assembler_sparc.cpp 122.2 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/*
 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_assembler_sparc.cpp.incl"

// Implementation of Address

Address::Address( addr_type t, int which ) {
  switch (t) {
   case extra_in_argument:
   case extra_out_argument:
     _base = t == extra_in_argument ? FP : SP;
     _hi   = 0;
// Warning:  In LP64 mode, _disp will occupy more than 10 bits.
//           This is inconsistent with the other constructors but op
//           codes such as ld or ldx, only access disp() to get their
//           simm13 argument.
     _disp = ((which - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    break;
   default:
    ShouldNotReachHere();
    break;
  }
}

static const char* argumentNames[][2] = {
  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
  {"A(n>9)","P(n>9)"}
};

const char* Argument::name() const {
  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
  int num = number();
  if (num >= nofArgs)  num = nofArgs - 1;
  return argumentNames[num][is_in() ? 1 : 0];
}

void Assembler::print_instruction(int inst) {
  const char* s;
  switch (inv_op(inst)) {
  default:         s = "????"; break;
  case call_op:    s = "call"; break;
  case branch_op:
    switch (inv_op2(inst)) {
      case bpr_op2:    s = "bpr";  break;
      case fb_op2:     s = "fb";   break;
      case fbp_op2:    s = "fbp";  break;
      case br_op2:     s = "br";   break;
      case bp_op2:     s = "bp";   break;
      case cb_op2:     s = "cb";   break;
      default:         s = "????"; break;
    }
  }
  ::tty->print("%s", s);
}


// Patch instruction inst at offset inst_pos to refer to dest_pos
// and return the resulting instruction.
// We should have pcs, not offsets, but since all is relative, it will work out
// OK.
int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {

  int m; // mask for displacement field
  int v; // new value for displacement field
  const int word_aligned_ones = -4;
  switch (inv_op(inst)) {
  default: ShouldNotReachHere();
  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
  case branch_op:
    switch (inv_op2(inst)) {
      case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
      case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
      default: ShouldNotReachHere();
    }
  }
  return  inst & ~m  |  v;
}

// Return the offset of the branch destionation of instruction inst
// at offset pos.
// Should have pcs, but since all is relative, it works out.
int Assembler::branch_destination(int inst, int pos) {
  int r;
  switch (inv_op(inst)) {
  default: ShouldNotReachHere();
  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
  case branch_op:
    switch (inv_op2(inst)) {
      case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
      case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
      default: ShouldNotReachHere();
    }
  }
  return r;
}

int AbstractAssembler::code_fill_byte() {
  return 0x00;                  // illegal instruction 0x00000000
}

// Generate a bunch 'o stuff (including v9's
#ifndef PRODUCT
void Assembler::test_v9() {
  add(    G0, G1, G2 );
  add(    G3,  0, G4 );

  addcc(  G5, G6, G7 );
  addcc(  I0,  1, I1 );
  addc(   I2, I3, I4 );
  addc(   I5, -1, I6 );
  addccc( I7, L0, L1 );
  addccc( L2, (1 << 12) - 2, L3 );

  Label lbl1, lbl2, lbl3;

  bind(lbl1);

  bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
  delayed()->nop();
  bpr( rc_lez, false, pt, L5, lbl1);
  delayed()->nop();

  fb( f_never,     true, pc() + 4,  relocInfo::none);
  delayed()->nop();
  fb( f_notEqual, false, lbl2 );
  delayed()->nop();

  fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
  delayed()->nop();
  fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
  delayed()->nop();

  br( equal,  true, pc() + 1024, relocInfo::none);
  delayed()->nop();
  br( lessEqual, false, lbl1 );
  delayed()->nop();
  br( never, false, lbl1 );
  delayed()->nop();

  bp( less,               true, icc, pn, pc(), relocInfo::none);
  delayed()->nop();
  bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
  delayed()->nop();

  call( pc(), relocInfo::none);
  delayed()->nop();
  call( lbl3 );
  delayed()->nop();


  casa(  L6, L7, O0 );
  casxa( O1, O2, O3, 0 );

  udiv(   O4, O5, O7 );
  udiv(   G0, (1 << 12) - 1, G1 );
  sdiv(   G1, G2, G3 );
  sdiv(   G4, -((1 << 12) - 1), G5 );
  udivcc( G6, G7, I0 );
  udivcc( I1, -((1 << 12) - 2), I2 );
  sdivcc( I3, I4, I5 );
  sdivcc( I6, -((1 << 12) - 0), I7 );

  done();
  retry();

  fadd( FloatRegisterImpl::S, F0,  F1, F2 );
  fsub( FloatRegisterImpl::D, F34, F0, F62 );

  fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
  fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);

  ftox( FloatRegisterImpl::D, F2, F4 );
  ftoi( FloatRegisterImpl::Q, F4, F8 );

  ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );

  fxtof( FloatRegisterImpl::S, F4, F5 );
  fitof( FloatRegisterImpl::D, F6, F8 );

  fmov( FloatRegisterImpl::Q, F16, F20 );
  fneg( FloatRegisterImpl::S, F6, F7 );
  fabs( FloatRegisterImpl::D, F10, F12 );

  fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
  fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
  fdiv( FloatRegisterImpl::S,  F10, F11, F12 );

  fsqrt( FloatRegisterImpl::S, F13, F14 );

  flush( L0, L1 );
  flush( L2, -1 );

  flushw();

  illtrap( (1 << 22) - 2);

  impdep1( 17, (1 << 19) - 1 );
  impdep2( 3,  0 );

  jmpl( L3, L4, L5 );
  delayed()->nop();
  jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
  delayed()->nop();


  ldf(    FloatRegisterImpl::S, O0, O1, F15 );
  ldf(    FloatRegisterImpl::D, O2, -1, F14 );


  ldfsr(  O3, O4 );
  ldfsr(  O5, -1 );
  ldxfsr( O6, O7 );
  ldxfsr( I0, -1 );

  ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
  ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );

  ldsb(  I4, I5, I6 );
  ldsb(  I7, -1, G0 );
  ldsh(  G1, G3, G4 );
  ldsh(  G5, -1, G6 );
  ldsw(  G7, L0, L1 );
  ldsw(  L2, -1, L3 );
  ldub(  L4, L5, L6 );
  ldub(  L7, -1, O0 );
  lduh(  O1, O2, O3 );
  lduh(  O4, -1, O5 );
  lduw(  O6, O7, G0 );
  lduw(  G1, -1, G2 );
  ldx(   G3, G4, G5 );
  ldx(   G6, -1, G7 );
  ldd(   I0, I1, I2 );
  ldd(   I3, -1, I4 );

  ldsba(  I5, I6, 2, I7 );
  ldsba(  L0, -1, L1 );
  ldsha(  L2, L3, 3, L4 );
  ldsha(  L5, -1, L6 );
  ldswa(  L7, O0, (1 << 8) - 1, O1 );
  ldswa(  O2, -1, O3 );
  lduba(  O4, O5, 0, O6 );
  lduba(  O7, -1, I0 );
  lduha(  I1, I2, 1, I3 );
  lduha(  I4, -1, I5 );
  lduwa(  I6, I7, 2, L0 );
  lduwa(  L1, -1, L2 );
  ldxa(   L3, L4, 3, L5 );
  ldxa(   L6, -1, L7 );
  ldda(   G0, G1, 4, G2 );
  ldda(   G3, -1, G4 );

  ldstub(  G5, G6, G7 );
  ldstub(  O0, -1, O1 );

  ldstuba( O2, O3, 5, O4 );
  ldstuba( O5, -1, O6 );

  and3(    I0, L0, O0 );
  and3(    G7, -1, O7 );
  andcc(   L2, I2, G2 );
  andcc(   L4, -1, G4 );
  andn(    I5, I6, I7 );
  andn(    I6, -1, I7 );
  andncc(  I5, I6, I7 );
  andncc(  I7, -1, I6 );
  or3(     I5, I6, I7 );
  or3(     I7, -1, I6 );
  orcc(    I5, I6, I7 );
  orcc(    I7, -1, I6 );
  orn(     I5, I6, I7 );
  orn(     I7, -1, I6 );
  orncc(   I5, I6, I7 );
  orncc(   I7, -1, I6 );
  xor3(    I5, I6, I7 );
  xor3(    I7, -1, I6 );
  xorcc(   I5, I6, I7 );
  xorcc(   I7, -1, I6 );
  xnor(    I5, I6, I7 );
  xnor(    I7, -1, I6 );
  xnorcc(  I5, I6, I7 );
  xnorcc(  I7, -1, I6 );

  membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
  membar( StoreStore );
  membar( LoadStore );
  membar( StoreLoad );
  membar( LoadLoad );
  membar( Sync );
  membar( MemIssue );
  membar( Lookaside );

  fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
  fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );

  movcc( overflowClear,  false, icc, I6, L4 );
  movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );

  movr( rc_nz, I5, I6, I7 );
  movr( rc_gz, L1, -1,  L2 );

  mulx(  I5, I6, I7 );
  mulx(  I7, -1, I6 );
  sdivx( I5, I6, I7 );
  sdivx( I7, -1, I6 );
  udivx( I5, I6, I7 );
  udivx( I7, -1, I6 );

  umul(   I5, I6, I7 );
  umul(   I7, -1, I6 );
  smul(   I5, I6, I7 );
  smul(   I7, -1, I6 );
  umulcc( I5, I6, I7 );
  umulcc( I7, -1, I6 );
  smulcc( I5, I6, I7 );
  smulcc( I7, -1, I6 );

  mulscc(   I5, I6, I7 );
  mulscc(   I7, -1, I6 );

  nop();


  popc( G0,  G1);
  popc( -1, G2);

  prefetch(   L1, L2,    severalReads );
  prefetch(   L3, -1,    oneRead );
  prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
  prefetcha(  G2, -1,    oneWrite );

  rett( I7, I7);
  delayed()->nop();
  rett( G0, -1, relocInfo::none);
  delayed()->nop();

  save(    I5, I6, I7 );
  save(    I7, -1, I6 );
  restore( I5, I6, I7 );
  restore( I7, -1, I6 );

  saved();
  restored();

  sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));

  sll(  I5, I6, I7 );
  sll(  I7, 31, I6 );
  srl(  I5, I6, I7 );
  srl(  I7,  0, I6 );
  sra(  I5, I6, I7 );
  sra(  I7, 30, I6 );
  sllx( I5, I6, I7 );
  sllx( I7, 63, I6 );
  srlx( I5, I6, I7 );
  srlx( I7,  0, I6 );
  srax( I5, I6, I7 );
  srax( I7, 62, I6 );

  sir( -1 );

  stbar();

  stf(    FloatRegisterImpl::Q, F40, G0, I7 );
  stf(    FloatRegisterImpl::S, F18, I3, -1 );

  stfsr(  L1, L2 );
  stfsr(  I7, -1 );
  stxfsr( I6, I5 );
  stxfsr( L4, -1 );

  stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
  stfa(  FloatRegisterImpl::Q, F44, G0, -1 );

  stb(  L5, O2, I7 );
  stb(  I7, I6, -1 );
  sth(  L5, O2, I7 );
  sth(  I7, I6, -1 );
  stw(  L5, O2, I7 );
  stw(  I7, I6, -1 );
  stx(  L5, O2, I7 );
  stx(  I7, I6, -1 );
  std(  L5, O2, I7 );
  std(  I7, I6, -1 );

  stba(  L5, O2, I7, 8 );
  stba(  I7, I6, -1    );
  stha(  L5, O2, I7, 9 );
  stha(  I7, I6, -1    );
  stwa(  L5, O2, I7, 0 );
  stwa(  I7, I6, -1    );
  stxa(  L5, O2, I7, 11 );
  stxa(  I7, I6, -1     );
  stda(  L5, O2, I7, 12 );
  stda(  I7, I6, -1     );

  sub(    I5, I6, I7 );
  sub(    I7, -1, I6 );
  subcc(  I5, I6, I7 );
  subcc(  I7, -1, I6 );
  subc(   I5, I6, I7 );
  subc(   I7, -1, I6 );
  subccc( I5, I6, I7 );
  subccc( I7, -1, I6 );

  swap( I5, I6, I7 );
  swap( I7, -1, I6 );

  swapa(   G0, G1, 13, G2 );
  swapa(   I7, -1,     I6 );

  taddcc(    I5, I6, I7 );
  taddcc(    I7, -1, I6 );
  taddcctv(  I5, I6, I7 );
  taddcctv(  I7, -1, I6 );

  tsubcc(    I5, I6, I7 );
  tsubcc(    I7, -1, I6 );
  tsubcctv(  I5, I6, I7 );
  tsubcctv(  I7, -1, I6 );

  trap( overflowClear, xcc, G0, G1 );
  trap( lessEqual,     icc, I7, 17 );

  bind(lbl2);
  bind(lbl3);

  code()->decode();
}

// Generate a bunch 'o stuff unique to V8
void Assembler::test_v8_onlys() {
  Label lbl1;

  cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
  delayed()->nop();
  cb( cp_never,    true, lbl1);
  delayed()->nop();

  cpop1(1, 2, 3, 4);
  cpop2(5, 6, 7, 8);

  ldc( I0, I1, 31);
  ldc( I2, -1,  0);

  lddc( I4, I4, 30);
  lddc( I6,  0, 1 );

  ldcsr( L0, L1, 0);
  ldcsr( L1, (1 << 12) - 1, 17 );

  stc( 31, L4, L5);
  stc( 30, L6, -(1 << 12) );

  stdc( 0, L7, G0);
  stdc( 1, G1, 0 );

  stcsr( 16, G2, G3);
  stcsr( 17, G4, 1 );

  stdcq( 4, G5, G6);
  stdcq( 5, G7, -1 );

  bind(lbl1);

  code()->decode();
}
#endif

// Implementation of MacroAssembler

void MacroAssembler::null_check(Register reg, int offset) {
  if (needs_explicit_null_check((intptr_t)offset)) {
    // provoke OS NULL exception if reg = NULL by
    // accessing M[reg] w/o changing any registers
    ld_ptr(reg, 0, G0);
  }
  else {
    // nothing to do, (later) access of M[reg + offset]
    // will provoke OS NULL exception if reg = NULL
  }
}

