heapRegion.hpp 32.4 KB
Newer Older
1
/*
X
xdono 已提交
2
 * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#ifndef SERIALGC

// A HeapRegion is the smallest piece of a G1CollectedHeap that
// can be collected independently.

// NOTE: Although a HeapRegion is a Space, its
// Space::initDirtyCardClosure method must not be called.
// The problem is that the existence of this method breaks
// the independence of barrier sets from remembered sets.
// The solution is to remove this method from the definition
// of a Space.

class CompactibleSpace;
class ContiguousSpace;
class HeapRegionRemSet;
class HeapRegionRemSetIterator;
class HeapRegion;

// A dirty card to oop closure for heap regions. It
// knows how to get the G1 heap and how to use the bitmap
// in the concurrent marker used by G1 to filter remembered
// sets.

class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
public:
  // Specification of possible DirtyCardToOopClosure filtering.
  enum FilterKind {
    NoFilterKind,
    IntoCSFilterKind,
    OutOfRegionFilterKind
  };

protected:
  HeapRegion* _hr;
  FilterKind _fk;
  G1CollectedHeap* _g1;

  void walk_mem_region_with_cl(MemRegion mr,
                               HeapWord* bottom, HeapWord* top,
                               OopClosure* cl);

  // We don't specialize this for FilteringClosure; filtering is handled by
  // the "FilterKind" mechanism.  But we provide this to avoid a compiler
  // warning.
  void walk_mem_region_with_cl(MemRegion mr,
                               HeapWord* bottom, HeapWord* top,
                               FilteringClosure* cl) {
    HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
                                                       (OopClosure*)cl);
  }

  // Get the actual top of the area on which the closure will
  // operate, given where the top is assumed to be (the end of the
  // memory region passed to do_MemRegion) and where the object
  // at the top is assumed to start. For example, an object may
  // start at the top but actually extend past the assumed top,
  // in which case the top becomes the end of the object.
  HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
    return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
  }

  // Walk the given memory region from bottom to (actual) top
  // looking for objects and applying the oop closure (_cl) to
  // them. The base implementation of this treats the area as
  // blocks, where a block may or may not be an object. Sub-
  // classes should override this to provide more accurate
  // or possibly more efficient walking.
  void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
    Filtering_DCTOC::walk_mem_region(mr, bottom, top);
  }

public:
  HeapRegionDCTOC(G1CollectedHeap* g1,
                  HeapRegion* hr, OopClosure* cl,
                  CardTableModRefBS::PrecisionStyle precision,
                  FilterKind fk);
};


// The complicating factor is that BlockOffsetTable diverged
// significantly, and we need functionality that is only in the G1 version.
// So I copied that code, which led to an alternate G1 version of
// OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
// be reconciled, then G1OffsetTableContigSpace could go away.

// The idea behind time stamps is the following. Doing a save_marks on
// all regions at every GC pause is time consuming (if I remember
// well, 10ms or so). So, we would like to do that only for regions
// that are GC alloc regions. To achieve this, we use time
// stamps. For every evacuation pause, G1CollectedHeap generates a
// unique time stamp (essentially a counter that gets
// incremented). Every time we want to call save_marks on a region,
// we set the saved_mark_word to top and also copy the current GC
// time stamp to the time stamp field of the space. Reading the
// saved_mark_word involves checking the time stamp of the
// region. If it is the same as the current GC time stamp, then we
// can safely read the saved_mark_word field, as it is valid. If the
// time stamp of the region is not the same as the current GC time
// stamp, then we instead read top, as the saved_mark_word field is
// invalid. Time stamps (on the regions and also on the
// G1CollectedHeap) are reset at every cleanup (we iterate over
// the regions anyway) and at the end of a Full GC. The current scheme
// that uses sequential unsigned ints will fail only if we have 4b
// evacuation pauses between two cleanups, which is _highly_ unlikely.

class G1OffsetTableContigSpace: public ContiguousSpace {
  friend class VMStructs;
 protected:
  G1BlockOffsetArrayContigSpace _offsets;
  Mutex _par_alloc_lock;
  volatile unsigned _gc_time_stamp;

 public:
  // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
  // assumed to contain zeros.
  G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
                           MemRegion mr, bool is_zeroed = false);

  void set_bottom(HeapWord* value);
  void set_end(HeapWord* value);

  virtual HeapWord* saved_mark_word() const;
  virtual void set_saved_mark();
  void reset_gc_time_stamp() { _gc_time_stamp = 0; }

