g1CollectorPolicy.cpp 109.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

#define PREDICTIONS_VERBOSE 0

// <NEW PREDICTION>

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
static double fully_young_cards_per_entry_ratio_defaults[] = {
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

// </NEW PREDICTION>

G1CollectorPolicy::G1CollectorPolicy() :
85 86 87 88
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    ? ParallelGCThreads : 1),


89 90 91 92 93 94 95 96 97 98 99 100 101 102
  _n_pauses(0),
  _recent_CH_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_G1_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_evac_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _all_pause_times_ms(new NumberSeq()),
  _stop_world_start(0.0),
  _all_stop_world_times_ms(new NumberSeq()),
  _all_yield_times_ms(new NumberSeq()),

  _all_mod_union_times_ms(new NumberSeq()),

103
  _summary(new Summary()),
104

105
#ifndef PRODUCT
106
  _cur_clear_ct_time_ms(0.0),
107 108 109 110 111 112
  _min_clear_cc_time_ms(-1.0),
  _max_clear_cc_time_ms(-1.0),
  _cur_clear_cc_time_ms(0.0),
  _cum_clear_cc_time_ms(0.0),
  _num_cc_clears(0L),
#endif
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

  _region_num_young(0),
  _region_num_tenured(0),
  _prev_region_num_young(0),
  _prev_region_num_tenured(0),

  _aux_num(10),
  _all_aux_times_ms(new NumberSeq[_aux_num]),
  _cur_aux_start_times_ms(new double[_aux_num]),
  _cur_aux_times_ms(new double[_aux_num]),
  _cur_aux_times_set(new bool[_aux_num]),

  _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  // <NEW PREDICTION>

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _partially_young_cards_per_entry_ratio_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
152
  _pause_time_target_ms((double) MaxGCPauseMillis),
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

  // </NEW PREDICTION>

  _in_young_gc_mode(false),
  _full_young_gcs(true),
  _full_young_pause_num(0),
  _partial_young_pause_num(0),

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

  _known_garbage_ratio(0.0),
  _known_garbage_bytes(0),

  _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),

   _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _recent_avg_pause_time_ratio(0.0),
  _num_markings(0),
  _n_marks(0),
  _n_pauses_at_mark_end(0),

  _all_full_gc_times_ms(new NumberSeq()),

  // G1PausesBtwnConcMark defaults to -1
  // so the hack is to do the cast  QQQ FIXME
  _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
  _n_marks_since_last_pause(0),
186 187
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
188 189 190 191 192 193
  _should_revert_to_full_young_gcs(false),
  _last_full_young_gc(false),

  _prev_collection_pause_used_at_end_bytes(0),

  _collection_set(NULL),
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  _collection_set_size(0),
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_size(0),
  _inc_cset_young_index(0),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_young_bytes(0),
  _inc_cset_recorded_rs_lengths(0),
  _inc_cset_predicted_elapsed_time_ms(0.0),
  _inc_cset_predicted_bytes_to_copy(0),

210 211 212 213 214 215 216
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
217
                                              G1YoungSurvRateNumRegionsSummary)),
218
  // add here any more surv rate groups
219 220 221
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
222 223 224
  _survivors_age_table(true),

  _gc_overhead_perc(0.0)
225

226
{
227 228 229 230
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
  HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
231
  HeapRegionRemSet::setup_remset_size();
232

233 234 235 236 237 238 239 240 241
  // Verify PLAB sizes
  const uint region_size = HeapRegion::GrainWords;
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

242 243 244
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

245
  _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
246 247 248 249 250 251 252 253 254 255 256
  _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
  _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];

  _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
  _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];

  _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];

  _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];

  _par_last_termination_times_ms = new double[_parallel_gc_threads];
257 258
  _par_last_termination_attempts = new double[_parallel_gc_threads];
  _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
259 260

  // start conservatively
J
johnc 已提交
261
  _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

  // <NEW PREDICTION>

  int index;
  if (ParallelGCThreads == 0)
    index = 0;
  else if (ParallelGCThreads > 8)
    index = 7;
  else
    index = ParallelGCThreads - 1;

  _pending_card_diff_seq->add(0.0);
  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
  _fully_young_cards_per_entry_ratio_seq->add(
                            fully_young_cards_per_entry_ratio_defaults[index]);
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

  // </NEW PREDICTION>

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
344
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
345
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
346
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
J
johnc 已提交
347
  _sigma = (double) G1ConfidencePercent / 100.0;
348 349 350 351 352 353 354

  // start conservatively (around 50ms is about right)
  _concurrent_mark_init_times_ms->add(0.05);
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;

355 356
  // if G1FixedSurvivorSpaceSize is 0 which means the size is not
  // fixed, then _max_survivor_regions will be calculated at
357
  // calculate_young_list_target_length during initialization
358
  _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
359

T
tonyp 已提交
360 361 362 363 364
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

365 366 367 368 369 370 371 372 373 374 375
  initialize_all();
}

// Increment "i", mod "len"
static void inc_mod(int& i, int len) {
  i++; if (i == len) i = 0;
}

void G1CollectorPolicy::initialize_flags() {
  set_min_alignment(HeapRegion::GrainBytes);
  set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
376 377 378
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
379 380 381
  CollectorPolicy::initialize_flags();
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
// The easiest way to deal with the parsing of the NewSize /
// MaxNewSize / etc. parameteres is to re-use the code in the
// TwoGenerationCollectorPolicy class. This is similar to what
// ParallelScavenge does with its GenerationSizer class (see
// ParallelScavengeHeap::initialize()). We might change this in the
// future, but it's a good start.
class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
  size_t size_to_region_num(size_t byte_size) {
    return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
  }

public:
  G1YoungGenSizer() {
    initialize_flags();
    initialize_size_info();
  }

  size_t min_young_region_num() {
    return size_to_region_num(_min_gen0_size);
  }
  size_t initial_young_region_num() {
    return size_to_region_num(_initial_gen0_size);
  }
  size_t max_young_region_num() {
    return size_to_region_num(_max_gen0_size);
  }
};

410 411 412 413 414 415
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

416 417
  initialize_gc_policy_counters();

418 419 420
  if (G1Gen) {
    _in_young_gc_mode = true;

421 422 423 424
    G1YoungGenSizer sizer;
    size_t initial_region_num = sizer.initial_young_region_num();

    if (UseAdaptiveSizePolicy) {
425 426 427 428
      set_adaptive_young_list_length(true);
      _young_list_fixed_length = 0;
    } else {
      set_adaptive_young_list_length(false);
429
      _young_list_fixed_length = initial_region_num;
430
    }
431 432 433 434 435
    _free_regions_at_end_of_collection = _g1->free_regions();
    calculate_young_list_min_length();
    guarantee( _young_list_min_length == 0, "invariant, not enough info" );
    calculate_young_list_target_length();
  } else {
436 437 438
     _young_list_fixed_length = 0;
    _in_young_gc_mode = false;
  }
439 440 441 442

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
443 444
}

445 446 447 448 449 450
// Create the jstat counters for the policy.
void G1CollectorPolicy::initialize_gc_policy_counters()
{
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
}

451 452 453 454 455 456 457 458 459 460
void G1CollectorPolicy::calculate_young_list_min_length() {
  _young_list_min_length = 0;

  if (!adaptive_young_list_length())
    return;

  if (_alloc_rate_ms_seq->num() > 3) {
    double now_sec = os::elapsedTime();
    double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
    double alloc_rate_ms = predict_alloc_rate_ms();
461 462
    size_t min_regions = (size_t) ceil(alloc_rate_ms * when_ms);
    size_t current_region_num = _g1->young_list()->length();
463 464 465 466
    _young_list_min_length = min_regions + current_region_num;
  }
}

467
void G1CollectorPolicy::calculate_young_list_target_length() {
468 469
  if (adaptive_young_list_length()) {
    size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
470
    calculate_young_list_target_length(rs_lengths);
471 472 473 474 475 476
  } else {
    if (full_young_gcs())
      _young_list_target_length = _young_list_fixed_length;
    else
      _young_list_target_length = _young_list_fixed_length / 2;
  }
477 478 479 480 481