// Ring buffer jumps

#ifndef PRODUCT
void MacroAssembler::ret(  bool trace )   { if (trace) {
                                                    mov(I7, O7); // traceable register
                                                    JMP(O7, 2 * BytesPerInstWord);
                                                  } else {
                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
                                                  }
                                                }

void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
#endif /* PRODUCT */


void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
  assert_not_delayed();
  // This can only be traceable if r1 & r2 are visible after a window save
  if (TraceJumps) {
#ifndef PRODUCT
    save_frame(0);
    verify_thread();
    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
    add(O2, O1, O1);

    add(r1->after_save(), r2->after_save(), O2);
    set((intptr_t)file, O3);
    set(line, O4);
    Label L;
    // get nearby pc, store jmp target
    call(L, relocInfo::none);  // No relocation for call to pc+0x8
    delayed()->st(O2, O1, 0);
    bind(L);

    // store nearby pc
    st(O7, O1, sizeof(intptr_t));
    // store file
    st(O3, O1, 2*sizeof(intptr_t));
    // store line
    st(O4, O1, 3*sizeof(intptr_t));
    add(O0, 1, O0);
    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
    restore();
#endif /* PRODUCT */
  }
  jmpl(r1, r2, G0);
}
void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
  assert_not_delayed();
  // This can only be traceable if r1 is visible after a window save
  if (TraceJumps) {
#ifndef PRODUCT
    save_frame(0);
    verify_thread();
    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
    add(O2, O1, O1);

    add(r1->after_save(), offset, O2);
    set((intptr_t)file, O3);
    set(line, O4);
    Label L;
    // get nearby pc, store jmp target
    call(L, relocInfo::none);  // No relocation for call to pc+0x8
    delayed()->st(O2, O1, 0);
    bind(L);

    // store nearby pc
    st(O7, O1, sizeof(intptr_t));
    // store file
    st(O3, O1, 2*sizeof(intptr_t));
    // store line
    st(O4, O1, 3*sizeof(intptr_t));
    add(O0, 1, O0);
    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
    restore();
#endif /* PRODUCT */
  }
  jmp(r1, offset);
}

// This code sequence is relocatable to any address, even on LP64.
void MacroAssembler::jumpl( Address& a, Register d, int offset, const char* file, int line ) {
  assert_not_delayed();
  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
  // variable length instruction streams.
  sethi(a, /*ForceRelocatable=*/ true);
  if (TraceJumps) {
#ifndef PRODUCT
    // Must do the add here so relocation can find the remainder of the
    // value to be relocated.
    add(a.base(), a.disp() + offset, a.base(), a.rspec(offset));
    save_frame(0);
    verify_thread();
    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
    add(O2, O1, O1);

    set((intptr_t)file, O3);
    set(line, O4);
    Label L;

    // get nearby pc, store jmp target
    call(L, relocInfo::none);  // No relocation for call to pc+0x8
    delayed()->st(a.base()->after_save(), O1, 0);
    bind(L);

    // store nearby pc
    st(O7, O1, sizeof(intptr_t));
    // store file
    st(O3, O1, 2*sizeof(intptr_t));
    // store line
    st(O4, O1, 3*sizeof(intptr_t));
    add(O0, 1, O0);
    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
    restore();
    jmpl(a.base(), G0, d);
#else
    jmpl(a, d, offset);
#endif /* PRODUCT */
  } else {
    jmpl(a, d, offset);
  }
}

void MacroAssembler::jump( Address& a, int offset, const char* file, int line ) {
  jumpl( a, G0, offset, file, line );
}


// Convert to C varargs format
void MacroAssembler::set_varargs( Argument inArg, Register d ) {
  // spill register-resident args to their memory slots
  // (SPARC calling convention requires callers to have already preallocated these)
  // Note that the inArg might in fact be an outgoing argument,
  // if a leaf routine or stub does some tricky argument shuffling.
  // This routine must work even though one of the saved arguments
  // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
  for (Argument savePtr = inArg;
       savePtr.is_register();
       savePtr = savePtr.successor()) {
    st_ptr(savePtr.as_register(), savePtr.address_in_frame());
  }
  // return the address of the first memory slot
  add(inArg.address_in_frame(), d);
}

// Conditional breakpoint (for assertion checks in assembly code)
void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
}

// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
void MacroAssembler::breakpoint_trap() {
  trap(ST_RESERVED_FOR_USER_0);
}

// flush windows (except current) using flushw instruction if avail.
void MacroAssembler::flush_windows() {
  if (VM_Version::v9_instructions_work())  flushw();
  else                                     flush_windows_trap();
}

// Write serialization page so VM thread can do a pseudo remote membar
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
  Address mem_serialize_page(tmp1, os::get_memory_serialize_page());
  srl(thread, os::get_serialize_page_shift_count(), tmp2);
  if (Assembler::is_simm13(os::vm_page_size())) {
    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
  }
  else {
    set((os::vm_page_size() - sizeof(int)), tmp1);
    and3(tmp2, tmp1, tmp2);
  }
  load_address(mem_serialize_page);
  st(G0, tmp1, tmp2);
}



void MacroAssembler::enter() {
  Unimplemented();
}

void MacroAssembler::leave() {
  Unimplemented();
}

void MacroAssembler::mult(Register s1, Register s2, Register d) {
  if(VM_Version::v9_instructions_work()) {
    mulx (s1, s2, d);
  } else {
    smul (s1, s2, d);
  }
}

void MacroAssembler::mult(Register s1, int simm13a, Register d) {
  if(VM_Version::v9_instructions_work()) {
    mulx (s1, simm13a, d);
  } else {
    smul (s1, simm13a, d);
  }
}


#ifdef ASSERT
void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
  const Register s1 = G3_scratch;
  const Register s2 = G4_scratch;
  Label get_psr_test;
  // Get the condition codes the V8 way.
  read_ccr_trap(s1);
  mov(ccr_save, s2);
  // This is a test of V8 which has icc but not xcc
  // so mask off the xcc bits
  and3(s2, 0xf, s2);
  // Compare condition codes from the V8 and V9 ways.
  subcc(s2, s1, G0);
  br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
  delayed()->breakpoint_trap();
  bind(get_psr_test);
}

void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
  const Register s1 = G3_scratch;
  const Register s2 = G4_scratch;
  Label set_psr_test;
  // Write out the saved condition codes the V8 way
  write_ccr_trap(ccr_save, s1, s2);
  // Read back the condition codes using the V9 instruction
  rdccr(s1);
  mov(ccr_save, s2);
  // This is a test of V8 which has icc but not xcc
  // so mask off the xcc bits
  and3(s2, 0xf, s2);
  and3(s1, 0xf, s1);
  // Compare the V8 way with the V9 way.
  subcc(s2, s1, G0);
  br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
  delayed()->breakpoint_trap();
  bind(set_psr_test);
}
#else
#define read_ccr_v8_assert(x)
#define write_ccr_v8_assert(x)
#endif // ASSERT

void MacroAssembler::read_ccr(Register ccr_save) {
  if (VM_Version::v9_instructions_work()) {
    rdccr(ccr_save);
    // Test code sequence used on V8.  Do not move above rdccr.
    read_ccr_v8_assert(ccr_save);
  } else {
    read_ccr_trap(ccr_save);
  }
}

void MacroAssembler::write_ccr(Register ccr_save) {
  if (VM_Version::v9_instructions_work()) {
    // Test code sequence used on V8.  Do not move below wrccr.
    write_ccr_v8_assert(ccr_save);
    wrccr(ccr_save);
  } else {
    const Register temp_reg1 = G3_scratch;
    const Register temp_reg2 = G4_scratch;
    write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
  }
}


// Calls to C land

#ifdef ASSERT
// a hook for debugging
static Thread* reinitialize_thread() {
  return ThreadLocalStorage::thread();
}
#else
#define reinitialize_thread ThreadLocalStorage::thread
#endif

#ifdef ASSERT
address last_get_thread = NULL;
#endif

// call this when G2_thread is not known to be valid
void MacroAssembler::get_thread() {
  save_frame(0);                // to avoid clobbering O0
  mov(G1, L0);                  // avoid clobbering G1
  mov(G5_method, L1);           // avoid clobbering G5
  mov(G3, L2);                  // avoid clobbering G3 also
  mov(G4, L5);                  // avoid clobbering G4
#ifdef ASSERT
  Address last_get_thread_addr(L3, (address)&last_get_thread);
  sethi(last_get_thread_addr);
  inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
  st_ptr(L4, last_get_thread_addr);
#endif
  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
  delayed()->nop();
  mov(L0, G1);
  mov(L1, G5_method);
  mov(L2, G3);
  mov(L5, G4);
  restore(O0, 0, G2_thread);
}

static Thread* verify_thread_subroutine(Thread* gthread_value) {
  Thread* correct_value = ThreadLocalStorage::thread();
  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
  return correct_value;
}

void MacroAssembler::verify_thread() {
  if (VerifyThread) {
    // NOTE: this chops off the heads of the 64-bit O registers.
#ifdef CC_INTERP
    save_frame(0);
#else
    // make sure G2_thread contains the right value
    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
    mov(G1, L1);                // avoid clobbering G1
    // G2 saved below
    mov(G3, L3);                // avoid clobbering G3
    mov(G4, L4);                // avoid clobbering G4
    mov(G5_method, L5);         // avoid clobbering G5_method
#endif /* CC_INTERP */
#if defined(COMPILER2) && !defined(_LP64)
    // Save & restore possible 64-bit Long arguments in G-regs
    srlx(G1,32,L0);
    srlx(G4,32,L6);
#endif
    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
    delayed()->mov(G2_thread, O0);

    mov(L1, G1);                // Restore G1
    // G2 restored below
    mov(L3, G3);                // restore G3
    mov(L4, G4);                // restore G4
    mov(L5, G5_method);         // restore G5_method
#if defined(COMPILER2) && !defined(_LP64)
    // Save & restore possible 64-bit Long arguments in G-regs
    sllx(L0,32,G2);             // Move old high G1 bits high in G2
    sllx(G1, 0,G1);             // Clear current high G1 bits
    or3 (G1,G2,G1);             // Recover 64-bit G1
    sllx(L6,32,G2);             // Move old high G4 bits high in G2
    sllx(G4, 0,G4);             // Clear current high G4 bits
    or3 (G4,G2,G4);             // Recover 64-bit G4
#endif
    restore(O0, 0, G2_thread);
  }
}


void MacroAssembler::save_thread(const Register thread_cache) {
  verify_thread();
  if (thread_cache->is_valid()) {
    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
    mov(G2_thread, thread_cache);
  }
  if (VerifyThread) {
    // smash G2_thread, as if the VM were about to anyway
    set(0x67676767, G2_thread);
  }
}


void MacroAssembler::restore_thread(const Register thread_cache) {
  if (thread_cache->is_valid()) {
    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
    mov(thread_cache, G2_thread);
    verify_thread();
  } else {
    // do it the slow way
    get_thread();
  }
}


// %%% maybe get rid of [re]set_last_Java_frame
void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
  assert_not_delayed();
  Address flags(G2_thread,
                0,
                in_bytes(JavaThread::frame_anchor_offset()) +
                         in_bytes(JavaFrameAnchor::flags_offset()));
  Address pc_addr(G2_thread,
                  0,
                  in_bytes(JavaThread::last_Java_pc_offset()));

  // Always set last_Java_pc and flags first because once last_Java_sp is visible
  // has_last_Java_frame is true and users will look at the rest of the fields.
  // (Note: flags should always be zero before we get here so doesn't need to be set.)

