assembler_sparc.cpp 163.7 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25
#include "precompiled.hpp"
26
#include "asm/assembler.hpp"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include "assembler_sparc.inline.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/resourceArea.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#ifndef SERIALGC
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#endif
D
duke 已提交
44

45 46 47 48 49 50
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) block_comment(str)
#endif

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
// Convert the raw encoding form into the form expected by the
// constructor for Address.
Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
  assert(scale == 0, "not supported");
  RelocationHolder rspec;
  if (disp_is_oop) {
    rspec = Relocation::spec_simple(relocInfo::oop_type);
  }

  Register rindex = as_Register(index);
  if (rindex != G0) {
    Address madr(as_Register(base), rindex);
    madr._rspec = rspec;
    return madr;
  } else {
    Address madr(as_Register(base), disp);
    madr._rspec = rspec;
    return madr;
D
duke 已提交
69 70 71
  }
}

72 73 74 75 76 77 78 79 80 81 82
Address Argument::address_in_frame() const {
  // Warning: In LP64 mode disp will occupy more than 10 bits, but
  //          op codes such as ld or ldx, only access disp() to get
  //          their simm13 argument.
  int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
  if (is_in())
    return Address(FP, disp); // In argument.
  else
    return Address(SP, disp); // Out argument.
}

D
duke 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
static const char* argumentNames[][2] = {
  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
  {"A(n>9)","P(n>9)"}
};

const char* Argument::name() const {
  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
  int num = number();
  if (num >= nofArgs)  num = nofArgs - 1;
  return argumentNames[num][is_in() ? 1 : 0];
}

void Assembler::print_instruction(int inst) {
  const char* s;
  switch (inv_op(inst)) {
  default:         s = "????"; break;
  case call_op:    s = "call"; break;
  case branch_op:
    switch (inv_op2(inst)) {
      case fb_op2:     s = "fb";   break;
      case fbp_op2:    s = "fbp";  break;
      case br_op2:     s = "br";   break;
      case bp_op2:     s = "bp";   break;
      case cb_op2:     s = "cb";   break;
K
kvn 已提交
108 109 110 111 112 113 114 115
      case bpr_op2: {
        if (is_cbcond(inst)) {
          s = is_cxb(inst) ? "cxb" : "cwb";
        } else {
          s = "bpr";
        }
        break;
      }
D
duke 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
      default:         s = "????"; break;
    }
  }
  ::tty->print("%s", s);
}


// Patch instruction inst at offset inst_pos to refer to dest_pos
// and return the resulting instruction.
// We should have pcs, not offsets, but since all is relative, it will work out
// OK.
int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {

  int m; // mask for displacement field
  int v; // new value for displacement field
  const int word_aligned_ones = -4;
  switch (inv_op(inst)) {
  default: ShouldNotReachHere();
  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
  case branch_op:
    switch (inv_op2(inst)) {
      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
      case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
K
kvn 已提交
142 143 144 145 146 147 148 149 150 151
      case bpr_op2: {
        if (is_cbcond(inst)) {
          m = wdisp10(word_aligned_ones, 0);
          v = wdisp10(dest_pos, inst_pos);
        } else {
          m = wdisp16(word_aligned_ones, 0);
          v = wdisp16(dest_pos, inst_pos);
        }
        break;
      }
D
duke 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
      default: ShouldNotReachHere();
    }
  }
  return  inst & ~m  |  v;
}

// Return the offset of the branch destionation of instruction inst
// at offset pos.
// Should have pcs, but since all is relative, it works out.
int Assembler::branch_destination(int inst, int pos) {
  int r;
  switch (inv_op(inst)) {
  default: ShouldNotReachHere();
  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
  case branch_op:
    switch (inv_op2(inst)) {
      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
      case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
K
kvn 已提交
173 174 175 176 177 178 179 180
      case bpr_op2: {
        if (is_cbcond(inst)) {
          r = inv_wdisp10(inst, pos);
        } else {
          r = inv_wdisp16(inst, pos);
        }
        break;
      }
D
duke 已提交
181 182 183 184 185 186 187 188 189 190
      default: ShouldNotReachHere();
    }
  }
  return r;
}

int AbstractAssembler::code_fill_byte() {
  return 0x00;                  // illegal instruction 0x00000000
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204
Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
  switch (in) {
  case rc_z:   return equal;
  case rc_lez: return lessEqual;
  case rc_lz:  return less;
  case rc_nz:  return notEqual;
  case rc_gz:  return greater;
  case rc_gez: return greaterEqual;
  default:
    ShouldNotReachHere();
  }
  return equal;
}

D
duke 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
// Generate a bunch 'o stuff (including v9's
#ifndef PRODUCT
void Assembler::test_v9() {
  add(    G0, G1, G2 );
  add(    G3,  0, G4 );

  addcc(  G5, G6, G7 );
  addcc(  I0,  1, I1 );
  addc(   I2, I3, I4 );
  addc(   I5, -1, I6 );
  addccc( I7, L0, L1 );
  addccc( L2, (1 << 12) - 2, L3 );

  Label lbl1, lbl2, lbl3;

  bind(lbl1);

  bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
  delayed()->nop();
  bpr( rc_lez, false, pt, L5, lbl1);
  delayed()->nop();

  fb( f_never,     true, pc() + 4,  relocInfo::none);
  delayed()->nop();
  fb( f_notEqual, false, lbl2 );
  delayed()->nop();

  fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
  delayed()->nop();
  fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
  delayed()->nop();

  br( equal,  true, pc() + 1024, relocInfo::none);
  delayed()->nop();
  br( lessEqual, false, lbl1 );
  delayed()->nop();
  br( never, false, lbl1 );
  delayed()->nop();

  bp( less,               true, icc, pn, pc(), relocInfo::none);
  delayed()->nop();
  bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
  delayed()->nop();

  call( pc(), relocInfo::none);
  delayed()->nop();
  call( lbl3 );
  delayed()->nop();


  casa(  L6, L7, O0 );
  casxa( O1, O2, O3, 0 );

  udiv(   O4, O5, O7 );
  udiv(   G0, (1 << 12) - 1, G1 );
  sdiv(   G1, G2, G3 );
  sdiv(   G4, -((1 << 12) - 1), G5 );
  udivcc( G6, G7, I0 );
  udivcc( I1, -((1 << 12) - 2), I2 );
  sdivcc( I3, I4, I5 );
  sdivcc( I6, -((1 << 12) - 0), I7 );

  done();
  retry();

  fadd( FloatRegisterImpl::S, F0,  F1, F2 );
  fsub( FloatRegisterImpl::D, F34, F0, F62 );

  fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
  fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);

  ftox( FloatRegisterImpl::D, F2, F4 );
  ftoi( FloatRegisterImpl::Q, F4, F8 );

  ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );

  fxtof( FloatRegisterImpl::S, F4, F5 );
  fitof( FloatRegisterImpl::D, F6, F8 );

  fmov( FloatRegisterImpl::Q, F16, F20 );
  fneg( FloatRegisterImpl::S, F6, F7 );
  fabs( FloatRegisterImpl::D, F10, F12 );

  fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
  fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
  fdiv( FloatRegisterImpl::S,  F10, F11, F12 );

  fsqrt( FloatRegisterImpl::S, F13, F14 );

  flush( L0, L1 );
  flush( L2, -1 );

  flushw();

  illtrap( (1 << 22) - 2);

  impdep1( 17, (1 << 19) - 1 );
  impdep2( 3,  0 );

  jmpl( L3, L4, L5 );
  delayed()->nop();
  jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
  delayed()->nop();


  ldf(    FloatRegisterImpl::S, O0, O1, F15 );
  ldf(    FloatRegisterImpl::D, O2, -1, F14 );


  ldfsr(  O3, O4 );
  ldfsr(  O5, -1 );
  ldxfsr( O6, O7 );
  ldxfsr( I0, -1 );

  ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
  ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );

  ldsb(  I4, I5, I6 );
  ldsb(  I7, -1, G0 );
  ldsh(  G1, G3, G4 );
  ldsh(  G5, -1, G6 );
  ldsw(  G7, L0, L1 );
  ldsw(  L2, -1, L3 );
  ldub(  L4, L5, L6 );
  ldub(  L7, -1, O0 );
  lduh(  O1, O2, O3 );
  lduh(  O4, -1, O5 );
  lduw(  O6, O7, G0 );
  lduw(  G1, -1, G2 );
  ldx(   G3, G4, G5 );
  ldx(   G6, -1, G7 );
  ldd(   I0, I1, I2 );
  ldd(   I3, -1, I4 );

  ldsba(  I5, I6, 2, I7 );
  ldsba(  L0, -1, L1 );
  ldsha(  L2, L3, 3, L4 );
  ldsha(  L5, -1, L6 );
  ldswa(  L7, O0, (1 << 8) - 1, O1 );
  ldswa(  O2, -1, O3 );
  lduba(  O4, O5, 0, O6 );
  lduba(  O7, -1, I0 );
  lduha(  I1, I2, 1, I3 );
  lduha(  I4, -1, I5 );
  lduwa(  I6, I7, 2, L0 );
  lduwa(  L1, -1, L2 );
  ldxa(   L3, L4, 3, L5 );
  ldxa(   L6, -1, L7 );
  ldda(   G0, G1, 4, G2 );
  ldda(   G3, -1, G4 );

  ldstub(  G5, G6, G7 );
  ldstub(  O0, -1, O1 );

  ldstuba( O2, O3, 5, O4 );
  ldstuba( O5, -1, O6 );

  and3(    I0, L0, O0 );
  and3(    G7, -1, O7 );
  andcc(   L2, I2, G2 );
  andcc(   L4, -1, G4 );
  andn(    I5, I6, I7 );
  andn(    I6, -1, I7 );
  andncc(  I5, I6, I7 );
  andncc(  I7, -1, I6 );
  or3(     I5, I6, I7 );
  or3(     I7, -1, I6 );
  orcc(    I5, I6, I7 );
  orcc(    I7, -1, I6 );
  orn(     I5, I6, I7 );
  orn(     I7, -1, I6 );
  orncc(   I5, I6, I7 );
  orncc(   I7, -1, I6 );
  xor3(    I5, I6, I7 );
  xor3(    I7, -1, I6 );
  xorcc(   I5, I6, I7 );
  xorcc(   I7, -1, I6 );
  xnor(    I5, I6, I7 );
  xnor(    I7, -1, I6 );
  xnorcc(  I5, I6, I7 );
  xnorcc(  I7, -1, I6 );

  membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
  membar( StoreStore );
  membar( LoadStore );
  membar( StoreLoad );
  membar( LoadLoad );
  membar( Sync );
  membar( MemIssue );
  membar( Lookaside );

  fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
  fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );

  movcc( overflowClear,  false, icc, I6, L4 );
  movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );

  movr( rc_nz, I5, I6, I7 );
  movr( rc_gz, L1, -1,  L2 );

  mulx(  I5, I6, I7 );
  mulx(  I7, -1, I6 );
  sdivx( I5, I6, I7 );
  sdivx( I7, -1, I6 );
  udivx( I5, I6, I7 );
  udivx( I7, -1, I6 );

  umul(   I5, I6, I7 );
  umul(   I7, -1, I6 );
  smul(   I5, I6, I7 );
  smul(   I7, -1, I6 );
  umulcc( I5, I6, I7 );
  umulcc( I7, -1, I6 );
  smulcc( I5, I6, I7 );
  smulcc( I7, -1, I6 );

  mulscc(   I5, I6, I7 );
  mulscc(   I7, -1, I6 );

  nop();


  popc( G0,  G1);
  popc( -1, G2);

  prefetch(   L1, L2,    severalReads );
  prefetch(   L3, -1,    oneRead );
  prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
  prefetcha(  G2, -1,    oneWrite );

  rett( I7, I7);
  delayed()->nop();
  rett( G0, -1, relocInfo::none);
  delayed()->nop();

  save(    I5, I6, I7 );
  save(    I7, -1, I6 );
  restore( I5, I6, I7 );
  restore( I7, -1, I6 );

  saved();
  restored();

  sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));

  sll(  I5, I6, I7 );
  sll(  I7, 31, I6 );
  srl(  I5, I6, I7 );
  srl(  I7,  0, I6 );
  sra(  I5, I6, I7 );
  sra(  I7, 30, I6 );
  sllx( I5, I6, I7 );
  sllx( I7, 63, I6 );
  srlx( I5, I6, I7 );
  srlx( I7,  0, I6 );
  srax( I5, I6, I7 );
  srax( I7, 62, I6 );

  sir( -1 );

  stbar();

  stf(    FloatRegisterImpl::Q, F40, G0, I7 );
  stf(    FloatRegisterImpl::S, F18, I3, -1 );

  stfsr(  L1, L2 );
  stfsr(  I7, -1 );
  stxfsr( I6, I5 );
  stxfsr( L4, -1 );

  stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
  stfa(  FloatRegisterImpl::Q, F44, G0, -1 );

  stb(  L5, O2, I7 );
  stb(  I7, I6, -1 );
  sth(  L5, O2, I7 );
  sth(  I7, I6, -1 );
  stw(  L5, O2, I7 );
  stw(  I7, I6, -1 );
  stx(  L5, O2, I7 );
  stx(  I7, I6, -1 );
  std(  L5, O2, I7 );
  std(  I7, I6, -1 );

  stba(  L5, O2, I7, 8 );
  stba(  I7, I6, -1    );
  stha(  L5, O2, I7, 9 );
  stha(  I7, I6, -1    );
  stwa(  L5, O2, I7, 0 );
  stwa(  I7, I6, -1    );
  stxa(  L5, O2, I7, 11 );
  stxa(  I7, I6, -1     );
  stda(  L5, O2, I7, 12 );
  stda(  I7, I6, -1     );

  sub(    I5, I6, I7 );
  sub(    I7, -1, I6 );
  subcc(  I5, I6, I7 );
  subcc(  I7, -1, I6 );
  subc(   I5, I6, I7 );
  subc(   I7, -1, I6 );
  subccc( I5, I6, I7 );
  subccc( I7, -1, I6 );

  swap( I5, I6, I7 );
  swap( I7, -1, I6 );

  swapa(   G0, G1, 13, G2 );
  swapa(   I7, -1,     I6 );

  taddcc(    I5, I6, I7 );
  taddcc(    I7, -1, I6 );
  taddcctv(  I5, I6, I7 );
  taddcctv(  I7, -1, I6 );

  tsubcc(    I5, I6, I7 );
  tsubcc(    I7, -1, I6 );
  tsubcctv(  I5, I6, I7 );
  tsubcctv(  I7, -1, I6 );

  trap( overflowClear, xcc, G0, G1 );
  trap( lessEqual,     icc, I7, 17 );

  bind(lbl2);
  bind(lbl3);

  code()->decode();
}

// Generate a bunch 'o stuff unique to V8
void Assembler::test_v8_onlys() {
  Label lbl1;

  cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
  delayed()->nop();
  cb( cp_never,    true, lbl1);
  delayed()->nop();

  cpop1(1, 2, 3, 4);
  cpop2(5, 6, 7, 8);

  ldc( I0, I1, 31);
  ldc( I2, -1,  0);

  lddc( I4, I4, 30);
  lddc( I6,  0, 1 );

  ldcsr( L0, L1, 0);
  ldcsr( L1, (1 << 12) - 1, 17 );

  stc( 31, L4, L5);
  stc( 30, L6, -(1 << 12) );

  stdc( 0, L7, G0);
  stdc( 1, G1, 0 );

  stcsr( 16, G2, G3);
  stcsr( 17, G4, 1 );

  stdcq( 4, G5, G6);
  stdcq( 5, G7, -1 );

  bind(lbl1);

  code()->decode();
}
#endif

// Implementation of MacroAssembler

void MacroAssembler::null_check(Register reg, int offset) {
  if (needs_explicit_null_check((intptr_t)offset)) {
    // provoke OS NULL exception if reg = NULL by
    // accessing M[reg] w/o changing any registers
    ld_ptr(reg, 0, G0);
  }
  else {
    // nothing to do, (later) access of M[reg + offset]
    // will provoke OS NULL exception if reg = NULL
  }
}

// Ring buffer jumps

#ifndef PRODUCT
void MacroAssembler::ret(  bool trace )   { if (trace) {
                                                    mov(I7, O7); // traceable register
                                                    JMP(O7, 2 * BytesPerInstWord);
                                                  } else {
                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
                                                  }
                                                }

void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
#endif /* PRODUCT */


void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
  assert_not_delayed();
  // This can only be traceable if r1 & r2 are visible after a window save
  if (TraceJumps) {
#ifndef PRODUCT
    save_frame(0);
    verify_thread();
    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
    add(O2, O1, O1);

    add(r1->after_save(), r2->after_save(), O2);
    set((intptr_t)file, O3);
    set(line, O4);
    Label L;
    // get nearby pc, store jmp target
    call(L, relocInfo::none);  // No relocation for call to pc+0x8
    delayed()->st(O2, O1, 0);
    bind(L);

    // store nearby pc
    st(O7, O1, sizeof(intptr_t));
    // store file
    st(O3, O1, 2*sizeof(intptr_t));
    // store line
    st(O4, O1, 3*sizeof(intptr_t));
    add(O0, 1, O0);
    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
    restore();
#endif /* PRODUCT */
  }
  jmpl(r1, r2, G0);
}
void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
  assert_not_delayed();
  // This can only be traceable if r1 is visible after a window save
  if (TraceJumps) {
#ifndef PRODUCT
    save_frame(0);
    verify_thread();
    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
    add(O2, O1, O1);

    add(r1->after_save(), offset, O2);
    set((intptr_t)file, O3);
    set(line, O4);
    Label L;
    // get nearby pc, store jmp target
    call(L, relocInfo::none);  // No relocation for call to pc+0x8
    delayed()->st(O2, O1, 0);
    bind(L);

    // store nearby pc
    st(O7, O1, sizeof(intptr_t));
    // store file
    st(O3, O1, 2*sizeof(intptr_t));
    // store line
    st(O4, O1, 3*sizeof(intptr_t));
    add(O0, 1, O0);
    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
    restore();
#endif /* PRODUCT */
  }
  jmp(r1, offset);
}

// This code sequence is relocatable to any address, even on LP64.
675
void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
D
duke 已提交
676 677 678
  assert_not_delayed();
  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
  // variable length instruction streams.
679 680
  patchable_sethi(addrlit, temp);
  Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
D
duke 已提交
681 682 683 684
  if (TraceJumps) {
#ifndef PRODUCT
    // Must do the add here so relocation can find the remainder of the
    // value to be relocated.
685
    add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
D
duke 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    save_frame(0);
    verify_thread();
    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
    add(O2, O1, O1);

    set((intptr_t)file, O3);
    set(line, O4);
    Label L;

