226 227
  case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
228
  default:                    ShouldNotReachHere();
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
  }

  // Start filtering what we add to the remembered set. If the object is
  // not considered dead, either because it is marked (in the mark bitmap)
  // or it was allocated after marking finished, then we add it. Otherwise
  // we can safely ignore the object.
  if (!g1h->is_obj_dead(oop(bottom), _hr)) {
    oop_size = oop(bottom)->oop_iterate(cl2, mr);
  } else {
    oop_size = oop(bottom)->size();
  }

  bottom += oop_size;

  if (bottom < top) {
    // We replicate the loop below for several kinds of possible filters.
    switch (_fk) {
    case NoFilterKind:
      bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
      break;
249

250
    case IntoCSFilterKind: {
251
      FilterIntoCSClosure filt(this, g1h, cl);
252 253 254
      bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
      break;
    }
255

256 257 258 259 260
    case OutOfRegionFilterKind: {
      FilterOutOfRegionClosure filt(_hr, cl);
      bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
      break;
    }
261

262 263 264 265 266 267 268 269 270 271 272
    default:
      ShouldNotReachHere();
    }

    // Last object. Need to do dead-obj filtering here too.
    if (!g1h->is_obj_dead(oop(bottom), _hr)) {
      oop(bottom)->oop_iterate(cl2, mr);
    }
  }
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
// Minimum region size; we won't go lower than that.
// We might want to decrease this in the future, to deal with small
// heaps a bit more efficiently.
#define MIN_REGION_SIZE  (      1024 * 1024 )

// Maximum region size; we don't go higher than that. There's a good
// reason for having an upper bound. We don't want regions to get too
// large, otherwise cleanup's effectiveness would decrease as there
// will be fewer opportunities to find totally empty regions after
// marking.
#define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )

// The automatic region size calculation will try to have around this
// many regions in the heap (based on the min heap size).
#define TARGET_REGION_NUMBER          2048

void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
  // region_size in bytes
  uintx region_size = G1HeapRegionSize;
  if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
    // We base the automatic calculation on the min heap size. This
    // can be problematic if the spread between min and max is quite
    // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
    // the max size, the region size might be way too large for the
    // min size. Either way, some users might have to set the region
    // size manually for some -Xms / -Xmx combos.

    region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
                       (uintx) MIN_REGION_SIZE);
  }

  int region_size_log = log2_long((jlong) region_size);
  // Recalculate the region size to make sure it's a power of
  // 2. This means that region_size is the largest power of 2 that's
  // <= what we've calculated so far.
308
  region_size = ((uintx)1 << region_size_log);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

  // Now make sure that we don't go over or under our limits.
  if (region_size < MIN_REGION_SIZE) {
    region_size = MIN_REGION_SIZE;
  } else if (region_size > MAX_REGION_SIZE) {
    region_size = MAX_REGION_SIZE;
  }

  // And recalculate the log.
  region_size_log = log2_long((jlong) region_size);

  // Now, set up the globals.
  guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
  LogOfHRGrainBytes = region_size_log;

  guarantee(LogOfHRGrainWords == 0, "we should only set it once");
  LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;

  guarantee(GrainBytes == 0, "we should only set it once");
  // The cast to int is safe, given that we've bounded region_size by
  // MIN_REGION_SIZE and MAX_REGION_SIZE.
330
  GrainBytes = (size_t)region_size;
331 332 333

  guarantee(GrainWords == 0, "we should only set it once");
  GrainWords = GrainBytes >> LogHeapWordSize;
334
  guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
335 336 337 338 339

  guarantee(CardsPerRegion == 0, "we should only set it once");
  CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
}

340 341 342 343 344 345 346 347 348
void HeapRegion::reset_after_compaction() {
  G1OffsetTableContigSpace::reset_after_compaction();
  // After a compaction the mark bitmap is invalid, so we must
  // treat all objects as being inside the unmarked area.
  zero_marked_bytes();
  init_top_at_mark_start();
}

void HeapRegion::hr_clear(bool par, bool clear_space) {
349 350 351 352 353 354 355
  assert(_humongous_type == NotHumongous,
         "we should have already filtered out humongous regions");
  assert(_humongous_start_region == NULL,
         "we should have already filtered out humongous regions");
  assert(_end == _orig_end,
         "we should have already filtered out humongous regions");