T
Merge  
tonyp 已提交
150 151
  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
  virtual void clear(bool mangle_space);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

  HeapWord* block_start(const void* p);
  HeapWord* block_start_const(const void* p) const;

  // Add offset table update.
  virtual HeapWord* allocate(size_t word_size);
  HeapWord* par_allocate(size_t word_size);

  // MarkSweep support phase3
  virtual HeapWord* initialize_threshold();
  virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);

  virtual void print() const;
};

class HeapRegion: public G1OffsetTableContigSpace {
  friend class VMStructs;
 private:

171 172 173 174 175 176
  enum HumongousType {
    NotHumongous = 0,
    StartsHumongous,
    ContinuesHumongous
  };

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  // The next filter kind that should be used for a "new_dcto_cl" call with
  // the "traditional" signature.
  HeapRegionDCTOC::FilterKind _next_fk;

  // Requires that the region "mr" be dense with objects, and begin and end
  // with an object.
  void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);

  // The remembered set for this region.
  // (Might want to make this "inline" later, to avoid some alloc failure
  // issues.)
  HeapRegionRemSet* _rem_set;

  G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }

 protected:
  // If this region is a member of a HeapRegionSeq, the index in that
  // sequence, otherwise -1.
  int  _hrs_index;

197
  HumongousType _humongous_type;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
  // For a humongous region, region in which it starts.
  HeapRegion* _humongous_start_region;
  // For the start region of a humongous sequence, it's original end().
  HeapWord* _orig_end;

  // True iff the region is in current collection_set.
  bool _in_collection_set;

    // True iff the region is on the unclean list, waiting to be zero filled.
  bool _is_on_unclean_list;

  // True iff the region is on the free list, ready for allocation.
  bool _is_on_free_list;

  // Is this or has it been an allocation region in the current collection
  // pause.
  bool _is_gc_alloc_region;

  // True iff an attempt to evacuate an object in the region failed.
  bool _evacuation_failed;

  // A heap region may be a member one of a number of special subsets, each
  // represented as linked lists through the field below.  Currently, these
  // sets include:
  //   The collection set.
  //   The set of allocation regions used in a collection pause.
  //   Spaces that may contain gray objects.
  HeapRegion* _next_in_special_set;

  // next region in the young "generation" region set
  HeapRegion* _next_young_region;

230 231 232
  // Next region whose cards need cleaning
  HeapRegion* _next_dirty_cards_region;

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
  // For parallel heapRegion traversal.
  jint _claimed;

  // We use concurrent marking to determine the amount of live data
  // in each heap region.
  size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
  size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.

  // See "sort_index" method.  -1 means is not in the array.
  int _sort_index;

  // <PREDICTION>
  double _gc_efficiency;
  // </PREDICTION>

  enum YoungType {
    NotYoung,                   // a region is not young
    ScanOnly,                   // a region is young and scan-only
    Young,                      // a region is young
    Survivor                    // a region is young and it contains
                                // survivor
  };

  YoungType _young_type;
  int  _young_index_in_cset;
  SurvRateGroup* _surv_rate_group;
  int  _age_index;

  // The start of the unmarked area. The unmarked area extends from this
  // word until the top and/or end of the region, and is the part
  // of the region for which no marking was done, i.e. objects may
  // have been allocated in this part since the last mark phase.
  // "prev" is the top at the start of the last completed marking.
  // "next" is the top at the start of the in-progress marking (if any.)
  HeapWord* _prev_top_at_mark_start;
  HeapWord* _next_top_at_mark_start;
  // If a collection pause is in progress, this is the top at the start
  // of that pause.

