g1CollectedHeap.cpp 195.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "precompiled.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generationSpec.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/vmThread.hpp"
47

48 49
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

50 51 52
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
53
#define YOUNG_LIST_VERBOSE 0
54 55 56 57 58 59
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
60 61 62 63 64
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
J
johnc 已提交
80 81 82 83 84 85
    bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

152 153 154 155 156 157 158 159
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

160 161
YoungList::YoungList(G1CollectedHeap* g1h)
  : _g1h(g1h), _head(NULL),
162
    _length(0),
163
    _last_sampled_rs_lengths(0),
164
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
{
  guarantee( check_list_empty(false), "just making sure..." );
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

  hr->set_young();
  double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
182
  assert(hr->is_survivor(), "should be flagged as survivor region");
183 184 185 186
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
187
    _survivor_tail = hr;
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
  }
  _survivor_head = hr;

  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
213
  _survivor_tail = NULL;
214 215 216 217 218 219 220 221 222 223 224 225 226 227
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

  size_t length = 0;
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
228
    if (!curr->is_young()) {
229
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
230
                             "incorrectly tagged (y: %d, surv: %d)",
231
                             curr->bottom(), curr->end(),
232
                             curr->is_young(), curr->is_survivor());
233 234 235 236 237 238 239 240 241 242 243 244 245 246
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
    gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
                           length, _length);
  }

247
  return ret;
248 249
}

250
bool YoungList::check_list_empty(bool check_sample) {
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  bool ret = true;

  if (_length != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

270
  return ret;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
287 288 289 290 291 292 293 294 295 296 297 298
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

299 300 301 302 303 304 305 306 307 308 309 310 311 312
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
313
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
314

315 316 317 318
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    _g1h->g1_policy()->set_region_survivors(curr);
319 320 321 322 323

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
324 325 326
  }
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

327 328
  _head   = _survivor_head;
  _length = _survivor_length;
329
  if (_survivor_head != NULL) {
330 331 332
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
333 334
  }

335 336 337 338
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
339

340
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
341 342 343 344 345

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
346 347
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
348 349 350 351 352 353 354 355

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
      gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
356
                             "age: %4d, y: %d, surv: %d",
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
                             curr->bottom(), curr->end(),
                             curr->top(),
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
                             curr->top_at_conc_mark_count(),
                             curr->age_in_surv_rate_group_cond(),
                             curr->is_young(),
                             curr->is_survivor());
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

425
void G1CollectedHeap::stop_conc_gc_threads() {
426
  _cg1r->stop();
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
  _cmThread->stop();
}

void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
HeapRegion*
G1CollectedHeap::new_region_try_secondary_free_list(size_t word_size) {
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "secondary_free_list has "SIZE_FORMAT" entries",
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

    // Wait here until we get notifed either when (a) there are no
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
519

520 521 522 523 524 525
HeapRegion* G1CollectedHeap::new_region_work(size_t word_size,
                                             bool do_expand) {
  assert(!isHumongous(word_size) ||
                                  word_size <= (size_t) HeapRegion::GrainWords,
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
      res = new_region_try_secondary_free_list(word_size);
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
    res = new_region_try_secondary_free_list(word_size);
  }
548
  if (res == NULL && do_expand) {
549 550 551 552 553
    if (expand(word_size * HeapWordSize)) {
      // The expansion succeeded and so we should have at least one
      // region on the free list.
      res = _free_list.remove_head();
    }
554
  }
555 556
  if (res != NULL) {
    if (G1PrintHeapRegions) {
557 558 559
      gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT","PTR_FORMAT"], "
                             "top "PTR_FORMAT, res->hrs_index(),
                             res->bottom(), res->end(), res->top());
560 561 562 563 564
    }
  }
  return res;
}

565 566
HeapRegion* G1CollectedHeap::new_gc_alloc_region(int purpose,
                                                 size_t word_size) {
567 568
  HeapRegion* alloc_region = NULL;
  if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
569
    alloc_region = new_region_work(word_size, true /* do_expand */);
570
    if (purpose == GCAllocForSurvived && alloc_region != NULL) {
571
      alloc_region->set_survivor();
572 573 574 575 576 577 578 579
    }
    ++_gc_alloc_region_counts[purpose];
  } else {
    g1_policy()->note_alloc_region_limit_reached(purpose);
  }
  return alloc_region;
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
int G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
                                                       size_t word_size) {
  int first = -1;
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
    // path. The caller will attempt the expasion if this fails, so
    // let's not try to expand here too.
    HeapRegion* hr = new_region_work(word_size, false /* do_expand */);
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
      first = -1;
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
    append_secondary_free_list_if_not_empty();

    if (free_regions() >= num_regions) {
      first = _hrs->find_contiguous(num_regions);
      if (first != -1) {
        for (int i = first; i < first + (int) num_regions; ++i) {
          HeapRegion* hr = _hrs->at(i);
          assert(hr->is_empty(), "sanity");
          assert(is_on_free_list(hr), "sanity");
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

621 622 623
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
624
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
625
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
626

627
  verify_region_sets_optional();
628 629

  size_t num_regions =
630
         round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
631
  size_t x_size = expansion_regions();
632 633 634 635
  size_t fs = _hrs->free_suffix();
  int first = humongous_obj_allocate_find_first(num_regions, word_size);
  if (first == -1) {
    // The only thing we can do now is attempt expansion.
636
    if (fs + x_size >= num_regions) {
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
        first = humongous_obj_allocate_find_first(num_regions, word_size);
        // If the expansion was successful then the allocation
        // should have been successful.
        assert(first != -1, "this should have worked");
      }
653 654
    }
  }
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

  if (first != -1) {
    // Index of last region in the series + 1.
    int last = first + (int) num_regions;

    // We need to initialize the region(s) we just discovered. This is
    // a bit tricky given that it can happen concurrently with
    // refinement threads refining cards on these regions and
    // potentially wanting to refine the BOT as they are scanning
    // those cards (this can happen shortly after a cleanup; see CR
    // 6991377). So we have to set up the region(s) carefully and in
    // a specific order.

    // The word size sum of all the regions we will allocate.
    size_t word_size_sum = num_regions * HeapRegion::GrainWords;
    assert(word_size <= word_size_sum, "sanity");

    // This will be the "starts humongous" region.
    HeapRegion* first_hr = _hrs->at(first);
    // The header of the new object will be placed at the bottom of
    // the first region.
    HeapWord* new_obj = first_hr->bottom();
    // This will be the new end of the first region in the series that
    // should also match the end of the last region in the seriers.
    HeapWord* new_end = new_obj + word_size_sum;
    // This will be the new top of the first region that will reflect
    // this allocation.
    HeapWord* new_top = new_obj + word_size;

    // First, we need to zero the header of the space that we will be
    // allocating. When we update top further down, some refinement
    // threads might try to scan the region. By zeroing the header we
    // ensure that any thread that will try to scan the region will
    // come across the zero klass word and bail out.
    //
    // NOTE: It would not have been correct to have used
    // CollectedHeap::fill_with_object() and make the space look like
    // an int array. The thread that is doing the allocation will
    // later update the object header to a potentially different array
    // type and, for a very short period of time, the klass and length
    // fields will be inconsistent. This could cause a refinement
    // thread to calculate the object size incorrectly.
    Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

    // We will set up the first region as "starts humongous". This
    // will also update the BOT covering all the regions to reflect
    // that there is a single object that starts at the bottom of the
    // first region.
    first_hr->set_startsHumongous(new_top, new_end);

    // Then, if there are any, we will set up the "continues
    // humongous" regions.
    HeapRegion* hr = NULL;
    for (int i = first + 1; i < last; ++i) {
      hr = _hrs->at(i);
      hr->set_continuesHumongous(first_hr);
    }
    // If we have "continues humongous" regions (hr != NULL), then the
    // end of the last one should match new_end.
    assert(hr == NULL || hr->end() == new_end, "sanity");

    // Up to this point no concurrent thread would have been able to
    // do any scanning on any region in this series. All the top
    // fields still point to bottom, so the intersection between
    // [bottom,top] and [card_start,card_end] will be empty. Before we
    // update the top fields, we'll do a storestore to make sure that
    // no thread sees the update to top before the zeroing of the
    // object header and the BOT initialization.
    OrderAccess::storestore();

    // Now that the BOT and the object header have been initialized,
    // we can update top of the "starts humongous" region.
    assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
           "new_top should be in this region");
    first_hr->set_top(new_top);

    // Now, we will update the top fields of the "continues humongous"
    // regions. The reason we need to do this is that, otherwise,
    // these regions would look empty and this will confuse parts of
    // G1. For example, the code that looks for a consecutive number
    // of empty regions will consider them empty and try to
    // re-allocate them. We can extend is_empty() to also include
    // !continuesHumongous(), but it is easier to just update the top
    // fields here. The way we set top for all regions (i.e., top ==
    // end for all regions but the last one, top == new_top for the
    // last one) is actually used when we will free up the humongous
    // region in free_humongous_region().
    hr = NULL;
    for (int i = first + 1; i < last; ++i) {
      hr = _hrs->at(i);
      if ((i + 1) == last) {
        // last continues humongous region
        assert(hr->bottom() < new_top && new_top <= hr->end(),
               "new_top should fall on this region");
        hr->set_top(new_top);
      } else {
        // not last one
        assert(new_top > hr->end(), "new_top should be above this region");
        hr->set_top(hr->end());
      }
    }
    // If we have continues humongous regions (hr != NULL), then the
    // end of the last one should match new_end and its top should
    // match new_top.
    assert(hr == NULL ||
           (hr->end() == new_end && hr->top() == new_top), "sanity");

    assert(first_hr->used() == word_size * HeapWordSize, "invariant");
    _summary_bytes_used += first_hr->used();
    _humongous_set.add(first_hr);

    return new_obj;
767
  }
768 769 770

  verify_region_sets_optional();
  return NULL;
771 772
}

773 774
void
G1CollectedHeap::retire_cur_alloc_region(HeapRegion* cur_alloc_region) {
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
  // Other threads might still be trying to allocate using CASes out
  // of the region we are retiring, as they can do so without holding
  // the Heap_lock. So we first have to make sure that noone else can
  // allocate in it by doing a maximal allocation. Even if our CAS
  // attempt fails a few times, we'll succeed sooner or later given
  // that a failed CAS attempt mean that the region is getting closed
  // to being full (someone else succeeded in allocating into it).
  size_t free_word_size = cur_alloc_region->free() / HeapWordSize;

  // This is the minimum free chunk we can turn into a dummy
  // object. If the free space falls below this, then noone can
  // allocate in this region anyway (all allocation requests will be
  // of a size larger than this) so we won't have to perform the dummy
  // allocation.
  size_t min_word_size_to_fill = CollectedHeap::min_fill_size();

  while (free_word_size >= min_word_size_to_fill) {
    HeapWord* dummy =
      cur_alloc_region->par_allocate_no_bot_updates(free_word_size);
    if (dummy != NULL) {
      // If the allocation was successful we should fill in the space.
      CollectedHeap::fill_with_object(dummy, free_word_size);
      break;
    }

    free_word_size = cur_alloc_region->free() / HeapWordSize;
    // It's also possible that someone else beats us to the
    // allocation and they fill up the region. In that case, we can
    // just get out of the loop
  }
  assert(cur_alloc_region->free() / HeapWordSize < min_word_size_to_fill,
         "sanity");

808 809 810 811 812 813
  retire_cur_alloc_region_common(cur_alloc_region);
  assert(_cur_alloc_region == NULL, "post-condition");
}

// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
814
HeapWord*
815 816
G1CollectedHeap::replace_cur_alloc_region_and_allocate(size_t word_size,
                                                       bool at_safepoint,
817 818
                                                       bool do_dirtying,
                                                       bool can_expand) {
819
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
820 821 822 823 824
  assert(_cur_alloc_region == NULL,
         "replace_cur_alloc_region_and_allocate() should only be called "
         "after retiring the previous current alloc region");
  assert(SafepointSynchronize::is_at_safepoint() == at_safepoint,
         "at_safepoint and is_at_safepoint() should be a tautology");
825 826 827
  assert(!can_expand || g1_policy()->can_expand_young_list(),
         "we should not call this method with can_expand == true if "
         "we are not allowed to expand the young gen");
828

829
  if (can_expand || !g1_policy()->is_young_list_full()) {
830
    HeapRegion* new_cur_alloc_region = new_alloc_region(word_size);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
    if (new_cur_alloc_region != NULL) {
      assert(new_cur_alloc_region->is_empty(),
             "the newly-allocated region should be empty, "
             "as right now we only allocate new regions out of the free list");
      g1_policy()->update_region_num(true /* next_is_young */);
      set_region_short_lived_locked(new_cur_alloc_region);

      assert(!new_cur_alloc_region->isHumongous(),
             "Catch a regression of this bug.");

      // We need to ensure that the stores to _cur_alloc_region and,
      // subsequently, to top do not float above the setting of the
      // young type.
      OrderAccess::storestore();

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
      // Now, perform the allocation out of the region we just
      // allocated. Note that noone else can access that region at
      // this point (as _cur_alloc_region has not been updated yet),
      // so we can just go ahead and do the allocation without any
      // atomics (and we expect this allocation attempt to
      // suceeded). Given that other threads can attempt an allocation
      // with a CAS and without needing the Heap_lock, if we assigned
      // the new region to _cur_alloc_region before first allocating
      // into it other threads might have filled up the new region
      // before we got a chance to do the allocation ourselves. In
      // that case, we would have needed to retire the region, grab a
      // new one, and go through all this again. Allocating out of the
      // new region before assigning it to _cur_alloc_region avoids
      // all this.
      HeapWord* result =
                     new_cur_alloc_region->allocate_no_bot_updates(word_size);
862 863 864 865
      assert(result != NULL, "we just allocate out of an empty region "
             "so allocation should have been successful");
      assert(is_in(result), "result should be in the heap");

866 867 868
      // Now make sure that the store to _cur_alloc_region does not
      // float above the store to top.
      OrderAccess::storestore();
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
      _cur_alloc_region = new_cur_alloc_region;

      if (!at_safepoint) {
        Heap_lock->unlock();
      }

      // do the dirtying, if necessary, after we release the Heap_lock
      if (do_dirtying) {
        dirty_young_block(result, word_size);
      }
      return result;
    }
  }

  assert(_cur_alloc_region == NULL, "we failed to allocate a new current "
         "alloc region, it should still be NULL");
885
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
886 887 888 889 890 891 892 893 894 895 896
  return NULL;
}

// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
HeapWord*
G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
  assert_heap_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not be "
         "used for humongous allocations");

897 898 899 900
  // We should only reach here when we were unable to allocate
  // otherwise. So, we should have not active current alloc region.
  assert(_cur_alloc_region == NULL, "current alloc region should be NULL");

901 902 903 904 905 906 907 908
  // We will loop while succeeded is false, which means that we tried
  // to do a collection, but the VM op did not succeed. So, when we
  // exit the loop, either one of the allocation attempts was
  // successful, or we succeeded in doing the VM op but which was
  // unable to allocate after the collection.
  for (int try_count = 1; /* we'll return or break */; try_count += 1) {
    bool succeeded = true;

909 910 911
    // Every time we go round the loop we should be holding the Heap_lock.
    assert_heap_locked();

912
    if (GC_locker::is_active_and_needs_gc()) {
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
      // We are locked out of GC because of the GC locker. We can
      // allocate a new region only if we can expand the young gen.

      if (g1_policy()->can_expand_young_list()) {
        // Yes, we are allowed to expand the young gen. Let's try to
        // allocate a new current alloc region.
        HeapWord* result =
          replace_cur_alloc_region_and_allocate(word_size,
                                                false, /* at_safepoint */
                                                true,  /* do_dirtying */
                                                true   /* can_expand */);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }
      }
      // We could not expand the young gen further (or we could but we
      // failed to allocate a new region). We'll stall until the GC
      // locker forces a GC.
932 933 934 935 936 937 938 939 940

      // If this thread is not in a jni critical section, we stall
      // the requestor until the critical section has cleared and
      // GC allowed. When the critical section clears, a GC is
      // initiated by the last thread exiting the critical section; so
      // we retry the allocation sequence from the beginning of the loop,
      // rather than causing more, now probably unnecessary, GC attempts.
      JavaThread* jthr = JavaThread::current();
      assert(jthr != NULL, "sanity");
941
      if (jthr->in_critical()) {
942 943 944
        if (CheckJNICalls) {
          fatal("Possible deadlock due to allocating while"
                " in jni critical section");
945
        }
946 947 948
        // We are returning NULL so the protocol is that we're still
        // holding the Heap_lock.
        assert_heap_locked();
949
        return NULL;
950
      }
951 952 953 954 955 956 957

      Heap_lock->unlock();
      GC_locker::stall_until_clear();

      // No need to relock the Heap_lock. We'll fall off to the code
      // below the else-statement which assumes that we are not
      // holding the Heap_lock.
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
    } else {
      // We are not locked out. So, let's try to do a GC. The VM op
      // will retry the allocation before it completes.

      // Read the GC count while holding the Heap_lock
      unsigned int gc_count_before = SharedHeap::heap()->total_collections();

      Heap_lock->unlock();

      HeapWord* result =
        do_collection_pause(word_size, gc_count_before, &succeeded);
      assert_heap_not_locked();
      if (result != NULL) {
        assert(succeeded, "the VM op should have succeeded");

        // Allocations that take place on VM operations do not do any
        // card dirtying and we have to do it here.
        dirty_young_block(result, word_size);
        return result;
      }
978
    }
979

980 981
    // Both paths that get us here from above unlock the Heap_lock.
    assert_heap_not_locked();
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

    // We can reach here when we were unsuccessful in doing a GC,
    // because another thread beat us to it, or because we were locked
    // out of GC due to the GC locker. In either case a new alloc
    // region might be available so we will retry the allocation.
    HeapWord* result = attempt_allocation(word_size);
    if (result != NULL) {
      assert_heap_not_locked();
      return result;
    }

    // So far our attempts to allocate failed. The only time we'll go
    // around the loop and try again is if we tried to do a GC and the
    // VM op that we tried to schedule was not successful because
    // another thread beat us to it. If that happened it's possible
    // that by the time we grabbed the Heap_lock again and tried to
    // allocate other threads filled up the young generation, which
    // means that the allocation attempt after the GC also failed. So,
    // it's worth trying to schedule another GC pause.
    if (succeeded) {
      break;
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
      warning("G1CollectedHeap::attempt_allocation_slow() "
              "retries %d times", try_count);
    }
  }

  assert_heap_locked();
  return NULL;
}

// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
HeapWord*
G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
                                              bool at_safepoint) {
  // This is the method that will allocate a humongous object. All
  // allocation paths that attempt to allocate a humongous object
  // should eventually reach here. Currently, the only paths are from
  // mem_allocate() and attempt_allocation_at_safepoint().
1026
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be used for humongous allocations");
  assert(SafepointSynchronize::is_at_safepoint() == at_safepoint,
         "at_safepoint and is_at_safepoint() should be a tautology");

  HeapWord* result = NULL;

  // We will loop while succeeded is false, which means that we tried
  // to do a collection, but the VM op did not succeed. So, when we
  // exit the loop, either one of the allocation attempts was
  // successful, or we succeeded in doing the VM op but which was
  // unable to allocate after the collection.
  for (int try_count = 1; /* we'll return or break */; try_count += 1) {
    bool succeeded = true;

    // Given that humongous objects are not allocated in young
    // regions, we'll first try to do the allocation without doing a
    // collection hoping that there's enough space in the heap.
    result = humongous_obj_allocate(word_size);
1046
    assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
1047 1048 1049 1050 1051
           "catch a regression of this bug.");
    if (result != NULL) {
      if (!at_safepoint) {
        // If we're not at a safepoint, unlock the Heap_lock.
        Heap_lock->unlock();
1052
      }
1053
      return result;
1054 1055
    }

1056 1057 1058 1059 1060 1061
    // If we failed to allocate the humongous object, we should try to
    // do a collection pause (if we're allowed) in case it reclaims
    // enough space for the allocation to succeed after the pause.
    if (!at_safepoint) {
      // Read the GC count while holding the Heap_lock
      unsigned int gc_count_before = SharedHeap::heap()->total_collections();
1062

1063 1064
      // If we're allowed to do a collection we're not at a
      // safepoint, so it is safe to unlock the Heap_lock.
1065
      Heap_lock->unlock();
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      assert_heap_not_locked();
      if (result != NULL) {
        assert(succeeded, "the VM op should have succeeded");
        return result;
      }

      // If we get here, the VM operation either did not succeed
      // (i.e., another thread beat us to it) or it succeeded but
      // failed to allocate the object.

      // If we're allowed to do a collection we're not at a
      // safepoint, so it is safe to lock the Heap_lock.
      Heap_lock->lock();
    }

    assert(result == NULL, "otherwise we should have exited the loop earlier");

    // So far our attempts to allocate failed. The only time we'll go
    // around the loop and try again is if we tried to do a GC and the
    // VM op that we tried to schedule was not successful because
    // another thread beat us to it. That way it's possible that some
    // space was freed up by the thread that successfully scheduled a
    // GC. So it's worth trying to allocate again.
    if (succeeded) {
      break;
1093 1094
    }

1095 1096 1097 1098 1099
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
      warning("G1CollectedHeap::attempt_allocation_humongous "
              "retries %d times", try_count);
1100 1101 1102
    }
  }

1103
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
1104 1105
  return NULL;
}
1106

1107 1108
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                           bool expect_null_cur_alloc_region) {
1109
  assert_at_safepoint(true /* should_be_vm_thread */);
1110
  assert(_cur_alloc_region == NULL || !expect_null_cur_alloc_region,
1111 1112 1113 1114
         err_msg("the current alloc region was unexpectedly found "
                 "to be non-NULL, cur alloc region: "PTR_FORMAT" "
                 "expect_null_cur_alloc_region: %d word_size: "SIZE_FORMAT,
                 _cur_alloc_region, expect_null_cur_alloc_region, word_size));
1115 1116 1117 1118 1119

  if (!isHumongous(word_size)) {
    if (!expect_null_cur_alloc_region) {
      HeapRegion* cur_alloc_region = _cur_alloc_region;
      if (cur_alloc_region != NULL) {
1120 1121
        // We are at a safepoint so no reason to use the MT-safe version.
        HeapWord* result = cur_alloc_region->allocate_no_bot_updates(word_size);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
        if (result != NULL) {
          assert(is_in(result), "result should be in the heap");

          // We will not do any dirtying here. This is guaranteed to be
          // called during a safepoint and the thread that scheduled the
          // pause will do the dirtying if we return a non-NULL result.
          return result;
        }

        retire_cur_alloc_region_common(cur_alloc_region);
      }
    }

    assert(_cur_alloc_region == NULL,
           "at this point we should have no cur alloc region");
    return replace_cur_alloc_region_and_allocate(word_size,
                                                 true, /* at_safepoint */
1139 1140
                                                 false /* do_dirtying */,
                                                 false /* can_expand */);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
  } else {
    return attempt_allocation_humongous(word_size,
                                        true /* at_safepoint */);
  }

  ShouldNotReachHere();
}

HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow TLABs of humongous size");

1153 1154 1155
  // First attempt: Try allocating out of the current alloc region
  // using a CAS. If that fails, take the Heap_lock and retry the
  // allocation, potentially replacing the current alloc region.
1156 1157 1158 1159 1160 1161
  HeapWord* result = attempt_allocation(word_size);
  if (result != NULL) {
    assert_heap_not_locked();
    return result;
  }

1162 1163
  // Second attempt: Go to the slower path where we might try to
  // schedule a collection.
1164 1165 1166 1167 1168 1169 1170
  result = attempt_allocation_slow(word_size);
  if (result != NULL) {
    assert_heap_not_locked();
    return result;
  }

  assert_heap_locked();
1171
  // Need to unlock the Heap_lock before returning.
1172 1173
  Heap_lock->unlock();
  return NULL;
1174 1175 1176 1177 1178 1179
}

HeapWord*
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool   is_noref,
                              bool   is_tlab,
1180 1181 1182 1183
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!is_tlab, "mem_allocate() this should not be called directly "
         "to allocate TLABs");
1184 1185 1186

  // Loop until the allocation is satisified,
  // or unsatisfied after GC.
1187 1188
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    unsigned int gc_count_before;
1189
    {
1190
      if (!isHumongous(word_size)) {
1191 1192 1193
        // First attempt: Try allocating out of the current alloc region
        // using a CAS. If that fails, take the Heap_lock and retry the
        // allocation, potentially replacing the current alloc region.
1194 1195 1196 1197 1198 1199 1200 1201
        HeapWord* result = attempt_allocation(word_size);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }

        assert_heap_locked();

1202 1203
        // Second attempt: Go to the slower path where we might try to
        // schedule a collection.
1204 1205 1206 1207 1208 1209
        result = attempt_allocation_slow(word_size);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }
      } else {
1210 1211 1212
        // attempt_allocation_humongous() requires the Heap_lock to be held.
        Heap_lock->lock();

1213 1214 1215 1216 1217 1218
        HeapWord* result = attempt_allocation_humongous(word_size,
                                                     false /* at_safepoint */);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }
1219
      }
1220 1221

      assert_heap_locked();
1222 1223
      // Read the gc count while the heap lock is held.
      gc_count_before = SharedHeap::heap()->total_collections();
1224 1225

      // Release the Heap_lock before attempting the collection.
1226 1227 1228 1229
      Heap_lock->unlock();
    }

    // Create the garbage collection operation...
1230
    VM_G1CollectForAllocation op(gc_count_before, word_size);
1231 1232
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

    assert_heap_not_locked();
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
        // Allocations that take place on VM operations do not do any
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
        dirty_young_block(result, word_size);
      }
1246
      return result;
1247 1248 1249
    } else {
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
1250 1251 1252 1253 1254
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1255
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
1256 1257
    }
  }
1258 1259

  ShouldNotReachHere();
1260 1261 1262
}

void G1CollectedHeap::abandon_cur_alloc_region() {
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
  assert_at_safepoint(true /* should_be_vm_thread */);

  HeapRegion* cur_alloc_region = _cur_alloc_region;
  if (cur_alloc_region != NULL) {
    assert(!cur_alloc_region->is_empty(),
           "the current alloc region can never be empty");
    assert(cur_alloc_region->is_young(),
           "the current alloc region should be young");

    retire_cur_alloc_region_common(cur_alloc_region);
1273
  }
1274
  assert(_cur_alloc_region == NULL, "post-condition");
1275 1276
}

1277 1278 1279 1280 1281 1282
void G1CollectedHeap::abandon_gc_alloc_regions() {
  // first, make sure that the GC alloc region list is empty (it should!)
  assert(_gc_alloc_region_list == NULL, "invariant");
  release_gc_alloc_regions(true /* totally */);
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
class PostMCRemSetClearClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    r->reset_gc_time_stamp();
    if (r->continuesHumongous())
      return false;
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};


class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->used_region().word_size() != 0) {
      _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
    }
    return false;
  }
};

1317 1318 1319 1320 1321 1322
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1323
    _cl(g1->g1_rem_set(), worker_i),
1324 1325 1326
    _worker_i(worker_i),
    _g1h(g1)
  { }
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

  void work(int i) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1352
bool G1CollectedHeap::do_collection(bool explicit_gc,
1353
                                    bool clear_all_soft_refs,
1354
                                    size_t word_size) {
1355 1356
  assert_at_safepoint(true /* should_be_vm_thread */);

1357
  if (GC_locker::check_active_before_gc()) {
1358
    return false;
1359 1360
  }

1361
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1362 1363
  ResourceMark rm;

1364 1365 1366 1367
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

1368
  verify_region_sets_optional();
1369

1370 1371 1372 1373 1374
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1375 1376 1377 1378
  {
    IsGCActiveMark x;

    // Timing
1379 1380
    bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
    assert(!system_gc || explicit_gc, "invariant");
1381 1382
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1383
    TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1384
                PrintGC, true, gclog_or_tty);
1385

1386 1387
    TraceMemoryManagerStats tms(true /* fullGC */);

1388 1389 1390
    double start = os::elapsedTime();
    g1_policy()->record_full_collection_start();

1391 1392 1393
    wait_while_free_regions_coming();
    append_secondary_free_list_if_not_empty();

1394
    gc_prologue(true);
1395
    increment_total_collections(true /* full gc */);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

    size_t g1h_prev_used = used();
    assert(used() == recalculate_used(), "Should be equal");

    if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      prepare_for_verify();
      gclog_or_tty->print(" VerifyBeforeGC:");
      Universe::verify(true);
    }

    COMPILER2_PRESENT(DerivedPointerTable::clear());

    // We want to discover references, but not process them yet.
    // This mode is disabled in
    // instanceRefKlass::process_discovered_references if the
    // generation does some collection work, or
    // instanceRefKlass::enqueue_discovered_references if the
    // generation returns without doing any work.
    ref_processor()->disable_discovery();
    ref_processor()->abandon_partial_discovery();
    ref_processor()->verify_no_references_recorded();

    // Abandon current iterations of concurrent marking and concurrent
    // refinement, if any are in progress.
    concurrent_mark()->abort();

    // Make sure we'll choose a new allocation region afterwards.
    abandon_cur_alloc_region();
1425
    abandon_gc_alloc_regions();
1426
    assert(_cur_alloc_region == NULL, "Invariant.");
1427
    g1_rem_set()->cleanupHRRS();
1428
    tear_down_region_lists();
1429 1430 1431 1432 1433 1434 1435 1436 1437

    // We may have added regions to the current incremental collection
    // set between the last GC or pause and now. We need to clear the
    // incremental collection set and then start rebuilding it afresh
    // after this full GC.
    abandon_collection_set(g1_policy()->inc_cset_head());
    g1_policy()->clear_incremental_cset();
    g1_policy()->stop_incremental_cset_building();

1438 1439 1440 1441 1442
    if (g1_policy()->in_young_gc_mode()) {
      empty_young_list();
      g1_policy()->set_full_young_gcs(true);
    }

1443 1444 1445
    // See the comment in G1CollectedHeap::ref_processing_init() about
    // how reference processing currently works in G1.