    // get nearby pc, store jmp target
    call(L, relocInfo::none);  // No relocation for call to pc+0x8
    delayed()->st(a.base()->after_save(), O1, 0);
    bind(L);

    // store nearby pc
    st(O7, O1, sizeof(intptr_t));
    // store file
    st(O3, O1, 2*sizeof(intptr_t));
    // store line
    st(O4, O1, 3*sizeof(intptr_t));
    add(O0, 1, O0);
    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
    restore();
    jmpl(a.base(), G0, d);
#else
714
    jmpl(a.base(), a.disp(), d);
D
duke 已提交
715 716
#endif /* PRODUCT */
  } else {
717
    jmpl(a.base(), a.disp(), d);
D
duke 已提交
718 719 720
  }
}

721
void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
722
  jumpl(addrlit, temp, G0, offset, file, line);
D
duke 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
}


// Convert to C varargs format
void MacroAssembler::set_varargs( Argument inArg, Register d ) {
  // spill register-resident args to their memory slots
  // (SPARC calling convention requires callers to have already preallocated these)
  // Note that the inArg might in fact be an outgoing argument,
  // if a leaf routine or stub does some tricky argument shuffling.
  // This routine must work even though one of the saved arguments
  // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
  for (Argument savePtr = inArg;
       savePtr.is_register();
       savePtr = savePtr.successor()) {
    st_ptr(savePtr.as_register(), savePtr.address_in_frame());
  }
  // return the address of the first memory slot
740 741
  Address a = inArg.address_in_frame();
  add(a.base(), a.disp(), d);
D
duke 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
}

// Conditional breakpoint (for assertion checks in assembly code)
void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
}

// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
void MacroAssembler::breakpoint_trap() {
  trap(ST_RESERVED_FOR_USER_0);
}

// flush windows (except current) using flushw instruction if avail.
void MacroAssembler::flush_windows() {
  if (VM_Version::v9_instructions_work())  flushw();
  else                                     flush_windows_trap();
}

// Write serialization page so VM thread can do a pseudo remote membar
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
  srl(thread, os::get_serialize_page_shift_count(), tmp2);
  if (Assembler::is_simm13(os::vm_page_size())) {
    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
  }
  else {
    set((os::vm_page_size() - sizeof(int)), tmp1);
    and3(tmp2, tmp1, tmp2);
  }
773
  set(os::get_memory_serialize_page(), tmp1);
D
duke 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
  st(G0, tmp1, tmp2);
}



void MacroAssembler::enter() {
  Unimplemented();
}

void MacroAssembler::leave() {
  Unimplemented();
}

void MacroAssembler::mult(Register s1, Register s2, Register d) {
  if(VM_Version::v9_instructions_work()) {
    mulx (s1, s2, d);
  } else {
    smul (s1, s2, d);
  }
}

void MacroAssembler::mult(Register s1, int simm13a, Register d) {
  if(VM_Version::v9_instructions_work()) {
    mulx (s1, simm13a, d);
  } else {
    smul (s1, simm13a, d);
  }
}


#ifdef ASSERT
void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
  const Register s1 = G3_scratch;
  const Register s2 = G4_scratch;
  Label get_psr_test;
  // Get the condition codes the V8 way.
  read_ccr_trap(s1);
  mov(ccr_save, s2);
  // This is a test of V8 which has icc but not xcc
  // so mask off the xcc bits
  and3(s2, 0xf, s2);
  // Compare condition codes from the V8 and V9 ways.
  subcc(s2, s1, G0);
  br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
  delayed()->breakpoint_trap();
  bind(get_psr_test);
}

void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
  const Register s1 = G3_scratch;
  const Register s2 = G4_scratch;
  Label set_psr_test;
  // Write out the saved condition codes the V8 way
  write_ccr_trap(ccr_save, s1, s2);
  // Read back the condition codes using the V9 instruction
  rdccr(s1);
  mov(ccr_save, s2);
  // This is a test of V8 which has icc but not xcc
  // so mask off the xcc bits
  and3(s2, 0xf, s2);
  and3(s1, 0xf, s1);
  // Compare the V8 way with the V9 way.
  subcc(s2, s1, G0);
  br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
  delayed()->breakpoint_trap();
  bind(set_psr_test);
}
#else
#define read_ccr_v8_assert(x)
#define write_ccr_v8_assert(x)
#endif // ASSERT

void MacroAssembler::read_ccr(Register ccr_save) {
  if (VM_Version::v9_instructions_work()) {
    rdccr(ccr_save);
    // Test code sequence used on V8.  Do not move above rdccr.
    read_ccr_v8_assert(ccr_save);
  } else {
    read_ccr_trap(ccr_save);
  }
}

void MacroAssembler::write_ccr(Register ccr_save) {
  if (VM_Version::v9_instructions_work()) {
    // Test code sequence used on V8.  Do not move below wrccr.
    write_ccr_v8_assert(ccr_save);
    wrccr(ccr_save);
  } else {
    const Register temp_reg1 = G3_scratch;
    const Register temp_reg2 = G4_scratch;
    write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
  }
}


// Calls to C land

#ifdef ASSERT
// a hook for debugging
static Thread* reinitialize_thread() {
  return ThreadLocalStorage::thread();
}
#else
#define reinitialize_thread ThreadLocalStorage::thread
#endif

#ifdef ASSERT
address last_get_thread = NULL;
#endif

// call this when G2_thread is not known to be valid
void MacroAssembler::get_thread() {
  save_frame(0);                // to avoid clobbering O0
  mov(G1, L0);                  // avoid clobbering G1
  mov(G5_method, L1);           // avoid clobbering G5
  mov(G3, L2);                  // avoid clobbering G3 also
  mov(G4, L5);                  // avoid clobbering G4
#ifdef ASSERT
892 893
  AddressLiteral last_get_thread_addrlit(&last_get_thread);
  set(last_get_thread_addrlit, L3);
D
duke 已提交
894
  inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
895
  st_ptr(L4, L3, 0);
D
duke 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
#endif
  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
  delayed()->nop();
  mov(L0, G1);
  mov(L1, G5_method);
  mov(L2, G3);
  mov(L5, G4);
  restore(O0, 0, G2_thread);
}

static Thread* verify_thread_subroutine(Thread* gthread_value) {
  Thread* correct_value = ThreadLocalStorage::thread();
  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
  return correct_value;
}

void MacroAssembler::verify_thread() {
  if (VerifyThread) {
    // NOTE: this chops off the heads of the 64-bit O registers.
#ifdef CC_INTERP
    save_frame(0);
#else
    // make sure G2_thread contains the right value
    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
    mov(G1, L1);                // avoid clobbering G1
    // G2 saved below
    mov(G3, L3);                // avoid clobbering G3
    mov(G4, L4);                // avoid clobbering G4
    mov(G5_method, L5);         // avoid clobbering G5_method
#endif /* CC_INTERP */
#if defined(COMPILER2) && !defined(_LP64)
    // Save & restore possible 64-bit Long arguments in G-regs
    srlx(G1,32,L0);
    srlx(G4,32,L6);
#endif
    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
    delayed()->mov(G2_thread, O0);

    mov(L1, G1);                // Restore G1
    // G2 restored below
    mov(L3, G3);                // restore G3
    mov(L4, G4);                // restore G4
    mov(L5, G5_method);         // restore G5_method
#if defined(COMPILER2) && !defined(_LP64)
    // Save & restore possible 64-bit Long arguments in G-regs
    sllx(L0,32,G2);             // Move old high G1 bits high in G2
942
    srl(G1, 0,G1);              // Clear current high G1 bits
D
duke 已提交
943 944
    or3 (G1,G2,G1);             // Recover 64-bit G1
    sllx(L6,32,G2);             // Move old high G4 bits high in G2
945
    srl(G4, 0,G4);              // Clear current high G4 bits
D
duke 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
    or3 (G4,G2,G4);             // Recover 64-bit G4
#endif
    restore(O0, 0, G2_thread);
  }
}


void MacroAssembler::save_thread(const Register thread_cache) {
  verify_thread();
  if (thread_cache->is_valid()) {
    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
    mov(G2_thread, thread_cache);
  }
  if (VerifyThread) {
    // smash G2_thread, as if the VM were about to anyway
    set(0x67676767, G2_thread);
  }
}


void MacroAssembler::restore_thread(const Register thread_cache) {
  if (thread_cache->is_valid()) {
    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
    mov(thread_cache, G2_thread);
    verify_thread();
  } else {
    // do it the slow way
    get_thread();
  }
}


// %%% maybe get rid of [re]set_last_Java_frame
void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
  assert_not_delayed();
981 982 983
  Address flags(G2_thread, JavaThread::frame_anchor_offset() +
                           JavaFrameAnchor::flags_offset());
  Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
D
duke 已提交
984 985 986 987 988 989 990 991 992 993

  // Always set last_Java_pc and flags first because once last_Java_sp is visible
  // has_last_Java_frame is true and users will look at the rest of the fields.
  // (Note: flags should always be zero before we get here so doesn't need to be set.)

#ifdef ASSERT
  // Verify that flags was zeroed on return to Java
  Label PcOk;
  save_frame(0);                // to avoid clobbering O0
  ld_ptr(pc_addr, L0);
K
kvn 已提交
994
  br_null_short(L0, Assembler::pt, PcOk);
D
duke 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
  stop("last_Java_pc not zeroed before leaving Java");
  bind(PcOk);

  // Verify that flags was zeroed on return to Java
  Label FlagsOk;
  ld(flags, L0);
  tst(L0);
  br(Assembler::zero, false, Assembler::pt, FlagsOk);
  delayed() -> restore();
  stop("flags not zeroed before leaving Java");
  bind(FlagsOk);
#endif /* ASSERT */
  //
  // When returning from calling out from Java mode the frame anchor's last_Java_pc
  // will always be set to NULL. It is set here so that if we are doing a call to
  // native (not VM) that we capture the known pc and don't have to rely on the
  // native call having a standard frame linkage where we can find the pc.

  if (last_Java_pc->is_valid()) {
    st_ptr(last_Java_pc, pc_addr);
  }

#ifdef _LP64
#ifdef ASSERT
  // Make sure that we have an odd stack
  Label StackOk;
  andcc(last_java_sp, 0x01, G0);
  br(Assembler::notZero, false, Assembler::pt, StackOk);
K
kvn 已提交
1023
  delayed()->nop();
D
duke 已提交
1024 1025 1026 1027 1028
  stop("Stack Not Biased in set_last_Java_frame");
  bind(StackOk);
#endif // ASSERT
  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
  add( last_java_sp, STACK_BIAS, G4_scratch );
1029
  st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
D
duke 已提交
1030
#else
1031
  st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
D
duke 已提交
1032 1033 1034 1035 1036 1037
#endif // _LP64
}

void MacroAssembler::reset_last_Java_frame(void) {
  assert_not_delayed();

1038 1039 1040
  Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
  Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
D
duke 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

#ifdef ASSERT
  // check that it WAS previously set
#ifdef CC_INTERP
    save_frame(0);
#else
    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
#endif /* CC_INTERP */
    ld_ptr(sp_addr, L0);
    tst(L0);
    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
    restore();
#endif // ASSERT

  st_ptr(G0, sp_addr);
  // Always return last_Java_pc to zero
  st_ptr(G0, pc_addr);
  // Always null flags after return to Java
  st(G0, flags);
}


void MacroAssembler::call_VM_base(
  Register        oop_result,
  Register        thread_cache,
  Register        last_java_sp,
  address         entry_point,
  int             number_of_arguments,
  bool            check_exceptions)
{
  assert_not_delayed();

  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = SP;
  }
  // debugging support
  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");

  // 64-bit last_java_sp is biased!
  set_last_Java_frame(last_java_sp, noreg);
  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  save_thread(thread_cache);
  // do the call
  call(entry_point, relocInfo::runtime_call_type);
  if (!VerifyThread)
    delayed()->mov(G2_thread, O0);  // pass thread as first argument
  else
    delayed()->nop();             // (thread already passed)
  restore_thread(thread_cache);
  reset_last_Java_frame();

  // check for pending exceptions. use Gtemp as scratch register.
  if (check_exceptions) {
    check_and_forward_exception(Gtemp);
  }

1098 1099 1100 1101 1102 1103
#ifdef ASSERT
  set(badHeapWordVal, G3);
  set(badHeapWordVal, G4);
  set(badHeapWordVal, G5);
#endif

D
duke 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
  // get oop result if there is one and reset the value in the thread
  if (oop_result->is_valid()) {
    get_vm_result(oop_result);
  }
}

void MacroAssembler::check_and_forward_exception(Register scratch_reg)
{
  Label L;

  check_and_handle_popframe(scratch_reg);
  check_and_handle_earlyret(scratch_reg);

1117
  Address exception_addr(G2_thread, Thread::pending_exception_offset());
D
duke 已提交
1118
  ld_ptr(exception_addr, scratch_reg);
K
kvn 已提交
1119
  br_null_short(scratch_reg, pt, L);
D
duke 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
  // we use O7 linkage so that forward_exception_entry has the issuing PC
  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  delayed()->nop();
  bind(L);
}


void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
}


void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
}


void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  call_VM(oop_result, entry_point, 1, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  call_VM(oop_result, entry_point, 2, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  call_VM(oop_result, entry_point, 3, check_exceptions);
}



// Note: The following call_VM overloadings are useful when a "save"
// has already been performed by a stub, and the last Java frame is
// the previous one.  In that case, last_java_sp must be passed as FP
// instead of SP.


void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}



void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  assert_not_delayed();
  save_thread(thread_cache);
  // do the call
  call(entry_point, relocInfo::runtime_call_type);
  delayed()->nop();
  restore_thread(thread_cache);
1208 1209 1210 1211 1212
#ifdef ASSERT
  set(badHeapWordVal, G3);
  set(badHeapWordVal, G4);
  set(badHeapWordVal, G5);
#endif
D
duke 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
}


void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
}


void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  mov(arg_1, O0);
  call_VM_leaf(thread_cache, entry_point, 1);
}


void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  mov(arg_1, O0);
  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  call_VM_leaf(thread_cache, entry_point, 2);
}


void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  mov(arg_1, O0);
  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  call_VM_leaf(thread_cache, entry_point, 3);
}


void MacroAssembler::get_vm_result(Register oop_result) {
  verify_thread();
1244
  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
D
duke 已提交
1245 1246 1247 1248 1249 1250 1251 1252
  ld_ptr(    vm_result_addr, oop_result);
  st_ptr(G0, vm_result_addr);
  verify_oop(oop_result);
}


void MacroAssembler::get_vm_result_2(Register oop_result) {
  verify_thread();
1253
  Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
D
duke 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
  ld_ptr(vm_result_addr_2, oop_result);
  st_ptr(G0, vm_result_addr_2);
  verify_oop(oop_result);
}


// We require that C code which does not return a value in vm_result will
// leave it undisturbed.
void MacroAssembler::set_vm_result(Register oop_result) {
  verify_thread();
1264
  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
D
duke 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
  verify_oop(oop_result);

# ifdef ASSERT
    // Check that we are not overwriting any other oop.
#ifdef CC_INTERP
    save_frame(0);
#else
    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
#endif /* CC_INTERP */
    ld_ptr(vm_result_addr, L0);
    tst(L0);
    restore();
    breakpoint_trap(notZero, Assembler::ptr_cc);
    // }
# endif

  st_ptr(oop_result, vm_result_addr);
}


1285 1286
void MacroAssembler::card_table_write(jbyte* byte_map_base,
                                      Register tmp, Register obj) {
D
duke 已提交
1287 1288 1289 1290 1291
#ifdef _LP64
  srlx(obj, CardTableModRefBS::card_shift, obj);
#else
  srl(obj, CardTableModRefBS::card_shift, obj);
#endif
1292 1293 1294
  assert(tmp != obj, "need separate temp reg");
  set((address) byte_map_base, tmp);
  stb(G0, tmp, obj);
D
duke 已提交
1295 1296 1297
}


1298
void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
D
duke 已提交
1299 1300 1301 1302
  address save_pc;
  int shiftcnt;
#ifdef _LP64
# ifdef CHECK_DELAY
1303
  assert_not_delayed((char*) "cannot put two instructions in delay slot");
D
duke 已提交
1304 1305 1306
# endif
  v9_dep();
  save_pc = pc();
1307 1308 1309 1310 1311 1312

  int msb32 = (int) (addrlit.value() >> 32);
  int lsb32 = (int) (addrlit.value());

  if (msb32 == 0 && lsb32 >= 0) {
    Assembler::sethi(lsb32, d, addrlit.rspec());
D
duke 已提交
1313
  }
1314 1315 1316
  else if (msb32 == -1) {
    Assembler::sethi(~lsb32, d, addrlit.rspec());
    xor3(d, ~low10(~0), d);
D
duke 已提交
1317 1318
  }
  else {
1319 1320 1321 1322 1323 1324 1325 1326
    Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
    if (msb32 & 0x3ff)                            // Any bits?
      or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
    if (lsb32 & 0xFFFFFC00) {                     // done?
      if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
        sllx(d, 12, d);                           // Make room for next 12 bits
        or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
        shiftcnt = 0;                             // We already shifted
D
duke 已提交
1327 1328 1329
      }
      else
        shiftcnt = 12;
1330 1331 1332
      if ((lsb32 >> 10) & 0x3ff) {
        sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
        or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
D
duke 已提交
1333 1334 1335 1336
        shiftcnt = 0;
      }
      else
        shiftcnt = 10;
1337
      sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
D
duke 已提交
1338 1339
    }
    else
1340
      sllx(d, 32, d);
D
duke 已提交
1341
  }
1342 1343 1344 1345
  // Pad out the instruction sequence so it can be patched later.
  if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
                           addrlit.rtype() != relocInfo::runtime_call_type)) {
    while (pc() < (save_pc + (7 * BytesPerInstWord)))
D
duke 已提交
1346 1347 1348
      nop();
  }
#else
1349
  Assembler::sethi(addrlit.value(), d, addrlit.rspec());
D
duke 已提交
1350
#endif
1351
}
D
duke 已提交
1352

1353 1354 1355

void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
  internal_sethi(addrlit, d, false);
D
duke 已提交
1356 1357
}