  // We've counted the marked bytes of objects below here.
  HeapWord* _top_at_conc_mark_count;

  void init_top_at_mark_start() {
    assert(_prev_marked_bytes == 0 &&
           _next_marked_bytes == 0,
           "Must be called after zero_marked_bytes.");
    HeapWord* bot = bottom();
    _prev_top_at_mark_start = bot;
    _next_top_at_mark_start = bot;
    _top_at_conc_mark_count = bot;
  }

  jint _zfs;  // A member of ZeroFillState.  Protected by ZF_lock.
  Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
                        // made it so.

  void set_young_type(YoungType new_type) {
    //assert(_young_type != new_type, "setting the same type" );
    // TODO: add more assertions here
    _young_type = new_type;
  }

 public:
  // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
  HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
             MemRegion mr, bool is_zeroed);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  static int LogOfHRGrainBytes;
  static int LogOfHRGrainWords;
  // The normal type of these should be size_t. However, they used to
  // be members of an enum before and they are assumed by the
  // compilers to be ints. To avoid going and fixing all their uses,
  // I'm declaring them as ints. I'm not anticipating heap region
  // sizes to reach anywhere near 2g, so using an int here is safe.
  static int GrainBytes;
  static int GrainWords;
  static int CardsPerRegion;

  // It sets up the heap region size (GrainBytes / GrainWords), as
  // well as other related fields that are based on the heap region
  // size (LogOfHRGrainBytes / LogOfHRGrainWords /
  // CardsPerRegion). All those fields are considered constant
  // throughout the JVM's execution, therefore they should only be set
  // up once during initialization time.
  static void setup_heap_region_size(uintx min_heap_size);
318

319 320 321 322
  enum ClaimValues {
    InitialClaimValue     = 0,
    FinalCountClaimValue  = 1,
    NoteEndClaimValue     = 2,
323
    ScrubRemSetClaimValue = 3,
324 325
    ParVerifyClaimValue   = 4,
    RebuildRSClaimValue   = 5
326 327
  };

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  // Concurrent refinement requires contiguous heap regions (in which TLABs
  // might be allocated) to be zero-filled.  Each region therefore has a
  // zero-fill-state.
  enum ZeroFillState {
    NotZeroFilled,
    ZeroFilling,
    ZeroFilled,
    Allocated
  };

  // If this region is a member of a HeapRegionSeq, the index in that
  // sequence, otherwise -1.
  int hrs_index() const { return _hrs_index; }
  void set_hrs_index(int index) { _hrs_index = index; }

  // The number of bytes marked live in the region in the last marking phase.
  size_t marked_bytes()    { return _prev_marked_bytes; }
  // The number of bytes counted in the next marking.
  size_t next_marked_bytes() { return _next_marked_bytes; }
  // The number of bytes live wrt the next marking.
  size_t next_live_bytes() {
    return (top() - next_top_at_mark_start())
      * HeapWordSize
      + next_marked_bytes();
  }

  // A lower bound on the amount of garbage bytes in the region.
  size_t garbage_bytes() {
    size_t used_at_mark_start_bytes =
      (prev_top_at_mark_start() - bottom()) * HeapWordSize;
    assert(used_at_mark_start_bytes >= marked_bytes(),
           "Can't mark more than we have.");
    return used_at_mark_start_bytes - marked_bytes();
  }

  // An upper bound on the number of live bytes in the region.
  size_t max_live_bytes() { return used() - garbage_bytes(); }

  void add_to_marked_bytes(size_t incr_bytes) {
    _next_marked_bytes = _next_marked_bytes + incr_bytes;
    guarantee( _next_marked_bytes <= used(), "invariant" );
  }

  void zero_marked_bytes()      {
    _prev_marked_bytes = _next_marked_bytes = 0;
  }

375 376 377
  bool isHumongous() const { return _humongous_type != NotHumongous; }
  bool startsHumongous() const { return _humongous_type == StartsHumongous; }
  bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
  // For a humongous region, region in which it starts.
  HeapRegion* humongous_start_region() const {
    return _humongous_start_region;
  }

  // Causes the current region to represent a humongous object spanning "n"
  // regions.
  virtual void set_startsHumongous();

  // The regions that continue a humongous sequence should be added using
  // this method, in increasing address order.
  void set_continuesHumongous(HeapRegion* start);

  void add_continuingHumongousRegion(HeapRegion* cont);

  // If the region has a remembered set, return a pointer to it.
  HeapRegionRemSet* rem_set() const {
    return _rem_set;
  }