  // Make sure we allow the application to allocate at least one
  // region before we need to do a collection again.
  size_t min_length = _g1->young_list()->length() + 1;
  _young_list_target_length = MAX2(_young_list_target_length, min_length);
482
  calculate_max_gc_locker_expansion();
483
  calculate_survivors_policy();
484 485
}

486
void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
487
  guarantee( adaptive_young_list_length(), "pre-condition" );
488
  guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );
489 490

  double start_time_sec = os::elapsedTime();
491
  size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
492 493 494 495 496 497 498
  min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
  size_t reserve_regions =
    (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);

  if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
    // we are in fully-young mode and there are free regions in the heap

499 500 501
    double survivor_regions_evac_time =
        predict_survivor_regions_evac_time();

502 503 504
    double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
    size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
    size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
505
    size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
506 507
    double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
                          + survivor_regions_evac_time;
508

509 510 511
    // the result
    size_t final_young_length = 0;

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    size_t init_free_regions =
      MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);

    // if we're still under the pause target...
    if (base_time_ms <= target_pause_time_ms) {
      // We make sure that the shortest young length that makes sense
      // fits within the target pause time.
      size_t min_young_length = 1;

      if (predict_will_fit(min_young_length, base_time_ms,
                                     init_free_regions, target_pause_time_ms)) {
        // The shortest young length will fit within the target pause time;
        // we'll now check whether the absolute maximum number of young
        // regions will fit in the target pause time. If not, we'll do
        // a binary search between min_young_length and max_young_length
        size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
        size_t max_young_length = abs_max_young_length;

        if (max_young_length > min_young_length) {
          // Let's check if the initial max young length will fit within the
          // target pause. If so then there is no need to search for a maximal
          // young length - we'll return the initial maximum

          if (predict_will_fit(max_young_length, base_time_ms,
                                init_free_regions, target_pause_time_ms)) {
            // The maximum young length will satisfy the target pause time.
            // We are done so set min young length to this maximum length.
            // The code after the loop will then set final_young_length using
            // the value cached in the minimum length.
            min_young_length = max_young_length;
          } else {
            // The maximum possible number of young regions will not fit within
            // the target pause time so let's search....
545 546 547 548

            size_t diff = (max_young_length - min_young_length) / 2;
            max_young_length = min_young_length + diff;

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
            while (max_young_length > min_young_length) {
              if (predict_will_fit(max_young_length, base_time_ms,
                                        init_free_regions, target_pause_time_ms)) {

                // The current max young length will fit within the target
                // pause time. Note we do not exit the loop here. By setting
                // min = max, and then increasing the max below means that
                // we will continue searching for an upper bound in the
                // range [max..max+diff]
                min_young_length = max_young_length;
              }
              diff = (max_young_length - min_young_length) / 2;
              max_young_length = min_young_length + diff;
            }
            // the above loop found a maximal young length that will fit
            // within the target pause time.
565
          }
566
          assert(min_young_length <= abs_max_young_length, "just checking");
567
        }
568
        final_young_length = min_young_length;
569 570
      }
    }
571
    // and we're done!
572 573

    // we should have at least one region in the target young length
574
    _young_list_target_length =
575
                              final_young_length + _recorded_survivor_regions;
576 577 578 579 580 581 582

    // let's keep an eye of how long we spend on this calculation
    // right now, I assume that we'll print it when we need it; we
    // should really adde it to the breakdown of a pause
    double end_time_sec = os::elapsedTime();
    double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;

583
#ifdef TRACE_CALC_YOUNG_LENGTH
584
    // leave this in for debugging, just in case
585 586
    gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
                           "elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
587
                           target_pause_time_ms,
588
                           _young_list_target_length
589 590
                           elapsed_time_ms,
                           full_young_gcs() ? "full" : "partial",
591
                           during_initial_mark_pause() ? " i-m" : "",
592 593
                           _in_marking_window,
                           _in_marking_window_im);
594
#endif // TRACE_CALC_YOUNG_LENGTH
595 596

    if (_young_list_target_length < _young_list_min_length) {
597 598
      // bummer; this means that, if we do a pause when the maximal
      // length dictates, we'll violate the pause spacing target (the
599 600 601 602 603 604
      // min length was calculate based on the application's current
      // alloc rate);

      // so, we have to bite the bullet, and allocate the minimum
      // number. We'll violate our target, but we just can't meet it.

605
#ifdef TRACE_CALC_YOUNG_LENGTH
606 607
      // leave this in for debugging, just in case
      gclog_or_tty->print_cr("adjusted target length from "
608 609 610 611 612
                             SIZE_FORMAT " to " SIZE_FORMAT,
                             _young_list_target_length, _young_list_min_length);
#endif // TRACE_CALC_YOUNG_LENGTH

      _young_list_target_length = _young_list_min_length;
613 614 615 616 617
    }
  } else {
    // we are in a partially-young mode or we've run out of regions (due
    // to evacuation failure)

618
#ifdef TRACE_CALC_YOUNG_LENGTH
619 620
    // leave this in for debugging, just in case
    gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
621 622 623
                           _young_list_min_length);
#endif // TRACE_CALC_YOUNG_LENGTH
    // we'll do the pause as soon as possible by choosing the minimum
624
    _young_list_target_length = _young_list_min_length;
625 626 627 628 629
  }

  _rs_lengths_prediction = rs_lengths;
}

630 631 632 633 634 635 636 637
// This is used by: calculate_young_list_target_length(rs_length). It
// returns true iff:
//   the predicted pause time for the given young list will not overflow
//   the target pause time
// and:
//   the predicted amount of surviving data will not overflow the
//   the amount of free space available for survivor regions.
//
638
bool
639 640 641 642
G1CollectorPolicy::predict_will_fit(size_t young_length,
                                    double base_time_ms,
                                    size_t init_free_regions,
                                    double target_pause_time_ms) {
643 644 645 646 647 648 649 650

  if (young_length >= init_free_regions)
    // end condition 1: not enough space for the young regions
    return false;

  double accum_surv_rate_adj = 0.0;
  double accum_surv_rate =
    accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
651

652 653
  size_t bytes_to_copy =
    (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
654

655
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
656

657
  double young_other_time_ms =
658 659
                       predict_young_other_time_ms(young_length);

660
  double pause_time_ms =
661
                   base_time_ms + copy_time_ms + young_other_time_ms;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

  if (pause_time_ms > target_pause_time_ms)
    // end condition 2: over the target pause time
    return false;

  size_t free_bytes =
                 (init_free_regions - young_length) * HeapRegion::GrainBytes;

  if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
    // end condition 3: out of to-space (conservatively)
    return false;

  // success!
  return true;
}

678 679 680 681 682 683 684 685 686 687
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
  }
  return survivor_regions_evac_time;
}

688 689 690
void G1CollectorPolicy::check_prediction_validity() {
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

691
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
692 693 694
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
695
    calculate_young_list_target_length(rs_lengths_prediction);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
  }
}

HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
717
  HeapRegion* head = _g1->young_list()->first_region();
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
  _cur_collection_start_sec = os::elapsedTime();
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
  double full_gc_time_sec = end_sec - _cur_collection_start_sec;
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

  _all_full_gc_times_ms->add(full_gc_time_ms);

777
  update_recent_gc_times(end_sec, full_gc_time_ms);
778 779 780 781 782 783 784 785 786

  _g1->clear_full_collection();

  // "Nuke" the heuristics that control the fully/partially young GC
  // transitions and make sure we start with fully young GCs after the
  // Full GC.
  set_full_young_gcs(true);
  _last_full_young_gc = false;
  _should_revert_to_full_young_gcs = false;
787 788
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
789 790 791 792 793 794 795 796
  _known_garbage_bytes = 0;
  _known_garbage_ratio = 0.0;
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

797 798
  record_survivor_regions(0, NULL, NULL);

799 800 801 802
  _prev_region_num_young   = _region_num_young;
  _prev_region_num_tenured = _region_num_tenured;

  _free_regions_at_end_of_collection = _g1->free_regions();
803 804
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
805
  calculate_young_list_min_length();
806
  calculate_young_list_target_length();
807
}
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

void G1CollectorPolicy::record_before_bytes(size_t bytes) {
  _bytes_in_to_space_before_gc += bytes;
}

void G1CollectorPolicy::record_after_bytes(size_t bytes) {
  _bytes_in_to_space_after_gc += bytes;
}