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
    // Temporarily make reference _discovery_ single threaded (non-MT).
    ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);

    // Temporarily make refs discovery atomic
    ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);

    // Temporarily clear _is_alive_non_header
    ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);

    ref_processor()->enable_discovery();
1456
    ref_processor()->setup_policy(do_clear_all_soft_refs);
1457 1458 1459 1460

    // Do collection work
    {
      HandleMark hm;  // Discard invalid handles created during gc
1461
      G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
1462
    }
1463
    assert(free_regions() == 0, "we should not have added any free regions");
1464 1465 1466 1467 1468 1469 1470 1471
    rebuild_region_lists();

    _summary_bytes_used = recalculate_used();

    ref_processor()->enqueue_discovered_references();

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

1472 1473
    MemoryService::track_memory_usage();

1474 1475 1476
    if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyAfterGC:");
1477
      prepare_for_verify();
1478 1479 1480 1481 1482 1483
      Universe::verify(false);
    }
    NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

    reset_gc_time_stamp();
    // Since everything potentially moved, we will clear all remembered
1484 1485
    // sets, and clear all cards.  Later we will rebuild remebered
    // sets. We will also reset the GC time stamps of the regions.
1486 1487 1488 1489
    PostMCRemSetClearClosure rs_clear(mr_bs());
    heap_region_iterate(&rs_clear);

    // Resize the heap if necessary.
1490
    resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1491 1492 1493 1494 1495 1496

    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }

1497
    // Rebuild remembered sets of all regions.
1498 1499

    if (G1CollectedHeap::use_parallel_gc_threads()) {
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
      ParRebuildRSTask rebuild_rs_task(this);
      assert(check_heap_region_claim_values(
             HeapRegion::InitialClaimValue), "sanity check");
      set_par_threads(workers()->total_workers());
      workers()->run_task(&rebuild_rs_task);
      set_par_threads(0);
      assert(check_heap_region_claim_values(
             HeapRegion::RebuildRSClaimValue), "sanity check");
      reset_heap_region_claim_values();
    } else {
      RebuildRSOutOfRegionClosure rebuild_rs(this);
      heap_region_iterate(&rebuild_rs);
    }

1514 1515 1516 1517 1518 1519 1520 1521 1522
    if (PrintGC) {
      print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
    }

    if (true) { // FIXME
      // Ask the permanent generation to adjust size for full collections
      perm()->compute_new_size();
    }

1523 1524 1525 1526 1527 1528 1529 1530 1531
    // Start a new incremental collection set for the next pause
    assert(g1_policy()->collection_set() == NULL, "must be");
    g1_policy()->start_incremental_cset_building();

    // Clear the _cset_fast_test bitmap in anticipation of adding
    // regions to the incremental collection set for the next
    // evacuation pause.
    clear_cset_fast_test();

1532 1533 1534
    double end = os::elapsedTime();
    g1_policy()->record_full_collection_end();

1535 1536 1537 1538
#ifdef TRACESPINNING
    ParallelTaskTerminator::print_termination_counts();
#endif

1539 1540
    gc_epilogue(true);

1541 1542
    // Discard all rset updates
    JavaThread::dirty_card_queue_set().abandon_logs();
1543 1544
    assert(!G1DeferredRSUpdate
           || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1545 1546 1547 1548
  }

  if (g1_policy()->in_young_gc_mode()) {
    _young_list->reset_sampled_info();
1549 1550 1551
    // At this point there should be no regions in the
    // entire heap tagged as young.
    assert( check_young_list_empty(true /* check_heap */),
1552 1553
            "young list should be empty at this point");
  }
1554

1555
  // Update the number of full collections that have been completed.
1556
  increment_full_collections_completed(false /* concurrent */);
1557

1558 1559
  verify_region_sets_optional();

1560 1561 1562
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
1563 1564

  return true;
1565 1566 1567
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1568 1569 1570 1571 1572 1573 1574 1575
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1590 1591 1592 1593
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1594
  // We don't have floating point command-line arguments
1595
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1596
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1597
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1598 1599
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1636 1637

  if (PrintGC && Verbose) {
1638 1639
    const double free_percentage =
      (double) free_after_gc / (double) capacity_after_gc;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
    gclog_or_tty->print_cr("Computing new size after full GC ");
    gclog_or_tty->print_cr("  "
                           "  minimum_free_percentage: %6.2f",
                           minimum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  maximum_free_percentage: %6.2f",
                           maximum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  capacity: %6.1fK"
                           "  minimum_desired_capacity: %6.1fK"
                           "  maximum_desired_capacity: %6.1fK",
1651 1652 1653
                           (double) capacity_after_gc / (double) K,
                           (double) minimum_desired_capacity / (double) K,
                           (double) maximum_desired_capacity / (double) K);
1654
    gclog_or_tty->print_cr("  "
1655 1656 1657 1658
                           "  free_after_gc: %6.1fK"
                           "  used_after_gc: %6.1fK",
                           (double) free_after_gc / (double) K,
                           (double) used_after_gc / (double) K);
1659 1660 1661 1662
    gclog_or_tty->print_cr("  "
                           "   free_percentage: %6.2f",
                           free_percentage);
  }
1663
  if (capacity_after_gc < minimum_desired_capacity) {
1664 1665
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
    if (expand(expand_bytes)) {
      if (PrintGC && Verbose) {
        gclog_or_tty->print_cr("  "
                               "  expanding:"
                               "  max_heap_size: %6.1fK"
                               "  minimum_desired_capacity: %6.1fK"
                               "  expand_bytes: %6.1fK",
                               (double) max_heap_size / (double) K,
                               (double) minimum_desired_capacity / (double) K,
                               (double) expand_bytes / (double) K);
      }
1677 1678 1679
    }

    // No expansion, now see if we want to shrink
1680
  } else if (capacity_after_gc > maximum_desired_capacity) {
1681 1682 1683 1684 1685 1686
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
    shrink(shrink_bytes);
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("  "
                             "  shrinking:"
1687 1688 1689 1690 1691 1692
                             "  min_heap_size: %6.1fK"
                             "  maximum_desired_capacity: %6.1fK"
                             "  shrink_bytes: %6.1fK",
                             (double) min_heap_size / (double) K,
                             (double) maximum_desired_capacity / (double) K,
                             (double) shrink_bytes / (double) K);
1693 1694 1695 1696 1697 1698
    }
  }
}


HeapWord*
1699 1700
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1701
  assert_at_safepoint(true /* should_be_vm_thread */);
1702 1703 1704 1705 1706 1707 1708 1709 1710

  *succeeded = true;
  // Let's attempt the allocation first.
  HeapWord* result = attempt_allocation_at_safepoint(word_size,
                                     false /* expect_null_cur_alloc_region */);
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1711 1712 1713 1714 1715 1716 1717

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1718
    assert(*succeeded, "sanity");
1719 1720 1721
    return result;
  }

1722 1723 1724 1725 1726 1727 1728 1729
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1730

1731 1732 1733
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
                                      true /* expect_null_cur_alloc_region */);
1734
  if (result != NULL) {
1735
    assert(*succeeded, "sanity");
1736 1737 1738
    return result;
  }

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
                                      true /* expect_null_cur_alloc_region */);
1751
  if (result != NULL) {
1752
    assert(*succeeded, "sanity");
1753 1754 1755
    return result;
  }

1756
  assert(!collector_policy()->should_clear_all_soft_refs(),
1757
         "Flag should have been handled and cleared prior to this point");
1758

1759 1760 1761 1762
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1763
  assert(*succeeded, "sanity");
1764 1765 1766 1767 1768 1769 1770 1771 1772
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1773 1774 1775
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1776

1777 1778 1779 1780 1781
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  if (expand(expand_bytes)) {
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
                                          false /* expect_null_cur_alloc_region */);
1782
  }
1783
  return NULL;
1784 1785
}

1786
bool G1CollectedHeap::expand(size_t expand_bytes) {
1787
  size_t old_mem_size = _g1_storage.committed_size();
1788
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1789 1790
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

  if (Verbose && PrintGC) {
    gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
                           old_mem_size/K, aligned_expand_bytes/K);
  }

  HeapWord* old_end = (HeapWord*)_g1_storage.high();
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
    HeapWord* new_end = (HeapWord*)_g1_storage.high();

    // Expand the committed region.
    _g1_committed.set_end(new_end);

    // Tell the cardtable about the expansion.
    Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);

    // And the offset table as well.
    _bot_shared->resize(_g1_committed.word_size());

    expand_bytes = aligned_expand_bytes;
    HeapWord* base = old_end;

    // Create the heap regions for [old_end, new_end)
    while (expand_bytes > 0) {
      HeapWord* high = base + HeapRegion::GrainWords;

1818 1819 1820 1821 1822 1823 1824
      // Create a new HeapRegion.
      MemRegion mr(base, high);
      bool is_zeroed = !_g1_max_committed.contains(base);
      HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);

      // Add it to the HeapRegionSeq.
      _hrs->insert(hr);
1825
      _free_list.add_as_tail(hr);
1826

1827 1828
      // And we used up an expansion region to create it.
      _expansion_regions--;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

      expand_bytes -= HeapRegion::GrainBytes;
      base += HeapRegion::GrainWords;
    }
    assert(base == new_end, "sanity");

    // Now update max_committed if necessary.
    _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), new_end));

  } else {
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
      vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1845 1846
    }
  }
1847

1848 1849
  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
1850 1851
    gclog_or_tty->print_cr("...%s, expanded to %ldK",
                           (successful ? "Successful" : "Failed"),
1852 1853
                           new_mem_size/K);
  }
1854
  return successful;
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
}

void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
{
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
  size_t num_regions_deleted = 0;
  MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);

  assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  if (mr.byte_size() > 0)
    _g1_storage.shrink_by(mr.byte_size());
  assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");

  _g1_committed.set_end(mr.start());
  _expansion_regions += num_regions_deleted;

  // Tell the cardtable about it.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);

  // And the offset table as well.
  _bot_shared->resize(_g1_committed.word_size());

  HeapRegionRemSet::shrink_heap(n_regions());

  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
    gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
                           old_mem_size/K, aligned_shrink_bytes/K,
                           new_mem_size/K);
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1892 1893
  verify_region_sets_optional();

1894
  release_gc_alloc_regions(true /* totally */);
1895 1896 1897
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
1898 1899 1900
  tear_down_region_lists();  // We will rebuild them in a moment.
  shrink_helper(shrink_bytes);
  rebuild_region_lists();
1901 1902

  verify_region_sets_optional();
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1915
  _dirty_card_queue_set(false),
J
johnc 已提交
1916
  _into_cset_dirty_card_queue_set(false),
1917
  _is_alive_closure(this),
1918 1919 1920 1921 1922 1923
  _ref_processor(NULL),
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
1924
  _cg1r(NULL), _summary_bytes_used(0),
1925 1926 1927
  _cur_alloc_region(NULL),
  _refine_cte_cl(NULL),
  _full_collection(false),
1928 1929 1930 1931
  _free_list("Master Free List"),
  _secondary_free_list("Secondary Free List"),
  _humongous_set("Master Humongous Set"),
  _free_regions_coming(false),
1932 1933
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1934
  _surviving_young_words(NULL),
1935
  _full_collections_completed(0),
1936
  _in_cset_fast_test(NULL),
1937 1938
  _in_cset_fast_test_base(NULL),
  _dirty_cards_region_list(NULL) {
1939 1940 1941 1942
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1943 1944 1945

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1966 1967 1968 1969 1970 1971
    _gc_alloc_regions[ap]          = NULL;
    _gc_alloc_region_counts[ap]    = 0;
    _retained_gc_alloc_regions[ap] = NULL;
    // by default, we do not retain a GC alloc region for each ap;
    // we'll override this, when appropriate, below
    _retain_gc_alloc_region[ap]    = false;
1972
  }
1973 1974 1975 1976 1977 1978

  // We will try to remember the last half-full tenured region we
  // allocated to at the end of a collection so that we can re-use it
  // during the next collection.
  _retain_gc_alloc_region[GCAllocForTenured]  = true;

1979 1980 1981 1982
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1983
  CollectedHeap::pre_initialize();
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
  os::enable_vtime();

  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
  PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  // Includes the perm-gen.
2009 2010 2011 2012

  const size_t total_reserved = max_byte_size + pgs->max_size();
  char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);

2013 2014
  ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
                        HeapRegion::GrainBytes,
2015
                        UseLargePages, addr);
2016 2017 2018 2019 2020 2021 2022 2023

  if (UseCompressedOops) {
    if (addr != NULL && !heap_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
      ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
2024
                             UseLargePages, addr);
2025 2026 2027 2028 2029
      if (addr != NULL && !heap_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");
        ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
2030
                               UseLargePages, addr);
2031 2032 2033 2034 2035 2036
        heap_rs = heap_rs1;
      } else {
        heap_rs = heap_rs0;
      }
    }
  }
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

  if (!heap_rs.is_reserved()) {
    vm_exit_during_initialization("Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  _expansion_regions = max_byte_size/HeapRegion::GrainBytes;

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
2063 2064
  if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
    _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2065
  } else {
2066 2067
    vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
    return JNI_ENOMEM;
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);
  ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);