356 357 358 359 360
  _in_collection_set = false;

  set_young_index_in_cset(-1);
  uninstall_surv_rate_group();
  set_young_type(NotYoung);
361
  reset_pre_dummy_top();
362 363 364 365 366

  if (!par) {
    // If this is parallel, this will be done later.
    HeapRegionRemSet* hrrs = rem_set();
    if (hrrs != NULL) hrrs->clear();
367
    _claimed = InitialClaimValue;
368 369 370 371 372
  }
  zero_marked_bytes();

  _offsets.resize(HeapRegion::GrainWords);
  init_top_at_mark_start();
T
Merge  
tonyp 已提交
373
  if (clear_space) clear(SpaceDecorator::Mangle);
374 375
}

376 377
void HeapRegion::par_clear() {
  assert(used() == 0, "the region should have been already cleared");
378
  assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
379 380 381 382 383 384 385
  HeapRegionRemSet* hrrs = rem_set();
  hrrs->clear();
  CardTableModRefBS* ct_bs =
                   (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
  ct_bs->clear(MemRegion(bottom(), end()));
}

386 387
void HeapRegion::calc_gc_efficiency() {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
388 389 390
  G1CollectorPolicy* g1p = g1h->g1_policy();
  _gc_efficiency = (double) reclaimable_bytes() /
                            g1p->predict_region_elapsed_time_ms(this, false);
391 392
}

393
void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
394
  assert(!isHumongous(), "sanity / pre-condition");
395 396 397
  assert(end() == _orig_end,
         "Should be normal before the humongous object allocation");
  assert(top() == bottom(), "should be empty");
398
  assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
399

400
  _humongous_type = StartsHumongous;
401
  _humongous_start_region = this;
402 403

  set_end(new_end);
404
  _offsets.set_for_starts_humongous(new_top);
405 406
}

407
void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
408
  assert(!isHumongous(), "sanity / pre-condition");
409 410 411
  assert(end() == _orig_end,
         "Should be normal before the humongous object allocation");
  assert(top() == bottom(), "should be empty");
412
  assert(first_hr->startsHumongous(), "pre-condition");
413 414

  _humongous_type = ContinuesHumongous;
415
  _humongous_start_region = first_hr;
416 417
}

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
void HeapRegion::set_notHumongous() {
  assert(isHumongous(), "pre-condition");

  if (startsHumongous()) {
    assert(top() <= end(), "pre-condition");
    set_end(_orig_end);
    if (top() > end()) {
      // at least one "continues humongous" region after it
      set_top(end());
    }
  } else {
    // continues humongous
    assert(end() == _orig_end, "sanity");
  }

433
  assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
434 435 436 437
  _humongous_type = NotHumongous;
  _humongous_start_region = NULL;
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
bool HeapRegion::claimHeapRegion(jint claimValue) {
  jint current = _claimed;
  if (current != claimValue) {
    jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
    if (res == current) {
      return true;
    }
  }
  return false;
}

HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
  HeapWord* low = addr;
  HeapWord* high = end();
  while (low < high) {
    size_t diff = pointer_delta(high, low);
    // Must add one below to bias toward the high amount.  Otherwise, if
  // "high" were at the desired value, and "low" were one less, we
    // would not converge on "high".  This is not symmetric, because
    // we set "high" to a block start, which might be the right one,
    // which we don't do for "low".
    HeapWord* middle = low + (diff+1)/2;
    if (middle == high) return high;
    HeapWord* mid_bs = block_start_careful(middle);
    if (mid_bs < addr) {
      low = middle;
    } else {
      high = mid_bs;
    }
  }
  assert(low == high && low >= addr, "Didn't work.");
  return low;
}