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
                                                      size_t start_used) {
  if (PrintGCDetails) {
    gclog_or_tty->stamp(PrintGCTimeStamps);
    gclog_or_tty->print("[GC pause");
    if (in_young_gc_mode())
      gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
  }

830 831 832
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
  _all_stop_world_times_ms->add(s_w_t_ms);
  _stop_world_start = 0.0;

  _cur_collection_start_sec = start_time_sec;
  _cur_collection_pause_used_at_start_bytes = start_used;
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  _pending_cards = _g1->pending_card_num();
  _max_pending_cards = _g1->max_pending_card_num();

  _bytes_in_to_space_before_gc = 0;
  _bytes_in_to_space_after_gc = 0;
  _bytes_in_collection_set_before_gc = 0;

#ifdef DEBUG
  // initialise these to something well known so that we can spot
  // if they are not set properly

  for (int i = 0; i < _parallel_gc_threads; ++i) {
853 854 855 856 857 858 859 860 861 862
    _par_last_gc_worker_start_times_ms[i] = -1234.0;
    _par_last_ext_root_scan_times_ms[i] = -1234.0;
    _par_last_mark_stack_scan_times_ms[i] = -1234.0;
    _par_last_update_rs_times_ms[i] = -1234.0;
    _par_last_update_rs_processed_buffers[i] = -1234.0;
    _par_last_scan_rs_times_ms[i] = -1234.0;
    _par_last_obj_copy_times_ms[i] = -1234.0;
    _par_last_termination_times_ms[i] = -1234.0;
    _par_last_termination_attempts[i] = -1234.0;
    _par_last_gc_worker_end_times_ms[i] = -1234.0;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
  }
#endif

  for (int i = 0; i < _aux_num; ++i) {
    _cur_aux_times_ms[i] = 0.0;
    _cur_aux_times_set[i] = false;
  }

  _satb_drain_time_set = false;
  _last_satb_drain_processed_buffers = -1;

  if (in_young_gc_mode())
    _last_young_gc_full = false;

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
879
  _survivors_age_table.clear();
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
  assert( verify_young_ages(), "region age verification" );
}

void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
  _mark_closure_time_ms = mark_closure_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_init_start() {
  _mark_init_start_sec = os::elapsedTime();
  guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
}

void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
896 897
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_init_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
  _concurrent_mark_init_times_ms->add(elapsed_time_ms);
  record_concurrent_mark_init_end_pre(elapsed_time_ms);

  _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

void
G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
                                                      size_t max_live_bytes) {
  record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
  record_concurrent_mark_cleanup_end_work2();
}

void
G1CollectorPolicy::
record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
                                         size_t max_live_bytes) {
  if (_n_marks < 2) _n_marks++;
  if (G1PolicyVerbose > 0)
    gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
                           " (of " SIZE_FORMAT " MB heap).",
                           max_live_bytes/M, _g1->capacity()/M);
}

// The important thing about this is that it includes "os::elapsedTime".
void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);

  _num_markings++;

  // We did a marking, so reset the "since_last_mark" variables.
  double considerConcMarkCost = 1.0;
  // If there are available processors, concurrent activity is free...
  if (Threads::number_of_non_daemon_threads() * 2 <
      os::active_processor_count()) {
    considerConcMarkCost = 0.0;
  }
  _n_pauses_at_mark_end = _n_pauses;
  _n_marks_since_last_pause++;
}

void
G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
  if (in_young_gc_mode()) {
    _should_revert_to_full_young_gcs = false;
    _last_full_young_gc = true;
    _in_marking_window = false;
    if (adaptive_young_list_length())
977
      calculate_young_list_target_length();
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
  }
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
    _all_yield_times_ms->add(yield_ms);
  }
}

void G1CollectorPolicy::record_concurrent_pause_end() {
}

void G1CollectorPolicy::record_collection_pause_end_CH_strong_roots() {
  _cur_CH_strong_roots_end_sec = os::elapsedTime();
  _cur_CH_strong_roots_dur_ms =
    (_cur_CH_strong_roots_end_sec - _cur_collection_start_sec) * 1000.0;
}

void G1CollectorPolicy::record_collection_pause_end_G1_strong_roots() {
  _cur_G1_strong_roots_end_sec = os::elapsedTime();
  _cur_G1_strong_roots_dur_ms =
    (_cur_G1_strong_roots_end_sec - _cur_CH_strong_roots_end_sec) * 1000.0;
}

template<class T>
T sum_of(T* sum_arr, int start, int n, int N) {
  T sum = (T)0;
  for (int i = 0; i < n; i++) {
    int j = (start + i) % N;
    sum += sum_arr[j];
  }
  return sum;
}

1013 1014 1015
void G1CollectorPolicy::print_par_stats(int level,
                                        const char* str,
                                        double* data,
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
                                         bool summary) {
  double min = data[0], max = data[0];
  double total = 0.0;
  int j;
  for (j = 0; j < level; ++j)
    gclog_or_tty->print("   ");
  gclog_or_tty->print("[%s (ms):", str);
  for (uint i = 0; i < ParallelGCThreads; ++i) {
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
    gclog_or_tty->print("  %3.1lf", val);
  }
  if (summary) {
    gclog_or_tty->print_cr("");
    double avg = total / (double) ParallelGCThreads;
    gclog_or_tty->print(" ");
    for (j = 0; j < level; ++j)
      gclog_or_tty->print("   ");
    gclog_or_tty->print("Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf",
                        avg, min, max);
  }
  gclog_or_tty->print_cr("]");
}

1044 1045 1046 1047
void G1CollectorPolicy::print_par_sizes(int level,
                                        const char* str,
                                        double* data,
                                        bool summary) {
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
  double min = data[0], max = data[0];
  double total = 0.0;
  int j;
  for (j = 0; j < level; ++j)
    gclog_or_tty->print("   ");
  gclog_or_tty->print("[%s :", str);
  for (uint i = 0; i < ParallelGCThreads; ++i) {
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
    gclog_or_tty->print(" %d", (int) val);
  }
  if (summary) {
    gclog_or_tty->print_cr("");
    double avg = total / (double) ParallelGCThreads;
    gclog_or_tty->print(" ");
    for (j = 0; j < level; ++j)
      gclog_or_tty->print("   ");
    gclog_or_tty->print("Sum: %d, Avg: %d, Min: %d, Max: %d",
               (int)total, (int)avg, (int)min, (int)max);
  }
  gclog_or_tty->print_cr("]");
}

void G1CollectorPolicy::print_stats (int level,
                                     const char* str,
                                     double value) {
  for (int j = 0; j < level; ++j)
    gclog_or_tty->print("   ");
  gclog_or_tty->print_cr("[%s: %5.1lf ms]", str, value);
}

void G1CollectorPolicy::print_stats (int level,
                                     const char* str,
                                     int value) {
  for (int j = 0; j < level; ++j)
    gclog_or_tty->print("   ");
  gclog_or_tty->print_cr("[%s: %d]", str, value);
}

double G1CollectorPolicy::avg_value (double* data) {
1092
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
    double ret = 0.0;
    for (uint i = 0; i < ParallelGCThreads; ++i)
      ret += data[i];
    return ret / (double) ParallelGCThreads;
  } else {
    return data[0];
  }
}

double G1CollectorPolicy::max_value (double* data) {
1103
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    double ret = data[0];
    for (uint i = 1; i < ParallelGCThreads; ++i)
      if (data[i] > ret)
        ret = data[i];
    return ret;
  } else {
    return data[0];
  }
}

double G1CollectorPolicy::sum_of_values (double* data) {
1115
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    double sum = 0.0;
    for (uint i = 0; i < ParallelGCThreads; i++)
      sum += data[i];
    return sum;
  } else {
    return data[0];
  }
}

double G1CollectorPolicy::max_sum (double* data1,
                                   double* data2) {
  double ret = data1[0] + data2[0];

1129
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    for (uint i = 1; i < ParallelGCThreads; ++i) {
      double data = data1[i] + data2[i];
      if (data > ret)
        ret = data;
    }
  }
  return ret;
}

// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

1142
void G1CollectorPolicy::record_collection_pause_end() {
1143 1144
  double end_time_sec = os::elapsedTime();
  double elapsed_ms = _last_pause_time_ms;
1145
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1146 1147 1148 1149 1150 1151
  double evac_ms = (end_time_sec - _cur_G1_strong_roots_end_sec) * 1000.0;
  size_t rs_size =
    _cur_collection_pause_used_regions_at_start - collection_set_size();
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
1152
  bool update_stats = !_g1->evacuation_failed();
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

  if (in_young_gc_mode()) {
1163
    last_pause_included_initial_mark = during_initial_mark_pause();
1164 1165 1166 1167
    if (last_pause_included_initial_mark)
      record_concurrent_mark_init_end_pre(0.0);

    size_t min_used_targ =
1168
      (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

    if (!_g1->mark_in_progress() && !_last_full_young_gc) {
      assert(!last_pause_included_initial_mark, "invariant");
      if (cur_used_bytes > min_used_targ &&
          cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
        assert(!during_initial_mark_pause(), "we should not see this here");

        // Note: this might have already been set, if during the last
        // pause we decided to start a cycle but at the beginning of
        // this pause we decided to postpone it. That's OK.
        set_initiate_conc_mark_if_possible();
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
      }
    }

    _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
  }

  _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
                          end_time_sec, false);

  guarantee(_cur_collection_pause_used_regions_at_start >=
            collection_set_size(),
            "Negative RS size?");

  // This assert is exempted when we're doing parallel collection pauses,
  // because the fragmentation caused by the parallel GC allocation buffers
  // can lead to more memory being used during collection than was used
  // before. Best leave this out until the fragmentation problem is fixed.
  // Pauses in which evacuation failed can also lead to negative
  // collections, since no space is reclaimed from a region containing an
  // object whose evacuation failed.
  // Further, we're now always doing parallel collection.  But I'm still
  // leaving this here as a placeholder for a more precise assertion later.
  // (DLD, 10/05.)
  assert((true || parallel) // Always using GC LABs now.
         || _g1->evacuation_failed()
         || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
         "Negative collection");

  size_t freed_bytes =
    _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1212

1213 1214 1215 1216 1217 1218
  double survival_fraction =
    (double)surviving_bytes/
    (double)_collection_set_bytes_used_before;

  _n_pauses++;

1219
  if (update_stats) {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    _recent_CH_strong_roots_times_ms->add(_cur_CH_strong_roots_dur_ms);
    _recent_G1_strong_roots_times_ms->add(_cur_G1_strong_roots_dur_ms);
    _recent_evac_times_ms->add(evac_ms);
    _recent_pause_times_ms->add(elapsed_ms);

    _recent_rs_sizes->add(rs_size);

    // We exempt parallel collection from this check because Alloc Buffer
    // fragmentation can produce negative collections.  Same with evac
    // failure.
    // Further, we're now always doing parallel collection.  But I'm still
    // leaving this here as a placeholder for a more precise assertion later.
    // (DLD, 10/05.
    assert((true || parallel)
           || _g1->evacuation_failed()
           || surviving_bytes <= _collection_set_bytes_used_before,
           "Or else negative collection!");
    _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
    _recent_CS_bytes_surviving->add(surviving_bytes);

    // this is where we update the allocation rate of the application
    double app_time_ms =
      (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
    size_t regions_allocated =
      (_region_num_young - _prev_region_num_young) +
      (_region_num_tenured - _prev_region_num_tenured);
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);
    _prev_region_num_young   = _region_num_young;
    _prev_region_num_tenured = _region_num_tenured;

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
    update_recent_gc_times(end_time_sec, elapsed_ms);
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1273 1274 1275 1276 1277
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1278 1279 1280 1281 1282 1283 1284
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1285 1286 1287 1288 1289 1290
  }

  if (G1PolicyVerbose > 1) {
    gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
  }

1291
  PauseSummary* summary = _summary;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

  double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  double update_rs_processed_buffers =
    sum_of_values(_par_last_update_rs_processed_buffers);
  double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  double termination_time = avg_value(_par_last_termination_times_ms);

1302 1303
  double parallel_other_time = _cur_collection_par_time_ms -
    (update_rs_time + ext_root_scan_time + mark_stack_scan_time +
1304
     scan_rs_time + obj_copy_time + termination_time);
1305
  if (update_stats) {
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    MainBodySummary* body_summary = summary->main_body_summary();
    guarantee(body_summary != NULL, "should not be null!");

    if (_satb_drain_time_set)
      body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
    else
      body_summary->record_satb_drain_time_ms(0.0);
    body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
    body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
    body_summary->record_update_rs_time_ms(update_rs_time);
    body_summary->record_scan_rs_time_ms(scan_rs_time);
    body_summary->record_obj_copy_time_ms(obj_copy_time);
    if (parallel) {
      body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
      body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
      body_summary->record_termination_time_ms(termination_time);
      body_summary->record_parallel_other_time_ms(parallel_other_time);
    }
    body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  }

  if (G1PolicyVerbose > 1) {
    gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
                           "        CH Strong: %10.6f ms    (avg: %10.6f ms)\n"
                           "        G1 Strong: %10.6f ms    (avg: %10.6f ms)\n"
                           "        Evac:      %10.6f ms    (avg: %10.6f ms)\n"
                           "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
                           "      |RS|: " SIZE_FORMAT,
                           elapsed_ms, recent_avg_time_for_pauses_ms(),
                           _cur_CH_strong_roots_dur_ms, recent_avg_time_for_CH_strong_ms(),
                           _cur_G1_strong_roots_dur_ms, recent_avg_time_for_G1_strong_ms(),
                           evac_ms, recent_avg_time_for_evac_ms(),
                           scan_rs_time,
                           recent_avg_time_for_pauses_ms() -
                           recent_avg_time_for_G1_strong_ms(),
                           rs_size);

    gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
                           "       At end " SIZE_FORMAT "K\n"
                           "       garbage      : " SIZE_FORMAT "K"
                           "       of     " SIZE_FORMAT "K\n"
                           "       survival     : %6.2f%%  (%6.2f%% avg)",
                           _cur_collection_pause_used_at_start_bytes/K,
                           _g1->used()/K, freed_bytes/K,
                           _collection_set_bytes_used_before/K,
                           survival_fraction*100.0,
                           recent_avg_survival_fraction()*100.0);
    gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
                           recent_avg_pause_time_ratio() * 100.0);
  }

  double other_time_ms = elapsed_ms;

1359 1360 1361
  if (_satb_drain_time_set) {
    other_time_ms -= _cur_satb_drain_time_ms;
  }
1362

1363 1364 1365 1366 1367 1368 1369
  if (parallel) {
    other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
  } else {
    other_time_ms -=
      update_rs_time +
      ext_root_scan_time + mark_stack_scan_time +
      scan_rs_time + obj_copy_time;
1370 1371 1372
  }

  if (PrintGCDetails) {
1373
    gclog_or_tty->print_cr("%s, %1.8lf secs]",
1374 1375 1376
                           (last_pause_included_initial_mark) ? " (initial-mark)" : "",
                           elapsed_ms / 1000.0);

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
    if (_satb_drain_time_set) {
      print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
    }
    if (_last_satb_drain_processed_buffers >= 0) {
      print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
    }
    if (parallel) {
      print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
      print_par_stats(2, "GC Worker Start Time",
                      _par_last_gc_worker_start_times_ms, false);
      print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
      print_par_sizes(3, "Processed Buffers",
                      _par_last_update_rs_processed_buffers, true);
      print_par_stats(2, "Ext Root Scanning",
                      _par_last_ext_root_scan_times_ms);
      print_par_stats(2, "Mark Stack Scanning",
                      _par_last_mark_stack_scan_times_ms);
      print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
      print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
      print_par_stats(2, "Termination", _par_last_termination_times_ms);
      print_par_sizes(3, "Termination Attempts",
                      _par_last_termination_attempts, true);
      print_par_stats(2, "GC Worker End Time",
                      _par_last_gc_worker_end_times_ms, false);
      print_stats(2, "Other", parallel_other_time);
      print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
    } else {
      print_stats(1, "Update RS", update_rs_time);
      print_stats(2, "Processed Buffers",
                  (int)update_rs_processed_buffers);
      print_stats(1, "Ext Root Scanning", ext_root_scan_time);
      print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
      print_stats(1, "Scan RS", scan_rs_time);
      print_stats(1, "Object Copying", obj_copy_time);
1411
    }
1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifndef PRODUCT
    print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
    print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
    print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
    print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
    if (_num_cc_clears > 0) {
      print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
    }
#endif
1421
    print_stats(1, "Other", other_time_ms);
1422 1423
    print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    for (int i = 0; i < _aux_num; ++i) {
      if (_cur_aux_times_set[i]) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_stats(1, buffer, _cur_aux_times_ms[i]);
      }
    }
  }
  if (PrintGCDetails)
    gclog_or_tty->print("   [");
  if (PrintGC || PrintGCDetails)
    _g1->print_size_transition(gclog_or_tty,
                               _cur_collection_pause_used_at_start_bytes,
                               _g1->used(), _g1->capacity());
  if (PrintGCDetails)
    gclog_or_tty->print_cr("]");