#ifdef ASSERT
  // Verify that flags was zeroed on return to Java
  Label PcOk;
  save_frame(0);                // to avoid clobbering O0
  ld_ptr(pc_addr, L0);
  tst(L0);
#ifdef _LP64
  brx(Assembler::zero, false, Assembler::pt, PcOk);
#else
  br(Assembler::zero, false, Assembler::pt, PcOk);
#endif // _LP64
  delayed() -> nop();
  stop("last_Java_pc not zeroed before leaving Java");
  bind(PcOk);

  // Verify that flags was zeroed on return to Java
  Label FlagsOk;
  ld(flags, L0);
  tst(L0);
  br(Assembler::zero, false, Assembler::pt, FlagsOk);
  delayed() -> restore();
  stop("flags not zeroed before leaving Java");
  bind(FlagsOk);
#endif /* ASSERT */
  //
  // When returning from calling out from Java mode the frame anchor's last_Java_pc
  // will always be set to NULL. It is set here so that if we are doing a call to
  // native (not VM) that we capture the known pc and don't have to rely on the
  // native call having a standard frame linkage where we can find the pc.

  if (last_Java_pc->is_valid()) {
    st_ptr(last_Java_pc, pc_addr);
  }

#ifdef _LP64
#ifdef ASSERT
  // Make sure that we have an odd stack
  Label StackOk;
  andcc(last_java_sp, 0x01, G0);
  br(Assembler::notZero, false, Assembler::pt, StackOk);
  delayed() -> nop();
  stop("Stack Not Biased in set_last_Java_frame");
  bind(StackOk);
#endif // ASSERT
  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
  add( last_java_sp, STACK_BIAS, G4_scratch );
  st_ptr(G4_scratch,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
#else
  st_ptr(last_java_sp,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
#endif // _LP64
}

void MacroAssembler::reset_last_Java_frame(void) {
  assert_not_delayed();

  Address sp_addr(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset()));
  Address pc_addr(G2_thread,
                  0,
                  in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
  Address flags(G2_thread,
                0,
                in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));

#ifdef ASSERT
  // check that it WAS previously set
#ifdef CC_INTERP
    save_frame(0);
#else
    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
#endif /* CC_INTERP */
    ld_ptr(sp_addr, L0);
    tst(L0);
    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
    restore();
#endif // ASSERT

  st_ptr(G0, sp_addr);
  // Always return last_Java_pc to zero
  st_ptr(G0, pc_addr);
  // Always null flags after return to Java
  st(G0, flags);
}


void MacroAssembler::call_VM_base(
  Register        oop_result,
  Register        thread_cache,
  Register        last_java_sp,
  address         entry_point,
  int             number_of_arguments,
  bool            check_exceptions)
{
  assert_not_delayed();

  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = SP;
  }
  // debugging support
  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");

  // 64-bit last_java_sp is biased!
  set_last_Java_frame(last_java_sp, noreg);
  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  save_thread(thread_cache);
  // do the call
  call(entry_point, relocInfo::runtime_call_type);
  if (!VerifyThread)
    delayed()->mov(G2_thread, O0);  // pass thread as first argument
  else
    delayed()->nop();             // (thread already passed)
  restore_thread(thread_cache);
  reset_last_Java_frame();

  // check for pending exceptions. use Gtemp as scratch register.
  if (check_exceptions) {
    check_and_forward_exception(Gtemp);
  }

  // get oop result if there is one and reset the value in the thread
  if (oop_result->is_valid()) {
    get_vm_result(oop_result);
  }
}

void MacroAssembler::check_and_forward_exception(Register scratch_reg)
{
  Label L;

  check_and_handle_popframe(scratch_reg);
  check_and_handle_earlyret(scratch_reg);

  Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  ld_ptr(exception_addr, scratch_reg);
  br_null(scratch_reg,false,pt,L);
  delayed()->nop();
  // we use O7 linkage so that forward_exception_entry has the issuing PC
  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  delayed()->nop();
  bind(L);
}


void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
}


void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
}


void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  call_VM(oop_result, entry_point, 1, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  call_VM(oop_result, entry_point, 2, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  call_VM(oop_result, entry_point, 3, check_exceptions);
}



// Note: The following call_VM overloadings are useful when a "save"
// has already been performed by a stub, and the last Java frame is
// the previous one.  In that case, last_java_sp must be passed as FP
// instead of SP.


void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}


void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  // O0 is reserved for the thread
  mov(arg_1, O1);
  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}



void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  assert_not_delayed();
  save_thread(thread_cache);
  // do the call
  call(entry_point, relocInfo::runtime_call_type);
  delayed()->nop();
  restore_thread(thread_cache);
}


void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
}


void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  mov(arg_1, O0);
  call_VM_leaf(thread_cache, entry_point, 1);
}


void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  mov(arg_1, O0);
  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  call_VM_leaf(thread_cache, entry_point, 2);
}


void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  mov(arg_1, O0);
  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  call_VM_leaf(thread_cache, entry_point, 3);
}


void MacroAssembler::get_vm_result(Register oop_result) {
  verify_thread();
  Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
  ld_ptr(    vm_result_addr, oop_result);
  st_ptr(G0, vm_result_addr);
  verify_oop(oop_result);
}


void MacroAssembler::get_vm_result_2(Register oop_result) {
  verify_thread();
  Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset()));
  ld_ptr(vm_result_addr_2, oop_result);
  st_ptr(G0, vm_result_addr_2);
  verify_oop(oop_result);
}


// We require that C code which does not return a value in vm_result will
// leave it undisturbed.
void MacroAssembler::set_vm_result(Register oop_result) {
  verify_thread();
  Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
  verify_oop(oop_result);

# ifdef ASSERT
    // Check that we are not overwriting any other oop.
#ifdef CC_INTERP
    save_frame(0);
#else
    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
#endif /* CC_INTERP */
    ld_ptr(vm_result_addr, L0);
    tst(L0);
    restore();
    breakpoint_trap(notZero, Assembler::ptr_cc);
    // }
# endif

  st_ptr(oop_result, vm_result_addr);
}


void MacroAssembler::store_check(Register tmp, Register obj) {
  // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)

  /* $$$ This stuff needs to go into one of the BarrierSet generator
     functions.  (The particular barrier sets will have to be friends of
     MacroAssembler, I guess.) */
  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
#ifdef _LP64
  srlx(obj, CardTableModRefBS::card_shift, obj);
#else
  srl(obj, CardTableModRefBS::card_shift, obj);
#endif
  assert( tmp != obj, "need separate temp reg");
  Address rs(tmp, (address)ct->byte_map_base);
  load_address(rs);
  stb(G0, rs.base(), obj);
}

void MacroAssembler::store_check(Register tmp, Register obj, Register offset) {
  store_check(tmp, obj);
}

// %%% Note:  The following six instructions have been moved,
//            unchanged, from assembler_sparc.inline.hpp.
//            They will be refactored at a later date.

void MacroAssembler::sethi(intptr_t imm22a,
                            Register d,
                            bool ForceRelocatable,
                            RelocationHolder const& rspec) {
  Address adr( d, (address)imm22a, rspec );
  MacroAssembler::sethi( adr, ForceRelocatable );
}


void MacroAssembler::sethi(Address& a, bool ForceRelocatable) {
  address save_pc;
  int shiftcnt;
  // if addr of local, do not need to load it
  assert(a.base() != FP  &&  a.base() != SP, "just use ld or st for locals");
#ifdef _LP64
# ifdef CHECK_DELAY
  assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
# endif
  v9_dep();
//  ForceRelocatable = 1;
  save_pc = pc();
  if (a.hi32() == 0 && a.low32() >= 0) {
    Assembler::sethi(a.low32(), a.base(), a.rspec());
  }
  else if (a.hi32() == -1) {
    Assembler::sethi(~a.low32(), a.base(), a.rspec());
    xor3(a.base(), ~low10(~0), a.base());
  }
  else {
    Assembler::sethi(a.hi32(), a.base(), a.rspec() );   // 22
    if ( a.hi32() & 0x3ff )                     // Any bits?
      or3( a.base(), a.hi32() & 0x3ff ,a.base() ); // High 32 bits are now in low 32
    if ( a.low32() & 0xFFFFFC00 ) {             // done?
      if( (a.low32() >> 20) & 0xfff ) {         // Any bits set?
        sllx(a.base(), 12, a.base());           // Make room for next 12 bits
        or3( a.base(), (a.low32() >> 20) & 0xfff,a.base() ); // Or in next 12
        shiftcnt = 0;                           // We already shifted
      }
      else
        shiftcnt = 12;
      if( (a.low32() >> 10) & 0x3ff ) {
        sllx(a.base(), shiftcnt+10, a.base());// Make room for last 10 bits
        or3( a.base(), (a.low32() >> 10) & 0x3ff,a.base() ); // Or in next 10
        shiftcnt = 0;
      }
      else
        shiftcnt = 10;
      sllx(a.base(), shiftcnt+10 , a.base());           // Shift leaving disp field 0'd
    }
    else
      sllx( a.base(), 32, a.base() );
  }
  // Pad out the instruction sequence so it can be
  // patched later.
  if ( ForceRelocatable || (a.rtype() != relocInfo::none &&
                            a.rtype() != relocInfo::runtime_call_type) ) {
    while ( pc() < (save_pc + (7 * BytesPerInstWord )) )
      nop();
  }
#else
  Assembler::sethi(a.hi(), a.base(), a.rspec());
#endif

}

int MacroAssembler::size_of_sethi(address a, bool worst_case) {
#ifdef _LP64
  if (worst_case) return 7;
  intptr_t iaddr = (intptr_t)a;
  int hi32 = (int)(iaddr >> 32);
  int lo32 = (int)(iaddr);
  int inst_count;
  if (hi32 == 0 && lo32 >= 0)
    inst_count = 1;
  else if (hi32 == -1)
    inst_count = 2;
  else {
    inst_count = 2;
    if ( hi32 & 0x3ff )
      inst_count++;
    if ( lo32 & 0xFFFFFC00 ) {
      if( (lo32 >> 20) & 0xfff ) inst_count += 2;
      if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
    }
  }
  return BytesPerInstWord * inst_count;
#else
  return BytesPerInstWord;
#endif
}

int MacroAssembler::worst_case_size_of_set() {
  return size_of_sethi(NULL, true) + 1;
}

void MacroAssembler::set(intptr_t value, Register d,
                         RelocationHolder const& rspec) {
  Address val( d, (address)value, rspec);

  if ( rspec.type() == relocInfo::none ) {
    // can optimize
    if (-4096 <= value  &&  value <= 4095) {
      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
      return;
    }
    if (inv_hi22(hi22(value)) == value) {
      sethi(val);
      return;
    }
  }
  assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
  sethi( val );
  if (rspec.type() != relocInfo::none || (value & 0x3ff) != 0) {
    add( d, value &  0x3ff, d, rspec);
  }
}

void MacroAssembler::setsw(int value, Register d,
                           RelocationHolder const& rspec) {
  Address val( d, (address)value, rspec);
  if ( rspec.type() == relocInfo::none ) {
    // can optimize
    if (-4096 <= value  &&  value <= 4095) {
      or3(G0, value, d);
      return;
    }
    if (inv_hi22(hi22(value)) == value) {
      sethi( val );
#ifndef _LP64
      if ( value < 0 ) {
        assert_not_delayed();
        sra (d, G0, d);
      }
#endif
      return;
    }
  }
  assert_not_delayed();
  sethi( val );
  add( d, value &  0x3ff, d, rspec);

  // (A negative value could be loaded in 2 insns with sethi/xor,
  // but it would take a more complex relocation.)
#ifndef _LP64
  if ( value < 0)
    sra(d, G0, d);
#endif
}

// %%% End of moved six set instructions.