  _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  _g1_max_committed = _g1_committed;
I
iveresov 已提交
2082
  _hrs = new HeapRegionSeq(_expansion_regions);
2083 2084 2085
  guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  guarantee(_cur_alloc_region == NULL, "from constructor");

2086 2087 2088 2089 2090 2091
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
  const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2092 2093 2094
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
            "too many cards per region");
2095

2096 2097
  HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);

2098 2099 2100 2101 2102
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
   _in_cset_fast_test_length = max_regions();
   _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);

   // We're biasing _in_cset_fast_test to avoid subtracting the
   // beginning of the heap every time we want to index; basically
   // it's the same with what we do with the card table.
   _in_cset_fast_test = _in_cset_fast_test_base -
                ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);

   // Clear the _cset_fast_test bitmap in anticipation of adding
   // regions to the incremental collection set for the first
   // evacuation pause.
   clear_cset_fast_test();

2117 2118 2119 2120 2121 2122 2123 2124
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
  _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2125
  // Now expand into the initial heap size.
2126 2127 2128 2129
  if (!expand(init_byte_size)) {
    vm_exit_during_initialization("Failed to allocate initial heap.");
    return JNI_ENOMEM;
  }
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  g1_policy()->note_start_of_mark_thread();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2144
                                               G1SATBProcessCompletedThreshold,
2145
                                               Shared_SATB_Q_lock);
2146 2147 2148

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2149 2150
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2151 2152
                                                Shared_DirtyCardQ_lock);

2153 2154 2155
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2156 2157
                                      -1, // never trigger processing
                                      -1, // no limit on length
2158 2159 2160
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  _gc_alloc_region_list = NULL;

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
  // Reference processing in G1 currently works as follows:
  //
  // * There is only one reference processor instance that
  //   'spans' the entire heap. It is created by the code
  //   below.
  // * Reference discovery is not enabled during an incremental
  //   pause (see 6484982).
  // * Discoverered refs are not enqueued nor are they processed
  //   during an incremental pause (see 6484982).
  // * Reference discovery is enabled at initial marking.
  // * Reference discovery is disabled and the discovered
  //   references processed etc during remarking.
  // * Reference discovery is MT (see below).
  // * Reference discovery requires a barrier (see below).
  // * Reference processing is currently not MT (see 6608385).
  // * A full GC enables (non-MT) reference discovery and
  //   processes any discovered references.

2202 2203 2204 2205 2206 2207
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
  _ref_processor = ReferenceProcessor::create_ref_processor(
                                         mr,    // span
                                         false, // Reference discovery is not atomic
                                         true,  // mt_discovery
2208 2209
                                         &_is_alive_closure, // is alive closure
                                                             // for efficiency
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
                                         ParallelGCThreads,
                                         ParallelRefProcEnabled,
                                         true); // Setting next fields of discovered
                                                // lists requires a barrier.
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

J
johnc 已提交
2220 2221 2222
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2223
                                                 int worker_i) {
2224
  // Clean cards in the hot card cache
J
johnc 已提交
2225
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2226

2227 2228
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2229
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
    n_completed_buffers++;
  }
  g1_policy()->record_update_rs_processed_buffers(worker_i,
                                                  (double) n_completed_buffers);
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2242 2243
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2244
  size_t result = _summary_bytes_used;
2245 2246 2247 2248
  // Read only once in case it is set to NULL concurrently
  HeapRegion* hr = _cur_alloc_region;
  if (hr != NULL)
    result += hr->used();
2249 2250 2251
  return result;
}

2252 2253 2254 2255 2256
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
  _hrs->iterate(&blk);
  return blk.result();
}

#ifndef PRODUCT
class SumUsedRegionsClosure: public HeapRegionClosure {
  size_t _num;
public:
2280
  SumUsedRegionsClosure() : _num(0) {}
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
      _num += 1;
    }
    return false;
  }
  size_t result() { return _num; }
};

size_t G1CollectedHeap::recalculate_used_regions() const {
  SumUsedRegionsClosure blk;
  _hrs->iterate(&blk);
  return blk.result();
}
#endif // PRODUCT

size_t G1CollectedHeap::unsafe_max_alloc() {
2298
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
  HeapRegion* car = _cur_alloc_region;

  // FIXME: should iterate over all regions?
  if (car == NULL) {
    return 0;
  }
  return car->free();
}

2318 2319 2320 2321 2322 2323
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  return
    ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
     (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
}

2324
void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2325 2326
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2327 2328 2329 2330 2331
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
  // We have already incremented _total_full_collections at the start
  // of the GC, so total_full_collections() represents how many full
  // collections have been started.
  unsigned int full_collections_started = total_full_collections();

  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2345
  assert(concurrent ||
2346 2347
         (full_collections_started == _full_collections_completed + 1) ||
         (full_collections_started == _full_collections_completed + 2),
2348
         err_msg("for inner caller (Full GC): full_collections_started = %u "
2349 2350 2351 2352
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  // This is the case for the outer caller, i.e. the concurrent cycle.
2353
  assert(!concurrent ||
2354
         (full_collections_started == _full_collections_completed + 1),
2355 2356
         err_msg("for outer caller (concurrent cycle): "
                 "full_collections_started = %u "
2357 2358 2359 2360 2361
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  _full_collections_completed += 1;

2362 2363 2364 2365
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cyle is still in progress.
2366
  if (concurrent) {
2367 2368 2369
    _cmThread->clear_in_progress();
  }

2370 2371 2372 2373 2374 2375 2376
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2377
void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2378
  assert_at_safepoint(true /* should_be_vm_thread */);
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump: {
      HandleMark hm;
      do_full_collection(false);         // don't clear all soft refs
      break;
    }
    default: // XXX FIX ME
      ShouldNotReachHere(); // Unexpected use of this function
  }
}

2392 2393 2394
void G1CollectedHeap::collect(GCCause::Cause cause) {
  // The caller doesn't have the Heap_lock
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2395

2396 2397
  unsigned int gc_count_before;
  unsigned int full_gc_count_before;
2398
  {
2399 2400
    MutexLocker ml(Heap_lock);

2401 2402 2403
    // Read the GC count while holding the Heap_lock
    gc_count_before = SharedHeap::heap()->total_collections();
    full_gc_count_before = SharedHeap::heap()->total_full_collections();
2404 2405 2406 2407
  }

  if (should_do_concurrent_full_gc(cause)) {
    // Schedule an initial-mark evacuation pause that will start a
2408 2409
    // concurrent cycle. We're setting word_size to 0 which means that
    // we are not requesting a post-GC allocation.
2410
    VM_G1IncCollectionPause op(gc_count_before,
2411 2412
                               0,     /* word_size */
                               true,  /* should_initiate_conc_mark */
2413 2414 2415 2416 2417 2418 2419
                               g1_policy()->max_pause_time_ms(),
                               cause);
    VMThread::execute(&op);
  } else {
    if (cause == GCCause::_gc_locker
        DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

2420 2421
      // Schedule a standard evacuation pause. We're setting word_size
      // to 0 which means that we are not requesting a post-GC allocation.
2422
      VM_G1IncCollectionPause op(gc_count_before,
2423
                                 0,     /* word_size */
2424 2425 2426
                                 false, /* should_initiate_conc_mark */
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2427
      VMThread::execute(&op);
2428 2429 2430
    } else {
      // Schedule a Full GC.
      VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2431 2432
      VMThread::execute(&op);
    }
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
  }
}

bool G1CollectedHeap::is_in(const void* p) const {
  if (_g1_committed.contains(p)) {
    HeapRegion* hr = _hrs->addr_to_region(p);
    return hr->is_in(p);
  } else {
    return _perm_gen->as_gen()->is_in(p);
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
  OopClosure* _cl;
public:
  IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2464
void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2465 2466
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
  _hrs->iterate(&blk);
2467 2468 2469
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2470 2471
}

2472
void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2473 2474
  IterateOopClosureRegionClosure blk(mr, cl);
  _hrs->iterate(&blk);
2475 2476 2477
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2494
void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2495 2496
  IterateObjectClosureRegionClosure blk(cl);
  _hrs->iterate(&blk);
2497 2498 2499
  if (do_perm) {
    perm_gen()->object_iterate(cl);
  }
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
  _hrs->iterate(&blk);
}

void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  _hrs->iterate(cl);
}

void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
                                               HeapRegionClosure* cl) {
  _hrs->iterate_from(r, cl);
}

void
G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  _hrs->iterate_from(idx, cl);
}

HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
                                                 int worker,
                                                 jint claim_value) {
2544
  const size_t regions = n_regions();
2545
  const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
  // try to spread out the starting points of the workers
  const size_t start_index = regions / worker_num * (size_t) worker;

  // each worker will actually look at all regions
  for (size_t count = 0; count < regions; ++count) {
    const size_t index = (start_index + count) % regions;
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2561
    if (r->claimHeapRegion(claim_value)) {
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
        for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2605
      }
2606 2607 2608 2609

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2610 2611 2612 2613
    }
  }
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

void
G1CollectedHeap::reset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
  size_t _failures;
  HeapRegion* _sh_region;
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                             "claim value = %d, should be %d",
                             r->bottom(), r->end(), r->claim_value(),
                             _claim_value);
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
        gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
                               r->bottom(), r->end(),
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
  size_t failures() {
    return _failures;
  }
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
#endif // ASSERT

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2692 2693 2694 2695 2696
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  return _hrs->length() > 0 ? _hrs->at(0) : NULL;
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  if (res == NULL)
    res = perm_gen()->space_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2762 2763 2764 2765 2766 2767
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

  // We need to store the cur alloc region locally, since it might change
  // between when we test for NULL and when we use it later.
2768
  ContiguousSpace* cur_alloc_space = _cur_alloc_region;
2769 2770
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;

2771
  if (cur_alloc_space == NULL) {
2772
    return max_tlab_size;
2773
  } else {
2774 2775
    return MIN2(MAX2(cur_alloc_space->free(), (size_t)MinTLABSize),
                max_tlab_size);
2776 2777 2778 2779 2780 2781 2782 2783 2784
  }
}

size_t G1CollectedHeap::large_typearray_limit() {
  // FIXME
  return HeapRegion::GrainBytes/HeapWordSize;
}

size_t G1CollectedHeap::max_capacity() const {
2785
  return _g1_reserved.byte_size();
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

class VerifyLivenessOopClosure: public OopClosure {
  G1CollectedHeap* g1h;
public:
  VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
    g1h = _g1h;
  }
2806 2807 2808 2809 2810 2811 2812
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    guarantee(obj == NULL || !g1h->is_obj_dead(obj),
              "Dead object referenced by a not dead object");
2813 2814 2815 2816
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
2817
private:
2818 2819 2820
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
2821
  bool _use_prev_marking;
2822
public:
2823 2824 2825 2826
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
    : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
2827 2828 2829 2830 2831
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
    VerifyLivenessOopClosure isLive(_g1h);
    assert(o != NULL, "Huh?");
2832
    if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
2833
      o->oop_iterate(&isLive);
2834 2835 2836 2837
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
2873
private:
2874
  bool _allow_dirty;
2875
  bool _par;
2876
  bool _use_prev_marking;
2877
  bool _failures;
2878 2879 2880 2881
public:
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
2882 2883
    : _allow_dirty(allow_dirty),
      _par(par),
2884 2885 2886 2887 2888 2889
      _use_prev_marking(use_prev_marking),
      _failures(false) {}

  bool failures() {
    return _failures;
  }
2890

2891
  bool doHeapRegion(HeapRegion* r) {
2892 2893
    guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
              "Should be unclaimed at verify points.");
2894
    if (!r->continuesHumongous()) {
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
      bool failures = false;
      r->verify(_allow_dirty, _use_prev_marking, &failures);
      if (failures) {
        _failures = true;
      } else {
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
        r->object_iterate(&not_dead_yet_cl);
        if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
          gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                 "max_live_bytes "SIZE_FORMAT" "
                                 "< calculated "SIZE_FORMAT,
                                 r->bottom(), r->end(),
                                 r->max_live_bytes(),
                                 not_dead_yet_cl.live_bytes());
          _failures = true;
        }
      }
2912
    }
2913
    return false; // stop the region iteration if we hit a failure
2914 2915 2916 2917 2918 2919
  }
};

class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
2920
  bool             _use_prev_marking;
2921
  bool             _failures;
2922
public:
2923 2924 2925
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyRootsClosure(bool use_prev_marking) :
2926
    _g1h(G1CollectedHeap::heap()),
2927 2928
    _use_prev_marking(use_prev_marking),
    _failures(false) { }
2929 2930 2931

  bool failures() { return _failures; }

2932 2933 2934 2935
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2936
      if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
2937
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2938
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
2939 2940 2941 2942 2943
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
2944 2945 2946

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
2947 2948
};

2949 2950 2951 2952 2953 2954
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
  bool _allow_dirty;
2955
  bool _use_prev_marking;
2956
  bool _failures;
2957 2958

public:
2959 2960 2961 2962
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
                  bool use_prev_marking) :
2963
    AbstractGangTask("Parallel verify task"),
2964 2965
    _g1h(g1h),
    _allow_dirty(allow_dirty),
2966 2967 2968 2969 2970 2971
    _use_prev_marking(use_prev_marking),
    _failures(false) { }

  bool failures() {
    return _failures;
  }
2972 2973

  void work(int worker_i) {
2974
    HandleMark hm;
2975
    VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
2976 2977
    _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
                                          HeapRegion::ParVerifyClaimValue);
2978 2979 2980
    if (blk.failures()) {
      _failures = true;
    }
2981 2982 2983
  }
};

2984
void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2985 2986 2987 2988 2989 2990
  verify(allow_dirty, silent, /* use_prev_marking */ true);
}

void G1CollectedHeap::verify(bool allow_dirty,
                             bool silent,
                             bool use_prev_marking) {
2991 2992
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    if (!silent) { gclog_or_tty->print("roots "); }
2993
    VerifyRootsClosure rootsCl(use_prev_marking);
2994 2995 2996
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
    process_strong_roots(true,  // activate StrongRootsScope
                         false,
2997 2998
                         SharedHeap::SO_AllClasses,
                         &rootsCl,
2999
                         &blobsCl,
3000
                         &rootsCl);
3001
    bool failures = rootsCl.failures();
3002
    rem_set()->invalidate(perm_gen()->used_region(), false);
3003 3004 3005
    if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
    verify_region_sets();
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3006 3007 3008 3009
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3010
      G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
3011 3012 3013 3014
      int n_workers = workers()->total_workers();
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3015 3016 3017
      if (task.failures()) {
        failures = true;
      }
3018 3019 3020 3021 3022 3023 3024 3025 3026