1358 1359 1360 1361 1362 1363

void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
  internal_sethi(addrlit, d, true);
}


1364
int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
D
duke 已提交
1365
#ifdef _LP64
1366 1367 1368 1369 1370 1371 1372 1373 1374
  if (worst_case)  return 7;
  intptr_t iaddr = (intptr_t) a;
  int msb32 = (int) (iaddr >> 32);
  int lsb32 = (int) (iaddr);
  int count;
  if (msb32 == 0 && lsb32 >= 0)
    count = 1;
  else if (msb32 == -1)
    count = 2;
D
duke 已提交
1375
  else {
1376 1377 1378 1379 1380 1381
    count = 2;
    if (msb32 & 0x3ff)
      count++;
    if (lsb32 & 0xFFFFFC00 ) {
      if ((lsb32 >> 20) & 0xfff)  count += 2;
      if ((lsb32 >> 10) & 0x3ff)  count += 2;
D
duke 已提交
1382 1383
    }
  }
1384
  return count;
D
duke 已提交
1385
#else
1386
  return 1;
D
duke 已提交
1387 1388 1389
#endif
}

1390 1391
int MacroAssembler::worst_case_insts_for_set() {
  return insts_for_sethi(NULL, true) + 1;
D
duke 已提交
1392 1393 1394
}


1395
// Keep in sync with MacroAssembler::insts_for_internal_set
1396 1397 1398 1399
void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  intptr_t value = addrlit.value();

  if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
D
duke 已提交
1400
    // can optimize
1401
    if (-4096 <= value && value <= 4095) {
D
duke 已提交
1402 1403 1404 1405
      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
      return;
    }
    if (inv_hi22(hi22(value)) == value) {
1406
      sethi(addrlit, d);
D
duke 已提交
1407 1408 1409
      return;
    }
  }
1410 1411 1412 1413
  assert_not_delayed((char*) "cannot put two instructions in delay slot");
  internal_sethi(addrlit, d, ForceRelocatable);
  if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
    add(d, addrlit.low10(), d, addrlit.rspec());
D
duke 已提交
1414 1415 1416
  }
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
// Keep in sync with MacroAssembler::internal_set
int MacroAssembler::insts_for_internal_set(intptr_t value) {
  // can optimize
  if (-4096 <= value && value <= 4095) {
    return 1;
  }
  if (inv_hi22(hi22(value)) == value) {
    return insts_for_sethi((address) value);
  }
  int count = insts_for_sethi((address) value);
  AddressLiteral al(value);
  if (al.low10() != 0) {
    count++;
  }
  return count;
}

1434 1435
void MacroAssembler::set(const AddressLiteral& al, Register d) {
  internal_set(al, d, false);
D
duke 已提交
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
void MacroAssembler::set(intptr_t value, Register d) {
  AddressLiteral al(value);
  internal_set(al, d, false);
}

void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
  AddressLiteral al(addr, rspec);
  internal_set(al, d, false);
}

void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
  internal_set(al, d, true);
}

void MacroAssembler::patchable_set(intptr_t value, Register d) {
  AddressLiteral al(value);
  internal_set(al, d, true);
}
D
duke 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497


void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  assert_not_delayed();
  v9_dep();

  int hi = (int)(value >> 32);
  int lo = (int)(value & ~0);
  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  if (Assembler::is_simm13(lo) && value == lo) {
    or3(G0, lo, d);
  } else if (hi == 0) {
    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
    if (low10(lo) != 0)
      or3(d, low10(lo), d);
  }
  else if (hi == -1) {
    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
    xor3(d, low10(lo) ^ ~low10(~0), d);
  }
  else if (lo == 0) {
    if (Assembler::is_simm13(hi)) {
      or3(G0, hi, d);
    } else {
      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
      if (low10(hi) != 0)
        or3(d, low10(hi), d);
    }
    sllx(d, 32, d);
  }
  else {
    Assembler::sethi(hi, tmp);
    Assembler::sethi(lo,   d); // macro assembler version sign-extends
    if (low10(hi) != 0)
      or3 (tmp, low10(hi), tmp);
    if (low10(lo) != 0)
      or3 (  d, low10(lo),   d);
    sllx(tmp, 32, tmp);
    or3 (d, tmp, d);
  }
}

1498
int MacroAssembler::insts_for_set64(jlong value) {
1499 1500
  v9_dep();

1501 1502
  int hi = (int) (value >> 32);
  int lo = (int) (value & ~0);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
  int count = 0;

  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  if (Assembler::is_simm13(lo) && value == lo) {
    count++;
  } else if (hi == 0) {
    count++;
    if (low10(lo) != 0)
      count++;
  }
  else if (hi == -1) {
    count += 2;
  }
  else if (lo == 0) {
    if (Assembler::is_simm13(hi)) {
      count++;
    } else {
      count++;
      if (low10(hi) != 0)
        count++;
    }
    count++;
  }
  else {
    count += 2;
    if (low10(hi) != 0)
      count++;
    if (low10(lo) != 0)
      count++;
    count += 2;
  }
  return count;
}

D
duke 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
// compute size in bytes of sparc frame, given
// number of extraWords
int MacroAssembler::total_frame_size_in_bytes(int extraWords) {

  int nWords = frame::memory_parameter_word_sp_offset;

  nWords += extraWords;

  if (nWords & 1) ++nWords; // round up to double-word

  return nWords * BytesPerWord;
}


// save_frame: given number of "extra" words in frame,
// issue approp. save instruction (p 200, v8 manual)

1554
void MacroAssembler::save_frame(int extraWords) {
D
duke 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
  int delta = -total_frame_size_in_bytes(extraWords);
  if (is_simm13(delta)) {
    save(SP, delta, SP);
  } else {
    set(delta, G3_scratch);
    save(SP, G3_scratch, SP);
  }
}


void MacroAssembler::save_frame_c1(int size_in_bytes) {
  if (is_simm13(-size_in_bytes)) {
    save(SP, -size_in_bytes, SP);
  } else {
    set(-size_in_bytes, G3_scratch);
    save(SP, G3_scratch, SP);
  }
}


void MacroAssembler::save_frame_and_mov(int extraWords,
                                        Register s1, Register d1,
                                        Register s2, Register d2) {
  assert_not_delayed();

  // The trick here is to use precisely the same memory word
  // that trap handlers also use to save the register.
  // This word cannot be used for any other purpose, but
  // it works fine to save the register's value, whether or not
  // an interrupt flushes register windows at any given moment!
  Address s1_addr;
  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
    s1_addr = s1->address_in_saved_window();
    st_ptr(s1, s1_addr);
  }

  Address s2_addr;
  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
    s2_addr = s2->address_in_saved_window();
    st_ptr(s2, s2_addr);
  }

  save_frame(extraWords);

  if (s1_addr.base() == SP) {
    ld_ptr(s1_addr.after_save(), d1);
  } else if (s1->is_valid()) {
    mov(s1->after_save(), d1);
  }

  if (s2_addr.base() == SP) {
    ld_ptr(s2_addr.after_save(), d2);
  } else if (s2->is_valid()) {
    mov(s2->after_save(), d2);
  }
}


1613
AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
D
duke 已提交
1614 1615
  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->allocate_index(obj);
1616
  return AddressLiteral(obj, oop_Relocation::spec(oop_index));
D
duke 已提交
1617 1618 1619
}


1620
AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
D
duke 已提交
1621 1622
  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
1623
  return AddressLiteral(obj, oop_Relocation::spec(oop_index));
D
duke 已提交
1624 1625
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);

  assert_not_delayed();
  // Relocation with special format (see relocInfo_sparc.hpp).
  relocate(rspec, 1);
  // Assembler::sethi(0x3fffff, d);
  emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  add(d, 0x3ff, d);

}

D
duke 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

void MacroAssembler::align(int modulus) {
  while (offset() % modulus != 0) nop();
}


void MacroAssembler::safepoint() {
  relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
}


void RegistersForDebugging::print(outputStream* s) {
  int j;
  for ( j = 0;  j < 8;  ++j )
    if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
    else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  s->cr();

  for ( j = 0;  j < 8;  ++j )
    s->print_cr("l%d = 0x%.16lx", j, l[j]);
  s->cr();

  for ( j = 0;  j < 8;  ++j )
    if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
    else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  s->cr();

  for ( j = 0;  j < 8;  ++j )
    s->print_cr("g%d = 0x%.16lx", j, g[j]);
  s->cr();

  // print out floats with compression
  for (j = 0; j < 32; ) {
    jfloat val = f[j];
    int last = j;
    for ( ;  last+1 < 32;  ++last ) {
      char b1[1024], b2[1024];
      sprintf(b1, "%f", val);
      sprintf(b2, "%f", f[last+1]);
      if (strcmp(b1, b2))
        break;
    }
    s->print("f%d", j);
    if ( j != last )  s->print(" - f%d", last);
    s->print(" = %f", val);
    s->fill_to(25);
    s->print_cr(" (0x%x)", val);
    j = last + 1;
  }
  s->cr();

  // and doubles (evens only)
  for (j = 0; j < 32; ) {
    jdouble val = d[j];
    int last = j;
    for ( ;  last+1 < 32;  ++last ) {
      char b1[1024], b2[1024];
      sprintf(b1, "%f", val);
      sprintf(b2, "%f", d[last+1]);
      if (strcmp(b1, b2))
        break;
    }
    s->print("d%d", 2 * j);
    if ( j != last )  s->print(" - d%d", last);
    s->print(" = %f", val);
    s->fill_to(30);
    s->print("(0x%x)", *(int*)&val);
    s->fill_to(42);
    s->print_cr("(0x%x)", *(1 + (int*)&val));
    j = last + 1;
  }
  s->cr();
}

void RegistersForDebugging::save_registers(MacroAssembler* a) {
  a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  a->flush_windows();
  int i;
  for (i = 0; i < 8; ++i) {
    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  }
  for (i = 0;  i < 32; ++i) {
    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  }
  for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  }
}

void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  for (int i = 1; i < 8;  ++i) {
    a->ld_ptr(r, g_offset(i), as_gRegister(i));
  }
  for (int j = 0; j < 32; ++j) {
    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  }
  for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  }
}


// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
void MacroAssembler::push_fTOS() {
  // %%%%%% need to implement this
}

// pops double TOS element from CPU stack and pushes on FPU stack
void MacroAssembler::pop_fTOS() {
  // %%%%%% need to implement this
}

void MacroAssembler::empty_FPU_stack() {
  // %%%%%% need to implement this
}

void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  // plausibility check for oops
  if (!VerifyOops) return;

  if (reg == G0)  return;       // always NULL, which is always an oop

1766
  BLOCK_COMMENT("verify_oop {");
1767 1768 1769 1770 1771 1772 1773 1774 1775
  char buffer[64];
#ifdef COMPILER1
  if (CommentedAssembly) {
    snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
    block_comment(buffer);
  }
#endif

  int len = strlen(file) + strlen(msg) + 1 + 4;
D
duke 已提交
1776
  sprintf(buffer, "%d", line);
1777 1778 1779
  len += strlen(buffer);
  sprintf(buffer, " at offset %d ", offset());
  len += strlen(buffer);
D
duke 已提交
1780
  char * real_msg = new char[len];
1781
  sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
D
duke 已提交
1782 1783

  // Call indirectly to solve generation ordering problem
1784
  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
D
duke 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

  // Make some space on stack above the current register window.
  // Enough to hold 8 64-bit registers.
  add(SP,-8*8,SP);

  // Save some 64-bit registers; a normal 'save' chops the heads off
  // of 64-bit longs in the 32-bit build.
  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);

K
kvn 已提交
1797 1798
  // Size of set() should stay the same
  patchable_set((intptr_t)real_msg, O1);
D
duke 已提交
1799 1800 1801 1802 1803 1804 1805
  // Load address to call to into O7
  load_ptr_contents(a, O7);
  // Register call to verify_oop_subroutine
  callr(O7, G0);
  delayed()->nop();
  // recover frame size
  add(SP, 8*8,SP);
1806
  BLOCK_COMMENT("} verify_oop");
D
duke 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
}

void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  // plausibility check for oops
  if (!VerifyOops) return;

  char buffer[64];
  sprintf(buffer, "%d", line);
  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  sprintf(buffer, " at SP+%d ", addr.disp());
  len += strlen(buffer);
  char * real_msg = new char[len];
  sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);

  // Call indirectly to solve generation ordering problem
1822
  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
D
duke 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

  // Make some space on stack above the current register window.
  // Enough to hold 8 64-bit registers.
  add(SP,-8*8,SP);

  // Save some 64-bit registers; a normal 'save' chops the heads off
  // of 64-bit longs in the 32-bit build.
  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);

K
kvn 已提交
1835 1836
  // Size of set() should stay the same
  patchable_set((intptr_t)real_msg, O1);
D
duke 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
  // Load address to call to into O7
  load_ptr_contents(a, O7);
  // Register call to verify_oop_subroutine
  callr(O7, G0);
  delayed()->nop();
  // recover frame size
  add(SP, 8*8,SP);
}

// side-door communication with signalHandler in os_solaris.cpp
address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };

// This macro is expanded just once; it creates shared code.  Contract:
// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
// registers, including flags.  May not use a register 'save', as this blows
// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
// call.
void MacroAssembler::verify_oop_subroutine() {
  assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );

  // Leaf call; no frame.
  Label succeed, fail, null_or_fail;

  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  // O0 is now the oop to be checked.  O7 is the return address.
  Register O0_obj = O0;

  // Save some more registers for temps.
  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);

  // Save flags
  Register O5_save_flags = O5;
  rdccr( O5_save_flags );

  { // count number of verifies
    Register O2_adr   = O2;
    Register O3_accum = O3;
1877
    inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
D
duke 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
  }

  Register O2_mask = O2;
  Register O3_bits = O3;
  Register O4_temp = O4;

  // mark lower end of faulting range
  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  _verify_oop_implicit_branch[0] = pc();

  // We can't check the mark oop because it could be in the process of
  // locking or unlocking while this is running.
  set(Universe::verify_oop_mask (), O2_mask);
  set(Universe::verify_oop_bits (), O3_bits);

  // assert((obj & oop_mask) == oop_bits);
  and3(O0_obj, O2_mask, O4_temp);
K
kvn 已提交
1895
  cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
D
duke 已提交
1896 1897 1898

  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
    // the null_or_fail case is useless; must test for null separately
K
kvn 已提交
1899
    br_null_short(O0_obj, pn, succeed);
D
duke 已提交
1900 1901 1902 1903
  }

  // Check the klassOop of this object for being in the right area of memory.
  // Cannot do the load in the delay above slot in case O0 is null
1904
  load_klass(O0_obj, O0_obj);
D
duke 已提交
1905 1906 1907 1908 1909 1910
  // assert((klass & klass_mask) == klass_bits);
  if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
    set(Universe::verify_klass_mask(), O2_mask);
  if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
    set(Universe::verify_klass_bits(), O3_bits);
  and3(O0_obj, O2_mask, O4_temp);
K
kvn 已提交
1911
  cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, fail);
D
duke 已提交
1912
  // Check the klass's klass
1913
  load_klass(O0_obj, O0_obj);
D
duke 已提交
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
  and3(O0_obj, O2_mask, O4_temp);
  cmp(O4_temp, O3_bits);
  brx(notEqual, false, pn, fail);
  delayed()->wrccr( O5_save_flags ); // Restore CCR's

  // mark upper end of faulting range
  _verify_oop_implicit_branch[1] = pc();

  //-----------------------
  // all tests pass
  bind(succeed);

  // Restore prior 64-bit registers
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);

  retl();                       // Leaf return; restore prior O7 in delay slot
  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);

  //-----------------------
  bind(null_or_fail);           // nulls are less common but OK
  br_null(O0_obj, false, pt, succeed);
  delayed()->wrccr( O5_save_flags ); // Restore CCR's

  //-----------------------
  // report failure:
  bind(fail);
  _verify_oop_implicit_branch[2] = pc();

  wrccr( O5_save_flags ); // Restore CCR's

  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));

  // stop_subroutine expects message pointer in I1.
  mov(I1, O1);

  // Restore prior 64-bit registers
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);

  // factor long stop-sequence into subroutine to save space
  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");

  // call indirectly to solve generation ordering problem
1966 1967
  AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
  load_ptr_contents(al, O5);
D
duke 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
  jmpl(O5, 0, O7);
  delayed()->nop();
}


void MacroAssembler::stop(const char* msg) {
  // save frame first to get O7 for return address
  // add one word to size in case struct is odd number of words long
  // It must be doubleword-aligned for storing doubles into it.

    save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));

    // stop_subroutine expects message pointer in I1.
K
kvn 已提交
1981 1982
    // Size of set() should stay the same
    patchable_set((intptr_t)msg, O1);
D
duke 已提交
1983 1984 1985 1986 1987

    // factor long stop-sequence into subroutine to save space
    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");

    // call indirectly to solve generation ordering problem
1988
    AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
D
duke 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    load_ptr_contents(a, O5);
    jmpl(O5, 0, O7);
    delayed()->nop();

    breakpoint_trap();   // make stop actually stop rather than writing
                         // unnoticeable results in the output files.