void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  assert_not_delayed();
  v9_dep();

  int hi = (int)(value >> 32);
  int lo = (int)(value & ~0);
  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  if (Assembler::is_simm13(lo) && value == lo) {
    or3(G0, lo, d);
  } else if (hi == 0) {
    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
    if (low10(lo) != 0)
      or3(d, low10(lo), d);
  }
  else if (hi == -1) {
    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
    xor3(d, low10(lo) ^ ~low10(~0), d);
  }
  else if (lo == 0) {
    if (Assembler::is_simm13(hi)) {
      or3(G0, hi, d);
    } else {
      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
      if (low10(hi) != 0)
        or3(d, low10(hi), d);
    }
    sllx(d, 32, d);
  }
  else {
    Assembler::sethi(hi, tmp);
    Assembler::sethi(lo,   d); // macro assembler version sign-extends
    if (low10(hi) != 0)
      or3 (tmp, low10(hi), tmp);
    if (low10(lo) != 0)
      or3 (  d, low10(lo),   d);
    sllx(tmp, 32, tmp);
    or3 (d, tmp, d);
  }
}

// compute size in bytes of sparc frame, given
// number of extraWords
int MacroAssembler::total_frame_size_in_bytes(int extraWords) {

  int nWords = frame::memory_parameter_word_sp_offset;

  nWords += extraWords;

  if (nWords & 1) ++nWords; // round up to double-word

  return nWords * BytesPerWord;
}


// save_frame: given number of "extra" words in frame,
// issue approp. save instruction (p 200, v8 manual)

void MacroAssembler::save_frame(int extraWords = 0) {
  int delta = -total_frame_size_in_bytes(extraWords);
  if (is_simm13(delta)) {
    save(SP, delta, SP);
  } else {
    set(delta, G3_scratch);
    save(SP, G3_scratch, SP);
  }
}


void MacroAssembler::save_frame_c1(int size_in_bytes) {
  if (is_simm13(-size_in_bytes)) {
    save(SP, -size_in_bytes, SP);
  } else {
    set(-size_in_bytes, G3_scratch);
    save(SP, G3_scratch, SP);
  }
}


void MacroAssembler::save_frame_and_mov(int extraWords,
                                        Register s1, Register d1,
                                        Register s2, Register d2) {
  assert_not_delayed();

  // The trick here is to use precisely the same memory word
  // that trap handlers also use to save the register.
  // This word cannot be used for any other purpose, but
  // it works fine to save the register's value, whether or not
  // an interrupt flushes register windows at any given moment!
  Address s1_addr;
  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
    s1_addr = s1->address_in_saved_window();
    st_ptr(s1, s1_addr);
  }

  Address s2_addr;
  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
    s2_addr = s2->address_in_saved_window();
    st_ptr(s2, s2_addr);
  }

  save_frame(extraWords);

  if (s1_addr.base() == SP) {
    ld_ptr(s1_addr.after_save(), d1);
  } else if (s1->is_valid()) {
    mov(s1->after_save(), d1);
  }

  if (s2_addr.base() == SP) {
    ld_ptr(s2_addr.after_save(), d2);
  } else if (s2->is_valid()) {
    mov(s2->after_save(), d2);
  }
}


Address MacroAssembler::allocate_oop_address(jobject obj, Register d) {
  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->allocate_index(obj);
  return Address(d, address(obj), oop_Relocation::spec(oop_index));
}


Address MacroAssembler::constant_oop_address(jobject obj, Register d) {
  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  return Address(d, address(obj), oop_Relocation::spec(oop_index));
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);

  assert_not_delayed();
  // Relocation with special format (see relocInfo_sparc.hpp).
  relocate(rspec, 1);
  // Assembler::sethi(0x3fffff, d);
  emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  add(d, 0x3ff, d);

}

D
duke 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

void MacroAssembler::align(int modulus) {
  while (offset() % modulus != 0) nop();
}


void MacroAssembler::safepoint() {
  relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
}


void RegistersForDebugging::print(outputStream* s) {
  int j;
  for ( j = 0;  j < 8;  ++j )
    if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
    else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  s->cr();

  for ( j = 0;  j < 8;  ++j )
    s->print_cr("l%d = 0x%.16lx", j, l[j]);
  s->cr();

  for ( j = 0;  j < 8;  ++j )
    if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
    else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  s->cr();

  for ( j = 0;  j < 8;  ++j )
    s->print_cr("g%d = 0x%.16lx", j, g[j]);
  s->cr();

  // print out floats with compression
  for (j = 0; j < 32; ) {
    jfloat val = f[j];
    int last = j;
    for ( ;  last+1 < 32;  ++last ) {
      char b1[1024], b2[1024];
      sprintf(b1, "%f", val);
      sprintf(b2, "%f", f[last+1]);
      if (strcmp(b1, b2))
        break;
    }
    s->print("f%d", j);
    if ( j != last )  s->print(" - f%d", last);
    s->print(" = %f", val);
    s->fill_to(25);
    s->print_cr(" (0x%x)", val);
    j = last + 1;
  }
  s->cr();

  // and doubles (evens only)
  for (j = 0; j < 32; ) {
    jdouble val = d[j];
    int last = j;
    for ( ;  last+1 < 32;  ++last ) {
      char b1[1024], b2[1024];
      sprintf(b1, "%f", val);
      sprintf(b2, "%f", d[last+1]);
      if (strcmp(b1, b2))
        break;
    }
    s->print("d%d", 2 * j);
    if ( j != last )  s->print(" - d%d", last);
    s->print(" = %f", val);
    s->fill_to(30);
    s->print("(0x%x)", *(int*)&val);
    s->fill_to(42);
    s->print_cr("(0x%x)", *(1 + (int*)&val));
    j = last + 1;
  }
  s->cr();
}

void RegistersForDebugging::save_registers(MacroAssembler* a) {
  a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  a->flush_windows();
  int i;
  for (i = 0; i < 8; ++i) {
    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  }
  for (i = 0;  i < 32; ++i) {
    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  }
  for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  }
}

void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  for (int i = 1; i < 8;  ++i) {
    a->ld_ptr(r, g_offset(i), as_gRegister(i));
  }
  for (int j = 0; j < 32; ++j) {
    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  }
  for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  }
}


// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
void MacroAssembler::push_fTOS() {
  // %%%%%% need to implement this
}

// pops double TOS element from CPU stack and pushes on FPU stack
void MacroAssembler::pop_fTOS() {
  // %%%%%% need to implement this
}

void MacroAssembler::empty_FPU_stack() {
  // %%%%%% need to implement this
}

void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  // plausibility check for oops
  if (!VerifyOops) return;

  if (reg == G0)  return;       // always NULL, which is always an oop

  char buffer[16];
  sprintf(buffer, "%d", line);
  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  char * real_msg = new char[len];
  sprintf(real_msg, "%s (%s:%d)", msg, file, line);

  // Call indirectly to solve generation ordering problem
  Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());

  // Make some space on stack above the current register window.
  // Enough to hold 8 64-bit registers.
  add(SP,-8*8,SP);

  // Save some 64-bit registers; a normal 'save' chops the heads off
  // of 64-bit longs in the 32-bit build.
  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);

  set((intptr_t)real_msg, O1);
  // Load address to call to into O7
  load_ptr_contents(a, O7);
  // Register call to verify_oop_subroutine
  callr(O7, G0);
  delayed()->nop();
  // recover frame size
  add(SP, 8*8,SP);
}

void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  // plausibility check for oops
  if (!VerifyOops) return;

  char buffer[64];
  sprintf(buffer, "%d", line);
  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  sprintf(buffer, " at SP+%d ", addr.disp());
  len += strlen(buffer);
  char * real_msg = new char[len];
  sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);

  // Call indirectly to solve generation ordering problem
  Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());

  // Make some space on stack above the current register window.
  // Enough to hold 8 64-bit registers.
  add(SP,-8*8,SP);

  // Save some 64-bit registers; a normal 'save' chops the heads off
  // of 64-bit longs in the 32-bit build.
  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);

  set((intptr_t)real_msg, O1);
  // Load address to call to into O7
  load_ptr_contents(a, O7);
  // Register call to verify_oop_subroutine
  callr(O7, G0);
  delayed()->nop();
  // recover frame size
  add(SP, 8*8,SP);
}

// side-door communication with signalHandler in os_solaris.cpp
address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };

// This macro is expanded just once; it creates shared code.  Contract:
// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
// registers, including flags.  May not use a register 'save', as this blows
// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
// call.
void MacroAssembler::verify_oop_subroutine() {
  assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );

  // Leaf call; no frame.
  Label succeed, fail, null_or_fail;

  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  // O0 is now the oop to be checked.  O7 is the return address.
  Register O0_obj = O0;

  // Save some more registers for temps.
  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);

  // Save flags
  Register O5_save_flags = O5;
  rdccr( O5_save_flags );

  { // count number of verifies
    Register O2_adr   = O2;
    Register O3_accum = O3;
    Address count_addr( O2_adr, (address) StubRoutines::verify_oop_count_addr() );
    sethi(count_addr);
    ld(count_addr, O3_accum);
    inc(O3_accum);
    st(O3_accum, count_addr);
  }

  Register O2_mask = O2;
  Register O3_bits = O3;
  Register O4_temp = O4;

  // mark lower end of faulting range
  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  _verify_oop_implicit_branch[0] = pc();

  // We can't check the mark oop because it could be in the process of
  // locking or unlocking while this is running.
  set(Universe::verify_oop_mask (), O2_mask);
  set(Universe::verify_oop_bits (), O3_bits);

  // assert((obj & oop_mask) == oop_bits);
  and3(O0_obj, O2_mask, O4_temp);
  cmp(O4_temp, O3_bits);
  brx(notEqual, false, pn, null_or_fail);
  delayed()->nop();

  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
    // the null_or_fail case is useless; must test for null separately
    br_null(O0_obj, false, pn, succeed);
    delayed()->nop();
  }

  // Check the klassOop of this object for being in the right area of memory.
  // Cannot do the load in the delay above slot in case O0 is null
1797
  load_klass(O0_obj, O0_obj);
D
duke 已提交
1798 1799 1800 1801 1802 1803 1804 1805
  // assert((klass & klass_mask) == klass_bits);
  if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
    set(Universe::verify_klass_mask(), O2_mask);
  if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
    set(Universe::verify_klass_bits(), O3_bits);
  and3(O0_obj, O2_mask, O4_temp);
  cmp(O4_temp, O3_bits);
  brx(notEqual, false, pn, fail);
1806
  delayed()->nop();
D
duke 已提交
1807
  // Check the klass's klass
1808
  load_klass(O0_obj, O0_obj);
D
duke 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
  and3(O0_obj, O2_mask, O4_temp);
  cmp(O4_temp, O3_bits);
  brx(notEqual, false, pn, fail);
  delayed()->wrccr( O5_save_flags ); // Restore CCR's

  // mark upper end of faulting range
  _verify_oop_implicit_branch[1] = pc();

  //-----------------------
  // all tests pass
  bind(succeed);

  // Restore prior 64-bit registers
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);

  retl();                       // Leaf return; restore prior O7 in delay slot
  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);

  //-----------------------
  bind(null_or_fail);           // nulls are less common but OK
  br_null(O0_obj, false, pt, succeed);
  delayed()->wrccr( O5_save_flags ); // Restore CCR's

  //-----------------------
  // report failure:
  bind(fail);
  _verify_oop_implicit_branch[2] = pc();

  wrccr( O5_save_flags ); // Restore CCR's

  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));

  // stop_subroutine expects message pointer in I1.
  mov(I1, O1);

  // Restore prior 64-bit registers
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);

  // factor long stop-sequence into subroutine to save space
  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");

  // call indirectly to solve generation ordering problem
  Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
  load_ptr_contents(a, O5);
  jmpl(O5, 0, O7);
  delayed()->nop();
}


void MacroAssembler::stop(const char* msg) {
  // save frame first to get O7 for return address
  // add one word to size in case struct is odd number of words long
  // It must be doubleword-aligned for storing doubles into it.

    save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));

    // stop_subroutine expects message pointer in I1.
    set((intptr_t)msg, O1);

    // factor long stop-sequence into subroutine to save space
    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");

    // call indirectly to solve generation ordering problem
    Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
    load_ptr_contents(a, O5);
    jmpl(O5, 0, O7);
    delayed()->nop();

    breakpoint_trap();   // make stop actually stop rather than writing
                         // unnoticeable results in the output files.