      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3027
      VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
3028
      _hrs->iterate(&blk);
3029 3030 3031
      if (blk.failures()) {
        failures = true;
      }
3032
    }
3033
    if (!silent) gclog_or_tty->print("RemSet ");
3034
    rem_set()->verify();
3035 3036 3037 3038 3039

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
      print_on(gclog_or_tty, true /* extended */);
      gclog_or_tty->print_cr("");
3040
#ifndef PRODUCT
3041
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3042 3043
        concurrent_mark()->print_reachable("at-verification-failure",
                                           use_prev_marking, false /* all */);
3044
      }
3045
#endif
3046 3047 3048
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
  } else {
    if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3064
void G1CollectedHeap::print() const { print_on(tty); }
3065 3066

void G1CollectedHeap::print_on(outputStream* st) const {
3067 3068 3069 3070 3071 3072
  print_on(st, PrintHeapAtGCExtended);
}

void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3073
            capacity()/K, used_unlocked()/K);
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
  st->print("  region size " SIZE_FORMAT "K, ",
            HeapRegion::GrainBytes/K);
  size_t young_regions = _young_list->length();
  st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
            young_regions, young_regions * HeapRegion::GrainBytes / K);
  size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
            survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  st->cr();
  perm()->as_gen()->print_on(st);
  if (extended) {
3090
    st->cr();
3091 3092 3093 3094 3095
    print_on_extended(st);
  }
}

void G1CollectedHeap::print_on_extended(outputStream* st) const {
3096 3097 3098 3099 3100
  PrintRegionClosure blk(st);
  _hrs->iterate(&blk);
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3101
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3102
    workers()->print_worker_threads_on(st);
3103
  }
T
tonyp 已提交
3104
  _cmThread->print_on(st);
3105
  st->cr();
T
tonyp 已提交
3106 3107
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
3108 3109 3110 3111
  st->cr();
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3112
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3113 3114 3115
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3116
  _cg1r->threads_do(tc);
3117 3118 3119 3120 3121 3122 3123 3124 3125
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3126
  if (G1SummarizeRSetStats) {
3127 3128
    g1_rem_set()->print_summary_info();
  }
3129
  if (G1SummarizeConcMark) {
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  HeapRegion* hr = heap_region_containing(addr);
  if (hr == NULL) {
    return 0;
  } else {
    return 1;
  }
}

G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3152
  // always_do_update_barrier = false;
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3166
  // always_do_update_barrier = true;
3167 3168
}

3169 3170 3171 3172
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
                                               bool* succeeded) {
  assert_heap_not_locked_and_not_at_safepoint();
3173
  g1_policy()->record_stop_world_start();
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             GCCause::_g1_inc_collection_pause);
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3189 3190 3191 3192
}

void
G1CollectedHeap::doConcurrentMark() {
3193 3194 3195 3196
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
  }
}

class VerifyMarkedObjsClosure: public ObjectClosure {
    G1CollectedHeap* _g1h;
    public:
    VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
    void do_object(oop obj) {
      assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
             "markandsweep mark should agree with concurrent deadness");
    }
};

void
G1CollectedHeap::checkConcurrentMark() {
    VerifyMarkedObjsClosure verifycl(this);
    //    MutexLockerEx x(getMarkBitMapLock(),
    //              Mutex::_no_safepoint_check_flag);
3215
    object_iterate(&verifycl, false);
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
}

void G1CollectedHeap::do_sync_mark() {
  _cm->checkpointRootsInitial();
  _cm->markFromRoots();
  _cm->checkpointRootsFinal(false);
}

// <NEW PREDICTION>

double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
                                                       bool young) {
  return _g1_policy->predict_region_elapsed_time_ms(hr, young);
}

void G1CollectedHeap::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();
  return buffer_size * buffer_num + extra_cards;
}

size_t G1CollectedHeap::max_pending_card_num() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num  = dcqs.completed_buffers_num();
  int thread_num  = Threads::number_of_threads();
  return (buffer_num + thread_num) * buffer_size;
}

size_t G1CollectedHeap::cards_scanned() {
3259
  return g1_rem_set()->cardsScanned();
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
}

void
G1CollectedHeap::setup_surviving_young_words() {
  guarantee( _surviving_young_words == NULL, "pre-condition" );
  size_t array_length = g1_policy()->young_cset_length();
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words == NULL) {
    vm_exit_out_of_memory(sizeof(size_t) * array_length,
                          "Not enough space for young surv words summary.");
  }
  memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3272
#ifdef ASSERT
3273
  for (size_t i = 0;  i < array_length; ++i) {
3274
    assert( _surviving_young_words[i] == 0, "memset above" );
3275
  }
3276
#endif // !ASSERT
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  size_t array_length = g1_policy()->young_cset_length();
  for (size_t i = 0; i < array_length; ++i)
    _surviving_young_words[i] += surv_young_words[i];
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  _surviving_young_words = NULL;
}

// </NEW PREDICTION>

3296 3297 3298 3299 3300 3301 3302
struct PrepareForRSScanningClosure : public HeapRegionClosure {
  bool doHeapRegion(HeapRegion *r) {
    r->rem_set()->set_iter_claimed(0);
    return false;
  }
};

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3314
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3325
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3326 3327 3328 3329 3330 3331
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3332
bool
3333
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3334 3335 3336
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3337
  if (GC_locker::check_active_before_gc()) {
3338
    return false;
3339 3340
  }

3341
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3342 3343
  ResourceMark rm;

3344 3345
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
3346 3347
  }

3348 3349
  verify_region_sets_optional();

3350
  {
3351 3352 3353 3354 3355
    // This call will decide whether this pause is an initial-mark
    // pause. If it is, during_initial_mark_pause() will return true
    // for the duration of this pause.
    g1_policy()->decide_on_conc_mark_initiation();

3356 3357 3358 3359 3360 3361 3362 3363
    char verbose_str[128];
    sprintf(verbose_str, "GC pause ");
    if (g1_policy()->in_young_gc_mode()) {
      if (g1_policy()->full_young_gcs())
        strcat(verbose_str, "(young)");
      else
        strcat(verbose_str, "(partial)");
    }
3364
    if (g1_policy()->during_initial_mark_pause()) {
3365
      strcat(verbose_str, " (initial-mark)");
3366 3367 3368 3369
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
      increment_total_full_collections();
    }
3370

3371 3372 3373 3374 3375 3376
    // if PrintGCDetails is on, we'll print long statistics information
    // in the collector policy code, so let's not print this as the output
    // is messy if we do.
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3377

3378 3379
    TraceMemoryManagerStats tms(false /* fullGC */);

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
    // If there are any free regions available on the secondary_free_list
    // make sure we append them to the free_list. However, we don't
    // have to wait for the rest of the cleanup operation to
    // finish. If it's still going on that's OK. If we run out of
    // regions, the region allocation code will check the
    // secondary_free_list and potentially wait if more free regions
    // are coming (see new_region_try_secondary_free_list()).
    if (!G1StressConcRegionFreeing) {
      append_secondary_free_list_if_not_empty();
    }
3390

3391
    increment_gc_time_stamp();
3392

3393 3394 3395 3396
    if (g1_policy()->in_young_gc_mode()) {
      assert(check_young_list_well_formed(),
             "young list should be well formed");
    }
3397

3398 3399 3400 3401 3402
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3403 3404

#if G1_REM_SET_LOGGING
3405 3406
      gclog_or_tty->print_cr("\nJust chose CS, heap:");
      print();
3407 3408
#endif

3409 3410 3411 3412 3413 3414
      if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        prepare_for_verify();
        gclog_or_tty->print(" VerifyBeforeGC:");
        Universe::verify(false);
      }
3415

3416
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3417

3418 3419 3420
      // Please see comment in G1CollectedHeap::ref_processing_init()
      // to see how reference processing currently works in G1.
      //
3421
      // We want to turn off ref discovery, if necessary, and turn it back on
3422
      // on again later if we do. XXX Dubious: why is discovery disabled?
3423 3424
      bool was_enabled = ref_processor()->discovery_enabled();
      if (was_enabled) ref_processor()->disable_discovery();
3425

3426 3427 3428
      // Forget the current alloc region (we might even choose it to be part
      // of the collection set!).
      abandon_cur_alloc_region();
3429

3430 3431 3432 3433
      // The elapsed time induced by the start time below deliberately elides
      // the possible verification above.
      double start_time_sec = os::elapsedTime();
      size_t start_used_bytes = used();
3434

3435 3436 3437 3438 3439 3440
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
      _young_list->print();
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE

3441 3442
      g1_policy()->record_collection_pause_start(start_time_sec,
                                                 start_used_bytes);
3443

3444 3445
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3446
      _young_list->print();
3447
#endif // YOUNG_LIST_VERBOSE
3448

3449
      if (g1_policy()->during_initial_mark_pause()) {
3450 3451 3452
        concurrent_mark()->checkpointRootsInitialPre();
      }
      save_marks();
3453

3454 3455 3456 3457
      // We must do this before any possible evacuation that should propagate
      // marks.
      if (mark_in_progress()) {
        double start_time_sec = os::elapsedTime();
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467
        _cm->drainAllSATBBuffers();
        double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
        g1_policy()->record_satb_drain_time(finish_mark_ms);
      }
      // Record the number of elements currently on the mark stack, so we
      // only iterate over these.  (Since evacuation may add to the mark
      // stack, doing more exposes race conditions.)  If no mark is in
      // progress, this will be zero.
      _cm->set_oops_do_bound();
3468

3469 3470
      if (mark_in_progress())
        concurrent_mark()->newCSet();
3471

3472 3473 3474 3475 3476
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
      _young_list->print();
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
3477

3478
      g1_policy()->choose_collection_set(target_pause_time_ms);
3479

3480
      // Nothing to do if we were unable to choose a collection set.
3481
#if G1_REM_SET_LOGGING
3482 3483
      gclog_or_tty->print_cr("\nAfter pause, heap:");
      print();
3484
#endif
3485 3486
      PrepareForRSScanningClosure prepare_for_rs_scan;
      collection_set_iterate(&prepare_for_rs_scan);
3487

3488
      setup_surviving_young_words();
3489

3490 3491
      // Set up the gc allocation regions.
      get_gc_alloc_regions();
3492

3493 3494
      // Actually do the work...
      evacuate_collection_set();
3495

3496 3497
      free_collection_set(g1_policy()->collection_set());
      g1_policy()->clear_collection_set();
3498

3499
      cleanup_surviving_young_words();
3500

3501 3502
      // Start a new incremental collection set for the next pause.
      g1_policy()->start_incremental_cset_building();
3503

3504 3505 3506 3507
      // Clear the _cset_fast_test bitmap in anticipation of adding
      // regions to the incremental collection set for the next
      // evacuation pause.
      clear_cset_fast_test();
3508

3509 3510
      if (g1_policy()->in_young_gc_mode()) {
        _young_list->reset_sampled_info();
3511

3512 3513 3514 3515 3516 3517
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
               "young list should be empty");
3518 3519

#if YOUNG_LIST_VERBOSE
3520 3521
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
3522
#endif // YOUNG_LIST_VERBOSE
3523

3524
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3525 3526
                                          _young_list->first_survivor_region(),
                                          _young_list->last_survivor_region());
3527

3528
        _young_list->reset_auxilary_lists();
3529 3530
      }

3531 3532 3533 3534 3535 3536 3537
      if (evacuation_failed()) {
        _summary_bytes_used = recalculate_used();
      } else {
        // The "used" of the the collection set have already been subtracted
        // when they were freed.  Add in the bytes evacuated.
        _summary_bytes_used += g1_policy()->bytes_in_to_space();
      }
3538

3539
      if (g1_policy()->in_young_gc_mode() &&
3540
          g1_policy()->during_initial_mark_pause()) {
3541 3542
        concurrent_mark()->checkpointRootsInitialPost();
        set_marking_started();
3543 3544 3545 3546 3547 3548 3549
        // CAUTION: after the doConcurrentMark() call below,
        // the concurrent marking thread(s) could be running
        // concurrently with us. Make sure that anything after
        // this point does not assume that we are the only GC thread
        // running. Note: of course, the actual marking work will
        // not start until the safepoint itself is released in
        // ConcurrentGCThread::safepoint_desynchronize().
3550 3551
        doConcurrentMark();
      }
3552

3553 3554
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3555
      _young_list->print();
3556 3557
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
3558

3559 3560 3561
      double end_time_sec = os::elapsedTime();
      double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
      g1_policy()->record_pause_time_ms(pause_time_ms);
3562
      g1_policy()->record_collection_pause_end();
3563

3564 3565
      MemoryService::track_memory_usage();

3566 3567 3568 3569 3570 3571
      if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyAfterGC:");
        prepare_for_verify();
        Universe::verify(false);
      }
3572

3573
      if (was_enabled) ref_processor()->enable_discovery();
3574

3575 3576 3577 3578
      {
        size_t expand_bytes = g1_policy()->expansion_amount();
        if (expand_bytes > 0) {
          size_t bytes_before = capacity();
3579 3580 3581 3582 3583 3584
          if (!expand(expand_bytes)) {
            // We failed to expand the heap so let's verify that
            // committed/uncommitted amount match the backing store
            assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
            assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
          }
3585
        }
3586 3587
      }

3588 3589 3590
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
3591 3592

#ifdef TRACESPINNING
3593
      ParallelTaskTerminator::print_termination_counts();
3594
#endif
3595

3596 3597 3598 3599 3600 3601 3602 3603 3604
      gc_epilogue(false);
    }

    if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
      gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
      print_tracing_info();
      vm_exit(-1);
    }
  }
3605

3606 3607
  verify_region_sets_optional();

3608 3609 3610
  TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());

3611 3612
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
3613
  }
3614 3615 3616 3617 3618
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
3619 3620

  return true;
3621 3622
}

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
      gclab_word_size = YoungPLABSize;
      break;
    case GCAllocForTenured:
      gclab_word_size = OldPLABSize;
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
      gclab_word_size = OldPLABSize;
      break;
  }
  return gclab_word_size;
}


3642 3643
void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
3644 3645 3646 3647
  // make sure we don't call set_gc_alloc_region() multiple times on
  // the same region
  assert(r == NULL || !r->is_gc_alloc_region(),
         "shouldn't already be a GC alloc region");
3648 3649 3650
  assert(r == NULL || !r->isHumongous(),
         "humongous regions shouldn't be used as GC alloc regions");