    // restore(); done in callee to save space!
}


void MacroAssembler::warn(const char* msg) {
  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  RegistersForDebugging::save_registers(this);
  mov(O0, L0);
K
kvn 已提交
2004 2005
  // Size of set() should stay the same
  patchable_set((intptr_t)msg, O0);
D
duke 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
  call( CAST_FROM_FN_PTR(address, warning) );
  delayed()->nop();
//  ret();
//  delayed()->restore();
  RegistersForDebugging::restore_registers(this, L0);
  restore();
}


void MacroAssembler::untested(const char* what) {
  // We must be able to turn interactive prompting off
  // in order to run automated test scripts on the VM
  // Use the flag ShowMessageBoxOnError

  char* b = new char[1024];
  sprintf(b, "untested: %s", what);

  if ( ShowMessageBoxOnError )   stop(b);
  else                           warn(b);
}


void MacroAssembler::stop_subroutine() {
  RegistersForDebugging::save_registers(this);

  // for the sake of the debugger, stick a PC on the current frame
  // (this assumes that the caller has performed an extra "save")
  mov(I7, L7);
  add(O7, -7 * BytesPerInt, I7);

  save_frame(); // one more save to free up another O7 register
  mov(I0, O1); // addr of reg save area

  // We expect pointer to message in I1. Caller must set it up in O1
  mov(I1, O0); // get msg
  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  delayed()->nop();

  restore();

  RegistersForDebugging::restore_registers(this, O0);

  save_frame(0);
  call(CAST_FROM_FN_PTR(address,breakpoint));
  delayed()->nop();
  restore();

  mov(L7, I7);
  retl();
  delayed()->restore(); // see stop above
}


void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  if ( ShowMessageBoxOnError ) {
      JavaThreadState saved_state = JavaThread::current()->thread_state();
      JavaThread::current()->set_thread_state(_thread_in_vm);
      {
        // In order to get locks work, we need to fake a in_VM state
        ttyLocker ttyl;
        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
          ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
        }
        if (os::message_box(msg, "Execution stopped, print registers?"))
          regs->print(::tty);
      }
      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  }
  else
     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
2077
  assert(false, err_msg("DEBUG MESSAGE: %s", msg));
D
duke 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
}


#ifndef PRODUCT
void MacroAssembler::test() {
  ResourceMark rm;

  CodeBuffer cb("test", 10000, 10000);
  MacroAssembler* a = new MacroAssembler(&cb);
  VM_Version::allow_all();
  a->test_v9();
  a->test_v8_onlys();
  VM_Version::revert();

  StubRoutines::Sparc::test_stop_entry()();
}
#endif


void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  Label no_extras;
  br( negative, true, pt, no_extras ); // if neg, clear reg
2101
  delayed()->set(0, Rresult);          // annuled, so only if taken
D
duke 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
  bind( no_extras );
}


void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
#ifdef _LP64
  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
#else
  add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
#endif
  bclr(1, Rresult);
  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
}


void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  calc_frame_size(Rextra_words, Rresult);
  neg(Rresult);
  save(SP, Rresult, SP);
}


// ---------------------------------------------------------
Assembler::RCondition cond2rcond(Assembler::Condition c) {
  switch (c) {
    /*case zero: */
    case Assembler::equal:        return Assembler::rc_z;
    case Assembler::lessEqual:    return Assembler::rc_lez;
    case Assembler::less:         return Assembler::rc_lz;
    /*case notZero:*/
    case Assembler::notEqual:     return Assembler::rc_nz;
    case Assembler::greater:      return Assembler::rc_gz;
    case Assembler::greaterEqual: return Assembler::rc_gez;
  }
  ShouldNotReachHere();
  return Assembler::rc_z;
}

K
kvn 已提交
2140 2141
// compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
D
duke 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
  tst(s1);
  br (c, a, p, L);
}

// Compares a pointer register with zero and branches on null.
// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  assert_not_delayed();
#ifdef _LP64
  bpr( rc_z, a, p, s1, L );
#else
  tst(s1);
  br ( zero, a, p, L );
#endif
}

void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  assert_not_delayed();
#ifdef _LP64
  bpr( rc_nz, a, p, s1, L );
#else
  tst(s1);
  br ( notZero, a, p, L );
#endif
}

K
kvn 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
// Compare registers and branch with nop in delay slot or cbcond without delay slot.

// Compare integer (32 bit) values (icc only).
void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
                                      Predict p, Label& L) {
  assert_not_delayed();
  if (use_cbcond(L)) {
    Assembler::cbcond(c, icc, s1, s2, L);
  } else {
    cmp(s1, s2);
    br(c, false, p, L);
    delayed()->nop();
  }
}

// Compare integer (32 bit) values (icc only).
void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
                                      Predict p, Label& L) {
  assert_not_delayed();
  if (is_simm(simm13a,5) && use_cbcond(L)) {
    Assembler::cbcond(c, icc, s1, simm13a, L);
  } else {
    cmp(s1, simm13a);
    br(c, false, p, L);
    delayed()->nop();
  }
}

// Branch that tests xcc in LP64 and icc in !LP64
void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
                                       Predict p, Label& L) {
  assert_not_delayed();
  if (use_cbcond(L)) {
    Assembler::cbcond(c, ptr_cc, s1, s2, L);
  } else {
    cmp(s1, s2);
    brx(c, false, p, L);
    delayed()->nop();
  }
}

// Branch that tests xcc in LP64 and icc in !LP64
void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
                                       Predict p, Label& L) {
  assert_not_delayed();
  if (is_simm(simm13a,5) && use_cbcond(L)) {
    Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
  } else {
    cmp(s1, simm13a);
    brx(c, false, p, L);
    delayed()->nop();
  }
}

// Short branch version for compares a pointer with zero.

void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
  assert_not_delayed();
  if (use_cbcond(L)) {
    Assembler::cbcond(zero, ptr_cc, s1, 0, L);
    return;
  }
  br_null(s1, false, p, L);
  delayed()->nop();
}

void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
  assert_not_delayed();
  if (use_cbcond(L)) {
    Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
    return;
  }
  br_notnull(s1, false, p, L);
  delayed()->nop();
}

// Unconditional short branch
void MacroAssembler::ba_short(Label& L) {
  if (use_cbcond(L)) {
    Assembler::cbcond(equal, icc, G0, G0, L);
    return;
  }
  br(always, false, pt, L);
  delayed()->nop();
}
D
duke 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

// instruction sequences factored across compiler & interpreter


void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
                           Register Rb_hi, Register Rb_low,
                           Register Rresult) {

  Label check_low_parts, done;

  cmp(Ra_hi, Rb_hi );  // compare hi parts
  br(equal, true, pt, check_low_parts);
  delayed()->cmp(Ra_low, Rb_low); // test low parts

  // And, with an unsigned comparison, it does not matter if the numbers
  // are negative or not.
  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  // The second one is bigger (unsignedly).

  // Other notes:  The first move in each triplet can be unconditional
  // (and therefore probably prefetchable).
  // And the equals case for the high part does not need testing,
  // since that triplet is reached only after finding the high halves differ.

  if (VM_Version::v9_instructions_work()) {
K
kvn 已提交
2278 2279 2280
    mov(-1, Rresult);
    ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
  } else {
D
duke 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
    br(less,    true, pt, done); delayed()-> set(-1, Rresult);
    br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  }

  bind( check_low_parts );

  if (VM_Version::v9_instructions_work()) {
    mov(                               -1, Rresult);
    movcc(equal,           false, icc,  0, Rresult);
    movcc(greaterUnsigned, false, icc,  1, Rresult);
K
kvn 已提交
2291 2292
  } else {
    set(-1, Rresult);
D
duke 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
    br(equal,           true, pt, done); delayed()->set( 0, Rresult);
    br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  }
  bind( done );
}

void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  subcc(  G0, Rlow, Rlow );
  subc(   G0, Rhi,  Rhi  );
}

void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
                           Register Rcount,
                           Register Rout_high, Register Rout_low,
                           Register Rtemp ) {


  Register Ralt_count = Rtemp;
  Register Rxfer_bits = Rtemp;

  assert( Ralt_count != Rin_high
      &&  Ralt_count != Rin_low
      &&  Ralt_count != Rcount
      &&  Rxfer_bits != Rin_low
      &&  Rxfer_bits != Rin_high
      &&  Rxfer_bits != Rcount
      &&  Rxfer_bits != Rout_low
      &&  Rout_low   != Rin_high,
        "register alias checks");

  Label big_shift, done;

  // This code can be optimized to use the 64 bit shifts in V9.
  // Here we use the 32 bit shifts.

K
kvn 已提交
2328 2329
  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  subcc(Rcount,   31, Ralt_count);
D
duke 已提交
2330
  br(greater, true, pn, big_shift);
K
kvn 已提交
2331
  delayed()->dec(Ralt_count);
D
duke 已提交
2332 2333 2334 2335 2336 2337 2338 2339

  // shift < 32 bits, Ralt_count = Rcount-31

  // We get the transfer bits by shifting right by 32-count the low
  // register. This is done by shifting right by 31-count and then by one
  // more to take care of the special (rare) case where count is zero
  // (shifting by 32 would not work).

K
kvn 已提交
2340
  neg(Ralt_count);
D
duke 已提交
2341 2342 2343 2344

  // The order of the next two instructions is critical in the case where
  // Rin and Rout are the same and should not be reversed.

K
kvn 已提交
2345
  srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
D
duke 已提交
2346
  if (Rcount != Rout_low) {
K
kvn 已提交
2347
    sll(Rin_low, Rcount, Rout_low); // low half
D
duke 已提交
2348
  }
K
kvn 已提交
2349
  sll(Rin_high, Rcount, Rout_high);
D
duke 已提交
2350
  if (Rcount == Rout_low) {
K
kvn 已提交
2351
    sll(Rin_low, Rcount, Rout_low); // low half
D
duke 已提交
2352
  }
K
kvn 已提交
2353 2354 2355
  srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
  ba(done);
  delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
D
duke 已提交
2356 2357 2358

  // shift >= 32 bits, Ralt_count = Rcount-32
  bind(big_shift);
K
kvn 已提交
2359 2360
  sll(Rin_low, Ralt_count, Rout_high  );
  clr(Rout_low);
D
duke 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

  bind(done);
}


void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
                           Register Rcount,
                           Register Rout_high, Register Rout_low,
                           Register Rtemp ) {

  Register Ralt_count = Rtemp;
  Register Rxfer_bits = Rtemp;

  assert( Ralt_count != Rin_high
      &&  Ralt_count != Rin_low
      &&  Ralt_count != Rcount
      &&  Rxfer_bits != Rin_low
      &&  Rxfer_bits != Rin_high
      &&  Rxfer_bits != Rcount
      &&  Rxfer_bits != Rout_high
      &&  Rout_high  != Rin_low,
        "register alias checks");

  Label big_shift, done;

  // This code can be optimized to use the 64 bit shifts in V9.
  // Here we use the 32 bit shifts.

K
kvn 已提交
2389 2390
  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  subcc(Rcount,   31, Ralt_count);
D
duke 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
  br(greater, true, pn, big_shift);
  delayed()->dec(Ralt_count);

  // shift < 32 bits, Ralt_count = Rcount-31

  // We get the transfer bits by shifting left by 32-count the high
  // register. This is done by shifting left by 31-count and then by one
  // more to take care of the special (rare) case where count is zero
  // (shifting by 32 would not work).

K
kvn 已提交
2401
  neg(Ralt_count);
D
duke 已提交
2402
  if (Rcount != Rout_low) {
K
kvn 已提交
2403
    srl(Rin_low, Rcount, Rout_low);
D
duke 已提交
2404 2405 2406 2407 2408
  }

  // The order of the next two instructions is critical in the case where
  // Rin and Rout are the same and should not be reversed.

K
kvn 已提交
2409 2410 2411
  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  sra(Rin_high,     Rcount, Rout_high ); // high half
  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
D
duke 已提交
2412
  if (Rcount == Rout_low) {
K
kvn 已提交
2413
    srl(Rin_low, Rcount, Rout_low);
D
duke 已提交
2414
  }
K
kvn 已提交
2415 2416
  ba(done);
  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
D
duke 已提交
2417 2418 2419 2420

  // shift >= 32 bits, Ralt_count = Rcount-32
  bind(big_shift);

K
kvn 已提交
2421 2422
  sra(Rin_high, Ralt_count, Rout_low);
  sra(Rin_high,         31, Rout_high); // sign into hi
D
duke 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

  bind( done );
}



void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
                            Register Rcount,
                            Register Rout_high, Register Rout_low,
                            Register Rtemp ) {

  Register Ralt_count = Rtemp;
  Register Rxfer_bits = Rtemp;

  assert( Ralt_count != Rin_high
      &&  Ralt_count != Rin_low
      &&  Ralt_count != Rcount
      &&  Rxfer_bits != Rin_low
      &&  Rxfer_bits != Rin_high
      &&  Rxfer_bits != Rcount
      &&  Rxfer_bits != Rout_high
      &&  Rout_high  != Rin_low,
        "register alias checks");

  Label big_shift, done;

  // This code can be optimized to use the 64 bit shifts in V9.
  // Here we use the 32 bit shifts.

K
kvn 已提交
2452 2453
  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  subcc(Rcount,   31, Ralt_count);
D
duke 已提交
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
  br(greater, true, pn, big_shift);
  delayed()->dec(Ralt_count);

  // shift < 32 bits, Ralt_count = Rcount-31

  // We get the transfer bits by shifting left by 32-count the high
  // register. This is done by shifting left by 31-count and then by one
  // more to take care of the special (rare) case where count is zero
  // (shifting by 32 would not work).

K
kvn 已提交
2464
  neg(Ralt_count);
D
duke 已提交
2465
  if (Rcount != Rout_low) {
K
kvn 已提交
2466
    srl(Rin_low, Rcount, Rout_low);
D
duke 已提交
2467 2468 2469 2470 2471
  }

  // The order of the next two instructions is critical in the case where
  // Rin and Rout are the same and should not be reversed.

K
kvn 已提交
2472 2473 2474
  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  srl(Rin_high,     Rcount, Rout_high ); // high half
  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
D
duke 已提交
2475
  if (Rcount == Rout_low) {
K
kvn 已提交
2476
    srl(Rin_low, Rcount, Rout_low);
D
duke 已提交
2477
  }
K
kvn 已提交
2478 2479
  ba(done);
  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
D
duke 已提交
2480 2481 2482 2483

  // shift >= 32 bits, Ralt_count = Rcount-32
  bind(big_shift);

K
kvn 已提交
2484 2485
  srl(Rin_high, Ralt_count, Rout_low);
  clr(Rout_high);
D
duke 已提交
2486 2487 2488 2489 2490 2491 2492

  bind( done );
}

#ifdef _LP64
void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  cmp(Ra, Rb);
K
kvn 已提交
2493
  mov(-1, Rresult);
D
duke 已提交
2494 2495 2496 2497 2498 2499
  movcc(equal,   false, xcc,  0, Rresult);
  movcc(greater, false, xcc,  1, Rresult);
}
#endif


2500
void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
T
twisti 已提交
2501
  switch (size_in_bytes) {
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
  case  8:  ld_long(src, dst); break;
  case  4:  ld(     src, dst); break;
  case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
  case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
  default:  ShouldNotReachHere();
  }
}

void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
  switch (size_in_bytes) {
  case  8:  st_long(src, dst); break;
  case  4:  st(     src, dst); break;
  case  2:  sth(    src, dst); break;
  case  1:  stb(    src, dst); break;
  default:  ShouldNotReachHere();
T
twisti 已提交
2517 2518 2519 2520
  }
}


D
duke 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
void MacroAssembler::float_cmp( bool is_float, int unordered_result,
                                FloatRegister Fa, FloatRegister Fb,
                                Register Rresult) {

  fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);

  Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  Condition eq =                          f_equal;
  Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;

  if (VM_Version::v9_instructions_work()) {

K
kvn 已提交
2533 2534 2535
    mov(-1, Rresult);
    movcc(eq, true, fcc0, 0, Rresult);
    movcc(gt, true, fcc0, 1, Rresult);
D
duke 已提交
2536 2537 2538 2539

  } else {
    Label done;

K
kvn 已提交
2540
    set( -1, Rresult );
D
duke 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
    //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
    fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
    fb( gt, true, pn, done);  delayed()->set(  1, Rresult );

    bind (done);
  }
}


void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
{
  if (VM_Version::v9_instructions_work()) {
    Assembler::fneg(w, s, d);
  } else {
    if (w == FloatRegisterImpl::S) {
      Assembler::fneg(w, s, d);
    } else if (w == FloatRegisterImpl::D) {
      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");

      Assembler::fneg(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
    } else {
      assert(w == FloatRegisterImpl::Q, "Invalid float register width");

      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");

      Assembler::fneg(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
    }
  }
}

void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
{
  if (VM_Version::v9_instructions_work()) {
    Assembler::fmov(w, s, d);
  } else {
    if (w == FloatRegisterImpl::S) {
      Assembler::fmov(w, s, d);
    } else if (w == FloatRegisterImpl::D) {
      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");

      Assembler::fmov(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
    } else {
      assert(w == FloatRegisterImpl::Q, "Invalid float register width");

      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");

      Assembler::fmov(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
    }
  }
}

void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
{
  if (VM_Version::v9_instructions_work()) {
    Assembler::fabs(w, s, d);
  } else {
    if (w == FloatRegisterImpl::S) {
      Assembler::fabs(w, s, d);
    } else if (w == FloatRegisterImpl::D) {
      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");

      Assembler::fabs(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
    } else {
      assert(w == FloatRegisterImpl::Q, "Invalid float register width");

      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
       ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");

      Assembler::fabs(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
    }
  }
}

void MacroAssembler::save_all_globals_into_locals() {
  mov(G1,L1);
  mov(G2,L2);
  mov(G3,L3);
  mov(G4,L4);
  mov(G5,L5);
  mov(G6,L6);
  mov(G7,L7);
}

void MacroAssembler::restore_globals_from_locals() {
  mov(L1,G1);
  mov(L2,G2);
  mov(L3,G3);
  mov(L4,G4);
  mov(L5,G5);
  mov(L6,G6);
  mov(L7,G7);
}

// Use for 64 bit operation.
void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
{
  // store ptr_reg as the new top value
#ifdef _LP64
  casx(top_ptr_reg, top_reg, ptr_reg);
#else
  cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
#endif // _LP64
}

// [RGV] This routine does not handle 64 bit operations.
//       use casx_under_lock() or casx directly!!!
void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
{
  // store ptr_reg as the new top value
  if (VM_Version::v9_instructions_work()) {
    cas(top_ptr_reg, top_reg, ptr_reg);
  } else {

    // If the register is not an out nor global, it is not visible
    // after the save.  Allocate a register for it, save its
    // value in the register save area (the save may not flush
    // registers to the save area).