  _all_pause_times_ms->add(elapsed_ms);
1442 1443 1444 1445
  if (update_stats) {
    summary->record_total_time_ms(elapsed_ms);
    summary->record_other_time_ms(other_time_ms);
  }
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
  for (int i = 0; i < _aux_num; ++i)
    if (_cur_aux_times_set[i])
      _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);

  // Reset marks-between-pauses counter.
  _n_marks_since_last_pause = 0;

  // Update the efficiency-since-mark vars.
  double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  if (elapsed_ms < MIN_TIMER_GRANULARITY) {
    // This usually happens due to the timer not having the required
    // granularity. Some Linuxes are the usual culprits.
    // We'll just set it to something (arbitrarily) small.
    proc_ms = 1.0;
  }
  double cur_efficiency = (double) freed_bytes / proc_ms;

  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1465
  if (during_initial_mark_pause()) {
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

  if (in_young_gc_mode()) {
    if (_last_full_young_gc) {
      set_full_young_gcs(false);
      _last_full_young_gc = false;
    }

    if ( !_last_young_gc_full ) {
      if ( _should_revert_to_full_young_gcs ||
           _known_garbage_ratio < 0.05 ||
           (adaptive_young_list_length() &&
           (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
        set_full_young_gcs(true);
      }
    }
    _should_revert_to_full_young_gcs = false;

    if (_last_young_gc_full && !_during_marking)
      _young_gc_eff_seq->add(cur_efficiency);
  }

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

  // <NEW PREDICTION>

1495
  if (update_stats) {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    double pause_time_ms = elapsed_ms;

    size_t diff = 0;
    if (_max_pending_cards >= _pending_cards)
      diff = _max_pending_cards - _pending_cards;
    _pending_card_diff_seq->add((double) diff);

    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
      cost_per_card_ms = update_rs_time / (double) _pending_cards;
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
      cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
      if (_last_young_gc_full)
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
      else
        _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
      if (_last_young_gc_full)
        _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      else
        _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
    }

    size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    if (rs_length_diff >= 0)
      _rs_length_diff_seq->add((double) rs_length_diff);

    size_t copied_bytes = surviving_bytes;
    double cost_per_byte_ms = 0.0;
    if (copied_bytes > 0) {
      cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
      if (_in_marking_window)
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
      else
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
    }

    double all_other_time_ms = pause_time_ms -
1544
      (update_rs_time + scan_rs_time + obj_copy_time +
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
       _mark_closure_time_ms + termination_time);

    double young_other_time_ms = 0.0;
    if (_recorded_young_regions > 0) {
      young_other_time_ms =
        _recorded_young_cset_choice_time_ms +
        _recorded_young_free_cset_time_ms;
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
                                             (double) _recorded_young_regions);
    }
    double non_young_other_time_ms = 0.0;
    if (_recorded_non_young_regions > 0) {
      non_young_other_time_ms =
        _recorded_non_young_cset_choice_time_ms +
        _recorded_non_young_free_cset_time_ms;

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
                                         (double) _recorded_non_young_regions);
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
    if (_bytes_in_collection_set_before_gc > 0) {
      survival_ratio = (double) bytes_in_to_space_during_gc() /
        (double) _bytes_in_collection_set_before_gc;
    }

    _pending_cards_seq->add((double) _pending_cards);
    _scanned_cards_seq->add((double) cards_scanned);
    _rs_lengths_seq->add((double) _max_rs_lengths);

    double expensive_region_limit_ms =
J
johnc 已提交
1580
      (double) MaxGCPauseMillis - predict_constant_other_time_ms();
1581 1582 1583
    if (expensive_region_limit_ms < 0.0) {
      // this means that the other time was predicted to be longer than
      // than the max pause time
J
johnc 已提交
1584
      expensive_region_limit_ms = (double) MaxGCPauseMillis;
1585 1586 1587 1588 1589 1590
    }
    _expensive_region_limit_ms = expensive_region_limit_ms;

    if (PREDICTIONS_VERBOSE) {
      gclog_or_tty->print_cr("");
      gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
1591
                    "REGIONS %d %d %d "
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
                    "PENDING_CARDS %d %d "
                    "CARDS_SCANNED %d %d "
                    "RS_LENGTHS %d %d "
                    "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
                    "SURVIVAL_RATIO %1.6lf %1.6lf "
                    "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
                    "OTHER_YOUNG %1.6lf %1.6lf "
                    "OTHER_NON_YOUNG %1.6lf %1.6lf "
                    "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
                    "ELAPSED %1.6lf %1.6lf ",
                    _cur_collection_start_sec,
                    (!_last_young_gc_full) ? 2 :
                    (last_pause_included_initial_mark) ? 1 : 0,
                    _recorded_region_num,
                    _recorded_young_regions,
                    _recorded_non_young_regions,
                    _predicted_pending_cards, _pending_cards,
                    _predicted_cards_scanned, cards_scanned,
                    _predicted_rs_lengths, _max_rs_lengths,
                    _predicted_rs_update_time_ms, update_rs_time,
                    _predicted_rs_scan_time_ms, scan_rs_time,
                    _predicted_survival_ratio, survival_ratio,
                    _predicted_object_copy_time_ms, obj_copy_time,
                    _predicted_constant_other_time_ms, constant_other_time_ms,
                    _predicted_young_other_time_ms, young_other_time_ms,
                    _predicted_non_young_other_time_ms,
                    non_young_other_time_ms,
                    _vtime_diff_ms, termination_time,
                    _predicted_pause_time_ms, elapsed_ms);
    }

    if (G1PolicyVerbose > 0) {
      gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
                    _predicted_pause_time_ms,
                    (_within_target) ? "within" : "outside",
                    elapsed_ms);
    }

  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
  calculate_young_list_min_length();
1636
  calculate_young_list_target_length();
1637

1638
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1639
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1640
  adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1641 1642 1643 1644 1645
  // </NEW PREDICTION>
}

// <NEW PREDICTION>

1646 1647 1648 1649 1650 1651
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1652
  if (G1UseAdaptiveConcRefinement) {
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1687 1688 1689 1690 1691 1692
double
G1CollectorPolicy::
predict_young_collection_elapsed_time_ms(size_t adjustment) {
  guarantee( adjustment == 0 || adjustment == 1, "invariant" );

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
1693
  size_t young_num = g1h->young_list()->length();
1694 1695 1696 1697 1698
  if (young_num == 0)
    return 0.0;

  young_num += adjustment;
  size_t pending_cards = predict_pending_cards();
1699
  size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
                      predict_rs_length_diff();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_lengths);
  else
    card_num = predict_non_young_card_num(rs_lengths);
  size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  double accum_yg_surv_rate =
    _short_lived_surv_rate_group->accum_surv_rate(adjustment);

  size_t bytes_to_copy =
    (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);

  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy) +
    predict_young_other_time_ms(young_num) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_length);
  else
    card_num = predict_non_young_card_num(rs_length);
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
                                                  bool young) {
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_length);
  else
    card_num = predict_non_young_card_num(rs_length);
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

  if (young)
    region_elapsed_time_ms += predict_young_other_time_ms(1);
  else
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);

  return region_elapsed_time_ms;
}

size_t
G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
               "invariant" );
    int age = hr->age_in_surv_rate_group();
1773
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }

  return bytes_to_copy;
}

void
G1CollectorPolicy::start_recording_regions() {
  _recorded_rs_lengths            = 0;
  _recorded_young_regions         = 0;
  _recorded_non_young_regions     = 0;