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
  HeapWord* original_top = NULL;
  if (r != NULL)
    original_top = r->top();

  // We will want to record the used space in r as being there before gc.
  // One we install it as a GC alloc region it's eligible for allocation.
  // So record it now and use it later.
  size_t r_used = 0;
  if (r != NULL) {
    r_used = r->used();

3662
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
      // need to take the lock to guard against two threads calling
      // get_gc_alloc_region concurrently (very unlikely but...)
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      r->save_marks();
    }
  }
  HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  _gc_alloc_regions[purpose] = r;
  if (old_alloc_region != NULL) {
    // Replace aliases too.
    for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
      if (_gc_alloc_regions[ap] == old_alloc_region) {
        _gc_alloc_regions[ap] = r;
      }
    }
  }
  if (r != NULL) {
    push_gc_alloc_region(r);
    if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
      // We are using a region as a GC alloc region after it has been used
      // as a mutator allocation region during the current marking cycle.
      // The mutator-allocated objects are currently implicitly marked, but
      // when we move hr->next_top_at_mark_start() forward at the the end
      // of the GC pause, they won't be.  We therefore mark all objects in
      // the "gap".  We do this object-by-object, since marking densely
      // does not currently work right with marking bitmap iteration.  This
      // means we rely on TLAB filling at the start of pauses, and no
      // "resuscitation" of filled TLAB's.  If we want to do this, we need
      // to fix the marking bitmap iteration.
      HeapWord* curhw = r->next_top_at_mark_start();
      HeapWord* t = original_top;

      while (curhw < t) {
        oop cur = (oop)curhw;
        // We'll assume parallel for generality.  This is rare code.
        concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
        curhw = curhw + cur->size();
      }
      assert(curhw == t, "Should have parsed correctly.");
    }
    if (G1PolicyVerbose > 1) {
      gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
                          "for survivors:", r->bottom(), original_top, r->end());
      r->print();
    }
    g1_policy()->record_before_bytes(r_used);
  }
}

void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  assert(Thread::current()->is_VM_thread() ||
3714
         FreeList_lock->owned_by_self(), "Precondition");
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
  assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
         "Precondition.");
  hr->set_is_gc_alloc_region(true);
  hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  _gc_alloc_region_list = hr;
}

#ifdef G1_DEBUG
class FindGCAllocRegion: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_gc_alloc_region()) {
      gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
                             r->hrs_index(), r->bottom());
    }
    return false;
  }
};
#endif // G1_DEBUG

void G1CollectedHeap::forget_alloc_region_list() {
3736
  assert_at_safepoint(true /* should_be_vm_thread */);
3737 3738 3739
  while (_gc_alloc_region_list != NULL) {
    HeapRegion* r = _gc_alloc_region_list;
    assert(r->is_gc_alloc_region(), "Invariant.");
3740 3741 3742 3743 3744 3745
    // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
    // newly allocated data in order to be able to apply deferred updates
    // before the GC is done for verification purposes (i.e to allow
    // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
    // collection.
    r->ContiguousSpace::set_saved_mark();
3746 3747 3748
    _gc_alloc_region_list = r->next_gc_alloc_region();
    r->set_next_gc_alloc_region(NULL);
    r->set_is_gc_alloc_region(false);
3749 3750 3751 3752 3753 3754 3755
    if (r->is_survivor()) {
      if (r->is_empty()) {
        r->set_not_young();
      } else {
        _young_list->add_survivor_region(r);
      }
    }
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
  }
#ifdef G1_DEBUG
  FindGCAllocRegion fa;
  heap_region_iterate(&fa);
#endif // G1_DEBUG
}


bool G1CollectedHeap::check_gc_alloc_regions() {
  // TODO: allocation regions check
  return true;
}

void G1CollectedHeap::get_gc_alloc_regions() {
3770 3771 3772
  // First, let's check that the GC alloc region list is empty (it should)
  assert(_gc_alloc_region_list == NULL, "invariant");

3773
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3774
    assert(_gc_alloc_regions[ap] == NULL, "invariant");
3775
    assert(_gc_alloc_region_counts[ap] == 0, "invariant");
3776

3777
    // Create new GC alloc regions.
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
    HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
    _retained_gc_alloc_regions[ap] = NULL;

    if (alloc_region != NULL) {
      assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");

      // let's make sure that the GC alloc region is not tagged as such
      // outside a GC operation
      assert(!alloc_region->is_gc_alloc_region(), "sanity");

      if (alloc_region->in_collection_set() ||
          alloc_region->top() == alloc_region->end() ||
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
          alloc_region->top() == alloc_region->bottom() ||
          alloc_region->isHumongous()) {
        // we will discard the current GC alloc region if
        // * it's in the collection set (it can happen!),
        // * it's already full (no point in using it),
        // * it's empty (this means that it was emptied during
        // a cleanup and it should be on the free list now), or
        // * it's humongous (this means that it was emptied
        // during a cleanup and was added to the free list, but
        // has been subseqently used to allocate a humongous
        // object that may be less than the region size).
3801 3802 3803 3804 3805 3806 3807

        alloc_region = NULL;
      }
    }

    if (alloc_region == NULL) {
      // we will get a new GC alloc region
3808
      alloc_region = new_gc_alloc_region(ap, HeapRegion::GrainWords);
3809 3810 3811
    } else {
      // the region was retained from the last collection
      ++_gc_alloc_region_counts[ap];
3812 3813 3814 3815 3816
      if (G1PrintHeapRegions) {
        gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
                               "top "PTR_FORMAT,
                               alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
      }
3817
    }
3818

3819
    if (alloc_region != NULL) {
3820
      assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
3821 3822
      set_gc_alloc_region(ap, alloc_region);
    }
3823 3824 3825 3826 3827 3828 3829

    assert(_gc_alloc_regions[ap] == NULL ||
           _gc_alloc_regions[ap]->is_gc_alloc_region(),
           "the GC alloc region should be tagged as such");
    assert(_gc_alloc_regions[ap] == NULL ||
           _gc_alloc_regions[ap] == _gc_alloc_region_list,
           "the GC alloc region should be the same as the GC alloc list head");
3830 3831
  }
  // Set alternative regions for allocation purposes that have reached
3832
  // their limit.
3833 3834 3835 3836 3837 3838 3839 3840 3841
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
    if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
      _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
    }
  }
  assert(check_gc_alloc_regions(), "alloc regions messed up");
}

3842
void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
3843
  // We keep a separate list of all regions that have been alloc regions in
3844 3845 3846 3847
  // the current collection pause. Forget that now. This method will
  // untag the GC alloc regions and tear down the GC alloc region
  // list. It's desirable that no regions are tagged as GC alloc
  // outside GCs.
3848

3849 3850 3851 3852 3853 3854
  forget_alloc_region_list();

  // The current alloc regions contain objs that have survived
  // collection. Make them no longer GC alloc regions.
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
3855
    _retained_gc_alloc_regions[ap] = NULL;
3856
    _gc_alloc_region_counts[ap] = 0;
3857 3858 3859 3860 3861 3862

    if (r != NULL) {
      // we retain nothing on _gc_alloc_regions between GCs
      set_gc_alloc_region(ap, NULL);

      if (r->is_empty()) {
3863 3864 3865
        // We didn't actually allocate anything in it; let's just put
        // it back on the free list.
        _free_list.add_as_tail(r);
3866 3867 3868
      } else if (_retain_gc_alloc_region[ap] && !totally) {
        // retain it so that we can use it at the beginning of the next GC
        _retained_gc_alloc_regions[ap] = r;
3869 3870 3871 3872 3873
      }
    }
  }
}

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
#ifndef PRODUCT
// Useful for debugging

void G1CollectedHeap::print_gc_alloc_regions() {
  gclog_or_tty->print_cr("GC alloc regions");
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    if (r == NULL) {
      gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
    } else {
      gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
                             ap, r->bottom(), r->used());
    }
  }
}
#endif // PRODUCT

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
3902
  delete _evac_failure_scan_stack;
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
  _evac_failure_scan_stack = NULL;
}



// *** Sequential G1 Evacuation

class G1IsAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    // It is reachable if it is outside the collection set, or is inside
    // and forwarded.

#ifdef G1_DEBUG
    gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
                           (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
                           !_g1->obj_in_cs(p) || p->is_forwarded());
#endif // G1_DEBUG

    return !_g1->obj_in_cs(p) || p->is_forwarded();
  }
};

class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3933 3934
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
    oop obj = *p;
#ifdef G1_DEBUG
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
                             p, (void*) obj, (void*) *p);
    }
#endif // G1_DEBUG

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
#ifdef G1_DEBUG
      gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
                             (void*) obj, (void*) *p);
#endif // G1_DEBUG
    }
  }
};

3954 3955 3956 3957 3958 3959 3960 3961 3962
class UpdateRSetDeferred : public OopsInHeapRegionClosure {
private:
  G1CollectedHeap* _g1;
  DirtyCardQueue *_dcq;
  CardTableModRefBS* _ct_bs;

public:
  UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
    _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3963

3964 3965 3966
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
  template <class T> void do_oop_work(T* p) {
3967
    assert(_from->is_in_reserved(p), "paranoia");
3968 3969
    if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
        !_from->is_survivor()) {
3970 3971 3972 3973
      size_t card_index = _ct_bs->index_for(p);
      if (_ct_bs->mark_card_deferred(card_index)) {
        _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
      }
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
    }
  }
};

class RemoveSelfPointerClosure: public ObjectClosure {
private:
  G1CollectedHeap* _g1;
  ConcurrentMark* _cm;
  HeapRegion* _hr;
  size_t _prev_marked_bytes;
  size_t _next_marked_bytes;
3985
  OopsInHeapRegionClosure *_cl;
3986
public:
3987 3988 3989
  RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
                           OopsInHeapRegionClosure* cl) :
    _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3990
    _next_marked_bytes(0), _cl(cl) {}
3991 3992 3993 3994

  size_t prev_marked_bytes() { return _prev_marked_bytes; }
  size_t next_marked_bytes() { return _next_marked_bytes; }

3995
  // <original comment>
3996 3997 3998 3999 4000 4001 4002 4003 4004
  // The original idea here was to coalesce evacuated and dead objects.
  // However that caused complications with the block offset table (BOT).
  // In particular if there were two TLABs, one of them partially refined.
  // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  // The BOT entries of the unrefined part of TLAB_2 point to the start
  // of TLAB_2. If the last object of the TLAB_1 and the first object
  // of TLAB_2 are coalesced, then the cards of the unrefined part
  // would point into middle of the filler object.
  // The current approach is to not coalesce and leave the BOT contents intact.
4005 4006 4007 4008 4009 4010
  // </original comment>
  //
  // We now reset the BOT when we start the object iteration over the
  // region and refine its entries for every object we come across. So
  // the above comment is not really relevant and we should be able
  // to coalesce dead objects if we want to.
4011
  void do_object(oop obj) {
4012 4013 4014 4015
    HeapWord* obj_addr = (HeapWord*) obj;
    assert(_hr->is_in(obj_addr), "sanity");
    size_t obj_size = obj->size();
    _hr->update_bot_for_object(obj_addr, obj_size);
4016 4017 4018 4019 4020
    if (obj->is_forwarded() && obj->forwardee() == obj) {
      // The object failed to move.
      assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
      _cm->markPrev(obj);
      assert(_cm->isPrevMarked(obj), "Should be marked!");
4021
      _prev_marked_bytes += (obj_size * HeapWordSize);
4022 4023
      if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
        _cm->markAndGrayObjectIfNecessary(obj);
4024
      }
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
      obj->set_mark(markOopDesc::prototype());
      // While we were processing RSet buffers during the
      // collection, we actually didn't scan any cards on the
      // collection set, since we didn't want to update remebered
      // sets with entries that point into the collection set, given
      // that live objects fromthe collection set are about to move
      // and such entries will be stale very soon. This change also
      // dealt with a reliability issue which involved scanning a
      // card in the collection set and coming across an array that
      // was being chunked and looking malformed. The problem is
      // that, if evacuation fails, we might have remembered set
      // entries missing given that we skipped cards on the
      // collection set. So, we'll recreate such entries now.
4038
      obj->oop_iterate(_cl);
4039 4040 4041 4042
      assert(_cm->isPrevMarked(obj), "Should be marked!");
    } else {
      // The object has been either evacuated or is dead. Fill it with a
      // dummy object.
4043
      MemRegion mr((HeapWord*)obj, obj_size);
4044
      CollectedHeap::fill_with_object(mr);
4045
      _cm->clearRangeBothMaps(mr);
4046 4047 4048 4049 4050
    }
  }
};

void G1CollectedHeap::remove_self_forwarding_pointers() {
J
johnc 已提交
4051
  UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
4052 4053 4054 4055 4056 4057 4058 4059
  DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  UpdateRSetDeferred deferred_update(_g1h, &dcq);
  OopsInHeapRegionClosure *cl;
  if (G1DeferredRSUpdate) {
    cl = &deferred_update;
  } else {
    cl = &immediate_update;
  }
4060 4061 4062
  HeapRegion* cur = g1_policy()->collection_set();
  while (cur != NULL) {
    assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
4063
    assert(!cur->isHumongous(), "sanity");
4064 4065 4066

    if (cur->evacuation_failed()) {
      assert(cur->in_collection_set(), "bad CS");
4067 4068 4069
      RemoveSelfPointerClosure rspc(_g1h, cur, cl);

      cur->reset_bot();
4070
      cl->set_region(cur);
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
      cur->object_iterate(&rspc);

      // A number of manipulations to make the TAMS be the current top,
      // and the marked bytes be the ones observed in the iteration.
      if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
        // The comments below are the postconditions achieved by the
        // calls.  Note especially the last such condition, which says that
        // the count of marked bytes has been properly restored.
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        cur->add_to_marked_bytes(rspc.prev_marked_bytes());
        // _next_marked_bytes == prev_marked_bytes.
        cur->note_end_of_marking();
        // _prev_top_at_mark_start == top(),
        // _prev_marked_bytes == prev_marked_bytes
      }
      // If there is no mark in progress, we modified the _next variables
      // above needlessly, but harmlessly.
      if (_g1h->mark_in_progress()) {
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        // _next_marked_bytes == next_marked_bytes.
      }

      // Now make sure the region has the right index in the sorted array.
      g1_policy()->note_change_in_marked_bytes(cur);
    }
    cur = cur->next_in_collection_set();
  }
  assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");