    Register top_ptr_reg_after_save;
    Register top_reg_after_save;
    Register ptr_reg_after_save;

    if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
      top_ptr_reg_after_save = top_ptr_reg->after_save();
    } else {
      Address reg_save_addr = top_ptr_reg->address_in_saved_window();
      top_ptr_reg_after_save = L0;
      st(top_ptr_reg, reg_save_addr);
    }

    if (top_reg->is_out() || top_reg->is_global()) {
      top_reg_after_save = top_reg->after_save();
    } else {
      Address reg_save_addr = top_reg->address_in_saved_window();
      top_reg_after_save = L1;
      st(top_reg, reg_save_addr);
    }

    if (ptr_reg->is_out() || ptr_reg->is_global()) {
      ptr_reg_after_save = ptr_reg->after_save();
    } else {
      Address reg_save_addr = ptr_reg->address_in_saved_window();
      ptr_reg_after_save = L2;
      st(ptr_reg, reg_save_addr);
    }

    const Register& lock_reg = L3;
    const Register& lock_ptr_reg = L4;
    const Register& value_reg = L5;
    const Register& yield_reg = L6;
    const Register& yieldall_reg = L7;

    save_frame();

    if (top_ptr_reg_after_save == L0) {
      ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
    }

    if (top_reg_after_save == L1) {
      ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
    }

    if (ptr_reg_after_save == L2) {
      ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
    }

    Label(retry_get_lock);
    Label(not_same);
    Label(dont_yield);

    assert(lock_addr, "lock_address should be non null for v8");
    set((intptr_t)lock_addr, lock_ptr_reg);
    // Initialize yield counter
    mov(G0,yield_reg);
    mov(G0, yieldall_reg);
    set(StubRoutines::Sparc::locked, lock_reg);

    bind(retry_get_lock);
K
kvn 已提交
2742
    cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
D
duke 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

    if(use_call_vm) {
      Untested("Need to verify global reg consistancy");
      call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
    } else {
      // Save the regs and make space for a C call
      save(SP, -96, SP);
      save_all_globals_into_locals();
      call(CAST_FROM_FN_PTR(address,os::yield_all));
      delayed()->mov(yieldall_reg, O0);
      restore_globals_from_locals();
      restore();
    }

    // reset the counter
    mov(G0,yield_reg);
    add(yieldall_reg, 1, yieldall_reg);

    bind(dont_yield);
    // try to get lock
    swap(lock_ptr_reg, 0, lock_reg);

    // did we get the lock?
    cmp(lock_reg, StubRoutines::Sparc::unlocked);
    br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
    delayed()->add(yield_reg,1,yield_reg);

    // yes, got lock.  do we have the same top?
    ld(top_ptr_reg_after_save, 0, value_reg);
K
kvn 已提交
2772
    cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
D
duke 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

    // yes, same top.
    st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
    membar(Assembler::StoreStore);

    bind(not_same);
    mov(value_reg, ptr_reg_after_save);
    st(lock_reg, lock_ptr_reg, 0); // unlock

    restore();
  }
}

2786 2787 2788
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
                                                      Register tmp,
                                                      int offset) {
2789 2790
  intptr_t value = *delayed_value_addr;
  if (value != 0)
2791
    return RegisterOrConstant(value + offset);
2792 2793

  // load indirectly to solve generation ordering problem
2794
  AddressLiteral a(delayed_value_addr);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
  load_ptr_contents(a, tmp);

#ifdef ASSERT
  tst(tmp);
  breakpoint_trap(zero, xcc);
#endif

  if (offset != 0)
    add(tmp, offset, tmp);

2805
  return RegisterOrConstant(tmp);
2806 2807 2808
}


T
twisti 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  assert(d.register_or_noreg() != G0, "lost side effect");
  if ((s2.is_constant() && s2.as_constant() == 0) ||
      (s2.is_register() && s2.as_register() == G0)) {
    // Do nothing, just move value.
    if (s1.is_register()) {
      if (d.is_constant())  d = temp;
      mov(s1.as_register(), d.as_register());
      return d;
    } else {
      return s1;
    }
  }

  if (s1.is_register()) {
    assert_different_registers(s1.as_register(), temp);
    if (d.is_constant())  d = temp;
    andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
    return d;
  } else {
    if (s2.is_register()) {
      assert_different_registers(s2.as_register(), temp);
      if (d.is_constant())  d = temp;
      set(s1.as_constant(), temp);
      andn(temp, s2.as_register(), d.as_register());
      return d;
    } else {
      intptr_t res = s1.as_constant() & ~s2.as_constant();
      return res;
    }
  }
}

RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  assert(d.register_or_noreg() != G0, "lost side effect");
  if ((s2.is_constant() && s2.as_constant() == 0) ||
      (s2.is_register() && s2.as_register() == G0)) {
    // Do nothing, just move value.
    if (s1.is_register()) {
      if (d.is_constant())  d = temp;
      mov(s1.as_register(), d.as_register());
      return d;
    } else {
      return s1;
    }
  }

  if (s1.is_register()) {
    assert_different_registers(s1.as_register(), temp);
    if (d.is_constant())  d = temp;
    add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
    return d;
2861
  } else {
T
twisti 已提交
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
    if (s2.is_register()) {
      assert_different_registers(s2.as_register(), temp);
      if (d.is_constant())  d = temp;
      add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
      return d;
    } else {
      intptr_t res = s1.as_constant() + s2.as_constant();
      return res;
    }
  }
}

RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  assert(d.register_or_noreg() != G0, "lost side effect");
  if (!is_simm13(s2.constant_or_zero()))
    s2 = (s2.as_constant() & 0xFF);
  if ((s2.is_constant() && s2.as_constant() == 0) ||
      (s2.is_register() && s2.as_register() == G0)) {
    // Do nothing, just move value.
    if (s1.is_register()) {
      if (d.is_constant())  d = temp;
      mov(s1.as_register(), d.as_register());
      return d;
    } else {
      return s1;
    }
  }

  if (s1.is_register()) {
    assert_different_registers(s1.as_register(), temp);
    if (d.is_constant())  d = temp;
    sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
    return d;
2895
  } else {
T
twisti 已提交
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
    if (s2.is_register()) {
      assert_different_registers(s2.as_register(), temp);
      if (d.is_constant())  d = temp;
      set(s1.as_constant(), temp);
      sll_ptr(temp, s2.as_register(), d.as_register());
      return d;
    } else {
      intptr_t res = s1.as_constant() << s2.as_constant();
      return res;
    }
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
  }
}


// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
void MacroAssembler::lookup_interface_method(Register recv_klass,
                                             Register intf_klass,
2917
                                             RegisterOrConstant itable_index,
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
                                             Register method_result,
                                             Register scan_temp,
                                             Register sethi_temp,
                                             Label& L_no_such_interface) {
  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
         "caller must use same register for non-constant itable index as for method");

  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  int scan_step   = itableOffsetEntry::size() * wordSize;
  int vte_size    = vtableEntry::size() * wordSize;

  lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
  // %%% We should store the aligned, prescaled offset in the klassoop.
  // Then the next several instructions would fold away.

  int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
  int itb_offset = vtable_base;
  if (round_to_unit != 0) {
    // hoist first instruction of round_to(scan_temp, BytesPerLong):
    itb_offset += round_to_unit - wordSize;
  }
  int itb_scale = exact_log2(vtableEntry::size() * wordSize);
  sll(scan_temp, itb_scale,  scan_temp);
  add(scan_temp, itb_offset, scan_temp);
  if (round_to_unit != 0) {
    // Round up to align_object_offset boundary
    // see code for instanceKlass::start_of_itable!
    // Was: round_to(scan_temp, BytesPerLong);
    // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
    and3(scan_temp, -round_to_unit, scan_temp);
  }
  add(recv_klass, scan_temp, scan_temp);

  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2954
  RegisterOrConstant itable_offset = itable_index;
T
twisti 已提交
2955 2956
  itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
  itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2957
  add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000

  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  //   if (scan->interface() == intf) {
  //     result = (klass + scan->offset() + itable_index);
  //   }
  // }
  Label search, found_method;

  for (int peel = 1; peel >= 0; peel--) {
    // %%%% Could load both offset and interface in one ldx, if they were
    // in the opposite order.  This would save a load.
    ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);

    // Check that this entry is non-null.  A null entry means that
    // the receiver class doesn't implement the interface, and wasn't the
    // same as when the caller was compiled.
    bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
    delayed()->cmp(method_result, intf_klass);

    if (peel) {
      brx(Assembler::equal,    false, Assembler::pt, found_method);
    } else {
      brx(Assembler::notEqual, false, Assembler::pn, search);
      // (invert the test to fall through to found_method...)
    }
    delayed()->add(scan_temp, scan_step, scan_temp);

    if (!peel)  break;

    bind(search);
  }

  bind(found_method);

  // Got a hit.
  int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  // scan_temp[-scan_step] points to the vtable offset we need
  ito_offset -= scan_step;
  lduw(scan_temp, ito_offset, scan_temp);
  ld_ptr(recv_klass, scan_temp, method_result);
}


3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
void MacroAssembler::check_klass_subtype(Register sub_klass,
                                         Register super_klass,
                                         Register temp_reg,
                                         Register temp2_reg,
                                         Label& L_success) {
  Label L_failure, L_pop_to_failure;
  check_klass_subtype_fast_path(sub_klass, super_klass,
                                temp_reg, temp2_reg,
                                &L_success, &L_failure, NULL);
  Register sub_2 = sub_klass;
  Register sup_2 = super_klass;
  if (!sub_2->is_global())  sub_2 = L0;
  if (!sup_2->is_global())  sup_2 = L1;

  save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  check_klass_subtype_slow_path(sub_2, sup_2,
                                L2, L3, L4, L5,
                                NULL, &L_pop_to_failure);

  // on success:
  restore();
K
kvn 已提交
3022
  ba_short(L_success);
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037

  // on failure:
  bind(L_pop_to_failure);
  restore();
  bind(L_failure);
}


void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
                                                   Register super_klass,
                                                   Register temp_reg,
                                                   Register temp2_reg,
                                                   Label* L_success,
                                                   Label* L_failure,
                                                   Label* L_slow_path,
K
kvn 已提交
3038
                                        RegisterOrConstant super_check_offset) {
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
  int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
                   Klass::secondary_super_cache_offset_in_bytes());
  int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
                    Klass::super_check_offset_offset_in_bytes());

  bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
  bool need_slow_path = (must_load_sco ||
                         super_check_offset.constant_or_zero() == sco_offset);

  assert_different_registers(sub_klass, super_klass, temp_reg);
  if (super_check_offset.is_register()) {
T
twisti 已提交
3050
    assert_different_registers(sub_klass, super_klass, temp_reg,
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
                               super_check_offset.as_register());
  } else if (must_load_sco) {
    assert(temp2_reg != noreg, "supply either a temp or a register offset");
  }

  Label L_fallthrough;
  int label_nulls = 0;
  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
K
kvn 已提交
3061
  assert(label_nulls <= 1 ||
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
         (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
         "at most one NULL in the batch, usually");

  // If the pointers are equal, we are done (e.g., String[] elements).
  // This self-check enables sharing of secondary supertype arrays among
  // non-primary types such as array-of-interface.  Otherwise, each such
  // type would need its own customized SSA.
  // We move this check to the front of the fast path because many
  // type checks are in fact trivially successful in this manner,
  // so we get a nicely predicted branch right at the start of the check.
  cmp(super_klass, sub_klass);
K
kvn 已提交
3073 3074
  brx(Assembler::equal, false, Assembler::pn, *L_success);
  delayed()->nop();
3075 3076 3077 3078 3079

  // Check the supertype display:
  if (must_load_sco) {
    // The super check offset is always positive...
    lduw(super_klass, sco_offset, temp2_reg);
3080
    super_check_offset = RegisterOrConstant(temp2_reg);
T
twisti 已提交
3081 3082
    // super_check_offset is register.
    assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
  }
  ld_ptr(sub_klass, super_check_offset, temp_reg);
  cmp(super_klass, temp_reg);

  // This check has worked decisively for primary supers.
  // Secondary supers are sought in the super_cache ('super_cache_addr').
  // (Secondary supers are interfaces and very deeply nested subtypes.)
  // This works in the same check above because of a tricky aliasing
  // between the super_cache and the primary super display elements.
  // (The 'super_check_addr' can address either, as the case requires.)
  // Note that the cache is updated below if it does not help us find
  // what we need immediately.
  // So if it was a primary super, we can just fail immediately.
  // Otherwise, it's the slow path for us (no success at this point).

K
kvn 已提交
3098 3099 3100 3101 3102 3103
  // Hacked ba(), which may only be used just before L_fallthrough.
#define FINAL_JUMP(label)            \
  if (&(label) != &L_fallthrough) {  \
    ba(label);  delayed()->nop();    \
  }

3104
  if (super_check_offset.is_register()) {
K
kvn 已提交
3105 3106
    brx(Assembler::equal, false, Assembler::pn, *L_success);
    delayed()->cmp(super_check_offset.as_register(), sc_offset);
3107 3108

    if (L_failure == &L_fallthrough) {
K
kvn 已提交
3109
      brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
3110 3111
      delayed()->nop();
    } else {
K
kvn 已提交
3112 3113 3114
      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
      delayed()->nop();
      FINAL_JUMP(*L_slow_path);
3115 3116 3117 3118
    }
  } else if (super_check_offset.as_constant() == sc_offset) {
    // Need a slow path; fast failure is impossible.
    if (L_slow_path == &L_fallthrough) {
K
kvn 已提交
3119 3120
      brx(Assembler::equal, false, Assembler::pt, *L_success);
      delayed()->nop();
3121 3122 3123
    } else {
      brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
      delayed()->nop();
K
kvn 已提交
3124
      FINAL_JUMP(*L_success);
3125 3126 3127 3128
    }
  } else {
    // No slow path; it's a fast decision.
    if (L_failure == &L_fallthrough) {
K
kvn 已提交
3129 3130
      brx(Assembler::equal, false, Assembler::pt, *L_success);
      delayed()->nop();
3131
    } else {
K
kvn 已提交
3132 3133 3134
      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
      delayed()->nop();
      FINAL_JUMP(*L_success);
3135 3136 3137 3138 3139
    }
  }

  bind(L_fallthrough);

K
kvn 已提交
3140
#undef FINAL_JUMP
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
}


void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
                                                   Register super_klass,
                                                   Register count_temp,
                                                   Register scan_temp,
                                                   Register scratch_reg,
                                                   Register coop_reg,
                                                   Label* L_success,
                                                   Label* L_failure) {
  assert_different_registers(sub_klass, super_klass,
                             count_temp, scan_temp, scratch_reg, coop_reg);

  Label L_fallthrough, L_loop;
  int label_nulls = 0;
  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  assert(label_nulls <= 1, "at most one NULL in the batch");

  // a couple of useful fields in sub_klass:
  int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
                   Klass::secondary_supers_offset_in_bytes());
  int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
                   Klass::secondary_super_cache_offset_in_bytes());

  // Do a linear scan of the secondary super-klass chain.
  // This code is rarely used, so simplicity is a virtue here.

#ifndef PRODUCT
  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  inc_counter((address) pst_counter, count_temp, scan_temp);
#endif

  // We will consult the secondary-super array.
  ld_ptr(sub_klass, ss_offset, scan_temp);

  // Compress superclass if necessary.
  Register search_key = super_klass;
  bool decode_super_klass = false;
  if (UseCompressedOops) {
    if (coop_reg != noreg) {
      encode_heap_oop_not_null(super_klass, coop_reg);
      search_key = coop_reg;
    } else {
      encode_heap_oop_not_null(super_klass);
      decode_super_klass = true; // scarce temps!
    }
    // The superclass is never null; it would be a basic system error if a null
    // pointer were to sneak in here.  Note that we have already loaded the
    // Klass::super_check_offset from the super_klass in the fast path,
    // so if there is a null in that register, we are already in the afterlife.
  }

  // Load the array length.  (Positive movl does right thing on LP64.)
  lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);

  // Check for empty secondary super list
  tst(count_temp);

  // Top of search loop
  bind(L_loop);
  br(Assembler::equal, false, Assembler::pn, *L_failure);
  delayed()->add(scan_temp, heapOopSize, scan_temp);
  assert(heapOopSize != 0, "heapOopSize should be initialized");

  // Skip the array header in all array accesses.
  int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
  elem_offset -= heapOopSize;   // the scan pointer was pre-incremented also

  // Load next super to check
  if (UseCompressedOops) {
    // Don't use load_heap_oop; we don't want to decode the element.
    lduw(   scan_temp, elem_offset, scratch_reg );
  } else {
    ld_ptr( scan_temp, elem_offset, scratch_reg );
  }

  // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  cmp(scratch_reg, search_key);

  // A miss means we are NOT a subtype and need to keep looping
  brx(Assembler::notEqual, false, Assembler::pn, L_loop);
  delayed()->deccc(count_temp); // decrement trip counter in delay slot

  // Falling out the bottom means we found a hit; we ARE a subtype
  if (decode_super_klass) decode_heap_oop(super_klass);

  // Success.  Cache the super we found and proceed in triumph.
  st_ptr(super_klass, sub_klass, sc_offset);

  if (L_success != &L_fallthrough) {
K
kvn 已提交
3233
    ba(*L_success);
3234 3235 3236 3237 3238 3239 3240
    delayed()->nop();
  }

  bind(L_fallthrough);
}


3241 3242 3243 3244 3245
void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
                                              Register temp_reg,
                                              Label& wrong_method_type) {
  assert_different_registers(mtype_reg, mh_reg, temp_reg);
  // compare method type against that of the receiver
3246
  RegisterOrConstant mhtype_offset = delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg);
3247
  load_heap_oop(mh_reg, mhtype_offset, temp_reg);
K
kvn 已提交
3248
  cmp_and_brx_short(temp_reg, mtype_reg, Assembler::notEqual, Assembler::pn, wrong_method_type);
3249 3250 3251
}


T
twisti 已提交
3252 3253 3254 3255 3256 3257 3258 3259
// A method handle has a "vmslots" field which gives the size of its
// argument list in JVM stack slots.  This field is either located directly
// in every method handle, or else is indirectly accessed through the
// method handle's MethodType.  This macro hides the distinction.
void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
                                                Register temp_reg) {
  assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  // load mh.type.form.vmslots
3260 3261 3262 3263
  Register temp2_reg = vmslots_reg;
  load_heap_oop(Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)),      temp2_reg);
  load_heap_oop(Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)),        temp2_reg);
  ld(           Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
T
twisti 已提交
3264 3265 3266 3267
}


void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
3268 3269 3270 3271
  assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
  assert_different_registers(mh_reg, temp_reg);

  // pick out the interpreted side of the handler
3272
  // NOTE: vmentry is not an oop!
3273
  ld_ptr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
3274 3275 3276 3277 3278 3279 3280 3281

  // off we go...
  ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
  jmp(temp_reg, 0);

  // for the various stubs which take control at this point,
  // see MethodHandles::generate_method_handle_stub

T
twisti 已提交
3282 3283 3284 3285
  // Some callers can fill the delay slot.
  if (emit_delayed_nop) {
    delayed()->nop();
  }
3286 3287
}

T
twisti 已提交
3288

3289
RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
3290
                                                   Register temp_reg,
3291 3292
                                                   int extra_slot_offset) {
  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
3293
  int stackElementSize = Interpreter::stackElementSize;
T
twisti 已提交
3294
  int offset = extra_slot_offset * stackElementSize;
3295 3296 3297 3298
  if (arg_slot.is_constant()) {
    offset += arg_slot.as_constant() * stackElementSize;
    return offset;
  } else {
3299 3300
    assert(temp_reg != noreg, "must specify");
    sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
3301
    if (offset != 0)
3302 3303
      add(temp_reg, offset, temp_reg);
    return temp_reg;
3304 3305 3306 3307
  }
}


T
twisti 已提交
3308
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
3309
                                         Register temp_reg,
T
twisti 已提交
3310
                                         int extra_slot_offset) {
3311
  return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
T
twisti 已提交
3312 3313
}

3314

3315 3316
void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
                                          Register temp_reg,
D
duke 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
                                          Label& done, Label* slow_case,
                                          BiasedLockingCounters* counters) {
  assert(UseBiasedLocking, "why call this otherwise?");

  if (PrintBiasedLockingStatistics) {
    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
    if (counters == NULL)
      counters = BiasedLocking::counters();
  }

  Label cas_label;

  // Biased locking
  // See whether the lock is currently biased toward our thread and
  // whether the epoch is still valid
  // Note that the runtime guarantees sufficient alignment of JavaThread
  // pointers to allow age to be placed into low bits
  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
K
kvn 已提交
3336
  cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
D
duke 已提交
3337

3338
  load_klass(obj_reg, temp_reg);
3339
  ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
D
duke 已提交
3340 3341 3342 3343 3344 3345
  or3(G2_thread, temp_reg, temp_reg);
  xor3(mark_reg, temp_reg, temp_reg);
  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  if (counters != NULL) {
    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
    // Reload mark_reg as we may need it later
3346
    ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
D
duke 已提交
3347 3348 3349 3350 3351 3352
  }
  brx(Assembler::equal, true, Assembler::pt, done);
  delayed()->nop();

  Label try_revoke_bias;
  Label try_rebias;
3353
  Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
D
duke 已提交
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
  assert(mark_addr.disp() == 0, "cas must take a zero displacement");

  // At this point we know that the header has the bias pattern and
  // that we are not the bias owner in the current epoch. We need to
  // figure out more details about the state of the header in order to
  // know what operations can be legally performed on the object's
  // header.