#if PREDICTIONS_VERBOSE
  _recorded_marked_bytes          = 0;
  _recorded_young_bytes           = 0;
  _predicted_bytes_to_copy        = 0;
1790 1791
  _predicted_rs_lengths           = 0;
  _predicted_cards_scanned        = 0;
1792 1793 1794 1795
#endif // PREDICTIONS_VERBOSE
}

void
1796
G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
1797
#if PREDICTIONS_VERBOSE
1798
  if (!young) {
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
    _recorded_marked_bytes += hr->max_live_bytes();
  }
  _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
#endif // PREDICTIONS_VERBOSE

  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
}

void
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
  assert(!hr->is_young(), "should not call this");
  ++_recorded_non_young_regions;
  record_cset_region_info(hr, false);
}

void
G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
  _recorded_young_regions = n_regions;
}

void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
#if PREDICTIONS_VERBOSE
  _recorded_young_bytes = bytes;
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
  _predicted_bytes_to_copy = bytes;
1832 1833 1834 1835
}

void
G1CollectorPolicy::end_recording_regions() {
1836 1837 1838 1839
  // The _predicted_pause_time_ms field is referenced in code
  // not under PREDICTIONS_VERBOSE. Let's initialize it.
  _predicted_pause_time_ms = -1.0;

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
#if PREDICTIONS_VERBOSE
  _predicted_pending_cards = predict_pending_cards();
  _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
  if (full_young_gcs())
    _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
  else
    _predicted_cards_scanned +=
      predict_non_young_card_num(_predicted_rs_lengths);
  _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;

  _predicted_rs_update_time_ms =
    predict_rs_update_time_ms(_g1->pending_card_num());
  _predicted_rs_scan_time_ms =
    predict_rs_scan_time_ms(_predicted_cards_scanned);
  _predicted_object_copy_time_ms =
    predict_object_copy_time_ms(_predicted_bytes_to_copy);
  _predicted_constant_other_time_ms =
    predict_constant_other_time_ms();
  _predicted_young_other_time_ms =
    predict_young_other_time_ms(_recorded_young_regions);
  _predicted_non_young_other_time_ms =
    predict_non_young_other_time_ms(_recorded_non_young_regions);

  _predicted_pause_time_ms =
    _predicted_rs_update_time_ms +
    _predicted_rs_scan_time_ms +
    _predicted_object_copy_time_ms +
    _predicted_constant_other_time_ms +
    _predicted_young_other_time_ms +
    _predicted_non_young_other_time_ms;
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  // I don't think we need to do this when in young GC mode since
  // marking will be initiated next time we hit the soft limit anyway...
  if (predicted_time_ms > _expensive_region_limit_ms) {
    if (!in_young_gc_mode()) {
        set_full_young_gcs(true);
1880 1881 1882 1883 1884 1885 1886
        // We might want to do something different here. However,
        // right now we don't support the non-generational G1 mode
        // (and in fact we are planning to remove the associated code,
        // see CR 6814390). So, let's leave it as is and this will be
        // removed some time in the future
        ShouldNotReachHere();
        set_during_initial_mark_pause();
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
    } else
      // no point in doing another partial one
      _should_revert_to_full_young_gcs = true;
  }
}

// </NEW PREDICTION>


void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
J
johnc 已提交
1904
  if (_recent_pause_times_ms->num() == 0) return (double) MaxGCPauseMillis;
1905 1906 1907 1908 1909
  else return _recent_pause_times_ms->avg();
}

double G1CollectorPolicy::recent_avg_time_for_CH_strong_ms() {
  if (_recent_CH_strong_roots_times_ms->num() == 0)
J
johnc 已提交
1910
    return (double)MaxGCPauseMillis/3.0;
1911 1912 1913 1914 1915
  else return _recent_CH_strong_roots_times_ms->avg();
}

double G1CollectorPolicy::recent_avg_time_for_G1_strong_ms() {
  if (_recent_G1_strong_roots_times_ms->num() == 0)
J
johnc 已提交
1916
    return (double)MaxGCPauseMillis/3.0;
1917 1918 1919 1920
  else return _recent_G1_strong_roots_times_ms->avg();
}

double G1CollectorPolicy::recent_avg_time_for_evac_ms() {
J
johnc 已提交
1921
  if (_recent_evac_times_ms->num() == 0) return (double)MaxGCPauseMillis/3.0;
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
  else return _recent_evac_times_ms->avg();
}

int G1CollectorPolicy::number_of_recent_gcs() {
  assert(_recent_CH_strong_roots_times_ms->num() ==
         _recent_G1_strong_roots_times_ms->num(), "Sequence out of sync");
  assert(_recent_G1_strong_roots_times_ms->num() ==
         _recent_evac_times_ms->num(), "Sequence out of sync");
  assert(_recent_evac_times_ms->num() ==
         _recent_pause_times_ms->num(), "Sequence out of sync");
  assert(_recent_pause_times_ms->num() ==
         _recent_CS_bytes_used_before->num(), "Sequence out of sync");
  assert(_recent_CS_bytes_used_before->num() ==
         _recent_CS_bytes_surviving->num(), "Sequence out of sync");
  return _recent_pause_times_ms->num();
}

double G1CollectorPolicy::recent_avg_survival_fraction() {
  return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
                                           _recent_CS_bytes_used_before);
}

double G1CollectorPolicy::last_survival_fraction() {
  return last_survival_fraction_work(_recent_CS_bytes_surviving,
                                     _recent_CS_bytes_used_before);
}

double
G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
                                                     TruncatedSeq* before) {
  assert(surviving->num() == before->num(), "Sequence out of sync");
  if (before->sum() > 0.0) {
      double recent_survival_rate = surviving->sum() / before->sum();
      // We exempt parallel collection from this check because Alloc Buffer
      // fragmentation can produce negative collections.
      // Further, we're now always doing parallel collection.  But I'm still
      // leaving this here as a placeholder for a more precise assertion later.
      // (DLD, 10/05.)
1960
      assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
             _g1->evacuation_failed() ||
             recent_survival_rate <= 1.0, "Or bad frac");
      return recent_survival_rate;
  } else {
    return 1.0; // Be conservative.
  }
}

double
G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
                                               TruncatedSeq* before) {
  assert(surviving->num() == before->num(), "Sequence out of sync");
  if (surviving->num() > 0 && before->last() > 0.0) {
    double last_survival_rate = surviving->last() / before->last();
    // We exempt parallel collection from this check because Alloc Buffer
    // fragmentation can produce negative collections.
    // Further, we're now always doing parallel collection.  But I'm still
    // leaving this here as a placeholder for a more precise assertion later.
    // (DLD, 10/05.)
1980
    assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
           last_survival_rate <= 1.0, "Or bad frac");
    return last_survival_rate;
  } else {
    return 1.0;
  }
}

static const int survival_min_obs = 5;
static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
static const double min_survival_rate = 0.1;

double
G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
                                                           double latest) {
  double res = avg;
  if (number_of_recent_gcs() < survival_min_obs) {
    res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
  }
  res = MAX2(res, latest);
  res = MAX2(res, min_survival_rate);
  // In the parallel case, LAB fragmentation can produce "negative
  // collections"; so can evac failure.  Cap at 1.0
  res = MIN2(res, 1.0);
  return res;
}

size_t G1CollectorPolicy::expansion_amount() {
T
tonyp 已提交
2008
  if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
J
johnc 已提交
2009 2010 2011 2012
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
2013 2014 2015 2016 2017 2018
    const size_t min_expand_bytes = 1*M;
    size_t reserved_bytes = _g1->g1_reserved_obj_bytes();
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
2019
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
    if (G1PolicyVerbose > 1) {
      gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
                 "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
                 "                   Answer = %d.\n",
                 recent_avg_pause_time_ratio(),
                 byte_size_in_proper_unit(committed_bytes),
                 proper_unit_for_byte_size(committed_bytes),
                 byte_size_in_proper_unit(uncommitted_bytes),
                 proper_unit_for_byte_size(uncommitted_bytes),
                 byte_size_in_proper_unit(expand_bytes_via_pct),
                 proper_unit_for_byte_size(expand_bytes_via_pct),
                 byte_size_in_proper_unit(expand_bytes),
                 proper_unit_for_byte_size(expand_bytes));
    }
    return expand_bytes;
  } else {
    return 0;
  }
}