  // Now restore saved marks, if any.
  if (_objs_with_preserved_marks != NULL) {
    assert(_preserved_marks_of_objs != NULL, "Both or none.");
    guarantee(_objs_with_preserved_marks->length() ==
              _preserved_marks_of_objs->length(), "Both or none.");
    for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
      oop obj   = _objs_with_preserved_marks->at(i);
      markOop m = _preserved_marks_of_objs->at(i);
      obj->set_mark(m);
    }
    // Delete the preserved marks growable arrays (allocated on the C heap).
    delete _objs_with_preserved_marks;
    delete _preserved_marks_of_objs;
    _objs_with_preserved_marks = NULL;
    _preserved_marks_of_objs = NULL;
  }
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
                                               oop old) {
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
    // Someone else had a place to copy it.
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4172
    if (G1PrintHeapRegions) {
4173
      gclog_or_tty->print("overflow in heap region "PTR_FORMAT" "
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
                          "["PTR_FORMAT","PTR_FORMAT")\n",
                          r, r->bottom(), r->end());
    }
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4190 4191 4192 4193
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
    if (_objs_with_preserved_marks == NULL) {
      assert(_preserved_marks_of_objs == NULL, "Both or none.");
      _objs_with_preserved_marks =
        new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
      _preserved_marks_of_objs =
        new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
    }
    _objs_with_preserved_marks->push(obj);
    _preserved_marks_of_objs->push(m);
  }
}

// *** Parallel G1 Evacuation

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4210 4211 4212 4213
  assert(!isHumongous(word_size),
         err_msg("we should not be seeing humongous allocation requests "
                 "during GC, word_size = "SIZE_FORMAT, word_size));

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
  HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  // let the caller handle alloc failure
  if (alloc_region == NULL) return NULL;

  HeapWord* block = alloc_region->par_allocate(word_size);
  if (block == NULL) {
    block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  }
  return block;
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
                                            bool par) {
  // Another thread might have obtained alloc_region for the given
  // purpose, and might be attempting to allocate in it, and might
  // succeed.  Therefore, we can't do the "finalization" stuff on the
  // region below until we're sure the last allocation has happened.
  // We ensure this by allocating the remaining space with a garbage
  // object.
  if (par) par_allocate_remaining_space(alloc_region);
  // Now we can do the post-GC stuff on the region.
  alloc_region->note_end_of_copying();
  g1_policy()->record_after_bytes(alloc_region->used());
}

4239 4240 4241 4242 4243
HeapWord*
G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
                                         HeapRegion*    alloc_region,
                                         bool           par,
                                         size_t         word_size) {
4244 4245 4246 4247
  assert(!isHumongous(word_size),
         err_msg("we should not be seeing humongous allocation requests "
                 "during GC, word_size = "SIZE_FORMAT, word_size));

4248 4249 4250 4251 4252 4253
  // We need to make sure we serialize calls to this method. Given
  // that the FreeList_lock guards accesses to the free_list anyway,
  // and we need to potentially remove a region from it, we'll use it
  // to protect the whole call.
  MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);

4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
  HeapWord* block = NULL;
  // In the parallel case, a previous thread to obtain the lock may have
  // already assigned a new gc_alloc_region.
  if (alloc_region != _gc_alloc_regions[purpose]) {
    assert(par, "But should only happen in parallel case.");
    alloc_region = _gc_alloc_regions[purpose];
    if (alloc_region == NULL) return NULL;
    block = alloc_region->par_allocate(word_size);
    if (block != NULL) return block;
    // Otherwise, continue; this new region is empty, too.
  }
  assert(alloc_region != NULL, "We better have an allocation region");
4266
  retire_alloc_region(alloc_region, par);
4267 4268 4269 4270 4271 4272 4273 4274

  if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
    // Cannot allocate more regions for the given purpose.
    GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
    // Is there an alternative?
    if (purpose != alt_purpose) {
      HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
      // Has not the alternative region been aliased?
4275
      if (alloc_region != alt_region && alt_region != NULL) {
4276 4277 4278 4279 4280 4281 4282 4283
        // Try to allocate in the alternative region.
        if (par) {
          block = alt_region->par_allocate(word_size);
        } else {
          block = alt_region->allocate(word_size);
        }
        // Make an alias.
        _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
4284 4285 4286 4287
        if (block != NULL) {
          return block;
        }
        retire_alloc_region(alt_region, par);
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
      }
      // Both the allocation region and the alternative one are full
      // and aliased, replace them with a new allocation region.
      purpose = alt_purpose;
    } else {
      set_gc_alloc_region(purpose, NULL);
      return NULL;
    }
  }

  // Now allocate a new region for allocation.
4299
  alloc_region = new_gc_alloc_region(purpose, word_size);
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329

  // let the caller handle alloc failure
  if (alloc_region != NULL) {

    assert(check_gc_alloc_regions(), "alloc regions messed up");
    assert(alloc_region->saved_mark_at_top(),
           "Mark should have been saved already.");
    // This must be done last: once it's installed, other regions may
    // allocate in it (without holding the lock.)
    set_gc_alloc_region(purpose, alloc_region);

    if (par) {
      block = alloc_region->par_allocate(word_size);
    } else {
      block = alloc_region->allocate(word_size);
    }
    // Caller handles alloc failure.
  } else {
    // This sets other apis using the same old alloc region to NULL, also.
    set_gc_alloc_region(purpose, NULL);
  }
  return block;  // May be NULL.
}

void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  HeapWord* block = NULL;
  size_t free_words;
  do {
    free_words = r->free()/HeapWordSize;
    // If there's too little space, no one can allocate, so we're done.
4330
    if (free_words < CollectedHeap::min_fill_size()) return;
4331 4332 4333
    // Otherwise, try to claim it.
    block = r->par_allocate(free_words);
  } while (block == NULL);
4334
  fill_with_object(block, free_words);
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
}

#ifndef PRODUCT
bool GCLabBitMapClosure::do_bit(size_t offset) {
  HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  guarantee(_cm->isMarked(oop(addr)), "it should be!");
  return true;
}
#endif // PRODUCT

4345 4346 4347 4348 4349 4350 4351 4352
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4353 4354
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
    _alloc_buffer_waste(0), _undo_waste(0)
{
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
  size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  size_t array_length = PADDING_ELEM_NUM +
                        real_length +
                        PADDING_ELEM_NUM;
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t),
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  memset(_surviving_young_words, 0, real_length * sizeof(size_t));

4375 4376 4377
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4378 4379
  _start = os::elapsedTime();
}
4380

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4458 4459 4460 4461
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  _par_scan_state(par_scan_state) { }

4462
template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
4463 4464 4465 4466
  // This is called _after_ do_oop_work has been called, hence after
  // the object has been relocated to its new location and *p points
  // to its new location.

4467 4468 4469 4470
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop(heap_oop);
    assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
4471
           "shouldn't still be in the CSet if evacuation didn't fail.");
4472
    HeapWord* addr = (HeapWord*)obj;
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
    if (_g1->is_in_g1_reserved(addr))
      _cm->grayRoot(oop(addr));
  }
}

oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  size_t    word_sz = old->size();
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
  assert( (from_region->is_young() && young_index > 0) ||
          (!from_region->is_young() && young_index == 0), "invariant" );
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4487 4488 4489
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  oop       obj     = oop(obj_ptr);

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    return _g1->handle_evacuation_failure_par(cl, old);
  }

4501 4502 4503
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4504 4505 4506 4507
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4527
        obj->set_mark(m);
4528
      }
4529 4530 4531
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4532
    }
4533

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
    // preserve "next" mark bit
    if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
      if (!use_local_bitmaps ||
          !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
        // if we couldn't mark it on the local bitmap (this happens when
        // the object was not allocated in the GCLab), we have to bite
        // the bullet and do the standard parallel mark
        _cm->markAndGrayObjectIfNecessary(obj);
      }
#if 1
      if (_g1->isMarkedNext(old)) {
        _cm->nextMarkBitMap()->parClear((HeapWord*)old);
      }
#endif
    }

    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
      arrayOop(old)->set_length(0);
4555 4556
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4557
    } else {
4558 4559 4560
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
      _scanner->set_region(_g1->heap_region_containing_raw(obj));
4561 4562 4563 4564 4565 4566 4567 4568 4569
      obj->oop_iterate_backwards(_scanner);
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4570
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
4571
template <class T>
4572
void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
4573 4574
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4575 4576 4577
  assert(barrier != G1BarrierRS || obj != NULL,
         "Precondition: G1BarrierRS implies obj is nonNull");

4578
  // here the null check is implicit in the cset_fast_test() test
4579
  if (_g1->in_cset_fast_test(obj)) {
4580
#if G1_REM_SET_LOGGING
4581 4582
    gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
                           "into CS.", p, (void*) obj);
4583
#endif
4584
    if (obj->is_forwarded()) {
4585
      oopDesc::encode_store_heap_oop(p, obj->forwardee());
4586
    } else {
4587 4588
      oop copy_oop = copy_to_survivor_space(obj);
      oopDesc::encode_store_heap_oop(p, copy_oop);
4589
    }
4590 4591
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
4592
      _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4593
    }
4594
  }
4595

4596
  if (barrier == G1BarrierEvac && obj != NULL) {
4597
    _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4598 4599 4600 4601
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
4602 4603 4604
  }
}

4605 4606
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4607

4608
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4609 4610
  assert(has_partial_array_mask(p), "invariant");
  oop old = clear_partial_array_mask(p);
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
  assert(old->is_objArray(), "must be obj array");
  assert(old->is_forwarded(), "must be forwarded");
  assert(Universe::heap()->is_in_reserved(old), "must be in heap.");

  objArrayOop obj = objArrayOop(old->forwardee());
  assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  // Process ParGCArrayScanChunk elements now
  // and push the remainder back onto queue
  int start     = arrayOop(old)->length();
  int end       = obj->length();
  int remainder = end - start;
  assert(start <= end, "just checking");
  if (remainder > 2 * ParGCArrayScanChunk) {
    // Test above combines last partial chunk with a full chunk
    end = start + ParGCArrayScanChunk;
    arrayOop(old)->set_length(end);
    // Push remainder.
4628 4629 4630
    oop* old_p = set_partial_array_mask(old);
    assert(arrayOop(old)->length() < obj->length(), "Empty push?");
    _par_scan_state->push_on_queue(old_p);
4631 4632 4633 4634 4635
  } else {
    // Restore length so that the heap remains parsable in
    // case of evacuation failure.
    arrayOop(old)->set_length(end);
  }
4636
  _scanner.set_region(_g1->heap_region_containing_raw(obj));
4637
  // process our set of indices (include header in first chunk)
4638
  obj->oop_iterate_range(&_scanner, start, end);
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4660
  void do_void();
4661

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4683
        pss->deal_with_reference((narrowOop*) stolen_task);
4684
      } else {
4685
        pss->deal_with_reference((oop*) stolen_task);
4686
      }
4687 4688 4689 4690

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4691
      pss->trim_queue();
4692
    }
4693 4694 4695 4696
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4697 4698 4699 4700 4701 4702

class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4703
  int _n_workers;
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
  G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
      _terminator(workers, _queues),
4719 4720
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
      _n_workers(workers)
4721 4722 4723 4724 4725 4726 4727 4728 4729
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

  void work(int i) {
4730
    if (i >= _n_workers) return;  // no work needed this round
4731 4732 4733 4734

    double start_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);

4735 4736 4737
    ResourceMark rm;
    HandleMark   hm;

4738 4739 4740 4741
    G1ParScanThreadState            pss(_g1h, i);
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4742 4743 4744 4745 4746 4747 4748 4749

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
    G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
    G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4750
    G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4751

4752 4753 4754 4755 4756 4757 4758
    G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
    G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
    G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);

    OopsInHeapRegionClosure        *scan_root_cl;
    OopsInHeapRegionClosure        *scan_perm_cl;

4759
    if (_g1h->g1_policy()->during_initial_mark_pause()) {
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
      scan_root_cl = &scan_mark_root_cl;
      scan_perm_cl = &scan_mark_perm_cl;
    } else {
      scan_root_cl = &only_scan_root_cl;
      scan_perm_cl = &only_scan_perm_cl;
    }

    pss.start_strong_roots();
    _g1h->g1_process_strong_roots(/* not collecting perm */ false,
                                  SharedHeap::SO_AllClasses,
                                  scan_root_cl,
4771
                                  &push_heap_rs_cl,
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
                                  scan_perm_cl,
                                  i);
    pss.end_strong_roots();
    {
      double start = os::elapsedTime();
      G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
      evac.do_void();
      double elapsed_ms = (os::elapsedTime()-start)*1000.0;
      double term_ms = pss.term_time()*1000.0;
      _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4782
      _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4783
    }
4784
    _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4785 4786 4787 4788 4789 4790
    _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

    // Clean up any par-expanded rem sets.
    HeapRegionRemSet::par_cleanup();

    if (ParallelGCVerbose) {
4791 4792
      MutexLocker x(stats_lock());
      pss.print_termination_stats(i);
4793 4794
    }

4795
    assert(pss.refs()->is_empty(), "should be empty");
4796 4797
    double end_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4798 4799 4800 4801 4802
  }
};

// *** Common G1 Evacuation Stuff

4803 4804
// This method is run in a GC worker.