    // restore(); done in callee to save space!
}


void MacroAssembler::warn(const char* msg) {
  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  RegistersForDebugging::save_registers(this);
  mov(O0, L0);
  set((intptr_t)msg, O0);
  call( CAST_FROM_FN_PTR(address, warning) );
  delayed()->nop();
//  ret();
//  delayed()->restore();
  RegistersForDebugging::restore_registers(this, L0);
  restore();
}


void MacroAssembler::untested(const char* what) {
  // We must be able to turn interactive prompting off
  // in order to run automated test scripts on the VM
  // Use the flag ShowMessageBoxOnError

  char* b = new char[1024];
  sprintf(b, "untested: %s", what);

  if ( ShowMessageBoxOnError )   stop(b);
  else                           warn(b);
}


void MacroAssembler::stop_subroutine() {
  RegistersForDebugging::save_registers(this);

  // for the sake of the debugger, stick a PC on the current frame
  // (this assumes that the caller has performed an extra "save")
  mov(I7, L7);
  add(O7, -7 * BytesPerInt, I7);

  save_frame(); // one more save to free up another O7 register
  mov(I0, O1); // addr of reg save area

  // We expect pointer to message in I1. Caller must set it up in O1
  mov(I1, O0); // get msg
  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  delayed()->nop();

  restore();

  RegistersForDebugging::restore_registers(this, O0);

  save_frame(0);
  call(CAST_FROM_FN_PTR(address,breakpoint));
  delayed()->nop();
  restore();

  mov(L7, I7);
  retl();
  delayed()->restore(); // see stop above
}


void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  if ( ShowMessageBoxOnError ) {
      JavaThreadState saved_state = JavaThread::current()->thread_state();
      JavaThread::current()->set_thread_state(_thread_in_vm);
      {
        // In order to get locks work, we need to fake a in_VM state
        ttyLocker ttyl;
        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
          ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
        }
        if (os::message_box(msg, "Execution stopped, print registers?"))
          regs->print(::tty);
      }
      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  }
  else
     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  assert(false, "error");
}


#ifndef PRODUCT
void MacroAssembler::test() {
  ResourceMark rm;

  CodeBuffer cb("test", 10000, 10000);
  MacroAssembler* a = new MacroAssembler(&cb);
  VM_Version::allow_all();
  a->test_v9();
  a->test_v8_onlys();
  VM_Version::revert();

  StubRoutines::Sparc::test_stop_entry()();
}
#endif


void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  Label no_extras;
  br( negative, true, pt, no_extras ); // if neg, clear reg
  delayed()->set( 0, Rresult);         // annuled, so only if taken
  bind( no_extras );
}


void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
#ifdef _LP64
  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
#else
  add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
#endif
  bclr(1, Rresult);
  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
}


void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  calc_frame_size(Rextra_words, Rresult);
  neg(Rresult);
  save(SP, Rresult, SP);
}


// ---------------------------------------------------------
Assembler::RCondition cond2rcond(Assembler::Condition c) {
  switch (c) {
    /*case zero: */
    case Assembler::equal:        return Assembler::rc_z;
    case Assembler::lessEqual:    return Assembler::rc_lez;
    case Assembler::less:         return Assembler::rc_lz;
    /*case notZero:*/
    case Assembler::notEqual:     return Assembler::rc_nz;
    case Assembler::greater:      return Assembler::rc_gz;
    case Assembler::greaterEqual: return Assembler::rc_gez;
  }
  ShouldNotReachHere();
  return Assembler::rc_z;
}

// compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
  tst(s1);
  br (c, a, p, L);
}


// Compares a pointer register with zero and branches on null.
// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  assert_not_delayed();
#ifdef _LP64
  bpr( rc_z, a, p, s1, L );
#else
  tst(s1);
  br ( zero, a, p, L );
#endif
}

void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  assert_not_delayed();
#ifdef _LP64
  bpr( rc_nz, a, p, s1, L );
#else
  tst(s1);
  br ( notZero, a, p, L );
#endif
}


// instruction sequences factored across compiler & interpreter


void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
                           Register Rb_hi, Register Rb_low,
                           Register Rresult) {

  Label check_low_parts, done;

  cmp(Ra_hi, Rb_hi );  // compare hi parts
  br(equal, true, pt, check_low_parts);
  delayed()->cmp(Ra_low, Rb_low); // test low parts

  // And, with an unsigned comparison, it does not matter if the numbers
  // are negative or not.
  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  // The second one is bigger (unsignedly).

  // Other notes:  The first move in each triplet can be unconditional
  // (and therefore probably prefetchable).
  // And the equals case for the high part does not need testing,
  // since that triplet is reached only after finding the high halves differ.

  if (VM_Version::v9_instructions_work()) {

                                    mov  (                     -1, Rresult);
    ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
  }
  else {
    br(less,    true, pt, done); delayed()-> set(-1, Rresult);
    br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  }

  bind( check_low_parts );

  if (VM_Version::v9_instructions_work()) {
    mov(                               -1, Rresult);
    movcc(equal,           false, icc,  0, Rresult);
    movcc(greaterUnsigned, false, icc,  1, Rresult);
  }
  else {
                                                    set(-1, Rresult);
    br(equal,           true, pt, done); delayed()->set( 0, Rresult);
    br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  }
  bind( done );
}

void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  subcc(  G0, Rlow, Rlow );
  subc(   G0, Rhi,  Rhi  );
}

void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
                           Register Rcount,
                           Register Rout_high, Register Rout_low,
                           Register Rtemp ) {


  Register Ralt_count = Rtemp;
  Register Rxfer_bits = Rtemp;

  assert( Ralt_count != Rin_high
      &&  Ralt_count != Rin_low
      &&  Ralt_count != Rcount
      &&  Rxfer_bits != Rin_low
      &&  Rxfer_bits != Rin_high
      &&  Rxfer_bits != Rcount
      &&  Rxfer_bits != Rout_low
      &&  Rout_low   != Rin_high,
        "register alias checks");

  Label big_shift, done;

  // This code can be optimized to use the 64 bit shifts in V9.
  // Here we use the 32 bit shifts.

  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  subcc(Rcount,         31,             Ralt_count);
  br(greater, true, pn, big_shift);
  delayed()->
  dec(Ralt_count);

  // shift < 32 bits, Ralt_count = Rcount-31

  // We get the transfer bits by shifting right by 32-count the low
  // register. This is done by shifting right by 31-count and then by one
  // more to take care of the special (rare) case where count is zero
  // (shifting by 32 would not work).

  neg(  Ralt_count                                 );

  // The order of the next two instructions is critical in the case where
  // Rin and Rout are the same and should not be reversed.

  srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
  if (Rcount != Rout_low) {
    sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  }
  sll(  Rin_high,       Rcount,         Rout_high  );
  if (Rcount == Rout_low) {
    sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  }
  srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
  ba (false, done);
  delayed()->
  or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low

  // shift >= 32 bits, Ralt_count = Rcount-32
  bind(big_shift);
  sll(  Rin_low,        Ralt_count,     Rout_high  );
  clr(  Rout_low                                   );

  bind(done);
}


void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
                           Register Rcount,
                           Register Rout_high, Register Rout_low,
                           Register Rtemp ) {

  Register Ralt_count = Rtemp;
  Register Rxfer_bits = Rtemp;

  assert( Ralt_count != Rin_high
      &&  Ralt_count != Rin_low
      &&  Ralt_count != Rcount
      &&  Rxfer_bits != Rin_low
      &&  Rxfer_bits != Rin_high
      &&  Rxfer_bits != Rcount
      &&  Rxfer_bits != Rout_high
      &&  Rout_high  != Rin_low,
        "register alias checks");

  Label big_shift, done;

  // This code can be optimized to use the 64 bit shifts in V9.
  // Here we use the 32 bit shifts.

  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  subcc(Rcount,         31,             Ralt_count);
  br(greater, true, pn, big_shift);
  delayed()->dec(Ralt_count);

  // shift < 32 bits, Ralt_count = Rcount-31

  // We get the transfer bits by shifting left by 32-count the high
  // register. This is done by shifting left by 31-count and then by one
  // more to take care of the special (rare) case where count is zero
  // (shifting by 32 would not work).

  neg(  Ralt_count                                  );
  if (Rcount != Rout_low) {
    srl(        Rin_low,        Rcount,         Rout_low    );
  }

  // The order of the next two instructions is critical in the case where
  // Rin and Rout are the same and should not be reversed.

  sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  sra(  Rin_high,       Rcount,         Rout_high   ); // high half
  sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  if (Rcount == Rout_low) {
    srl(        Rin_low,        Rcount,         Rout_low    );
  }
  ba (false, done);
  delayed()->
  or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high

  // shift >= 32 bits, Ralt_count = Rcount-32
  bind(big_shift);

  sra(  Rin_high,       Ralt_count,     Rout_low    );
  sra(  Rin_high,       31,             Rout_high   ); // sign into hi

  bind( done );
}



void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
                            Register Rcount,
                            Register Rout_high, Register Rout_low,
                            Register Rtemp ) {

  Register Ralt_count = Rtemp;
  Register Rxfer_bits = Rtemp;

  assert( Ralt_count != Rin_high
      &&  Ralt_count != Rin_low
      &&  Ralt_count != Rcount
      &&  Rxfer_bits != Rin_low
      &&  Rxfer_bits != Rin_high
      &&  Rxfer_bits != Rcount
      &&  Rxfer_bits != Rout_high
      &&  Rout_high  != Rin_low,
        "register alias checks");

  Label big_shift, done;

  // This code can be optimized to use the 64 bit shifts in V9.
  // Here we use the 32 bit shifts.

  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  subcc(Rcount,         31,             Ralt_count);
  br(greater, true, pn, big_shift);
  delayed()->dec(Ralt_count);

  // shift < 32 bits, Ralt_count = Rcount-31

  // We get the transfer bits by shifting left by 32-count the high
  // register. This is done by shifting left by 31-count and then by one
  // more to take care of the special (rare) case where count is zero
  // (shifting by 32 would not work).

  neg(  Ralt_count                                  );
  if (Rcount != Rout_low) {
    srl(        Rin_low,        Rcount,         Rout_low    );
  }

  // The order of the next two instructions is critical in the case where
  // Rin and Rout are the same and should not be reversed.

  sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  srl(  Rin_high,       Rcount,         Rout_high   ); // high half
  sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  if (Rcount == Rout_low) {
    srl(        Rin_low,        Rcount,         Rout_low    );
  }
  ba (false, done);
  delayed()->
  or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high

  // shift >= 32 bits, Ralt_count = Rcount-32
  bind(big_shift);

  srl(  Rin_high,       Ralt_count,     Rout_low    );
  clr(  Rout_high                                   );

  bind( done );
}

#ifdef _LP64
void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  cmp(Ra, Rb);
  mov(                       -1, Rresult);
  movcc(equal,   false, xcc,  0, Rresult);
  movcc(greater, false, xcc,  1, Rresult);
}
#endif


void MacroAssembler::float_cmp( bool is_float, int unordered_result,
                                FloatRegister Fa, FloatRegister Fb,
                                Register Rresult) {

  fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);

  Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  Condition eq =                          f_equal;
  Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;

  if (VM_Version::v9_instructions_work()) {

    mov(                   -1, Rresult );
    movcc( eq, true, fcc0,  0, Rresult );
    movcc( gt, true, fcc0,  1, Rresult );

  } else {
    Label done;

                                         set( -1, Rresult );
    //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
    fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
    fb( gt, true, pn, done);  delayed()->set(  1, Rresult );

    bind (done);
  }
}


void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
{
  if (VM_Version::v9_instructions_work()) {
    Assembler::fneg(w, s, d);
  } else {
    if (w == FloatRegisterImpl::S) {
      Assembler::fneg(w, s, d);
    } else if (w == FloatRegisterImpl::D) {
      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");

      Assembler::fneg(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
    } else {
      assert(w == FloatRegisterImpl::Q, "Invalid float register width");

      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");

      Assembler::fneg(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
    }
  }
}

void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
{
  if (VM_Version::v9_instructions_work()) {
    Assembler::fmov(w, s, d);
  } else {
    if (w == FloatRegisterImpl::S) {
      Assembler::fmov(w, s, d);
    } else if (w == FloatRegisterImpl::D) {
      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");

      Assembler::fmov(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
    } else {
      assert(w == FloatRegisterImpl::Q, "Invalid float register width");

      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");

      Assembler::fmov(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
    }
  }
}

void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
{
  if (VM_Version::v9_instructions_work()) {
    Assembler::fabs(w, s, d);
  } else {
    if (w == FloatRegisterImpl::S) {
      Assembler::fabs(w, s, d);
    } else if (w == FloatRegisterImpl::D) {
      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");

      Assembler::fabs(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
    } else {
      assert(w == FloatRegisterImpl::Q, "Invalid float register width");

      // number() does a sanity check on the alignment.
      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
       ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");

      Assembler::fabs(FloatRegisterImpl::S, s, d);
      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
    }
  }
}

void MacroAssembler::save_all_globals_into_locals() {
  mov(G1,L1);
  mov(G2,L2);
  mov(G3,L3);
  mov(G4,L4);
  mov(G5,L5);
  mov(G6,L6);
  mov(G7,L7);
}

void MacroAssembler::restore_globals_from_locals() {
  mov(L1,G1);
  mov(L2,G2);
  mov(L3,G3);
  mov(L4,G4);
  mov(L5,G5);
  mov(L6,G6);
  mov(L7,G7);
}

// Use for 64 bit operation.
void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
{
  // store ptr_reg as the new top value
#ifdef _LP64
  casx(top_ptr_reg, top_reg, ptr_reg);
#else
  cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
#endif // _LP64
}

// [RGV] This routine does not handle 64 bit operations.
//       use casx_under_lock() or casx directly!!!
void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
{
  // store ptr_reg as the new top value
  if (VM_Version::v9_instructions_work()) {
    cas(top_ptr_reg, top_reg, ptr_reg);
  } else {

    // If the register is not an out nor global, it is not visible
    // after the save.  Allocate a register for it, save its
    // value in the register save area (the save may not flush
    // registers to the save area).