  // True iff the region is in current collection_set.
  bool in_collection_set() const {
    return _in_collection_set;
  }
  void set_in_collection_set(bool b) {
    _in_collection_set = b;
  }
  HeapRegion* next_in_collection_set() {
    assert(in_collection_set(), "should only invoke on member of CS.");
    assert(_next_in_special_set == NULL ||
           _next_in_special_set->in_collection_set(),
           "Malformed CS.");
    return _next_in_special_set;
  }
  void set_next_in_collection_set(HeapRegion* r) {
    assert(in_collection_set(), "should only invoke on member of CS.");
    assert(r == NULL || r->in_collection_set(), "Malformed CS.");
    _next_in_special_set = r;
  }

  // True iff it is or has been an allocation region in the current
  // collection pause.
  bool is_gc_alloc_region() const {
    return _is_gc_alloc_region;
  }
  void set_is_gc_alloc_region(bool b) {
    _is_gc_alloc_region = b;
  }
  HeapRegion* next_gc_alloc_region() {
    assert(is_gc_alloc_region(), "should only invoke on member of CS.");
    assert(_next_in_special_set == NULL ||
           _next_in_special_set->is_gc_alloc_region(),
           "Malformed CS.");
    return _next_in_special_set;
  }
  void set_next_gc_alloc_region(HeapRegion* r) {
    assert(is_gc_alloc_region(), "should only invoke on member of CS.");
    assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
    _next_in_special_set = r;
  }

  bool is_on_free_list() {
    return _is_on_free_list;
  }

  void set_on_free_list(bool b) {
    _is_on_free_list = b;
  }

  HeapRegion* next_from_free_list() {
    assert(is_on_free_list(),
           "Should only invoke on free space.");
    assert(_next_in_special_set == NULL ||
           _next_in_special_set->is_on_free_list(),
           "Malformed Free List.");
    return _next_in_special_set;
  }

  void set_next_on_free_list(HeapRegion* r) {
    assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
    _next_in_special_set = r;
  }

  bool is_on_unclean_list() {
    return _is_on_unclean_list;
  }

  void set_on_unclean_list(bool b);

  HeapRegion* next_from_unclean_list() {
    assert(is_on_unclean_list(),
           "Should only invoke on unclean space.");
    assert(_next_in_special_set == NULL ||
           _next_in_special_set->is_on_unclean_list(),
           "Malformed unclean List.");
    return _next_in_special_set;
  }

  void set_next_on_unclean_list(HeapRegion* r);

  HeapRegion* get_next_young_region() { return _next_young_region; }
  void set_next_young_region(HeapRegion* hr) {
    _next_young_region = hr;
  }

483 484 485 486 487
  HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
  HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
  void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
  bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }

488 489 490 491 492 493
  // Allows logical separation between objects allocated before and after.
  void save_marks();

  // Reset HR stuff to default values.
  void hr_clear(bool par, bool clear_space);

T
Merge  
tonyp 已提交
494
  void initialize(MemRegion mr, bool clear_space, bool mangle_space);
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

  // Ensure that "this" is zero-filled.
  void ensure_zero_filled();
  // This one requires that the calling thread holds ZF_mon.
  void ensure_zero_filled_locked();

  // Get the start of the unmarked area in this region.
  HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
  HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }

  // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
  // allocated in the current region before the last call to "save_mark".
  void oop_before_save_marks_iterate(OopClosure* cl);

  // This call determines the "filter kind" argument that will be used for
  // the next call to "new_dcto_cl" on this region with the "traditional"
  // signature (i.e., the call below.)  The default, in the absence of a
  // preceding call to this method, is "NoFilterKind", and a call to this
  // method is necessary for each such call, or else it reverts to the
  // default.
  // (This is really ugly, but all other methods I could think of changed a
  // lot of main-line code for G1.)
  void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
    _next_fk = nfk;
  }

  DirtyCardToOopClosure*
  new_dcto_closure(OopClosure* cl,
                   CardTableModRefBS::PrecisionStyle precision,
                   HeapRegionDCTOC::FilterKind fk);

#if WHASSUP
  DirtyCardToOopClosure*
  new_dcto_closure(OopClosure* cl,
                   CardTableModRefBS::PrecisionStyle precision,
                   HeapWord* boundary) {
    assert(boundary == NULL, "This arg doesn't make sense here.");
    DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
    _next_fk = HeapRegionDCTOC::NoFilterKind;
    return res;
  }
#endif