  // If the low three bits in the xor result aren't clear, that means
  // the prototype header is no longer biased and we have to revoke
  // the bias on this object.
  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);

  // Biasing is still enabled for this data type. See whether the
  // epoch of the current bias is still valid, meaning that the epoch
  // bits of the mark word are equal to the epoch bits of the
  // prototype header. (Note that the prototype header's epoch bits
  // only change at a safepoint.) If not, attempt to rebias the object
  // toward the current thread. Note that we must be absolutely sure
  // that the current epoch is invalid in order to do this because
  // otherwise the manipulations it performs on the mark word are
  // illegal.
  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  brx(Assembler::notZero, false, Assembler::pn, try_rebias);

  // The epoch of the current bias is still valid but we know nothing
  // about the owner; it might be set or it might be clear. Try to
  // acquire the bias of the object using an atomic operation. If this
  // fails we will go in to the runtime to revoke the object's bias.
  // Note that we first construct the presumed unbiased header so we
  // don't accidentally blow away another thread's valid bias.
  delayed()->and3(mark_reg,
                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
                  mark_reg);
  or3(G2_thread, mark_reg, temp_reg);
3390
  casn(mark_addr.base(), mark_reg, temp_reg);
D
duke 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  cmp(mark_reg, temp_reg);
  if (counters != NULL) {
    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  }
  if (slow_case != NULL) {
    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
    delayed()->nop();
  }
K
kvn 已提交
3403
  ba_short(done);
D
duke 已提交
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414

  bind(try_rebias);
  // At this point we know the epoch has expired, meaning that the
  // current "bias owner", if any, is actually invalid. Under these
  // circumstances _only_, we are allowed to use the current header's
  // value as the comparison value when doing the cas to acquire the
  // bias in the current epoch. In other words, we allow transfer of
  // the bias from one thread to another directly in this situation.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
3415
  load_klass(obj_reg, temp_reg);
3416
  ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
D
duke 已提交
3417
  or3(G2_thread, temp_reg, temp_reg);
3418
  casn(mark_addr.base(), mark_reg, temp_reg);
D
duke 已提交
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  cmp(mark_reg, temp_reg);
  if (counters != NULL) {
    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  }
  if (slow_case != NULL) {
    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
    delayed()->nop();
  }
K
kvn 已提交
3431
  ba_short(done);
D
duke 已提交
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

  bind(try_revoke_bias);
  // The prototype mark in the klass doesn't have the bias bit set any
  // more, indicating that objects of this data type are not supposed
  // to be biased any more. We are going to try to reset the mark of
  // this object to the prototype value and fall through to the
  // CAS-based locking scheme. Note that if our CAS fails, it means
  // that another thread raced us for the privilege of revoking the
  // bias of this particular object, so it's okay to continue in the
  // normal locking code.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
3445
  load_klass(obj_reg, temp_reg);
3446
  ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3447
  casn(mark_addr.base(), mark_reg, temp_reg);
D
duke 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
  // Fall through to the normal CAS-based lock, because no matter what
  // the result of the above CAS, some thread must have succeeded in
  // removing the bias bit from the object's header.
  if (counters != NULL) {
    cmp(mark_reg, temp_reg);
    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  }

  bind(cas_label);
}

void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
                                          bool allow_delay_slot_filling) {
  // Check for biased locking unlock case, which is a no-op
  // Note: we do not have to check the thread ID for two reasons.
  // First, the interpreter checks for IllegalMonitorStateException at
  // a higher level. Second, if the bias was revoked while we held the
  // lock, the object could not be rebiased toward another thread, so
  // the bias bit would be clear.
  ld_ptr(mark_addr, temp_reg);
  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  cmp(temp_reg, markOopDesc::biased_lock_pattern);
  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  delayed();
  if (!allow_delay_slot_filling) {
    nop();
  }
}


// CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
// Solaris/SPARC's "as".  Another apt name would be cas_ptr()

void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
K
kvn 已提交
3482
  casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
D
duke 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
}



// compiler_lock_object() and compiler_unlock_object() are direct transliterations
// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
// The code could be tightened up considerably.
//
// box->dhw disposition - post-conditions at DONE_LABEL.
// -   Successful inflated lock:  box->dhw != 0.
//     Any non-zero value suffices.
//     Consider G2_thread, rsp, boxReg, or unused_mark()
// -   Successful Stack-lock: box->dhw == mark.
//     box->dhw must contain the displaced mark word value
// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
//     The slow-path fast_enter() and slow_enter() operators
//     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
// -   Biased: box->dhw is undefined
//
// SPARC refworkload performance - specifically jetstream and scimark - are
// extremely sensitive to the size of the code emitted by compiler_lock_object
// and compiler_unlock_object.  Critically, the key factor is code size, not path
// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
// effect).


3509 3510 3511 3512
void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
                                          Register Rbox, Register Rscratch,
                                          BiasedLockingCounters* counters,
                                          bool try_bias) {
3513
   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
D
duke 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522

   verify_oop(Roop);
   Label done ;

   if (counters != NULL) {
     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
   }

   if (EmitSync & 1) {
K
kvn 已提交
3523 3524 3525
     mov(3, Rscratch);
     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
     cmp(SP, G0);
D
duke 已提交
3526 3527 3528 3529 3530 3531 3532 3533
     return ;
   }

   if (EmitSync & 2) {

     // Fetch object's markword
     ld_ptr(mark_addr, Rmark);

3534
     if (try_bias) {
D
duke 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
     }

     // Save Rbox in Rscratch to be used for the cas operation
     mov(Rbox, Rscratch);

     // set Rmark to markOop | markOopDesc::unlocked_value
     or3(Rmark, markOopDesc::unlocked_value, Rmark);

     // Initialize the box.  (Must happen before we update the object mark!)
     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());

     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
     casx_under_lock(mark_addr.base(), Rmark, Rscratch,
        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());

     // if compare/exchange succeeded we found an unlocked object and we now have locked it
     // hence we are done
     cmp(Rmark, Rscratch);
#ifdef _LP64
     sub(Rscratch, STACK_BIAS, Rscratch);
#endif
     brx(Assembler::equal, false, Assembler::pt, done);
     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot

     // we did not find an unlocked object so see if this is a recursive case
     // sub(Rscratch, SP, Rscratch);
     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
     andcc(Rscratch, 0xfffff003, Rscratch);
     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
K
kvn 已提交
3566
     bind (done);
D
duke 已提交
3567 3568 3569 3570 3571 3572 3573 3574
     return ;
   }

   Label Egress ;

   if (EmitSync & 256) {
      Label IsInflated ;

K
kvn 已提交
3575
      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
D
duke 已提交
3576
      // Triage: biased, stack-locked, neutral, inflated
3577
      if (try_bias) {
D
duke 已提交
3578 3579 3580 3581 3582 3583 3584 3585
        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
        // Invariant: if control reaches this point in the emitted stream
        // then Rmark has not been modified.
      }

      // Store mark into displaced mark field in the on-stack basic-lock "box"
      // Critically, this must happen before the CAS
      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
K
kvn 已提交
3586 3587 3588 3589
      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
      andcc(Rmark, 2, G0);
      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
      delayed()->
D
duke 已提交
3590 3591 3592

      // Try stack-lock acquisition.
      // Beware: the 1st instruction is in a delay slot
K
kvn 已提交
3593 3594 3595 3596 3597 3598
      mov(Rbox,  Rscratch);
      or3(Rmark, markOopDesc::unlocked_value, Rmark);
      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
      casn(mark_addr.base(), Rmark, Rscratch);
      cmp(Rmark, Rscratch);
      brx(Assembler::equal, false, Assembler::pt, done);
D
duke 已提交
3599 3600 3601 3602 3603
      delayed()->sub(Rscratch, SP, Rscratch);

      // Stack-lock attempt failed - check for recursive stack-lock.
      // See the comments below about how we might remove this case.
#ifdef _LP64
K
kvn 已提交
3604
      sub(Rscratch, STACK_BIAS, Rscratch);
D
duke 已提交
3605 3606
#endif
      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
K
kvn 已提交
3607 3608 3609
      andcc(Rscratch, 0xfffff003, Rscratch);
      br(Assembler::always, false, Assembler::pt, done);
      delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
D
duke 已提交
3610

K
kvn 已提交
3611
      bind(IsInflated);
D
duke 已提交
3612 3613 3614 3615
      if (EmitSync & 64) {
         // If m->owner != null goto IsLocked
         // Pessimistic form: Test-and-CAS vs CAS
         // The optimistic form avoids RTS->RTO cache line upgrades.
K
kvn 已提交
3616 3617 3618 3619
         ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
         andcc(Rscratch, Rscratch, G0);
         brx(Assembler::notZero, false, Assembler::pn, done);
         delayed()->nop();
D
duke 已提交
3620 3621 3622 3623 3624
         // m->owner == null : it's unlocked.
      }

      // Try to CAS m->owner from null to Self
      // Invariant: if we acquire the lock then _recursions should be 0.
K
kvn 已提交
3625 3626 3627 3628
      add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
      mov(G2_thread, Rscratch);
      casn(Rmark, G0, Rscratch);
      cmp(Rscratch, G0);
D
duke 已提交
3629 3630 3631 3632 3633 3634 3635
      // Intentional fall-through into done
   } else {
      // Aggressively avoid the Store-before-CAS penalty
      // Defer the store into box->dhw until after the CAS
      Label IsInflated, Recursive ;

// Anticipate CAS -- Avoid RTS->RTO upgrade
K
kvn 已提交
3636
// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
D
duke 已提交
3637

K
kvn 已提交
3638
      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
D
duke 已提交
3639 3640
      // Triage: biased, stack-locked, neutral, inflated

3641
      if (try_bias) {
D
duke 已提交
3642 3643 3644 3645
        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
        // Invariant: if control reaches this point in the emitted stream
        // then Rmark has not been modified.
      }
K
kvn 已提交
3646 3647
      andcc(Rmark, 2, G0);
      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
D
duke 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656
      delayed()->                         // Beware - dangling delay-slot

      // Try stack-lock acquisition.
      // Transiently install BUSY (0) encoding in the mark word.
      // if the CAS of 0 into the mark was successful then we execute:
      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
      //   ST obj->mark = box    -- overwrite transient 0 value
      // This presumes TSO, of course.

K
kvn 已提交
3657 3658 3659 3660 3661 3662 3663 3664
      mov(0, Rscratch);
      or3(Rmark, markOopDesc::unlocked_value, Rmark);
      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
      casn(mark_addr.base(), Rmark, Rscratch);
// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
      cmp(Rscratch, Rmark);
      brx(Assembler::notZero, false, Assembler::pn, Recursive);
      delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
D
duke 已提交
3665 3666 3667
      if (counters != NULL) {
        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
      }
K
kvn 已提交
3668 3669
      ba(done);
      delayed()->st_ptr(Rbox, mark_addr);
D
duke 已提交
3670

K
kvn 已提交
3671
      bind(Recursive);
D
duke 已提交
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
      // Stack-lock attempt failed - check for recursive stack-lock.
      // Tests show that we can remove the recursive case with no impact
      // on refworkload 0.83.  If we need to reduce the size of the code
      // emitted by compiler_lock_object() the recursive case is perfect
      // candidate.
      //
      // A more extreme idea is to always inflate on stack-lock recursion.
      // This lets us eliminate the recursive checks in compiler_lock_object
      // and compiler_unlock_object and the (box->dhw == 0) encoding.
      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
      // and showed a performance *increase*.  In the same experiment I eliminated
      // the fast-path stack-lock code from the interpreter and always passed
      // control to the "slow" operators in synchronizer.cpp.

      // RScratch contains the fetched obj->mark value from the failed CASN.
#ifdef _LP64
K
kvn 已提交
3688
      sub(Rscratch, STACK_BIAS, Rscratch);
D
duke 已提交
3689 3690 3691
#endif
      sub(Rscratch, SP, Rscratch);
      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
K
kvn 已提交
3692
      andcc(Rscratch, 0xfffff003, Rscratch);
D
duke 已提交
3693 3694
      if (counters != NULL) {
        // Accounting needs the Rscratch register
K
kvn 已提交
3695
        st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
D
duke 已提交
3696
        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
K
kvn 已提交
3697
        ba_short(done);
D
duke 已提交
3698
      } else {
K
kvn 已提交
3699 3700
        ba(done);
        delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
D
duke 已提交
3701 3702
      }

K
kvn 已提交
3703
      bind   (IsInflated);
D
duke 已提交
3704 3705 3706 3707 3708
      if (EmitSync & 64) {
         // If m->owner != null goto IsLocked
         // Test-and-CAS vs CAS
         // Pessimistic form avoids futile (doomed) CAS attempts
         // The optimistic form avoids RTS->RTO cache line upgrades.
K
kvn 已提交
3709 3710 3711 3712
         ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
         andcc(Rscratch, Rscratch, G0);
         brx(Assembler::notZero, false, Assembler::pn, done);
         delayed()->nop();
D
duke 已提交
3713 3714 3715 3716 3717
         // m->owner == null : it's unlocked.
      }

      // Try to CAS m->owner from null to Self
      // Invariant: if we acquire the lock then _recursions should be 0.
K
kvn 已提交
3718 3719 3720 3721
      add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
      mov(G2_thread, Rscratch);
      casn(Rmark, G0, Rscratch);
      cmp(Rscratch, G0);
D
duke 已提交
3722 3723 3724
      // ST box->displaced_header = NonZero.
      // Any non-zero value suffices:
      //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
K
kvn 已提交
3725
      st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
D
duke 已提交
3726 3727 3728
      // Intentional fall-through into done
   }

K
kvn 已提交
3729
   bind   (done);
D
duke 已提交
3730 3731
}

3732 3733 3734
void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
                                            Register Rbox, Register Rscratch,
                                            bool try_bias) {
3735
   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
D
duke 已提交
3736 3737 3738 3739

   Label done ;

   if (EmitSync & 4) {
K
kvn 已提交
3740
     cmp(SP, G0);
D
duke 已提交
3741 3742 3743 3744
     return ;
   }

   if (EmitSync & 8) {
3745
     if (try_bias) {
D
duke 已提交
3746 3747 3748 3749 3750
        biased_locking_exit(mark_addr, Rscratch, done);
     }

     // Test first if it is a fast recursive unlock
     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
K
kvn 已提交
3751
     br_null_short(Rmark, Assembler::pt, done);
D
duke 已提交
3752 3753 3754 3755 3756 3757

     // Check if it is still a light weight lock, this is is true if we see
     // the stack address of the basicLock in the markOop of the object
     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
     casx_under_lock(mark_addr.base(), Rbox, Rmark,
       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
K
kvn 已提交
3758
     ba(done);
D
duke 已提交
3759
     delayed()->cmp(Rbox, Rmark);
K
kvn 已提交
3760
     bind(done);
D
duke 已提交
3761 3762 3763 3764 3765 3766 3767 3768 3769
     return ;
   }

   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
   // is too large performance rolls abruptly off a cliff.
   // This could be related to inlining policies, code cache management, or
   // I$ effects.
   Label LStacked ;

3770
   if (try_bias) {
D
duke 已提交
3771 3772 3773 3774
      // TODO: eliminate redundant LDs of obj->mark
      biased_locking_exit(mark_addr, Rscratch, done);
   }

K
kvn 已提交
3775 3776 3777 3778 3779 3780 3781 3782
   ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
   ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
   andcc(Rscratch, Rscratch, G0);
   brx(Assembler::zero, false, Assembler::pn, done);
   delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
   andcc(Rmark, 2, G0);
   brx(Assembler::zero, false, Assembler::pt, LStacked);
   delayed()->nop();
D
duke 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