    Register top_ptr_reg_after_save;
    Register top_reg_after_save;
    Register ptr_reg_after_save;

    if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
      top_ptr_reg_after_save = top_ptr_reg->after_save();
    } else {
      Address reg_save_addr = top_ptr_reg->address_in_saved_window();
      top_ptr_reg_after_save = L0;
      st(top_ptr_reg, reg_save_addr);
    }

    if (top_reg->is_out() || top_reg->is_global()) {
      top_reg_after_save = top_reg->after_save();
    } else {
      Address reg_save_addr = top_reg->address_in_saved_window();
      top_reg_after_save = L1;
      st(top_reg, reg_save_addr);
    }

    if (ptr_reg->is_out() || ptr_reg->is_global()) {
      ptr_reg_after_save = ptr_reg->after_save();
    } else {
      Address reg_save_addr = ptr_reg->address_in_saved_window();
      ptr_reg_after_save = L2;
      st(ptr_reg, reg_save_addr);
    }

    const Register& lock_reg = L3;
    const Register& lock_ptr_reg = L4;
    const Register& value_reg = L5;
    const Register& yield_reg = L6;
    const Register& yieldall_reg = L7;

    save_frame();

    if (top_ptr_reg_after_save == L0) {
      ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
    }

    if (top_reg_after_save == L1) {
      ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
    }

    if (ptr_reg_after_save == L2) {
      ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
    }

    Label(retry_get_lock);
    Label(not_same);
    Label(dont_yield);

    assert(lock_addr, "lock_address should be non null for v8");
    set((intptr_t)lock_addr, lock_ptr_reg);
    // Initialize yield counter
    mov(G0,yield_reg);
    mov(G0, yieldall_reg);
    set(StubRoutines::Sparc::locked, lock_reg);

    bind(retry_get_lock);
    cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
    br(Assembler::less, false, Assembler::pt, dont_yield);
    delayed()->nop();

    if(use_call_vm) {
      Untested("Need to verify global reg consistancy");
      call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
    } else {
      // Save the regs and make space for a C call
      save(SP, -96, SP);
      save_all_globals_into_locals();
      call(CAST_FROM_FN_PTR(address,os::yield_all));
      delayed()->mov(yieldall_reg, O0);
      restore_globals_from_locals();
      restore();
    }

    // reset the counter
    mov(G0,yield_reg);
    add(yieldall_reg, 1, yieldall_reg);

    bind(dont_yield);
    // try to get lock
    swap(lock_ptr_reg, 0, lock_reg);

    // did we get the lock?
    cmp(lock_reg, StubRoutines::Sparc::unlocked);
    br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
    delayed()->add(yield_reg,1,yield_reg);

    // yes, got lock.  do we have the same top?
    ld(top_ptr_reg_after_save, 0, value_reg);
    cmp(value_reg, top_reg_after_save);
    br(Assembler::notEqual, false, Assembler::pn, not_same);
    delayed()->nop();

    // yes, same top.
    st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
    membar(Assembler::StoreStore);

    bind(not_same);
    mov(value_reg, ptr_reg_after_save);
    st(lock_reg, lock_ptr_reg, 0); // unlock

    restore();
  }
}

void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
                                          Label& done, Label* slow_case,
                                          BiasedLockingCounters* counters) {
  assert(UseBiasedLocking, "why call this otherwise?");

  if (PrintBiasedLockingStatistics) {
    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
    if (counters == NULL)
      counters = BiasedLocking::counters();
  }

  Label cas_label;

  // Biased locking
  // See whether the lock is currently biased toward our thread and
  // whether the epoch is still valid
  // Note that the runtime guarantees sufficient alignment of JavaThread
  // pointers to allow age to be placed into low bits
  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  cmp(temp_reg, markOopDesc::biased_lock_pattern);
  brx(Assembler::notEqual, false, Assembler::pn, cas_label);
2607
  delayed()->nop();
D
duke 已提交
2608

2609
  load_klass(obj_reg, temp_reg);
D
duke 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  or3(G2_thread, temp_reg, temp_reg);
  xor3(mark_reg, temp_reg, temp_reg);
  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  if (counters != NULL) {
    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
    // Reload mark_reg as we may need it later
    ld_ptr(Address(obj_reg, 0, oopDesc::mark_offset_in_bytes()), mark_reg);
  }
  brx(Assembler::equal, true, Assembler::pt, done);
  delayed()->nop();

  Label try_revoke_bias;
  Label try_rebias;
  Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
  assert(mark_addr.disp() == 0, "cas must take a zero displacement");

  // At this point we know that the header has the bias pattern and
  // that we are not the bias owner in the current epoch. We need to
  // figure out more details about the state of the header in order to
  // know what operations can be legally performed on the object's
  // header.

  // If the low three bits in the xor result aren't clear, that means
  // the prototype header is no longer biased and we have to revoke
  // the bias on this object.
  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);

  // Biasing is still enabled for this data type. See whether the
  // epoch of the current bias is still valid, meaning that the epoch
  // bits of the mark word are equal to the epoch bits of the
  // prototype header. (Note that the prototype header's epoch bits
  // only change at a safepoint.) If not, attempt to rebias the object
  // toward the current thread. Note that we must be absolutely sure
  // that the current epoch is invalid in order to do this because
  // otherwise the manipulations it performs on the mark word are
  // illegal.
  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  brx(Assembler::notZero, false, Assembler::pn, try_rebias);

  // The epoch of the current bias is still valid but we know nothing
  // about the owner; it might be set or it might be clear. Try to
  // acquire the bias of the object using an atomic operation. If this
  // fails we will go in to the runtime to revoke the object's bias.
  // Note that we first construct the presumed unbiased header so we
  // don't accidentally blow away another thread's valid bias.
  delayed()->and3(mark_reg,
                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
                  mark_reg);
  or3(G2_thread, mark_reg, temp_reg);
  casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
                  (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  cmp(mark_reg, temp_reg);
  if (counters != NULL) {
    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  }
  if (slow_case != NULL) {
    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
    delayed()->nop();
  }
  br(Assembler::always, false, Assembler::pt, done);
  delayed()->nop();

  bind(try_rebias);
  // At this point we know the epoch has expired, meaning that the
  // current "bias owner", if any, is actually invalid. Under these
  // circumstances _only_, we are allowed to use the current header's
  // value as the comparison value when doing the cas to acquire the
  // bias in the current epoch. In other words, we allow transfer of
  // the bias from one thread to another directly in this situation.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
2688
  load_klass(obj_reg, temp_reg);
D
duke 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  or3(G2_thread, temp_reg, temp_reg);
  casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
                  (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  cmp(mark_reg, temp_reg);
  if (counters != NULL) {
    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  }
  if (slow_case != NULL) {
    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
    delayed()->nop();
  }
  br(Assembler::always, false, Assembler::pt, done);
  delayed()->nop();

  bind(try_revoke_bias);
  // The prototype mark in the klass doesn't have the bias bit set any
  // more, indicating that objects of this data type are not supposed
  // to be biased any more. We are going to try to reset the mark of
  // this object to the prototype value and fall through to the
  // CAS-based locking scheme. Note that if our CAS fails, it means
  // that another thread raced us for the privilege of revoking the
  // bias of this particular object, so it's okay to continue in the
  // normal locking code.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
2720
  load_klass(obj_reg, temp_reg);
D
duke 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
                  (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  // Fall through to the normal CAS-based lock, because no matter what
  // the result of the above CAS, some thread must have succeeded in
  // removing the bias bit from the object's header.
  if (counters != NULL) {
    cmp(mark_reg, temp_reg);
    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  }

  bind(cas_label);
}

void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
                                          bool allow_delay_slot_filling) {
  // Check for biased locking unlock case, which is a no-op
  // Note: we do not have to check the thread ID for two reasons.
  // First, the interpreter checks for IllegalMonitorStateException at
  // a higher level. Second, if the bias was revoked while we held the
  // lock, the object could not be rebiased toward another thread, so
  // the bias bit would be clear.
  ld_ptr(mark_addr, temp_reg);
  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  cmp(temp_reg, markOopDesc::biased_lock_pattern);
  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  delayed();
  if (!allow_delay_slot_filling) {
    nop();
  }
}


// CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
// Solaris/SPARC's "as".  Another apt name would be cas_ptr()

void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
}



// compiler_lock_object() and compiler_unlock_object() are direct transliterations
// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
// The code could be tightened up considerably.
//
// box->dhw disposition - post-conditions at DONE_LABEL.
// -   Successful inflated lock:  box->dhw != 0.
//     Any non-zero value suffices.
//     Consider G2_thread, rsp, boxReg, or unused_mark()
// -   Successful Stack-lock: box->dhw == mark.
//     box->dhw must contain the displaced mark word value
// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
//     The slow-path fast_enter() and slow_enter() operators
//     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
// -   Biased: box->dhw is undefined
//
// SPARC refworkload performance - specifically jetstream and scimark - are
// extremely sensitive to the size of the code emitted by compiler_lock_object
// and compiler_unlock_object.  Critically, the key factor is code size, not path
// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
// effect).


void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
                                          BiasedLockingCounters* counters) {
   Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());

   verify_oop(Roop);
   Label done ;

   if (counters != NULL) {
     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
   }

   if (EmitSync & 1) {
     mov    (3, Rscratch) ;
     st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
     cmp    (SP, G0) ;
     return ;
   }

   if (EmitSync & 2) {

     // Fetch object's markword
     ld_ptr(mark_addr, Rmark);

     if (UseBiasedLocking) {
        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
     }

     // Save Rbox in Rscratch to be used for the cas operation
     mov(Rbox, Rscratch);

     // set Rmark to markOop | markOopDesc::unlocked_value
     or3(Rmark, markOopDesc::unlocked_value, Rmark);

     // Initialize the box.  (Must happen before we update the object mark!)
     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());

     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
     casx_under_lock(mark_addr.base(), Rmark, Rscratch,
        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());

     // if compare/exchange succeeded we found an unlocked object and we now have locked it
     // hence we are done
     cmp(Rmark, Rscratch);
#ifdef _LP64
     sub(Rscratch, STACK_BIAS, Rscratch);
#endif
     brx(Assembler::equal, false, Assembler::pt, done);
     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot

     // we did not find an unlocked object so see if this is a recursive case
     // sub(Rscratch, SP, Rscratch);
     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
     andcc(Rscratch, 0xfffff003, Rscratch);
     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
     bind (done) ;
     return ;
   }

   Label Egress ;

   if (EmitSync & 256) {
      Label IsInflated ;

      ld_ptr (mark_addr, Rmark);           // fetch obj->mark
      // Triage: biased, stack-locked, neutral, inflated
      if (UseBiasedLocking) {
        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
        // Invariant: if control reaches this point in the emitted stream
        // then Rmark has not been modified.
      }

      // Store mark into displaced mark field in the on-stack basic-lock "box"
      // Critically, this must happen before the CAS
      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
      st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
      andcc  (Rmark, 2, G0) ;
      brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
      delayed() ->

      // Try stack-lock acquisition.
      // Beware: the 1st instruction is in a delay slot
      mov    (Rbox,  Rscratch);
      or3    (Rmark, markOopDesc::unlocked_value, Rmark);
      assert (mark_addr.disp() == 0, "cas must take a zero displacement");
      casn   (mark_addr.base(), Rmark, Rscratch) ;
      cmp    (Rmark, Rscratch);
      brx    (Assembler::equal, false, Assembler::pt, done);
      delayed()->sub(Rscratch, SP, Rscratch);