  //
  // Note the start or end of marking. This tells the heap region
  // that the collector is about to start or has finished (concurrently)
  // marking the heap.
  //

  // Note the start of a marking phase. Record the
  // start of the unmarked area of the region here.
  void note_start_of_marking(bool during_initial_mark) {
    init_top_at_conc_mark_count();
    _next_marked_bytes = 0;
    if (during_initial_mark && is_young() && !is_survivor())
      _next_top_at_mark_start = bottom();
    else
      _next_top_at_mark_start = top();
  }

  // Note the end of a marking phase. Install the start of
  // the unmarked area that was captured at start of marking.
  void note_end_of_marking() {
    _prev_top_at_mark_start = _next_top_at_mark_start;
    _prev_marked_bytes = _next_marked_bytes;
    _next_marked_bytes = 0;

    guarantee(_prev_marked_bytes <=
              (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
              "invariant");
  }

  // After an evacuation, we need to update _next_top_at_mark_start
  // to be the current top.  Note this is only valid if we have only
  // ever evacuated into this region.  If we evacuate, allocate, and
  // then evacuate we are in deep doodoo.
  void note_end_of_copying() {
572 573
    assert(top() >= _next_top_at_mark_start, "Increase only");
    _next_top_at_mark_start = top();
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
  }

  // Returns "false" iff no object in the region was allocated when the
  // last mark phase ended.
  bool is_marked() { return _prev_top_at_mark_start != bottom(); }

  // If "is_marked()" is true, then this is the index of the region in
  // an array constructed at the end of marking of the regions in a
  // "desirability" order.
  int sort_index() {
    return _sort_index;
  }
  void set_sort_index(int i) {
    _sort_index = i;
  }

  void init_top_at_conc_mark_count() {
    _top_at_conc_mark_count = bottom();
  }

  void set_top_at_conc_mark_count(HeapWord *cur) {
    assert(bottom() <= cur && cur <= end(), "Sanity.");
    _top_at_conc_mark_count = cur;
  }

  HeapWord* top_at_conc_mark_count() {
    return _top_at_conc_mark_count;
  }

  void reset_during_compaction() {
    guarantee( isHumongous() && startsHumongous(),
               "should only be called for humongous regions");

    zero_marked_bytes();
    init_top_at_mark_start();
  }

  // <PREDICTION>
  void calc_gc_efficiency(void);
  double gc_efficiency() { return _gc_efficiency;}
  // </PREDICTION>

  bool is_young() const     { return _young_type != NotYoung; }
  bool is_scan_only() const { return _young_type == ScanOnly; }
  bool is_survivor() const  { return _young_type == Survivor; }

  int  young_index_in_cset() const { return _young_index_in_cset; }
  void set_young_index_in_cset(int index) {
    assert( (index == -1) || is_young(), "pre-condition" );
    _young_index_in_cset = index;
  }

  int age_in_surv_rate_group() {
    assert( _surv_rate_group != NULL, "pre-condition" );
    assert( _age_index > -1, "pre-condition" );
    return _surv_rate_group->age_in_group(_age_index);
  }

  void recalculate_age_in_surv_rate_group() {
    assert( _surv_rate_group != NULL, "pre-condition" );
    assert( _age_index > -1, "pre-condition" );
    _age_index = _surv_rate_group->recalculate_age_index(_age_index);
  }

  void record_surv_words_in_group(size_t words_survived) {
    assert( _surv_rate_group != NULL, "pre-condition" );
    assert( _age_index > -1, "pre-condition" );
    int age_in_group = age_in_surv_rate_group();
    _surv_rate_group->record_surviving_words(age_in_group, words_survived);
  }

  int age_in_surv_rate_group_cond() {
    if (_surv_rate_group != NULL)
      return age_in_surv_rate_group();
    else
      return -1;
  }

  SurvRateGroup* surv_rate_group() {
    return _surv_rate_group;
  }

  void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
    assert( surv_rate_group != NULL, "pre-condition" );
    assert( _surv_rate_group == NULL, "pre-condition" );
    assert( is_young(), "pre-condition" );

    _surv_rate_group = surv_rate_group;
    _age_index = surv_rate_group->next_age_index();
  }

  void uninstall_surv_rate_group() {
    if (_surv_rate_group != NULL) {
      assert( _age_index > -1, "pre-condition" );
      assert( is_young(), "pre-condition" );