T
Merge  
tonyp 已提交
472 473
void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  G1OffsetTableContigSpace::initialize(mr, false, mangle_space);
474 475 476 477 478 479 480
  hr_clear(false/*par*/, clear_space);
}
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


481 482 483 484
HeapRegion::HeapRegion(uint hrs_index,
                       G1BlockOffsetSharedArray* sharedOffsetArray,
                       MemRegion mr, bool is_zeroed) :
    G1OffsetTableContigSpace(sharedOffsetArray, mr, is_zeroed),
485
    _hrs_index(hrs_index),
486
    _humongous_type(NotHumongous), _humongous_start_region(NULL),
487
    _in_collection_set(false),
488
    _next_in_special_set(NULL), _orig_end(NULL),
489
    _claimed(InitialClaimValue), _evacuation_failed(false),
490
    _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
491
    _young_type(NotYoung), _next_young_region(NULL),
492 493 494 495 496 497
    _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
#ifdef ASSERT
    _containing_set(NULL),
#endif // ASSERT
     _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
    _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
498
    _predicted_bytes_to_copy(0)
499 500 501 502
{
  _orig_end = mr.end();
  // Note that initialize() will set the start of the unmarked area of the
  // region.
T
Merge  
tonyp 已提交
503 504 505
  this->initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
  set_top(bottom());
  set_saved_mark();
506 507 508 509 510 511 512

  _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);

  assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
}

CompactibleSpace* HeapRegion::next_compaction_space() const {
513 514
  // We're not using an iterator given that it will wrap around when
  // it reaches the last region and this is not what we want here.
515
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
516 517 518 519 520 521 522 523 524
  uint index = hrs_index() + 1;
  while (index < g1h->n_regions()) {
    HeapRegion* hr = g1h->region_at(index);
    if (!hr->isHumongous()) {
      return hr;
    }
    index += 1;
  }
  return NULL;
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
}

void HeapRegion::save_marks() {
  set_saved_mark();
}

void HeapRegion::oops_in_mr_iterate(MemRegion mr, OopClosure* cl) {
  HeapWord* p = mr.start();
  HeapWord* e = mr.end();
  oop obj;
  while (p < e) {
    obj = oop(p);
    p += obj->oop_iterate(cl);
  }
  assert(p == e, "bad memregion: doesn't end on obj boundary");
}

#define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
  ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
}
SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)


void HeapRegion::oop_before_save_marks_iterate(OopClosure* cl) {
  oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
                                                    bool during_conc_mark) {
  // We always recreate the prev marking info and we'll explicitly
  // mark all objects we find to be self-forwarded on the prev
  // bitmap. So all objects need to be below PTAMS.
  _prev_top_at_mark_start = top();
  _prev_marked_bytes = 0;

  if (during_initial_mark) {
    // During initial-mark, we'll also explicitly mark all objects
    // we find to be self-forwarded on the next bitmap. So all
    // objects need to be below NTAMS.
    _next_top_at_mark_start = top();
    _next_marked_bytes = 0;
  } else if (during_conc_mark) {
    // During concurrent mark, all objects in the CSet (including
    // the ones we find to be self-forwarded) are implicitly live.
    // So all objects need to be above NTAMS.
    _next_top_at_mark_start = bottom();
    _next_marked_bytes = 0;
  }
}

void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
                                                  bool during_conc_mark,
                                                  size_t marked_bytes) {
  assert(0 <= marked_bytes && marked_bytes <= used(),
         err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
                 marked_bytes, used()));
  _prev_marked_bytes = marked_bytes;
}

585 586 587 588 589 590 591 592 593 594 595 596
HeapWord*
HeapRegion::object_iterate_mem_careful(MemRegion mr,
                                                 ObjectClosure* cl) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  // We used to use "block_start_careful" here.  But we're actually happy
  // to update the BOT while we do this...
  HeapWord* cur = block_start(mr.start());
  mr = mr.intersection(used_region());
  if (mr.is_empty()) return NULL;
  // Otherwise, find the obj that extends onto mr.start().