void G1CollectorPolicy::note_start_of_mark_thread() {
  _mark_thread_startup_sec = os::elapsedTime();
}

class CountCSClosure: public HeapRegionClosure {
  G1CollectorPolicy* _g1_policy;
public:
  CountCSClosure(G1CollectorPolicy* g1_policy) :
    _g1_policy(g1_policy) {}
  bool doHeapRegion(HeapRegion* r) {
    _g1_policy->_bytes_in_collection_set_before_gc += r->used();
    return false;
  }
};

void G1CollectorPolicy::count_CS_bytes_used() {
  CountCSClosure cs_closure(this);
  _g1->collection_set_iterate(&cs_closure);
}

static void print_indent(int level) {
  for (int j = 0; j < level+1; ++j)
    gclog_or_tty->print("   ");
}

void G1CollectorPolicy::print_summary (int level,
                                       const char* str,
                                       NumberSeq* seq) const {
  double sum = seq->sum();
  print_indent(level);
  gclog_or_tty->print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
                str, sum / 1000.0, seq->avg());
}

void G1CollectorPolicy::print_summary_sd (int level,
                                          const char* str,
                                          NumberSeq* seq) const {
  print_summary(level, str, seq);
  print_indent(level + 5);
  gclog_or_tty->print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
                seq->num(), seq->sd(), seq->maximum());
}

void G1CollectorPolicy::check_other_times(int level,
                                        NumberSeq* other_times_ms,
                                        NumberSeq* calc_other_times_ms) const {
  bool should_print = false;

  double max_sum = MAX2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double min_sum = MIN2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double sum_ratio = max_sum / min_sum;
  if (sum_ratio > 1.1) {
    should_print = true;
    print_indent(level + 1);
    gclog_or_tty->print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  }

  double max_avg = MAX2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double min_avg = MIN2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double avg_ratio = max_avg / min_avg;
  if (avg_ratio > 1.1) {
    should_print = true;
    print_indent(level + 1);
    gclog_or_tty->print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  }

  if (other_times_ms->sum() < -0.01) {
    print_indent(level + 1);
    gclog_or_tty->print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  }

  if (other_times_ms->avg() < -0.01) {
    print_indent(level + 1);
    gclog_or_tty->print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  }

  if (calc_other_times_ms->sum() < -0.01) {
    should_print = true;
    print_indent(level + 1);
    gclog_or_tty->print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  }

  if (calc_other_times_ms->avg() < -0.01) {
    should_print = true;
    print_indent(level + 1);
    gclog_or_tty->print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  }

  if (should_print)
    print_summary(level, "Other(Calc)", calc_other_times_ms);
}

void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
2140
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
2141 2142
  MainBodySummary*    body_summary = summary->main_body_summary();
  if (summary->get_total_seq()->num() > 0) {
2143
    print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
    if (body_summary != NULL) {
      print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
      if (parallel) {
        print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
        print_summary(2, "Update RS", body_summary->get_update_rs_seq());
        print_summary(2, "Ext Root Scanning",
                      body_summary->get_ext_root_scan_seq());
        print_summary(2, "Mark Stack Scanning",
                      body_summary->get_mark_stack_scan_seq());
        print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
        print_summary(2, "Termination", body_summary->get_termination_seq());
        print_summary(2, "Other", body_summary->get_parallel_other_seq());
        {
          NumberSeq* other_parts[] = {
            body_summary->get_update_rs_seq(),
            body_summary->get_ext_root_scan_seq(),
            body_summary->get_mark_stack_scan_seq(),
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq(),
            body_summary->get_termination_seq()
          };
          NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
2167
                                        6, other_parts);
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
          check_other_times(2, body_summary->get_parallel_other_seq(),
                            &calc_other_times_ms);
        }
        print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
        print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
      } else {
        print_summary(1, "Update RS", body_summary->get_update_rs_seq());
        print_summary(1, "Ext Root Scanning",
                      body_summary->get_ext_root_scan_seq());
        print_summary(1, "Mark Stack Scanning",
                      body_summary->get_mark_stack_scan_seq());
        print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
      }
    }
    print_summary(1, "Other", summary->get_other_seq());
    {
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
      if (body_summary != NULL) {
        NumberSeq calc_other_times_ms;
        if (parallel) {
          // parallel
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
            body_summary->get_parallel_seq(),
            body_summary->get_clear_ct_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
                                                3, other_parts);
        } else {
          // serial
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
            body_summary->get_update_rs_seq(),
            body_summary->get_ext_root_scan_seq(),
            body_summary->get_mark_stack_scan_seq(),
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
                                                6, other_parts);
        }
        check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
      }
    }
  } else {
    print_indent(0);
    gclog_or_tty->print_cr("none");
  }
  gclog_or_tty->print_cr("");
}

void G1CollectorPolicy::print_tracing_info() const {
  if (TraceGen0Time) {
    gclog_or_tty->print_cr("ALL PAUSES");
    print_summary_sd(0, "Total", _all_pause_times_ms);
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
    gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
    gclog_or_tty->print_cr("");

2229 2230
    gclog_or_tty->print_cr("EVACUATION PAUSES");
    print_summary(_summary);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

    gclog_or_tty->print_cr("MISC");
    print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
    print_summary_sd(0, "Yields", _all_yield_times_ms);
    for (int i = 0; i < _aux_num; ++i) {
      if (_all_aux_times_ms[i].num() > 0) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
      }
    }

    size_t all_region_num = _region_num_young + _region_num_tenured;
    gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
               "Tenured %8d (%6.2lf%%)",
               all_region_num,
               _region_num_young,
               (double) _region_num_young / (double) all_region_num * 100.0,
               _region_num_tenured,
               (double) _region_num_tenured / (double) all_region_num * 100.0);
  }
  if (TraceGen1Time) {
    if (_all_full_gc_times_ms->num() > 0) {
      gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
                 _all_full_gc_times_ms->num(),
                 _all_full_gc_times_ms->sum() / 1000.0);
      gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
      gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
                    _all_full_gc_times_ms->sd(),
                    _all_full_gc_times_ms->maximum());
    }
  }
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

2272 2273 2274
void
G1CollectorPolicy::update_region_num(bool young) {
  if (young) {
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
    ++_region_num_young;
  } else {
    ++_region_num_tenured;
  }
}

#ifndef PRODUCT
// for debugging, bit of a hack...
static char*
region_num_to_mbs(int length) {
  static char buffer[64];
  double bytes = (double) (length * HeapRegion::GrainBytes);
  double mbs = bytes / (double) (1024 * 1024);
  sprintf(buffer, "%7.2lfMB", mbs);
  return buffer;
}
#endif // PRODUCT

2293
size_t G1CollectorPolicy::max_regions(int purpose) {
2294 2295
  switch (purpose) {
    case GCAllocForSurvived:
2296
      return _max_survivor_regions;
2297
    case GCAllocForTenured:
2298
      return REGIONS_UNLIMITED;
2299
    default:
2300 2301
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
2302 2303 2304
  };
}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
void G1CollectorPolicy::calculate_max_gc_locker_expansion() {
  size_t expansion_region_num = 0;
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
    expansion_region_num = (size_t) ceil(expansion_region_num_d);
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

2320 2321 2322 2323 2324 2325
// Calculates survivor space parameters.
void G1CollectorPolicy::calculate_survivors_policy()
{
  if (G1FixedSurvivorSpaceSize == 0) {
    _max_survivor_regions = _young_list_target_length / SurvivorRatio;
  } else {
2326
    _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
  }

  if (G1FixedTenuringThreshold) {
    _tenuring_threshold = MaxTenuringThreshold;
  } else {
    _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
        HeapRegion::GrainWords * _max_survivor_regions);
  }
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
#ifndef PRODUCT
class HRSortIndexIsOKClosure: public HeapRegionClosure {
  CollectionSetChooser* _chooser;
public:
  HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
    _chooser(chooser) {}

  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
    }
    return false;
  }
};

bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
  HRSortIndexIsOKClosure cl(_collectionSetChooser);
  _g1->heap_region_iterate(&cl);
  return true;
}
#endif

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
bool
G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
    return false;
  }
}