      _surv_rate_group = NULL;
      _age_index = -1;
    } else {
      assert( _age_index == -1, "pre-condition" );
    }
  }

  void set_young() { set_young_type(Young); }

  void set_scan_only() { set_young_type(ScanOnly); }

  void set_survivor() { set_young_type(Survivor); }

  void set_not_young() { set_young_type(NotYoung); }

  // Determine if an object has been allocated since the last
  // mark performed by the collector. This returns true iff the object
  // is within the unmarked area of the region.
  bool obj_allocated_since_prev_marking(oop obj) const {
    return (HeapWord *) obj >= prev_top_at_mark_start();
  }
  bool obj_allocated_since_next_marking(oop obj) const {
    return (HeapWord *) obj >= next_top_at_mark_start();
  }

  // For parallel heapRegion traversal.
  bool claimHeapRegion(int claimValue);
  jint claim_value() { return _claimed; }
  // Use this carefully: only when you're sure no one is claiming...
  void set_claim_value(int claimValue) { _claimed = claimValue; }

  // Returns the "evacuation_failed" property of the region.
  bool evacuation_failed() { return _evacuation_failed; }

  // Sets the "evacuation_failed" property of the region.
  void set_evacuation_failed(bool b) {
    _evacuation_failed = b;

    if (b) {
      init_top_at_conc_mark_count();
      _next_marked_bytes = 0;
    }
  }

  // Requires that "mr" be entirely within the region.
  // Apply "cl->do_object" to all objects that intersect with "mr".
  // If the iteration encounters an unparseable portion of the region,
  // or if "cl->abort()" is true after a closure application,
  // terminate the iteration and return the address of the start of the
  // subregion that isn't done.  (The two can be distinguished by querying
  // "cl->abort()".)  Return of "NULL" indicates that the iteration
  // completed.
  HeapWord*
  object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);

  HeapWord*
  oops_on_card_seq_iterate_careful(MemRegion mr,
                                   FilterOutOfRegionClosure* cl);

  // The region "mr" is entirely in "this", and starts and ends at block
  // boundaries. The caller declares that all the contained blocks are
  // coalesced into one.
  void declare_filled_region_to_BOT(MemRegion mr) {
    _offsets.single_block(mr.start(), mr.end());
  }

  // A version of block start that is guaranteed to find *some* block
  // boundary at or before "p", but does not object iteration, and may
  // therefore be used safely when the heap is unparseable.
  HeapWord* block_start_careful(const void* p) const {
    return _offsets.block_start_careful(p);
  }

  // Requires that "addr" is within the region.  Returns the start of the
  // first ("careful") block that starts at or after "addr", or else the
  // "end" of the region if there is no such block.
  HeapWord* next_block_start_careful(HeapWord* addr);

  // Returns the zero-fill-state of the current region.
  ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
  bool zero_fill_is_allocated() { return _zfs == Allocated; }
  Thread* zero_filler() { return _zero_filler; }

  // Indicate that the contents of the region are unknown, and therefore
  // might require zero-filling.
  void set_zero_fill_needed() {
    set_zero_fill_state_work(NotZeroFilled);
  }
  void set_zero_fill_in_progress(Thread* t) {
    set_zero_fill_state_work(ZeroFilling);
    _zero_filler = t;
  }
  void set_zero_fill_complete();
  void set_zero_fill_allocated() {
    set_zero_fill_state_work(Allocated);
  }

  void set_zero_fill_state_work(ZeroFillState zfs);

  // This is called when a full collection shrinks the heap.
  // We want to set the heap region to a value which says
  // it is no longer part of the heap.  For now, we'll let "NotZF" fill
  // that role.
  void reset_zero_fill() {
    set_zero_fill_state_work(NotZeroFilled);
    _zero_filler = NULL;
  }

#define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
  virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
  SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)

  CompactibleSpace* next_compaction_space() const;

  virtual void reset_after_compaction();

  void print() const;
  void print_on(outputStream* st) const;

789 790 791 792 793 794 795
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  // NOTE: Only the "prev" marking information is guaranteed to be
  // consistent most of the time, so most calls to this should use
  // use_prev_marking == true. Currently, there is only one case where
  // this is called with use_prev_marking == false, which is to verify
  // the "next" marking information at the end of remark.
796
  void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;
797 798