  assert(cur <= mr.start()
597
         && (oop(cur)->klass_or_null() == NULL ||
598 599 600 601 602
             cur + oop(cur)->size() > mr.start()),
         "postcondition of block_start");
  oop obj;
  while (cur < mr.end()) {
    obj = oop(cur);
603
    if (obj->klass_or_null() == NULL) {
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
      // Ran into an unparseable point.
      return cur;
    } else if (!g1h->is_obj_dead(obj)) {
      cl->do_object(obj);
    }
    if (cl->abort()) return cur;
    // The check above must occur before the operation below, since an
    // abort might invalidate the "size" operation.
    cur += obj->size();
  }
  return NULL;
}

HeapWord*
HeapRegion::
oops_on_card_seq_iterate_careful(MemRegion mr,
620
                                 FilterOutOfRegionClosure* cl,
621 622 623 624 625 626 627 628 629
                                 bool filter_young,
                                 jbyte* card_ptr) {
  // Currently, we should only have to clean the card if filter_young
  // is true and vice versa.
  if (filter_young) {
    assert(card_ptr != NULL, "pre-condition");
  } else {
    assert(card_ptr == NULL, "pre-condition");
  }
630 631 632 633 634
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If we're within a stop-world GC, then we might look at a card in a
  // GC alloc region that extends onto a GC LAB, which may not be
  // parseable.  Stop such at the "saved_mark" of the region.
635
  if (g1h->is_gc_active()) {
636 637 638 639 640 641 642
    mr = mr.intersection(used_region_at_save_marks());
  } else {
    mr = mr.intersection(used_region());
  }
  if (mr.is_empty()) return NULL;
  // Otherwise, find the obj that extends onto mr.start().

643 644 645 646 647 648 649 650 651 652
  // The intersection of the incoming mr (for the card) and the
  // allocated part of the region is non-empty. This implies that
  // we have actually allocated into this region. The code in
  // G1CollectedHeap.cpp that allocates a new region sets the
  // is_young tag on the region before allocating. Thus we
  // safely know if this region is young.
  if (is_young() && filter_young) {
    return NULL;
  }

J
johnc 已提交
653 654
  assert(!is_young(), "check value of filter_young");

655 656 657 658 659 660 661 662 663
  // We can only clean the card here, after we make the decision that
  // the card is not young. And we only clean the card if we have been
  // asked to (i.e., card_ptr != NULL).
  if (card_ptr != NULL) {
    *card_ptr = CardTableModRefBS::clean_card_val();
    // We must complete this write before we do any of the reads below.
    OrderAccess::storeload();
  }

664 665 666 667
  // Cache the boundaries of the memory region in some const locals
  HeapWord* const start = mr.start();
  HeapWord* const end = mr.end();

668 669
  // We used to use "block_start_careful" here.  But we're actually happy
  // to update the BOT while we do this...
670 671
  HeapWord* cur = block_start(start);
  assert(cur <= start, "Postcondition");
672

673 674 675 676 677 678 679
  oop obj;

  HeapWord* next = cur;
  while (next <= start) {
    cur = next;
    obj = oop(cur);
    if (obj->klass_or_null() == NULL) {
680 681 682 683
      // Ran into an unparseable point.
      return cur;
    }
    // Otherwise...
684
    next = (cur + obj->size());
685
  }
686 687 688 689 690 691 692 693 694

  // If we finish the above loop...We have a parseable object that
  // begins on or before the start of the memory region, and ends
  // inside or spans the entire region.

  assert(obj == oop(cur), "sanity");
  assert(cur <= start &&
         obj->klass_or_null() != NULL &&
         (cur + obj->size()) > start,
695
         "Loop postcondition");
696

697 698 699 700
  if (!g1h->is_obj_dead(obj)) {
    obj->oop_iterate(cl, mr);
  }

701
  while (cur < end) {
702
    obj = oop(cur);
703
    if (obj->klass_or_null() == NULL) {
704 705 706
      // Ran into an unparseable point.
      return cur;
    };
707