      // Stack-lock attempt failed - check for recursive stack-lock.
      // See the comments below about how we might remove this case.
#ifdef _LP64
      sub    (Rscratch, STACK_BIAS, Rscratch);
#endif
      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
      andcc  (Rscratch, 0xfffff003, Rscratch);
      br     (Assembler::always, false, Assembler::pt, done) ;
      delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());

      bind   (IsInflated) ;
      if (EmitSync & 64) {
         // If m->owner != null goto IsLocked
         // Pessimistic form: Test-and-CAS vs CAS
         // The optimistic form avoids RTS->RTO cache line upgrades.
         ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
         andcc  (Rscratch, Rscratch, G0) ;
         brx    (Assembler::notZero, false, Assembler::pn, done) ;
         delayed()->nop() ;
         // m->owner == null : it's unlocked.
      }

      // Try to CAS m->owner from null to Self
      // Invariant: if we acquire the lock then _recursions should be 0.
      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
      mov    (G2_thread, Rscratch) ;
      casn   (Rmark, G0, Rscratch) ;
      cmp    (Rscratch, G0) ;
      // Intentional fall-through into done
   } else {
      // Aggressively avoid the Store-before-CAS penalty
      // Defer the store into box->dhw until after the CAS
      Label IsInflated, Recursive ;

// Anticipate CAS -- Avoid RTS->RTO upgrade
// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;

      ld_ptr (mark_addr, Rmark);           // fetch obj->mark
      // Triage: biased, stack-locked, neutral, inflated

      if (UseBiasedLocking) {
        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
        // Invariant: if control reaches this point in the emitted stream
        // then Rmark has not been modified.
      }
      andcc  (Rmark, 2, G0) ;
      brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
      delayed()->                         // Beware - dangling delay-slot

      // Try stack-lock acquisition.
      // Transiently install BUSY (0) encoding in the mark word.
      // if the CAS of 0 into the mark was successful then we execute:
      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
      //   ST obj->mark = box    -- overwrite transient 0 value
      // This presumes TSO, of course.

      mov    (0, Rscratch) ;
      or3    (Rmark, markOopDesc::unlocked_value, Rmark);
      assert (mark_addr.disp() == 0, "cas must take a zero displacement");
      casn   (mark_addr.base(), Rmark, Rscratch) ;
// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
      cmp    (Rscratch, Rmark) ;
      brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
      delayed() ->
        st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
      if (counters != NULL) {
        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
      }
      br     (Assembler::always, false, Assembler::pt, done);
      delayed() ->
        st_ptr (Rbox, mark_addr) ;

      bind   (Recursive) ;
      // Stack-lock attempt failed - check for recursive stack-lock.
      // Tests show that we can remove the recursive case with no impact
      // on refworkload 0.83.  If we need to reduce the size of the code
      // emitted by compiler_lock_object() the recursive case is perfect
      // candidate.
      //
      // A more extreme idea is to always inflate on stack-lock recursion.
      // This lets us eliminate the recursive checks in compiler_lock_object
      // and compiler_unlock_object and the (box->dhw == 0) encoding.
      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
      // and showed a performance *increase*.  In the same experiment I eliminated
      // the fast-path stack-lock code from the interpreter and always passed
      // control to the "slow" operators in synchronizer.cpp.

      // RScratch contains the fetched obj->mark value from the failed CASN.
#ifdef _LP64
      sub    (Rscratch, STACK_BIAS, Rscratch);
#endif
      sub(Rscratch, SP, Rscratch);
      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
      andcc  (Rscratch, 0xfffff003, Rscratch);
      if (counters != NULL) {
        // Accounting needs the Rscratch register
        st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
        br     (Assembler::always, false, Assembler::pt, done) ;
        delayed()->nop() ;
      } else {
        br     (Assembler::always, false, Assembler::pt, done) ;
        delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
      }

      bind   (IsInflated) ;
      if (EmitSync & 64) {
         // If m->owner != null goto IsLocked
         // Test-and-CAS vs CAS
         // Pessimistic form avoids futile (doomed) CAS attempts
         // The optimistic form avoids RTS->RTO cache line upgrades.
         ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
         andcc  (Rscratch, Rscratch, G0) ;
         brx    (Assembler::notZero, false, Assembler::pn, done) ;
         delayed()->nop() ;
         // m->owner == null : it's unlocked.
      }

      // Try to CAS m->owner from null to Self
      // Invariant: if we acquire the lock then _recursions should be 0.
      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
      mov    (G2_thread, Rscratch) ;
      casn   (Rmark, G0, Rscratch) ;
      cmp    (Rscratch, G0) ;
      // ST box->displaced_header = NonZero.
      // Any non-zero value suffices:
      //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
      st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
      // Intentional fall-through into done
   }

   bind   (done) ;
}

void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch) {
   Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());

   Label done ;

   if (EmitSync & 4) {
     cmp  (SP, G0) ;
     return ;
   }

   if (EmitSync & 8) {
     if (UseBiasedLocking) {
        biased_locking_exit(mark_addr, Rscratch, done);
     }

     // Test first if it is a fast recursive unlock
     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
     cmp(Rmark, G0);
     brx(Assembler::equal, false, Assembler::pt, done);
     delayed()->nop();

     // Check if it is still a light weight lock, this is is true if we see
     // the stack address of the basicLock in the markOop of the object
     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
     casx_under_lock(mark_addr.base(), Rbox, Rmark,
       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
     br (Assembler::always, false, Assembler::pt, done);
     delayed()->cmp(Rbox, Rmark);
     bind (done) ;
     return ;
   }

   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
   // is too large performance rolls abruptly off a cliff.
   // This could be related to inlining policies, code cache management, or
   // I$ effects.
   Label LStacked ;

   if (UseBiasedLocking) {
      // TODO: eliminate redundant LDs of obj->mark
      biased_locking_exit(mark_addr, Rscratch, done);
   }

   ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
   ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
   andcc  (Rscratch, Rscratch, G0);
   brx    (Assembler::zero, false, Assembler::pn, done);
   delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
   andcc  (Rmark, 2, G0) ;
   brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
   delayed()-> nop() ;

   // It's inflated
   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
   // the ST of 0 into _owner which releases the lock.  This prevents loads
   // and stores within the critical section from reordering (floating)
   // past the store that releases the lock.  But TSO is a strong memory model
   // and that particular flavor of barrier is a noop, so we can safely elide it.
   // Note that we use 1-0 locking by default for the inflated case.  We
   // close the resultant (and rare) race by having contented threads in
   // monitorenter periodically poll _owner.
   ld_ptr (Address(Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
   ld_ptr (Address(Rmark, 0, ObjectMonitor::recursions_offset_in_bytes()-2), Rbox) ;
   xor3   (Rscratch, G2_thread, Rscratch) ;
   orcc   (Rbox, Rscratch, Rbox) ;
   brx    (Assembler::notZero, false, Assembler::pn, done) ;
   delayed()->
   ld_ptr (Address (Rmark, 0, ObjectMonitor::EntryList_offset_in_bytes()-2), Rscratch) ;
   ld_ptr (Address (Rmark, 0, ObjectMonitor::cxq_offset_in_bytes()-2), Rbox) ;
   orcc   (Rbox, Rscratch, G0) ;
   if (EmitSync & 65536) {
      Label LSucc ;
      brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
      delayed()->nop() ;
      br     (Assembler::always, false, Assembler::pt, done) ;
      delayed()->
      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;

      bind   (LSucc) ;
      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
      if (os::is_MP()) { membar (StoreLoad) ; }
      ld_ptr (Address (Rmark, 0, ObjectMonitor::succ_offset_in_bytes()-2), Rscratch) ;
      andcc  (Rscratch, Rscratch, G0) ;
      brx    (Assembler::notZero, false, Assembler::pt, done) ;
      delayed()-> andcc (G0, G0, G0) ;
      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
      mov    (G2_thread, Rscratch) ;
      casn   (Rmark, G0, Rscratch) ;
      cmp    (Rscratch, G0) ;
      // invert icc.zf and goto done
      brx    (Assembler::notZero, false, Assembler::pt, done) ;
      delayed() -> cmp (G0, G0) ;
      br     (Assembler::always, false, Assembler::pt, done);
      delayed() -> cmp (G0, 1) ;
   } else {
      brx    (Assembler::notZero, false, Assembler::pn, done) ;
      delayed()->nop() ;
      br     (Assembler::always, false, Assembler::pt, done) ;
      delayed()->
      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
   }

   bind   (LStacked) ;
   // Consider: we could replace the expensive CAS in the exit
   // path with a simple ST of the displaced mark value fetched from
   // the on-stack basiclock box.  That admits a race where a thread T2
   // in the slow lock path -- inflating with monitor M -- could race a
   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
   // More precisely T1 in the stack-lock unlock path could "stomp" the
   // inflated mark value M installed by T2, resulting in an orphan
   // object monitor M and T2 becoming stranded.  We can remedy that situation
   // by having T2 periodically poll the object's mark word using timed wait
   // operations.  If T2 discovers that a stomp has occurred it vacates
   // the monitor M and wakes any other threads stranded on the now-orphan M.
   // In addition the monitor scavenger, which performs deflation,
   // would also need to check for orpan monitors and stranded threads.
   //
   // Finally, inflation is also used when T2 needs to assign a hashCode
   // to O and O is stack-locked by T1.  The "stomp" race could cause
   // an assigned hashCode value to be lost.  We can avoid that condition
   // and provide the necessary hashCode stability invariants by ensuring
   // that hashCode generation is idempotent between copying GCs.
   // For example we could compute the hashCode of an object O as
   // O's heap address XOR some high quality RNG value that is refreshed
   // at GC-time.  The monitor scavenger would install the hashCode
   // found in any orphan monitors.  Again, the mechanism admits a
   // lost-update "stomp" WAW race but detects and recovers as needed.
   //
   // A prototype implementation showed excellent results, although
   // the scavenger and timeout code was rather involved.

   casn   (mark_addr.base(), Rbox, Rscratch) ;
   cmp    (Rbox, Rscratch);
   // Intentional fall through into done ...

   bind   (done) ;
}



void MacroAssembler::print_CPU_state() {
  // %%%%% need to implement this
}

void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  // %%%%% need to implement this
}

void MacroAssembler::push_IU_state() {
  // %%%%% need to implement this
}


void MacroAssembler::pop_IU_state() {
  // %%%%% need to implement this
}


void MacroAssembler::push_FPU_state() {
  // %%%%% need to implement this
}


void MacroAssembler::pop_FPU_state() {
  // %%%%% need to implement this
}


void MacroAssembler::push_CPU_state() {
  // %%%%% need to implement this
}


void MacroAssembler::pop_CPU_state() {
  // %%%%% need to implement this
}



void MacroAssembler::verify_tlab() {
#ifdef ASSERT
  if (UseTLAB && VerifyOops) {
    Label next, next2, ok;
    Register t1 = L0;
    Register t2 = L1;
    Register t3 = L2;

    save_frame(0);
    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
    or3(t1, t2, t3);
    cmp(t1, t2);
    br(Assembler::greaterEqual, false, Assembler::pn, next);
    delayed()->nop();
    stop("assert(top >= start)");
    should_not_reach_here();

    bind(next);
    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
    or3(t3, t2, t3);
    cmp(t1, t2);
    br(Assembler::lessEqual, false, Assembler::pn, next2);
    delayed()->nop();
    stop("assert(top <= end)");
    should_not_reach_here();

    bind(next2);
    and3(t3, MinObjAlignmentInBytesMask, t3);
    cmp(t3, 0);
    br(Assembler::lessEqual, false, Assembler::pn, ok);
    delayed()->nop();
    stop("assert(aligned)");
    should_not_reach_here();

    bind(ok);
    restore();
  }
#endif
}


void MacroAssembler::eden_allocate(
  Register obj,                        // result: pointer to object after successful allocation
  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  int      con_size_in_bytes,          // object size in bytes if   known at compile time
  Register t1,                         // temp register
  Register t2,                         // temp register
  Label&   slow_case                   // continuation point if fast allocation fails
){
  // make sure arguments make sense
  assert_different_registers(obj, var_size_in_bytes, t1, t2);
  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");

  // get eden boundaries
  // note: we need both top & top_addr!
  const Register top_addr = t1;
  const Register end      = t2;

  CollectedHeap* ch = Universe::heap();
  set((intx)ch->top_addr(), top_addr);
  intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  ld_ptr(top_addr, delta, end);
  ld_ptr(top_addr, 0, obj);