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
void
G1CollectedHeap::
g1_process_strong_roots(bool collecting_perm_gen,
                        SharedHeap::ScanningOption so,
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
                        OopsInGenClosure* scan_perm,
                        int worker_i) {
  // First scan the strong roots, including the perm gen.
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  buf_scan_perm.set_generation(perm_gen());

4821 4822 4823 4824 4825 4826
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);

  process_strong_roots(false, // no scoping; this is parallel code
                       collecting_perm_gen, so,
4827
                       &buf_scan_non_heap_roots,
4828
                       &eager_scan_code_roots,
4829
                       &buf_scan_perm);
4830

4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
  // Finish up any enqueued closure apps.
  buf_scan_non_heap_roots.done();
  buf_scan_perm.done();
  double ext_roots_end = os::elapsedTime();
  g1_policy()->reset_obj_copy_time(worker_i);
  double obj_copy_time_sec =
    buf_scan_non_heap_roots.closure_app_seconds() +
    buf_scan_perm.closure_app_seconds();
  g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  double ext_root_time_ms =
    ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);

  // Scan strong roots in mark stack.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
    concurrent_mark()->oops_do(scan_non_heap_roots);
  }
  double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);

  // XXX What should this be doing in the parallel case?
  g1_policy()->record_collection_pause_end_CH_strong_roots();
  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
  // Finish with the ref_processor roots.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4859 4860 4861 4862
    // We need to treat the discovered reference lists as roots and
    // keep entries (which are added by the marking threads) on them
    // live until they can be processed at the end of marking.
    ref_processor()->weak_oops_do(scan_non_heap_roots);
4863 4864 4865 4866 4867 4868 4869 4870 4871
    ref_processor()->oops_do(scan_non_heap_roots);
  }
  g1_policy()->record_collection_pause_end_G1_strong_roots();
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
4872 4873
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
}


class SaveMarksClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->save_marks();
    return false;
  }
};

void G1CollectedHeap::save_marks() {
4886
  if (!CollectedHeap::use_parallel_gc_threads()) {
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
    SaveMarksClosure sm;
    heap_region_iterate(&sm);
  }
  // We do this even in the parallel case
  perm_gen()->save_marks();
}

void G1CollectedHeap::evacuate_collection_set() {
  set_evacuation_failed(false);

  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
4899 4900
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

4901 4902 4903 4904 4905 4906 4907 4908
  int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  set_par_threads(n_workers);
  G1ParTask g1_par_task(this, n_workers, _task_queues);

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

4909 4910
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  double start_par = os::elapsedTime();
4911
  if (G1CollectedHeap::use_parallel_gc_threads()) {
4912
    // The individual threads will set their evac-failure closures.
4913
    StrongRootsScope srs(this);
4914
    if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4915 4916
    workers()->run_task(&g1_par_task);
  } else {
4917
    StrongRootsScope srs(this);
4918 4919 4920 4921 4922 4923 4924 4925 4926
    g1_par_task.work(0);
  }

  double par_time = (os::elapsedTime() - start_par) * 1000.0;
  g1_policy()->record_par_time(par_time);
  set_par_threads(0);
  // Is this the right thing to do here?  We don't save marks
  // on individual heap regions when we allocate from
  // them in parallel, so this seems like the correct place for this.
4927
  retire_all_alloc_regions();
4928 4929 4930 4931 4932

  // Weak root processing.
  // Note: when JSR 292 is enabled and code blobs can contain
  // non-perm oops then we will need to process the code blobs
  // here too.
4933 4934 4935 4936 4937
  {
    G1IsAliveClosure is_alive(this);
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
4938
  release_gc_alloc_regions(false /* totally */);
4939
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4940

4941
  concurrent_g1_refine()->clear_hot_cache();
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

  // Must do this before removing self-forwarding pointers, which clears
  // the per-region evac-failure flags.
  concurrent_mark()->complete_marking_in_collection_set();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
    if (PrintGCDetails) {
4953
      gclog_or_tty->print(" (to-space overflow)");
4954 4955 4956 4957 4958
    } else if (PrintGC) {
      gclog_or_tty->print("--");
    }
  }

4959 4960 4961 4962
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4963 4964 4965

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
4966 4967
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
4968 4969 4970
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

T
tonyp 已提交
4971
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
4972 4973 4974
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
T
tonyp 已提交
4975
                                     HRRSCleanupTask* hrrs_cleanup_task,
4976 4977 4978 4979 4980 4981 4982 4983
                                     bool par) {
  if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
    if (hr->isHumongous()) {
      assert(hr->startsHumongous(), "we should only see starts humongous");
      free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
    } else {
      free_region(hr, pre_used, free_list, par);
    }
T
tonyp 已提交
4984 4985
  } else {
    hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
4986 4987 4988
  }
}

4989 4990 4991
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  size_t* pre_used,
                                  FreeRegionList* free_list,
4992
                                  bool par) {
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

  *pre_used += hr->used();
  hr->hr_clear(par, true /* clear_space */);
  free_list->add_as_tail(hr);
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");
  assert(humongous_proxy_set != NULL, "pre-condition");

  size_t hr_used = hr->used();
  size_t hr_capacity = hr->capacity();
  size_t hr_pre_used = 0;
  _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  hr->set_notHumongous();
  free_region(hr, &hr_pre_used, free_list, par);

  int i = hr->hrs_index() + 1;
  size_t num = 1;
  while ((size_t) i < n_regions()) {
    HeapRegion* curr_hr = _hrs->at(i);
    if (!curr_hr->continuesHumongous()) {
      break;
5024
    }
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
    curr_hr->set_notHumongous();
    free_region(curr_hr, &hr_pre_used, free_list, par);
    num += 1;
    i += 1;
  }
  assert(hr_pre_used == hr_used,
         err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
                 "should be the same", hr_pre_used, hr_used));
  *pre_used += hr_pre_used;
}

void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par) {
  if (pre_used > 0) {
    Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5042
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5043 5044 5045 5046
    assert(_summary_bytes_used >= pre_used,
           err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
                   "should be >= pre_used: "SIZE_FORMAT,
                   _summary_bytes_used, pre_used));
5047
    _summary_bytes_used -= pre_used;
5048 5049 5050 5051 5052 5053 5054 5055
  }
  if (free_list != NULL && !free_list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_list.add_as_tail(free_list);
  }
  if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _humongous_set.update_from_proxy(humongous_proxy_set);
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
  }
}

void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  while (list != NULL) {
    guarantee( list->is_young(), "invariant" );

    HeapWord* bottom = list->bottom();
    HeapWord* end = list->end();
    MemRegion mr(bottom, end);
    ct_bs->dirty(mr);

    list = list->get_next_young_region();
  }
}

5072 5073 5074 5075

class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
5076
  HeapRegion* volatile _su_head;
5077 5078
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5079 5080
                     G1CollectedHeap* g1h,
                     HeapRegion* survivor_list) :
5081 5082
    AbstractGangTask("G1 Par Cleanup CT Task"),
    _ct_bs(ct_bs),
5083 5084
    _g1h(g1h),
    _su_head(survivor_list)
5085 5086 5087 5088 5089 5090 5091
  { }

  void work(int i) {
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
5092
    // Redirty the cards of the survivor regions.
5093
    dirty_list(&this->_su_head);
5094
  }
5095

5096
  void clear_cards(HeapRegion* r) {
5097 5098
    // Cards for Survivor regions will be dirtied later.
    if (!r->is_survivor()) {
5099 5100 5101
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117

  void dirty_list(HeapRegion* volatile * head_ptr) {
    HeapRegion* head;
    do {
      // Pop region off the list.
      head = *head_ptr;
      if (head != NULL) {
        HeapRegion* r = (HeapRegion*)
          Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
        if (r == head) {
          assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
          _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
        }
      }
    } while (*head_ptr != NULL);
  }
5118 5119 5120
};


5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
  CardTableModRefBS* _ct_bs;
public:
  G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
    : _ct_bs(ct_bs)
  { }
  virtual bool doHeapRegion(HeapRegion* r)
  {
    MemRegion mr(r->bottom(), r->end());
5131
    if (r->is_survivor()) {
5132 5133 5134 5135 5136 5137 5138 5139 5140
      _ct_bs->verify_dirty_region(mr);
    } else {
      _ct_bs->verify_clean_region(mr);
    }
    return false;
  }
};
#endif

5141 5142 5143 5144
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

5145
  // Iterate over the dirty cards region list.
5146 5147
  G1ParCleanupCTTask cleanup_task(ct_bs, this,
                                  _young_list->first_survivor_region());
5148

5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
  if (ParallelGCThreads > 0) {
    set_par_threads(workers()->total_workers());
    workers()->run_task(&cleanup_task);
    set_par_threads(0);
  } else {
    while (_dirty_cards_region_list) {
      HeapRegion* r = _dirty_cards_region_list;
      cleanup_task.clear_cards(r);
      _dirty_cards_region_list = r->get_next_dirty_cards_region();
      if (_dirty_cards_region_list == r) {
        // The last region.
        _dirty_cards_region_list = NULL;
      }
      r->set_next_dirty_cards_region(NULL);
    }
5164
    // now, redirty the cards of the survivor regions
5165 5166 5167
    // (it seemed faster to do it this way, instead of iterating over
    // all regions and then clearing / dirtying as appropriate)
    dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
5168
  }
5169

5170 5171
  double elapsed = os::elapsedTime() - start;
  g1_policy()->record_clear_ct_time( elapsed * 1000.0);
5172 5173 5174 5175 5176 5177
#ifndef PRODUCT
  if (G1VerifyCTCleanup || VerifyAfterGC) {
    G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
    heap_region_iterate(&cleanup_verifier);
  }
#endif
5178 5179 5180
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5181 5182 5183
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

5184 5185 5186
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

5187 5188 5189 5190 5191
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
5202 5203
    assert(!is_on_free_list(cur), "sanity");

5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
5214 5215 5216
      double end_sec = os::elapsedTime();
      double elapsed_ms = (end_sec - start_sec) * 1000.0;
      young_time_ms += elapsed_ms;
5217

5218 5219
      start_sec = os::elapsedTime();
      non_young = true;
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
      guarantee( index != -1, "invariant" );
      guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
5235 5236 5237 5238 5239 5240

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
    } else {
      int index = cur->young_index_in_cset();
      guarantee( index == -1, "invariant" );
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
      // And the region is empty.
5252 5253
      assert(!cur->is_empty(), "Should not have empty regions in a CS.");
      free_region(cur, &pre_used, &local_free_list, false /* par */);
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
    } else {
      cur->uninstall_surv_rate_group();
      if (cur->is_young())
        cur->set_young_index_in_cset(-1);
      cur->set_not_young();
      cur->set_evacuation_failed(false);
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
  if (non_young)
    non_young_time_ms += elapsed_ms;
  else
    young_time_ms += elapsed_ms;

5274 5275 5276
  update_sets_after_freeing_regions(pre_used, &local_free_list,
                                    NULL /* humongous_proxy_set */,
                                    false /* par */);
5277 5278 5279 5280
  policy->record_young_free_cset_time_ms(young_time_ms);
  policy->record_non_young_free_cset_time_ms(non_young_time_ms);
}

5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

5302 5303 5304 5305
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
5306 5307
  }

5308 5309
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
5310 5311
}

5312 5313 5314 5315 5316 5317
void G1CollectedHeap::reset_free_regions_coming() {
  {
    assert(free_regions_coming(), "pre-condition");
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
5318 5319
  }

5320 5321 5322
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
5323 5324 5325
  }
}

5326 5327 5328 5329 5330
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
5331 5332
  }

5333 5334 5335
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
5336 5337 5338
  }

  {
5339 5340 5341
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5342 5343 5344
    }
  }

5345 5346 5347
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
5348 5349 5350 5351 5352 5353 5354 5355 5356
  }
}

size_t G1CollectedHeap::n_regions() {
  return _hrs->length();
}

size_t G1CollectedHeap::max_regions() {
  return
5357
    (size_t)align_size_up(max_capacity(), HeapRegion::GrainBytes) /
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
    HeapRegion::GrainBytes;
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
  g1_policy()->set_region_short_lived(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

5384 5385
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
5386

5387
  if (check_heap) {
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

void G1CollectedHeap::empty_young_list() {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");

  _young_list->empty_list();
}

bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  bool no_allocs = true;
  for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    no_allocs = r == NULL || r->saved_mark_at_top();
  }
  return no_allocs;
}

5413
void G1CollectedHeap::retire_all_alloc_regions() {
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    if (r != NULL) {
      // Check for aliases.
      bool has_processed_alias = false;
      for (int i = 0; i < ap; ++i) {
        if (_gc_alloc_regions[i] == r) {
          has_processed_alias = true;
          break;
        }
      }
      if (!has_processed_alias) {
5426
        retire_alloc_region(r, false /* par */);
5427 5428 5429 5430 5431 5432 5433
      }
    }
  }
}

// Done at the start of full GC.
void G1CollectedHeap::tear_down_region_lists() {
5434
  _free_list.remove_all();
5435 5436 5437
}

class RegionResetter: public HeapRegionClosure {
5438 5439 5440
  G1CollectedHeap* _g1h;
  FreeRegionList _local_free_list;

5441
public:
5442 5443 5444
  RegionResetter() : _g1h(G1CollectedHeap::heap()),
                     _local_free_list("Local Free List for RegionResetter") { }

5445 5446 5447 5448 5449 5450 5451 5452 5453
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->top() > r->bottom()) {
      if (r->top() < r->end()) {
        Copy::fill_to_words(r->top(),
                          pointer_delta(r->end(), r->top()));
      }
    } else {
      assert(r->is_empty(), "tautology");
5454
      _local_free_list.add_as_tail(r);
5455 5456 5457 5458
    }
    return false;
  }

5459 5460 5461 5462
  void update_free_lists() {
    _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
                                            false /* par */);
  }
5463 5464 5465 5466 5467 5468 5469
};

// Done at the end of full GC.
void G1CollectedHeap::rebuild_region_lists() {
  // This needs to go at the end of the full GC.
  RegionResetter rs;
  heap_region_iterate(&rs);
5470
  rs.update_free_lists();
5471 5472 5473 5474 5475 5476
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

5477
#ifdef ASSERT
5478

5479 5480 5481 5482 5483 5484
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
    return is_in_permanent(p);
  } else {
    return hr->is_in(p);
5485
  }
5486 5487 5488 5489 5490 5491 5492 5493
}
#endif // ASSERT

class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  HumongousRegionSet* _humongous_set;
  FreeRegionList*     _free_list;
  size_t              _region_count;
5494 5495

public:
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
  VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
                           FreeRegionList* free_list) :
    _humongous_set(humongous_set), _free_list(free_list),
    _region_count(0) { }

  size_t region_count()      { return _region_count;      }

  bool doHeapRegion(HeapRegion* hr) {
    _region_count += 1;

    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
      _humongous_set->verify_next_region(hr);
    } else if (hr->is_empty()) {
      _free_list->verify_next_region(hr);
    }
5517 5518 5519 5520
    return false;
  }
};

5521 5522
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5523

5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
  // First, check the explicit lists.
  _free_list.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify();
  }
  _humongous_set.verify();

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
5548

5549 5550 5551 5552 5553 5554 5555
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    // Make sure we append the secondary_free_list on the free_list so
    // that all free regions we will come across can be safely
    // attributed to the free_list.
    append_secondary_free_list();
  }
5556

5557 5558 5559 5560
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
  _humongous_set.verify_start();
  _free_list.verify_start();
5561

5562 5563
  VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
  heap_region_iterate(&cl);
5564

5565 5566
  _humongous_set.verify_end();
  _free_list.verify_end();
5567
}