708 709
    // Otherwise:
    next = (cur + obj->size());
710

711
    if (!g1h->is_obj_dead(obj)) {
712 713 714 715
      if (next < end || !obj->is_objArray()) {
        // This object either does not span the MemRegion
        // boundary, or if it does it's not an array.
        // Apply closure to whole object.
716 717
        obj->oop_iterate(cl);
      } else {
718 719 720
        // This obj is an array that spans the boundary.
        // Stop at the boundary.
        obj->oop_iterate(cl, mr);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
      }
    }
    cur = next;
  }
  return NULL;
}

void HeapRegion::print() const { print_on(gclog_or_tty); }
void HeapRegion::print_on(outputStream* st) const {
  if (isHumongous()) {
    if (startsHumongous())
      st->print(" HS");
    else
      st->print(" HC");
  } else {
    st->print("   ");
  }
  if (in_collection_set())
    st->print(" CS");
  else
    st->print("   ");
  if (is_young())
743
    st->print(is_survivor() ? " SU" : " Y ");
744 745 746 747 748 749
  else
    st->print("   ");
  if (is_empty())
    st->print(" F");
  else
    st->print("  ");
750
  st->print(" TS %5d", _gc_time_stamp);
751 752
  st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
            prev_top_at_mark_start(), next_top_at_mark_start());
753 754 755
  G1OffsetTableContigSpace::print_on(st);
}

756
void HeapRegion::verify() const {
757
  bool dummy = false;
758
  verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
759 760
}

761 762 763
// This really ought to be commoned up into OffsetTableContigSpace somehow.
// We would need a mechanism to make that code skip dead objects.

764
void HeapRegion::verify(VerifyOption vo,
765
                        bool* failures) const {
766
  G1CollectedHeap* g1 = G1CollectedHeap::heap();
767
  *failures = false;
768 769
  HeapWord* p = bottom();
  HeapWord* prev_p = NULL;
770
  VerifyLiveClosure vl_cl(g1, vo);
771
  bool is_humongous = isHumongous();
772
  bool do_bot_verify = !is_young();
773
  size_t object_num = 0;
774
  while (p < top()) {
775 776 777 778 779
    oop obj = oop(p);
    size_t obj_size = obj->size();
    object_num += 1;

    if (is_humongous != g1->isHumongous(obj_size)) {
780 781
      gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
                             SIZE_FORMAT" words) in a %shumongous region",
782 783
                             p, g1->isHumongous(obj_size) ? "" : "non-",
                             obj_size, is_humongous ? "" : "non-");
784
       *failures = true;
785
       return;
786
    }
787 788 789 790 791 792

    // If it returns false, verify_for_object() will output the
    // appropriate messasge.
    if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
      *failures = true;
      return;
793
    }
794

795
    if (!g1->is_obj_dead_cond(obj, this, vo)) {
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
      if (obj->is_oop()) {
        klassOop klass = obj->klass();
        if (!klass->is_perm()) {
          gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
                                 "not in perm", klass, obj);
          *failures = true;
          return;
        } else if (!klass->is_klass()) {
          gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
                                 "not a klass", klass, obj);
          *failures = true;
          return;
        } else {
          vl_cl.set_containing_obj(obj);
          obj->oop_iterate(&vl_cl);
          if (vl_cl.failures()) {
812
            *failures = true;
813 814 815
          }
          if (G1MaxVerifyFailures >= 0 &&
              vl_cl.n_failures() >= G1MaxVerifyFailures) {
816 817 818
            return;
          }
        }
819 820 821 822
      } else {
        gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
        *failures = true;
        return;
823 824 825
      }
    }
    prev_p = p;
826
    p += obj_size;
827
  }
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

  if (p != top()) {
    gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
                           "does not match top "PTR_FORMAT, p, top());
    *failures = true;
    return;
  }

  HeapWord* the_end = end();
  assert(p == top(), "it should still hold");
  // Do some extra BOT consistency checking for addresses in the
  // range [top, end). BOT look-ups in this range should yield
  // top. No point in doing that if top == end (there's nothing there).
  if (p < the_end) {
    // Look up top
    HeapWord* addr_1 = p;
    HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
    if (b_start_1 != p) {
      gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
                             " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
                             addr_1, b_start_1, p);
      *failures = true;
      return;
    }