  // Override; it uses the "prev" marking information
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
  virtual void verify(bool allow_dirty) const;

#ifdef DEBUG
  HeapWord* allocate(size_t size);
#endif
};

// HeapRegionClosure is used for iterating over regions.
// Terminates the iteration when the "doHeapRegion" method returns "true".
class HeapRegionClosure : public StackObj {
  friend class HeapRegionSeq;
  friend class G1CollectedHeap;

  bool _complete;
  void incomplete() { _complete = false; }

 public:
  HeapRegionClosure(): _complete(true) {}

  // Typically called on each region until it returns true.
  virtual bool doHeapRegion(HeapRegion* r) = 0;

  // True after iteration if the closure was applied to all heap regions
  // and returned "false" in all cases.
  bool complete() { return _complete; }
};

// A linked lists of heap regions.  It leaves the "next" field
// unspecified; that's up to subtypes.
828
class RegionList VALUE_OBJ_CLASS_SPEC {
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
protected:
  virtual HeapRegion* get_next(HeapRegion* chr) = 0;
  virtual void set_next(HeapRegion* chr,
                        HeapRegion* new_next) = 0;

  HeapRegion* _hd;
  HeapRegion* _tl;
  size_t _sz;

  // Protected constructor because this type is only meaningful
  // when the _get/_set next functions are defined.
  RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
public:
  void reset() {
    _hd = NULL;
    _tl = NULL;
    _sz = 0;
  }
  HeapRegion* hd() { return _hd; }
  HeapRegion* tl() { return _tl; }
  size_t sz() { return _sz; }
  size_t length();

  bool well_formed() {
    return
      ((hd() == NULL && tl() == NULL && sz() == 0)
       || (hd() != NULL && tl() != NULL && sz() > 0))
      && (sz() == length());
  }
  virtual void insert_before_head(HeapRegion* r);
  void prepend_list(RegionList* new_list);
  virtual HeapRegion* pop();
  void dec_sz() { _sz--; }
  // Requires that "r" is an element of the list, and is not the tail.
  void delete_after(HeapRegion* r);
};

class EmptyNonHRegionList: public RegionList {
protected:
  // Protected constructor because this type is only meaningful
  // when the _get/_set next functions are defined.
  EmptyNonHRegionList() : RegionList() {}

public:
  void insert_before_head(HeapRegion* r) {
    //    assert(r->is_empty(), "Better be empty");
    assert(!r->isHumongous(), "Better not be humongous.");
    RegionList::insert_before_head(r);
  }
  void prepend_list(EmptyNonHRegionList* new_list) {
    //    assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
    //     "Better be empty");
    assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
           "Better not be humongous.");
    //    assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
    //     "Better be empty");
    assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
           "Better not be humongous.");
    RegionList::prepend_list(new_list);
  }
};

class UncleanRegionList: public EmptyNonHRegionList {
public:
  HeapRegion* get_next(HeapRegion* hr) {
    return hr->next_from_unclean_list();
  }
  void set_next(HeapRegion* hr, HeapRegion* new_next) {
    hr->set_next_on_unclean_list(new_next);
  }

  UncleanRegionList() : EmptyNonHRegionList() {}

  void insert_before_head(HeapRegion* r) {
    assert(!r->is_on_free_list(),
           "Better not already be on free list");
    assert(!r->is_on_unclean_list(),
           "Better not already be on unclean list");
    r->set_zero_fill_needed();
    r->set_on_unclean_list(true);
    EmptyNonHRegionList::insert_before_head(r);
  }
  void prepend_list(UncleanRegionList* new_list) {
    assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
           "Better not already be on free list");
    assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
           "Better already be marked as on unclean list");
    assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
           "Better not already be on free list");
    assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
           "Better already be marked as on unclean list");
    EmptyNonHRegionList::prepend_list(new_list);
  }
  HeapRegion* pop() {
    HeapRegion* res = RegionList::pop();
    if (res != NULL) res->set_on_unclean_list(false);
    return res;
  }
};

// Local Variables: ***
// c-indentation-style: gnu ***
// End: ***

#endif // SERIALGC