  // try to allocate
  Label retry;
  bind(retry);
#ifdef ASSERT
  // make sure eden top is properly aligned
  {
    Label L;
    btst(MinObjAlignmentInBytesMask, obj);
    br(Assembler::zero, false, Assembler::pt, L);
    delayed()->nop();
    stop("eden top is not properly aligned");
    bind(L);
  }
#endif // ASSERT
  const Register free = end;
  sub(end, obj, free);                                   // compute amount of free space
  if (var_size_in_bytes->is_valid()) {
    // size is unknown at compile time
    cmp(free, var_size_in_bytes);
    br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
    delayed()->add(obj, var_size_in_bytes, end);
  } else {
    // size is known at compile time
    cmp(free, con_size_in_bytes);
    br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
    delayed()->add(obj, con_size_in_bytes, end);
  }
  // Compare obj with the value at top_addr; if still equal, swap the value of
  // end with the value at top_addr. If not equal, read the value at top_addr
  // into end.
  casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  // if someone beat us on the allocation, try again, otherwise continue
  cmp(obj, end);
  brx(Assembler::notEqual, false, Assembler::pn, retry);
  delayed()->mov(end, obj);                              // nop if successfull since obj == end

#ifdef ASSERT
  // make sure eden top is properly aligned
  {
    Label L;
    const Register top_addr = t1;

    set((intx)ch->top_addr(), top_addr);
    ld_ptr(top_addr, 0, top_addr);
    btst(MinObjAlignmentInBytesMask, top_addr);
    br(Assembler::zero, false, Assembler::pt, L);
    delayed()->nop();
    stop("eden top is not properly aligned");
    bind(L);
  }
#endif // ASSERT
}


void MacroAssembler::tlab_allocate(
  Register obj,                        // result: pointer to object after successful allocation
  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  int      con_size_in_bytes,          // object size in bytes if   known at compile time
  Register t1,                         // temp register
  Label&   slow_case                   // continuation point if fast allocation fails
){
  // make sure arguments make sense
  assert_different_registers(obj, var_size_in_bytes, t1);
  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");

  const Register free  = t1;

  verify_tlab();

  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);

  // calculate amount of free space
  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  sub(free, obj, free);

  Label done;
  if (var_size_in_bytes == noreg) {
    cmp(free, con_size_in_bytes);
  } else {
    cmp(free, var_size_in_bytes);
  }
  br(Assembler::less, false, Assembler::pn, slow_case);
  // calculate the new top pointer
  if (var_size_in_bytes == noreg) {
    delayed()->add(obj, con_size_in_bytes, free);
  } else {
    delayed()->add(obj, var_size_in_bytes, free);
  }

  bind(done);

#ifdef ASSERT
  // make sure new free pointer is properly aligned
  {
    Label L;
    btst(MinObjAlignmentInBytesMask, free);
    br(Assembler::zero, false, Assembler::pt, L);
    delayed()->nop();
    stop("updated TLAB free is not properly aligned");
    bind(L);
  }
#endif // ASSERT

  // update the tlab top pointer
  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  verify_tlab();
}


void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  Register top = O0;
  Register t1 = G1;
  Register t2 = G3;
  Register t3 = O1;
  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  Label do_refill, discard_tlab;

  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
    // No allocation in the shared eden.
    br(Assembler::always, false, Assembler::pt, slow_case);
    delayed()->nop();
  }

  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);

  // calculate amount of free space
  sub(t1, top, t1);
  srl_ptr(t1, LogHeapWordSize, t1);

  // Retain tlab and allocate object in shared space if
  // the amount free in the tlab is too large to discard.
  cmp(t1, t2);
  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);

  // increment waste limit to prevent getting stuck on this slow path
  delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  if (TLABStats) {
    // increment number of slow_allocations
    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
    add(t2, 1, t2);
    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  }
  br(Assembler::always, false, Assembler::pt, try_eden);
  delayed()->nop();

  bind(discard_tlab);
  if (TLABStats) {
    // increment number of refills
    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
    add(t2, 1, t2);
    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
    // accumulate wastage
    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
    add(t2, t1, t2);
    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  }

  // if tlab is currently allocated (top or end != null) then
  // fill [top, end + alignment_reserve) with array object
  br_null(top, false, Assembler::pn, do_refill);
  delayed()->nop();

  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  // set klass to intArrayKlass
  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  st(t1, top, arrayOopDesc::length_offset_in_bytes());
3428 3429 3430 3431 3432
  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  ld_ptr(t2, 0, t2);
  // store klass last.  concurrent gcs assumes klass length is valid if
  // klass field is not null.
  store_klass(t2, top);
D
duke 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
  verify_oop(top);

  // refill the tlab with an eden allocation
  bind(do_refill);
  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  sll_ptr(t1, LogHeapWordSize, t1);
  // add object_size ??
  eden_allocate(top, t1, 0, t2, t3, slow_case);

  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
#ifdef ASSERT
  // check that tlab_size (t1) is still valid
  {
    Label ok;
    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
    sll_ptr(t2, LogHeapWordSize, t2);
    cmp(t1, t2);
    br(Assembler::equal, false, Assembler::pt, ok);
    delayed()->nop();
    stop("assert(t1 == tlab_size)");
    should_not_reach_here();

    bind(ok);
  }
#endif // ASSERT
  add(top, t1, top); // t1 is tlab_size
  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  verify_tlab();
  br(Assembler::always, false, Assembler::pt, retry);
  delayed()->nop();
}

Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  switch (cond) {
    // Note some conditions are synonyms for others
    case Assembler::never:                return Assembler::always;
    case Assembler::zero:                 return Assembler::notZero;
    case Assembler::lessEqual:            return Assembler::greater;
    case Assembler::less:                 return Assembler::greaterEqual;
    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
    case Assembler::negative:             return Assembler::positive;
    case Assembler::overflowSet:          return Assembler::overflowClear;
    case Assembler::always:               return Assembler::never;
    case Assembler::notZero:              return Assembler::zero;
    case Assembler::greater:              return Assembler::lessEqual;
    case Assembler::greaterEqual:         return Assembler::less;
    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
    case Assembler::positive:             return Assembler::negative;
    case Assembler::overflowClear:        return Assembler::overflowSet;
  }

  ShouldNotReachHere(); return Assembler::overflowClear;
}

void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  Condition negated_cond = negate_condition(cond);
  Label L;
  brx(negated_cond, false, Assembler::pt, L);
  delayed()->nop();
  inc_counter(counter_ptr, Rtmp1, Rtmp2);
  bind(L);
}

void MacroAssembler::inc_counter(address counter_ptr, Register Rtmp1, Register Rtmp2) {
  Address counter_addr(Rtmp1, counter_ptr);
  load_contents(counter_addr, Rtmp2);
  inc(Rtmp2);
  store_contents(Rtmp2, counter_addr);
}

SkipIfEqual::SkipIfEqual(
    MacroAssembler* masm, Register temp, const bool* flag_addr,
    Assembler::Condition condition) {
  _masm = masm;
  Address flag(temp, (address)flag_addr, relocInfo::none);
  _masm->sethi(flag);
  _masm->ldub(flag, temp);
  _masm->tst(temp);
  _masm->br(condition, false, Assembler::pt, _label);
  _masm->delayed()->nop();
}

SkipIfEqual::~SkipIfEqual() {
  _masm->bind(_label);
}


// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages.  This clobbers tsp and scratch.
void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
                                     Register Rscratch) {
  // Use stack pointer in temp stack pointer
  mov(SP, Rtsp);

  // Bang stack for total size given plus stack shadow page size.
  // Bang one page at a time because a large size can overflow yellow and
  // red zones (the bang will fail but stack overflow handling can't tell that
  // it was a stack overflow bang vs a regular segv).
  int offset = os::vm_page_size();
  Register Roffset = Rscratch;

  Label loop;
  bind(loop);
  set((-offset)+STACK_BIAS, Rscratch);
  st(G0, Rtsp, Rscratch);
  set(offset, Roffset);
  sub(Rsize, Roffset, Rsize);
  cmp(Rsize, G0);
  br(Assembler::greater, false, Assembler::pn, loop);
  delayed()->sub(Rtsp, Roffset, Rtsp);

  // Bang down shadow pages too.
  // The -1 because we already subtracted 1 page.
  for (int i = 0; i< StackShadowPages-1; i++) {
    set((-i*offset)+STACK_BIAS, Rscratch);
    st(G0, Rtsp, Rscratch);
  }
}
3556

3557
void MacroAssembler::load_klass(Register src_oop, Register klass) {
3558 3559 3560 3561
  // The number of bytes in this code is used by
  // MachCallDynamicJavaNode::ret_addr_offset()
  // if this changes, change that.
  if (UseCompressedOops) {
3562 3563
    lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
    decode_heap_oop_not_null(klass);
3564
  } else {
3565
    ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3566 3567 3568
  }
}

3569
void MacroAssembler::store_klass(Register klass, Register dst_oop) {
3570
  if (UseCompressedOops) {
3571 3572
    assert(dst_oop != klass, "not enough registers");
    encode_heap_oop_not_null(klass);
3573
    st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3574
  } else {
3575
    st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3576 3577 3578
  }
}

3579 3580 3581 3582 3583 3584 3585
void MacroAssembler::store_klass_gap(Register s, Register d) {
  if (UseCompressedOops) {
    assert(s != d, "not enough registers");
    st(s, d, oopDesc::klass_gap_offset_in_bytes());
  }
}

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
void MacroAssembler::load_heap_oop(const Address& s, Register d, int offset) {
  if (UseCompressedOops) {
    lduw(s, d, offset);
    decode_heap_oop(d);
  } else {
    ld_ptr(s, d, offset);
  }
}

void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
   if (UseCompressedOops) {
    lduw(s1, s2, d);
    decode_heap_oop(d, d);
  } else {
    ld_ptr(s1, s2, d);
  }
}

void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
   if (UseCompressedOops) {
    lduw(s1, simm13a, d);
    decode_heap_oop(d, d);
  } else {
    ld_ptr(s1, simm13a, d);
  }
}

void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  if (UseCompressedOops) {
    assert(s1 != d && s2 != d, "not enough registers");
    encode_heap_oop(d);
    st(d, s1, s2);
  } else {
    st_ptr(d, s1, s2);
  }
}

void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  if (UseCompressedOops) {
    assert(s1 != d, "not enough registers");
    encode_heap_oop(d);
    st(d, s1, simm13a);
  } else {
    st_ptr(d, s1, simm13a);
  }
}

void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  if (UseCompressedOops) {
    assert(a.base() != d, "not enough registers");
    encode_heap_oop(d);
    st(d, a, offset);
  } else {
    st_ptr(d, a, offset);
  }
}


void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  assert (UseCompressedOops, "must be compressed");
3646
  verify_oop(src);
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
  Label done;
  if (src == dst) {
    // optimize for frequent case src == dst
    bpr(rc_nz, true, Assembler::pt, src, done);
    delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
    bind(done);
    srlx(src, LogMinObjAlignmentInBytes, dst);
  } else {
    bpr(rc_z, false, Assembler::pn, src, done);
    delayed() -> mov(G0, dst);
    // could be moved before branch, and annulate delay,
    // but may add some unneeded work decoding null
    sub(src, G6_heapbase, dst);
    srlx(dst, LogMinObjAlignmentInBytes, dst);
    bind(done);
  }
}


void MacroAssembler::encode_heap_oop_not_null(Register r) {
  assert (UseCompressedOops, "must be compressed");
3668
  verify_oop(r);
3669 3670 3671 3672
  sub(r, G6_heapbase, r);
  srlx(r, LogMinObjAlignmentInBytes, r);
}

3673 3674
void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  assert (UseCompressedOops, "must be compressed");
3675
  verify_oop(src);
3676 3677 3678 3679
  sub(src, G6_heapbase, dst);
  srlx(dst, LogMinObjAlignmentInBytes, dst);
}

3680 3681 3682 3683 3684 3685 3686 3687
// Same algorithm as oops.inline.hpp decode_heap_oop.
void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  assert (UseCompressedOops, "must be compressed");
  Label done;
  sllx(src, LogMinObjAlignmentInBytes, dst);
  bpr(rc_nz, true, Assembler::pt, dst, done);
  delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  bind(done);
3688
  verify_oop(dst);
3689 3690 3691 3692 3693
}

void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  // pd_code_size_limit.
3694
  // Also do not verify_oop as this is called by verify_oop.
3695 3696 3697 3698 3699
  assert (UseCompressedOops, "must be compressed");
  sllx(r, LogMinObjAlignmentInBytes, r);
  add(r, G6_heapbase, r);
}

3700 3701 3702
void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  // pd_code_size_limit.
3703
  // Also do not verify_oop as this is called by verify_oop.
3704 3705 3706 3707 3708
  assert (UseCompressedOops, "must be compressed");
  sllx(src, LogMinObjAlignmentInBytes, dst);
  add(dst, G6_heapbase, dst);
}

3709 3710 3711 3712 3713 3714 3715
void MacroAssembler::reinit_heapbase() {
  if (UseCompressedOops) {
    // call indirectly to solve generation ordering problem
    Address base(G6_heapbase, (address)Universe::heap_base_addr());
    load_ptr_contents(base, G6_heapbase);
  }
}