    // Look up top + 1
    HeapWord* addr_2 = p + 1;
    if (addr_2 < the_end) {
      HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
      if (b_start_2 != p) {
        gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
                               " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
                               addr_2, b_start_2, p);
861 862
        *failures = true;
        return;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
      }
    }

    // Look up an address between top and end
    size_t diff = pointer_delta(the_end, p) / 2;
    HeapWord* addr_3 = p + diff;
    if (addr_3 < the_end) {
      HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
      if (b_start_3 != p) {
        gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
                               " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
                               addr_3, b_start_3, p);
        *failures = true;
        return;
      }
    }

    // Loook up end - 1
    HeapWord* addr_4 = the_end - 1;
    HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
    if (b_start_4 != p) {
      gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
                             " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
                             addr_4, b_start_4, p);
      *failures = true;
      return;
889
    }
890
  }
891

892 893 894 895 896
  if (is_humongous && object_num > 1) {
    gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
                           "but has "SIZE_FORMAT", objects",
                           bottom(), end(), object_num);
    *failures = true;
897
    return;
898 899 900 901 902 903
  }
}

// G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
// away eventually.

T
Merge  
tonyp 已提交
904
void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
905
  // false ==> we'll do the clearing if there's clearing to be done.
T
Merge  
tonyp 已提交
906
  ContiguousSpace::initialize(mr, false, mangle_space);
907 908
  _offsets.zero_bottom_entry();
  _offsets.initialize_threshold();
T
Merge  
tonyp 已提交
909
  if (clear_space) clear(mangle_space);
910 911
}

T
Merge  
tonyp 已提交
912 913
void G1OffsetTableContigSpace::clear(bool mangle_space) {
  ContiguousSpace::clear(mangle_space);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
  _offsets.zero_bottom_entry();
  _offsets.initialize_threshold();
}

void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  Space::set_bottom(new_bottom);
  _offsets.set_bottom(new_bottom);
}

void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  Space::set_end(new_end);
  _offsets.resize(new_end - bottom());
}

void G1OffsetTableContigSpace::print() const {
  print_short();
  gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
                INTPTR_FORMAT ", " INTPTR_FORMAT ")",
                bottom(), top(), _offsets.threshold(), end());
}

HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  return _offsets.initialize_threshold();
}

HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
                                                    HeapWord* end) {
  _offsets.alloc_block(start, end);
  return _offsets.threshold();
}

HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  if (_gc_time_stamp < g1h->get_gc_time_stamp())
    return top();
  else
    return ContiguousSpace::saved_mark_word();
}

void G1OffsetTableContigSpace::set_saved_mark() {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();

  if (_gc_time_stamp < curr_gc_time_stamp) {
    // The order of these is important, as another thread might be
    // about to start scanning this region. If it does so after
    // set_saved_mark and before _gc_time_stamp = ..., then the latter
    // will be false, and it will pick up top() as the high water mark
    // of region. If it does so after _gc_time_stamp = ..., then it
    // will pick up the right saved_mark_word() as the high water mark
    // of the region. Either way, the behaviour will be correct.
    ContiguousSpace::set_saved_mark();
967
    OrderAccess::storestore();
968
    _gc_time_stamp = curr_gc_time_stamp;
969 970 971 972 973
    // No need to do another barrier to flush the writes above. If
    // this is called in parallel with other threads trying to
    // allocate into the region, the caller should call this while
    // holding a lock and when the lock is released the writes will be
    // flushed.
974 975 976 977 978 979 980 981 982 983 984
  }
}

G1OffsetTableContigSpace::
G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
                         MemRegion mr, bool is_zeroed) :
  _offsets(sharedOffsetArray, mr),
  _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  _gc_time_stamp(0)
{
  _offsets.set_space(this);
T
Merge  
tonyp 已提交
985
  initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
986
}