   // It's inflated
   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
   // the ST of 0 into _owner which releases the lock.  This prevents loads
   // and stores within the critical section from reordering (floating)
   // past the store that releases the lock.  But TSO is a strong memory model
   // and that particular flavor of barrier is a noop, so we can safely elide it.
   // Note that we use 1-0 locking by default for the inflated case.  We
   // close the resultant (and rare) race by having contented threads in
   // monitorenter periodically poll _owner.
K
kvn 已提交
3793 3794 3795 3796 3797
   ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
   ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
   xor3(Rscratch, G2_thread, Rscratch);
   orcc(Rbox, Rscratch, Rbox);
   brx(Assembler::notZero, false, Assembler::pn, done);
D
duke 已提交
3798
   delayed()->
K
kvn 已提交
3799 3800 3801
   ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
   ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
   orcc(Rbox, Rscratch, G0);
D
duke 已提交
3802 3803
   if (EmitSync & 65536) {
      Label LSucc ;
K
kvn 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
      brx(Assembler::notZero, false, Assembler::pn, LSucc);
      delayed()->nop();
      ba(done);
      delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);

      bind(LSucc);
      st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
      if (os::is_MP()) { membar (StoreLoad); }
      ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
      andcc(Rscratch, Rscratch, G0);
      brx(Assembler::notZero, false, Assembler::pt, done);
      delayed()->andcc(G0, G0, G0);
      add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
      mov(G2_thread, Rscratch);
      casn(Rmark, G0, Rscratch);
D
duke 已提交
3819
      // invert icc.zf and goto done
K
kvn 已提交
3820 3821 3822 3823
      br_notnull(Rscratch, false, Assembler::pt, done);
      delayed()->cmp(G0, G0);
      ba(done);
      delayed()->cmp(G0, 1);
D
duke 已提交
3824
   } else {
K
kvn 已提交
3825 3826 3827 3828
      brx(Assembler::notZero, false, Assembler::pn, done);
      delayed()->nop();
      ba(done);
      delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
D
duke 已提交
3829 3830
   }

K
kvn 已提交
3831
   bind   (LStacked);
D
duke 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
   // Consider: we could replace the expensive CAS in the exit
   // path with a simple ST of the displaced mark value fetched from
   // the on-stack basiclock box.  That admits a race where a thread T2
   // in the slow lock path -- inflating with monitor M -- could race a
   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
   // More precisely T1 in the stack-lock unlock path could "stomp" the
   // inflated mark value M installed by T2, resulting in an orphan
   // object monitor M and T2 becoming stranded.  We can remedy that situation
   // by having T2 periodically poll the object's mark word using timed wait
   // operations.  If T2 discovers that a stomp has occurred it vacates
   // the monitor M and wakes any other threads stranded on the now-orphan M.
   // In addition the monitor scavenger, which performs deflation,
   // would also need to check for orpan monitors and stranded threads.
   //
   // Finally, inflation is also used when T2 needs to assign a hashCode
   // to O and O is stack-locked by T1.  The "stomp" race could cause
   // an assigned hashCode value to be lost.  We can avoid that condition
   // and provide the necessary hashCode stability invariants by ensuring
   // that hashCode generation is idempotent between copying GCs.
   // For example we could compute the hashCode of an object O as
   // O's heap address XOR some high quality RNG value that is refreshed
   // at GC-time.  The monitor scavenger would install the hashCode
   // found in any orphan monitors.  Again, the mechanism admits a
   // lost-update "stomp" WAW race but detects and recovers as needed.
   //
   // A prototype implementation showed excellent results, although
   // the scavenger and timeout code was rather involved.

K
kvn 已提交
3860 3861
   casn(mark_addr.base(), Rbox, Rscratch);
   cmp(Rbox, Rscratch);
D
duke 已提交
3862 3863
   // Intentional fall through into done ...

K
kvn 已提交
3864
   bind(done);
D
duke 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
}



void MacroAssembler::print_CPU_state() {
  // %%%%% need to implement this
}

void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  // %%%%% need to implement this
}

void MacroAssembler::push_IU_state() {
  // %%%%% need to implement this
}


void MacroAssembler::pop_IU_state() {
  // %%%%% need to implement this
}


void MacroAssembler::push_FPU_state() {
  // %%%%% need to implement this
}


void MacroAssembler::pop_FPU_state() {
  // %%%%% need to implement this
}


void MacroAssembler::push_CPU_state() {
  // %%%%% need to implement this
}


void MacroAssembler::pop_CPU_state() {
  // %%%%% need to implement this
}



void MacroAssembler::verify_tlab() {
#ifdef ASSERT
  if (UseTLAB && VerifyOops) {
    Label next, next2, ok;
    Register t1 = L0;
    Register t2 = L1;
    Register t3 = L2;

    save_frame(0);
    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
    or3(t1, t2, t3);
K
kvn 已提交
3920
    cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
D
duke 已提交
3921 3922 3923 3924 3925 3926 3927
    stop("assert(top >= start)");
    should_not_reach_here();

    bind(next);
    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
    or3(t3, t2, t3);
K
kvn 已提交
3928
    cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
D
duke 已提交
3929 3930 3931 3932 3933
    stop("assert(top <= end)");
    should_not_reach_here();

    bind(next2);
    and3(t3, MinObjAlignmentInBytesMask, t3);
K
kvn 已提交
3934
    cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
D
duke 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
    stop("assert(aligned)");
    should_not_reach_here();

    bind(ok);
    restore();
  }
#endif
}


void MacroAssembler::eden_allocate(
  Register obj,                        // result: pointer to object after successful allocation
  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  int      con_size_in_bytes,          // object size in bytes if   known at compile time
  Register t1,                         // temp register
  Register t2,                         // temp register
  Label&   slow_case                   // continuation point if fast allocation fails
){
  // make sure arguments make sense
  assert_different_registers(obj, var_size_in_bytes, t1, t2);
  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");

3958 3959
  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
    // No allocation in the shared eden.
K
kvn 已提交
3960
    ba_short(slow_case);
3961 3962 3963 3964 3965
  } else {
    // get eden boundaries
    // note: we need both top & top_addr!
    const Register top_addr = t1;
    const Register end      = t2;
D
duke 已提交
3966

3967 3968 3969 3970 3971
    CollectedHeap* ch = Universe::heap();
    set((intx)ch->top_addr(), top_addr);
    intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
    ld_ptr(top_addr, delta, end);
    ld_ptr(top_addr, 0, obj);
D
duke 已提交
3972

3973 3974 3975
    // try to allocate
    Label retry;
    bind(retry);
D
duke 已提交
3976
#ifdef ASSERT
3977 3978 3979 3980 3981 3982 3983 3984 3985
    // make sure eden top is properly aligned
    {
      Label L;
      btst(MinObjAlignmentInBytesMask, obj);
      br(Assembler::zero, false, Assembler::pt, L);
      delayed()->nop();
      stop("eden top is not properly aligned");
      bind(L);
    }
D
duke 已提交
3986
#endif // ASSERT
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
    const Register free = end;
    sub(end, obj, free);                                   // compute amount of free space
    if (var_size_in_bytes->is_valid()) {
      // size is unknown at compile time
      cmp(free, var_size_in_bytes);
      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
      delayed()->add(obj, var_size_in_bytes, end);
    } else {
      // size is known at compile time
      cmp(free, con_size_in_bytes);
      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
      delayed()->add(obj, con_size_in_bytes, end);
    }
    // Compare obj with the value at top_addr; if still equal, swap the value of
    // end with the value at top_addr. If not equal, read the value at top_addr
    // into end.
    casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
    // if someone beat us on the allocation, try again, otherwise continue
    cmp(obj, end);
    brx(Assembler::notEqual, false, Assembler::pn, retry);
    delayed()->mov(end, obj);                              // nop if successfull since obj == end
D
duke 已提交
4008 4009

#ifdef ASSERT
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
    // make sure eden top is properly aligned
    {
      Label L;
      const Register top_addr = t1;

      set((intx)ch->top_addr(), top_addr);
      ld_ptr(top_addr, 0, top_addr);
      btst(MinObjAlignmentInBytesMask, top_addr);
      br(Assembler::zero, false, Assembler::pt, L);
      delayed()->nop();
      stop("eden top is not properly aligned");
      bind(L);
    }
D
duke 已提交
4023
#endif // ASSERT
4024
  }
D
duke 已提交
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
}


void MacroAssembler::tlab_allocate(
  Register obj,                        // result: pointer to object after successful allocation
  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  int      con_size_in_bytes,          // object size in bytes if   known at compile time
  Register t1,                         // temp register
  Label&   slow_case                   // continuation point if fast allocation fails
){
  // make sure arguments make sense
  assert_different_registers(obj, var_size_in_bytes, t1);
  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");

  const Register free  = t1;

  verify_tlab();

  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);

  // calculate amount of free space
  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  sub(free, obj, free);

  Label done;
  if (var_size_in_bytes == noreg) {
    cmp(free, con_size_in_bytes);
  } else {
    cmp(free, var_size_in_bytes);
  }
  br(Assembler::less, false, Assembler::pn, slow_case);
  // calculate the new top pointer
  if (var_size_in_bytes == noreg) {
    delayed()->add(obj, con_size_in_bytes, free);
  } else {
    delayed()->add(obj, var_size_in_bytes, free);
  }

  bind(done);

#ifdef ASSERT
  // make sure new free pointer is properly aligned
  {
    Label L;
    btst(MinObjAlignmentInBytesMask, free);
    br(Assembler::zero, false, Assembler::pt, L);
    delayed()->nop();
    stop("updated TLAB free is not properly aligned");
    bind(L);
  }
#endif // ASSERT

  // update the tlab top pointer
  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  verify_tlab();
}


void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  Register top = O0;
  Register t1 = G1;
  Register t2 = G3;
  Register t3 = O1;
  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  Label do_refill, discard_tlab;

  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
    // No allocation in the shared eden.
K
kvn 已提交
4094
    ba_short(slow_case);
D
duke 已提交
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
  }

  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);

  // calculate amount of free space
  sub(t1, top, t1);
  srl_ptr(t1, LogHeapWordSize, t1);

  // Retain tlab and allocate object in shared space if
  // the amount free in the tlab is too large to discard.
  cmp(t1, t2);
  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);

  // increment waste limit to prevent getting stuck on this slow path
  delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  if (TLABStats) {
    // increment number of slow_allocations
    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
    add(t2, 1, t2);
    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  }
K
kvn 已提交
4119
  ba_short(try_eden);
D
duke 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134

  bind(discard_tlab);
  if (TLABStats) {
    // increment number of refills
    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
    add(t2, 1, t2);
    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
    // accumulate wastage
    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
    add(t2, t1, t2);
    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  }

  // if tlab is currently allocated (top or end != null) then
  // fill [top, end + alignment_reserve) with array object
K
kvn 已提交
4135
  br_null_short(top, Assembler::pn, do_refill);
D
duke 已提交
4136 4137 4138 4139 4140 4141 4142 4143

  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  // set klass to intArrayKlass
  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  st(t1, top, arrayOopDesc::length_offset_in_bytes());
4144 4145 4146 4147 4148
  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  ld_ptr(t2, 0, t2);
  // store klass last.  concurrent gcs assumes klass length is valid if
  // klass field is not null.
  store_klass(t2, top);
D
duke 已提交
4149 4150
  verify_oop(top);

4151 4152
  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
  sub(top, t1, t1); // size of tlab's allocated portion
4153
  incr_allocated_bytes(t1, t2, t3);
4154

D
duke 已提交
4155 4156 4157 4158
  // refill the tlab with an eden allocation
  bind(do_refill);
  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  sll_ptr(t1, LogHeapWordSize, t1);
4159
  // allocate new tlab, address returned in top
D
duke 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
  eden_allocate(top, t1, 0, t2, t3, slow_case);

  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
#ifdef ASSERT
  // check that tlab_size (t1) is still valid
  {
    Label ok;
    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
    sll_ptr(t2, LogHeapWordSize, t2);
K
kvn 已提交
4170
    cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
D
duke 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
    stop("assert(t1 == tlab_size)");
    should_not_reach_here();

    bind(ok);
  }
#endif // ASSERT
  add(top, t1, top); // t1 is tlab_size
  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  verify_tlab();
K
kvn 已提交
4181
  ba_short(retry);
D
duke 已提交
4182 4183
}

4184 4185
void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
                                          Register t1, Register t2) {
4186 4187
  // Bump total bytes allocated by this thread
  assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
4188
  assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
4189 4190
  // v8 support has gone the way of the dodo
  ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
4191
  add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
4192 4193 4194
  stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
}

D
duke 已提交
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  switch (cond) {
    // Note some conditions are synonyms for others
    case Assembler::never:                return Assembler::always;
    case Assembler::zero:                 return Assembler::notZero;
    case Assembler::lessEqual:            return Assembler::greater;
    case Assembler::less:                 return Assembler::greaterEqual;
    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
    case Assembler::negative:             return Assembler::positive;
    case Assembler::overflowSet:          return Assembler::overflowClear;
    case Assembler::always:               return Assembler::never;
    case Assembler::notZero:              return Assembler::zero;
    case Assembler::greater:              return Assembler::lessEqual;
    case Assembler::greaterEqual:         return Assembler::less;
    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
    case Assembler::positive:             return Assembler::negative;
    case Assembler::overflowClear:        return Assembler::overflowSet;
  }

  ShouldNotReachHere(); return Assembler::overflowClear;
}

void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  Condition negated_cond = negate_condition(cond);
  Label L;
  brx(negated_cond, false, Assembler::pt, L);
  delayed()->nop();
  inc_counter(counter_ptr, Rtmp1, Rtmp2);
  bind(L);
}

4229 4230 4231 4232 4233
void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
  AddressLiteral addrlit(counter_addr);
  sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
  Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
  ld(addr, Rtmp2);
D
duke 已提交
4234
  inc(Rtmp2);
4235 4236 4237 4238 4239
  st(Rtmp2, addr);
}

void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
  inc_counter((address) counter_addr, Rtmp1, Rtmp2);
D
duke 已提交
4240 4241 4242 4243 4244 4245
}

SkipIfEqual::SkipIfEqual(
    MacroAssembler* masm, Register temp, const bool* flag_addr,
    Assembler::Condition condition) {
  _masm = masm;
4246 4247 4248
  AddressLiteral flag(flag_addr);
  _masm->sethi(flag, temp);
  _masm->ldub(temp, flag.low10(), temp);
D
duke 已提交
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
  _masm->tst(temp);
  _masm->br(condition, false, Assembler::pt, _label);
  _masm->delayed()->nop();
}

SkipIfEqual::~SkipIfEqual() {
  _masm->bind(_label);
}


// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages.  This clobbers tsp and scratch.
void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
                                     Register Rscratch) {
  // Use stack pointer in temp stack pointer
  mov(SP, Rtsp);

  // Bang stack for total size given plus stack shadow page size.
  // Bang one page at a time because a large size can overflow yellow and
  // red zones (the bang will fail but stack overflow handling can't tell that
  // it was a stack overflow bang vs a regular segv).
  int offset = os::vm_page_size();
  Register Roffset = Rscratch;

  Label loop;
  bind(loop);
  set((-offset)+STACK_BIAS, Rscratch);
  st(G0, Rtsp, Rscratch);
  set(offset, Roffset);
  sub(Rsize, Roffset, Rsize);
  cmp(Rsize, G0);
  br(Assembler::greater, false, Assembler::pn, loop);
  delayed()->sub(Rtsp, Roffset, Rtsp);

  // Bang down shadow pages too.
  // The -1 because we already subtracted 1 page.
  for (int i = 0; i< StackShadowPages-1; i++) {
    set((-i*offset)+STACK_BIAS, Rscratch);
    st(G0, Rtsp, Rscratch);
  }
}
4290

4291 4292 4293
///////////////////////////////////////////////////////////////////////////////////
#ifndef SERIALGC

4294 4295
static address satb_log_enqueue_with_frame = NULL;
static u_char* satb_log_enqueue_with_frame_end = NULL;
4296

4297 4298
static address satb_log_enqueue_frameless = NULL;
static u_char* satb_log_enqueue_frameless_end = NULL;
4299 4300 4301 4302 4303

static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?

static void generate_satb_log_enqueue(bool with_frame) {
  BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
T
twisti 已提交
4304
  CodeBuffer buf(bb);
4305
  MacroAssembler masm(&buf);
K
kvn 已提交
4306 4307 4308 4309

#define __ masm.

  address start = __ pc();
4310 4311 4312 4313
  Register pre_val;

  Label refill, restart;
  if (with_frame) {
K
kvn 已提交
4314
    __ save_frame(0);
4315 4316 4317 4318
    pre_val = I0;  // Was O0 before the save.
  } else {
    pre_val = O0;
  }
4319

4320 4321 4322
  int satb_q_index_byte_offset =
    in_bytes(JavaThread::satb_mark_queue_offset() +
             PtrQueue::byte_offset_of_index());
4323

4324 4325 4326
  int satb_q_buf_byte_offset =
    in_bytes(JavaThread::satb_mark_queue_offset() +
             PtrQueue::byte_offset_of_buf());
4327

4328 4329 4330 4331
  assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
         in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
         "check sizes in assembly below");

K
kvn 已提交
4332
  __ bind(restart);
4333 4334 4335

  // Load the index into the SATB buffer. PtrQueue::_index is a size_t
  // so ld_ptr is appropriate.
K
kvn 已提交
4336
  __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
4337

4338 4339 4340 4341
  // index == 0?
  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);

  __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
K
kvn 已提交
4342
  __ sub(L0, oopSize, L0);
4343

K
kvn 已提交
4344
  __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
4345 4346
  if (!with_frame) {
    // Use return-from-leaf
K
kvn 已提交
4347 4348
    __ retl();
    __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4349 4350
  } else {
    // Not delayed.
K
kvn 已提交
4351
    __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4352 4353
  }
  if (with_frame) {
K
kvn 已提交
4354 4355
    __ ret();
    __ delayed()->restore();
4356
  }
K
kvn 已提交
4357
  __ bind(refill);
4358 4359 4360 4361 4362 4363

  address handle_zero =
    CAST_FROM_FN_PTR(address,
                     &SATBMarkQueueSet::handle_zero_index_for_thread);
  // This should be rare enough that we can afford to save all the
  // scratch registers that the calling context might be using.
K
kvn 已提交
4364 4365 4366
  __ mov(G1_scratch, L0);
  __ mov(G3_scratch, L1);
  __ mov(G4, L2);
4367 4368
  // We need the value of O0 above (for the write into the buffer), so we
  // save and restore it.
K
kvn 已提交
4369
  __ mov(O0, L3);
4370
  // Since the call will overwrite O7, we save and restore that, as well.
K
kvn 已提交
4371 4372 4373 4374 4375 4376 4377 4378
  __ mov(O7, L4);
  __ call_VM_leaf(L5, handle_zero, G2_thread);
  __ mov(L0, G1_scratch);
  __ mov(L1, G3_scratch);
  __ mov(L2, G4);
  __ mov(L3, O0);
  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  __ delayed()->mov(L4, O7);
4379 4380 4381

  if (with_frame) {
    satb_log_enqueue_with_frame = start;
K
kvn 已提交
4382
    satb_log_enqueue_with_frame_end = __ pc();
4383 4384
  } else {
    satb_log_enqueue_frameless = start;
K
kvn 已提交
4385
    satb_log_enqueue_frameless_end = __ pc();
4386
  }
K
kvn 已提交
4387 4388

#undef __
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
}

static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  if (with_frame) {
    if (satb_log_enqueue_with_frame == 0) {
      generate_satb_log_enqueue(with_frame);
      assert(satb_log_enqueue_with_frame != 0, "postcondition.");
      if (G1SATBPrintStubs) {
        tty->print_cr("Generated with-frame satb enqueue:");
        Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
                             satb_log_enqueue_with_frame_end,
                             tty);
      }
    }
  } else {
    if (satb_log_enqueue_frameless == 0) {
      generate_satb_log_enqueue(with_frame);
      assert(satb_log_enqueue_frameless != 0, "postcondition.");
      if (G1SATBPrintStubs) {
        tty->print_cr("Generated frameless satb enqueue:");
        Disassembler::decode((u_char*)satb_log_enqueue_frameless,
                             satb_log_enqueue_frameless_end,
                             tty);
      }
    }
  }
}

4417 4418 4419 4420 4421 4422
void MacroAssembler::g1_write_barrier_pre(Register obj,
                                          Register index,
                                          int offset,
                                          Register pre_val,
                                          Register tmp,
                                          bool preserve_o_regs) {
4423
  Label filtered;
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437

  if (obj == noreg) {
    // We are not loading the previous value so make
    // sure that we don't trash the value in pre_val
    // with the code below.
    assert_different_registers(pre_val, tmp);
  } else {
    // We will be loading the previous value
    // in this code so...
    assert(offset == 0 || index == noreg, "choose one");
    assert(pre_val == noreg, "check this code");
  }

  // Is marking active?
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
    ld(G2,
       in_bytes(JavaThread::satb_mark_queue_offset() +
                PtrQueue::byte_offset_of_active()),
       tmp);
  } else {
    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
              "Assumption");
    ldsb(G2,
         in_bytes(JavaThread::satb_mark_queue_offset() +
                  PtrQueue::byte_offset_of_active()),
         tmp);
  }
4451

4452 4453
  // Is marking active?
  cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
4454

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
  // Do we need to load the previous value?
  if (obj != noreg) {
    // Load the previous value...
    if (index == noreg) {
      if (Assembler::is_simm13(offset)) {
        load_heap_oop(obj, offset, tmp);
      } else {
        set(offset, tmp);
        load_heap_oop(obj, tmp, tmp);
      }
4465
    } else {
4466
      load_heap_oop(obj, index, tmp);
4467
    }
4468 4469
    // Previous value has been loaded into tmp
    pre_val = tmp;
4470 4471
  }

4472
  assert(pre_val != noreg, "must have a real register");
4473

4474
  // Is the previous value null?
4475
  cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
4476 4477

  // OK, it's not filtered, so we'll need to call enqueue.  In the normal
4478 4479 4480
  // case, pre_val will be a scratch G-reg, but there are some cases in
  // which it's an O-reg.  In the first case, do a normal call.  In the
  // latter, do a save here and call the frameless version.
4481 4482 4483

  guarantee(pre_val->is_global() || pre_val->is_out(),
            "Or we need to think harder.");
4484

4485
  if (pre_val->is_global() && !preserve_o_regs) {
4486 4487
    generate_satb_log_enqueue_if_necessary(true); // with frame

4488 4489 4490
    call(satb_log_enqueue_with_frame);
    delayed()->mov(pre_val, O0);
  } else {
4491 4492
    generate_satb_log_enqueue_if_necessary(false); // frameless

4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
    save_frame(0);
    call(satb_log_enqueue_frameless);
    delayed()->mov(pre_val->after_save(), O0);
    restore();
  }

  bind(filtered);
}

static address dirty_card_log_enqueue = 0;
static u_char* dirty_card_log_enqueue_end = 0;

// This gets to assume that o0 contains the object address.
static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
T
twisti 已提交
4508
  CodeBuffer buf(bb);
4509
  MacroAssembler masm(&buf);
K
kvn 已提交
4510 4511
#define __ masm.
  address start = __ pc();
4512 4513 4514 4515

  Label not_already_dirty, restart, refill;

#ifdef _LP64
K
kvn 已提交
4516
  __ srlx(O0, CardTableModRefBS::card_shift, O0);
4517
#else
K
kvn 已提交
4518
  __ srl(O0, CardTableModRefBS::card_shift, O0);
4519
#endif
4520
  AddressLiteral addrlit(byte_map_base);
K
kvn 已提交
4521 4522
  __ set(addrlit, O1); // O1 := <card table base>
  __ ldub(O0, O1, O2); // O2 := [O0 + O1]
4523

4524 4525
  assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
  __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
4526 4527 4528

  // We didn't take the branch, so we're already dirty: return.
  // Use return-from-leaf
K
kvn 已提交
4529 4530
  __ retl();
  __ delayed()->nop();
4531 4532

  // Not dirty.
K
kvn 已提交
4533
  __ bind(not_already_dirty);
4534 4535 4536 4537

  // Get O0 + O1 into a reg by itself
  __ add(O0, O1, O3);

4538
  // First, dirty it.
K
kvn 已提交
4539
  __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
4540

4541 4542 4543 4544 4545 4546
  int dirty_card_q_index_byte_offset =
    in_bytes(JavaThread::dirty_card_queue_offset() +
             PtrQueue::byte_offset_of_index());
  int dirty_card_q_buf_byte_offset =
    in_bytes(JavaThread::dirty_card_queue_offset() +
             PtrQueue::byte_offset_of_buf());
K
kvn 已提交
4547
  __ bind(restart);
4548 4549 4550

  // Load the index into the update buffer. PtrQueue::_index is
  // a size_t so ld_ptr is appropriate here.
K
kvn 已提交
4551
  __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
4552

4553 4554 4555 4556
  // index == 0?
  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);

  __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
K
kvn 已提交
4557
  __ sub(L0, oopSize, L0);
4558

K
kvn 已提交
4559
  __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
4560
  // Use return-from-leaf
K
kvn 已提交
4561 4562
  __ retl();
  __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
4563

K
kvn 已提交
4564
  __ bind(refill);
4565 4566 4567 4568 4569
  address handle_zero =
    CAST_FROM_FN_PTR(address,
                     &DirtyCardQueueSet::handle_zero_index_for_thread);
  // This should be rare enough that we can afford to save all the
  // scratch registers that the calling context might be using.
K
kvn 已提交
4570 4571
  __ mov(G1_scratch, L3);
  __ mov(G3_scratch, L5);
4572 4573
  // We need the value of O3 above (for the write into the buffer), so we
  // save and restore it.
K
kvn 已提交
4574
  __ mov(O3, L6);
4575
  // Since the call will overwrite O7, we save and restore that, as well.
K
kvn 已提交
4576
  __ mov(O7, L4);
4577

K
kvn 已提交
4578 4579 4580 4581 4582 4583
  __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  __ mov(L3, G1_scratch);
  __ mov(L5, G3_scratch);
  __ mov(L6, O3);
  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  __ delayed()->mov(L4, O7);
4584 4585

  dirty_card_log_enqueue = start;
K
kvn 已提交
4586
  dirty_card_log_enqueue_end = __ pc();
4587 4588
  // XXX Should have a guarantee here about not going off the end!
  // Does it already do so?  Do an experiment...
K
kvn 已提交
4589 4590 4591

#undef __

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
}

static inline void
generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  if (dirty_card_log_enqueue == 0) {
    generate_dirty_card_log_enqueue(byte_map_base);
    assert(dirty_card_log_enqueue != 0, "postcondition.");
    if (G1SATBPrintStubs) {
      tty->print_cr("Generated dirty_card enqueue:");
      Disassembler::decode((u_char*)dirty_card_log_enqueue,
                           dirty_card_log_enqueue_end,
                           tty);
    }
  }
}


void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {

  Label filtered;
  MacroAssembler* post_filter_masm = this;

  if (new_val == G0) return;

  G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::G1SATBCT ||
         bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
4619

4620 4621 4622 4623 4624 4625 4626
  if (G1RSBarrierRegionFilter) {
    xor3(store_addr, new_val, tmp);
#ifdef _LP64
    srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
#else
    srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
#endif
4627

4628 4629
    // XXX Should I predict this taken or not?  Does it matter?
    cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
4630 4631
  }

4632 4633 4634 4635 4636 4637 4638 4639
  // If the "store_addr" register is an "in" or "local" register, move it to
  // a scratch reg so we can pass it as an argument.
  bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  // Pick a scratch register different from "tmp".
  Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  // Make sure we use up the delay slot!
  if (use_scr) {
    post_filter_masm->mov(store_addr, scr);
4640
  } else {
4641
    post_filter_masm->nop();
4642
  }
4643 4644 4645 4646 4647 4648 4649 4650 4651
  generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  save_frame(0);
  call(dirty_card_log_enqueue);
  if (use_scr) {
    delayed()->mov(scr, O0);
  } else {
    delayed()->mov(store_addr->after_save(), O0);
  }
  restore();
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667

  bind(filtered);
}

#endif  // SERIALGC
///////////////////////////////////////////////////////////////////////////////////

void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  // If we're writing constant NULL, we can skip the write barrier.
  if (new_val == G0) return;
  CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::CardTableModRef ||
         bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  card_table_write(bs->byte_map_base, tmp, store_addr);
}

4668
void MacroAssembler::load_klass(Register src_oop, Register klass) {
4669 4670 4671 4672
  // The number of bytes in this code is used by
  // MachCallDynamicJavaNode::ret_addr_offset()
  // if this changes, change that.
  if (UseCompressedOops) {
4673 4674
    lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
    decode_heap_oop_not_null(klass);
4675
  } else {
4676
    ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4677 4678 4679
  }
}

4680
void MacroAssembler::store_klass(Register klass, Register dst_oop) {
4681
  if (UseCompressedOops) {
4682 4683
    assert(dst_oop != klass, "not enough registers");
    encode_heap_oop_not_null(klass);
4684
    st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4685
  } else {
4686
    st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4687 4688 4689
  }
}

4690 4691 4692 4693
void MacroAssembler::store_klass_gap(Register s, Register d) {
  if (UseCompressedOops) {
    assert(s != d, "not enough registers");
    st(s, d, oopDesc::klass_gap_offset_in_bytes());
4694 4695 4696
  }
}

4697
void MacroAssembler::load_heap_oop(const Address& s, Register d) {
4698
  if (UseCompressedOops) {
4699
    lduw(s, d);
4700 4701
    decode_heap_oop(d);
  } else {
4702
    ld_ptr(s, d);
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
  }
}

void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
   if (UseCompressedOops) {
    lduw(s1, s2, d);
    decode_heap_oop(d, d);
  } else {
    ld_ptr(s1, s2, d);
  }
}

void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
   if (UseCompressedOops) {
    lduw(s1, simm13a, d);
    decode_heap_oop(d, d);
  } else {
    ld_ptr(s1, simm13a, d);
  }
}

4724 4725 4726 4727 4728
void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
  if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
  else                   load_heap_oop(s1, s2.as_register(), d);
}

4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  if (UseCompressedOops) {
    assert(s1 != d && s2 != d, "not enough registers");
    encode_heap_oop(d);
    st(d, s1, s2);
  } else {
    st_ptr(d, s1, s2);
  }
}

void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  if (UseCompressedOops) {
    assert(s1 != d, "not enough registers");
    encode_heap_oop(d);
    st(d, s1, simm13a);
  } else {
    st_ptr(d, s1, simm13a);
  }
}

void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  if (UseCompressedOops) {
    assert(a.base() != d, "not enough registers");
    encode_heap_oop(d);
    st(d, a, offset);
  } else {
    st_ptr(d, a, offset);
  }
}


void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  assert (UseCompressedOops, "must be compressed");
4762 4763
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4764
  verify_oop(src);
4765 4766 4767 4768
  if (Universe::narrow_oop_base() == NULL) {
    srlx(src, LogMinObjAlignmentInBytes, dst);
    return;
  }
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
  Label done;
  if (src == dst) {
    // optimize for frequent case src == dst
    bpr(rc_nz, true, Assembler::pt, src, done);
    delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
    bind(done);
    srlx(src, LogMinObjAlignmentInBytes, dst);
  } else {
    bpr(rc_z, false, Assembler::pn, src, done);
    delayed() -> mov(G0, dst);
    // could be moved before branch, and annulate delay,
    // but may add some unneeded work decoding null
    sub(src, G6_heapbase, dst);
    srlx(dst, LogMinObjAlignmentInBytes, dst);
    bind(done);
  }
}


void MacroAssembler::encode_heap_oop_not_null(Register r) {
  assert (UseCompressedOops, "must be compressed");
4790 4791
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4792
  verify_oop(r);
4793 4794
  if (Universe::narrow_oop_base() != NULL)
    sub(r, G6_heapbase, r);
4795 4796 4797
  srlx(r, LogMinObjAlignmentInBytes, r);
}

4798 4799
void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  assert (UseCompressedOops, "must be compressed");
4800 4801
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4802
  verify_oop(src);
4803 4804 4805 4806 4807 4808
  if (Universe::narrow_oop_base() == NULL) {
    srlx(src, LogMinObjAlignmentInBytes, dst);
  } else {
    sub(src, G6_heapbase, dst);
    srlx(dst, LogMinObjAlignmentInBytes, dst);
  }
4809 4810
}

4811 4812 4813
// Same algorithm as oops.inline.hpp decode_heap_oop.
void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  assert (UseCompressedOops, "must be compressed");
4814 4815
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4816
  sllx(src, LogMinObjAlignmentInBytes, dst);
4817 4818 4819 4820 4821 4822
  if (Universe::narrow_oop_base() != NULL) {
    Label done;
    bpr(rc_nz, true, Assembler::pt, dst, done);
    delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
    bind(done);
  }
4823
  verify_oop(dst);
4824 4825 4826 4827 4828
}

void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  // pd_code_size_limit.
4829
  // Also do not verify_oop as this is called by verify_oop.
4830
  assert (UseCompressedOops, "must be compressed");
4831 4832
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4833
  sllx(r, LogMinObjAlignmentInBytes, r);
4834 4835
  if (Universe::narrow_oop_base() != NULL)
    add(r, G6_heapbase, r);
4836 4837
}

4838 4839 4840
void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  // pd_code_size_limit.
4841
  // Also do not verify_oop as this is called by verify_oop.
4842
  assert (UseCompressedOops, "must be compressed");
4843 4844
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4845
  sllx(src, LogMinObjAlignmentInBytes, dst);
4846 4847
  if (Universe::narrow_oop_base() != NULL)
    add(dst, G6_heapbase, dst);
4848 4849
}

4850 4851 4852
void MacroAssembler::reinit_heapbase() {
  if (UseCompressedOops) {
    // call indirectly to solve generation ordering problem
4853
    AddressLiteral base(Universe::narrow_oop_base_addr());
4854 4855 4856
    load_ptr_contents(base, G6_heapbase);
  }
}
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878

// Compare char[] arrays aligned to 4 bytes.
void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
                                        Register limit, Register result,
                                        Register chr1, Register chr2, Label& Ldone) {
  Label Lvector, Lloop;
  assert(chr1 == result, "should be the same");

  // Note: limit contains number of bytes (2*char_elements) != 0.
  andcc(limit, 0x2, chr1); // trailing character ?
  br(Assembler::zero, false, Assembler::pt, Lvector);
  delayed()->nop();

  // compare the trailing char
  sub(limit, sizeof(jchar), limit);
  lduh(ary1, limit, chr1);
  lduh(ary2, limit, chr2);
  cmp(chr1, chr2);
  br(Assembler::notEqual, true, Assembler::pt, Ldone);
  delayed()->mov(G0, result);     // not equal

  // only one char ?
K
kvn 已提交
4879
  cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
  delayed()->add(G0, 1, result); // zero-length arrays are equal

  // word by word compare, dont't need alignment check
  bind(Lvector);
  // Shift ary1 and ary2 to the end of the arrays, negate limit
  add(ary1, limit, ary1);
  add(ary2, limit, ary2);
  neg(limit, limit);

  lduw(ary1, limit, chr1);
  bind(Lloop);
  lduw(ary2, limit, chr2);
  cmp(chr1, chr2);
  br(Assembler::notEqual, true, Assembler::pt, Ldone);
  delayed()->mov(G0, result);     // not equal
  inccc(limit, 2*sizeof(jchar));
  // annul LDUW if branch is not taken to prevent access past end of array
  br(Assembler::notZero, true, Assembler::pt, Lloop);
  delayed()->lduw(ary1, limit, chr1); // hoisted

  // Caller should set it:
  // add(G0, 1, result); // equals
}
K
kvn 已提交
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963

// Use BIS for zeroing (count is in bytes).
void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
  assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
  Register end = count;
  int cache_line_size = VM_Version::prefetch_data_size();
  // Minimum count when BIS zeroing can be used since
  // it needs membar which is expensive.
  int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);

  Label small_loop;
  // Check if count is negative (dead code) or zero.
  // Note, count uses 64bit in 64 bit VM.
  cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);

  // Use BIS zeroing only for big arrays since it requires membar.
  if (Assembler::is_simm13(block_zero_size)) { // < 4096
    cmp(count, block_zero_size);
  } else {
    set(block_zero_size, temp);
    cmp(count, temp);
  }
  br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
  delayed()->add(to, count, end);

  // Note: size is >= three (32 bytes) cache lines.

  // Clean the beginning of space up to next cache line.
  for (int offs = 0; offs < cache_line_size; offs += 8) {
    stx(G0, to, offs);
  }

  // align to next cache line
  add(to, cache_line_size, to);
  and3(to, -cache_line_size, to);

  // Note: size left >= two (32 bytes) cache lines.

  // BIS should not be used to zero tail (64 bytes)
  // to avoid zeroing a header of the following object.
  sub(end, (cache_line_size*2)-8, end);

  Label bis_loop;
  bind(bis_loop);
  stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  add(to, cache_line_size, to);
  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);

  // BIS needs membar.
  membar(Assembler::StoreLoad);

  add(end, (cache_line_size*2)-8, end); // restore end
  cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);

  // Clean the tail.
  bind(small_loop);
  stx(G0, to, 0);
  add(to, 8, to);
  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
  nop(); // Separate short branches
}