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
    }
  }
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
void
G1CollectorPolicy_BestRegionsFirst::
record_collection_pause_start(double start_time_sec, size_t start_used) {
  G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
}

class NextNonCSElemFinder: public HeapRegionClosure {
  HeapRegion* _res;
public:
  NextNonCSElemFinder(): _res(NULL) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->in_collection_set()) {
      _res = r;
      return true;
    } else {
      return false;
    }
  }
  HeapRegion* res() { return _res; }
};

class KnownGarbageClosure: public HeapRegionClosure {
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
    _hrSorted(hrSorted)
  {}

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
      // We don't include humongous regions in collection
      // sets because we collect them immediately at the end of a marking
      // cycle.  We also don't include young regions because we *must*
      // include them in the next collection pause.
      if (!r->isHumongous() && !r->is_young()) {
        _hrSorted->addMarkedHeapRegion(r);
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
  CollectionSetChooser* _hrSorted;
  jint _marked_regions_added;
  jint _chunk_size;
  jint _cur_chunk_idx;
  jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  int _worker;
  int _invokes;

  void get_new_chunk() {
    _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
    _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  }
  void add_region(HeapRegion* r) {
    if (_cur_chunk_idx == _cur_chunk_end) {
      get_new_chunk();
    }
    assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
    _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
    _marked_regions_added++;
    _cur_chunk_idx++;
  }

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
                           jint chunk_size,
                           int worker) :
    _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
    _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
    _invokes(0)
  {}

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.
    _invokes++;

    // Do we have any marking information for this region?
    if (r->is_marked()) {
      // We don't include humongous regions in collection
      // sets because we collect them immediately at the end of a marking
      // cycle.
      // We also do not include young regions in collection sets
      if (!r->isHumongous() && !r->is_young()) {
        add_region(r);
      }
    }
    return false;
  }
  jint marked_regions_added() { return _marked_regions_added; }
  int invokes() { return _invokes; }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
  jint _chunk_size;
  G1CollectedHeap* _g1;
public:
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
    _g1(G1CollectedHeap::heap())
  {}

  void work(int i) {
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
    // Back to zero for the claim value.
2530 2531
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
                                         HeapRegion::InitialClaimValue);
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
    jint regions_added = parKnownGarbageCl.marked_regions_added();
    _hrSorted->incNumMarkedHeapRegions(regions_added);
    if (G1PrintParCleanupStats) {
      gclog_or_tty->print("     Thread %d called %d times, added %d regions to list.\n",
                 i, parKnownGarbageCl.invokes(), regions_added);
    }
  }
};

void
G1CollectorPolicy_BestRegionsFirst::
record_concurrent_mark_cleanup_end(size_t freed_bytes,
                                   size_t max_live_bytes) {
  double start;
  if (G1PrintParCleanupStats) start = os::elapsedTime();
  record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);

  _collectionSetChooser->clearMarkedHeapRegions();
  double clear_marked_end;
  if (G1PrintParCleanupStats) {
    clear_marked_end = os::elapsedTime();
    gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
                  (clear_marked_end - start)*1000.0);
  }
2556
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2557
    const size_t OverpartitionFactor = 4;
2558 2559
    const size_t MinWorkUnit = 8;
    const size_t WorkUnit =
2560
      MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
2561
           MinWorkUnit);
2562
    _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2563
                                                             WorkUnit);
2564
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2565
                                            (int) WorkUnit);
2566
    _g1->workers()->run_task(&parKnownGarbageTask);
2567 2568 2569

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
  double known_garbage_end;
  if (G1PrintParCleanupStats) {
    known_garbage_end = os::elapsedTime();
    gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
                  (known_garbage_end - clear_marked_end)*1000.0);
  }
  _collectionSetChooser->sortMarkedHeapRegions();
  double sort_end;
  if (G1PrintParCleanupStats) {
    sort_end = os::elapsedTime();
    gclog_or_tty->print_cr("  sorting: %8.3f ms.",
                  (sort_end - known_garbage_end)*1000.0);
  }

  record_concurrent_mark_cleanup_end_work2();
  double work2_end;
  if (G1PrintParCleanupStats) {
    work2_end = os::elapsedTime();
    gclog_or_tty->print_cr("  work2: %8.3f ms.",
                  (work2_end - sort_end)*1000.0);
  }
}

2597
// Add the heap region at the head of the non-incremental collection set
2598 2599
void G1CollectorPolicy::
add_to_collection_set(HeapRegion* hr) {
2600 2601 2602
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

2603
  if (G1PrintHeapRegions) {
2604 2605 2606 2607 2608
    gclog_or_tty->print_cr("added region to cset "
                           "%d:["PTR_FORMAT", "PTR_FORMAT"], "
                           "top "PTR_FORMAT", %s",
                           hr->hrs_index(), hr->bottom(), hr->end(),
                           hr->top(), hr->is_young() ? "YOUNG" : "NOT_YOUNG");
2609 2610 2611 2612 2613
  }

  if (_g1->mark_in_progress())
    _g1->concurrent_mark()->registerCSetRegion(hr);

2614
  assert(!hr->in_collection_set(), "should not already be in the CSet");
2615 2616 2617 2618 2619
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_size++;
  _collection_set_bytes_used_before += hr->used();
2620
  _g1->register_region_with_in_cset_fast_test(hr);
2621 2622
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_size = 0;
  _inc_cset_bytes_used_before = 0;

  if (in_young_gc_mode()) {
    _inc_cset_young_index = 0;
  }

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_young_bytes = 0;
  _inc_cset_recorded_rs_lengths = 0;
  _inc_cset_predicted_elapsed_time_ms = 0;
  _inc_cset_predicted_bytes_to_copy = 0;
  _inc_cset_build_state = Active;
}

void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  size_t used_bytes = hr->used();

  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;

  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);

#if PREDICTIONS_VERBOSE
  size_t bytes_to_copy = predict_bytes_to_copy(hr);
  _inc_cset_predicted_bytes_to_copy += bytes_to_copy;

  // Record the number of bytes used in this region
  _inc_cset_recorded_young_bytes += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_predicted_bytes_to_copy(bytes_to_copy);
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
  // This routine is currently only called as part of the updating of
  // existing policy information for regions in the incremental cset that
  // is performed by the concurrent refine thread(s) as part of young list
  // RSet sampling. Therefore we should not be at a safepoint.

  assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  assert(hr->is_young(), "it should be");

  size_t used_bytes = hr->used();
  size_t old_rs_length = hr->recorded_rs_length();
  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();

  // Subtract the old recorded/predicted policy information for
  // the given heap region from the collection set info.
  _inc_cset_recorded_rs_lengths -= old_rs_length;
  _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;

  _inc_cset_bytes_used_before -= used_bytes;

  // Clear the values cached in the heap region
  hr->set_recorded_rs_length(0);
  hr->set_predicted_elapsed_time_ms(0);

#if PREDICTIONS_VERBOSE
  size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
  _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;

  // Subtract the number of bytes used in this region
  _inc_cset_recorded_young_bytes -= used_bytes;

  // Clear the values cached in the heap region
  hr->set_predicted_bytes_to_copy(0);
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
  // Update the collection set information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");

  remove_from_incremental_cset_info(hr);
  add_to_incremental_cset_info(hr, new_rs_length);
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  assert( hr->is_young(), "invariant");
  assert( hr->young_index_in_cset() == -1, "invariant" );
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _inc_cset_size++;
  _g1->register_region_with_in_cset_fast_test(hr);

  hr->set_young_index_in_cset((int) _inc_cset_young_index);
  ++_inc_cset_young_index;
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;

  if (G1PrintHeapRegions) {
    gclog_or_tty->print_cr(" added region to incremental cset (RHS) "
                  "%d:["PTR_FORMAT", "PTR_FORMAT"], "
                  "top "PTR_FORMAT", young %s",
                  hr->hrs_index(), hr->bottom(), hr->end(),
                  hr->top(), (hr->is_young()) ? "YES" : "NO");
  }
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;

  if (G1PrintHeapRegions) {
    gclog_or_tty->print_cr(" added region to incremental cset (LHS) "
                  "%d:["PTR_FORMAT", "PTR_FORMAT"], "
                  "top "PTR_FORMAT", young %s",
                  hr->hrs_index(), hr->bottom(), hr->end(),
                  hr->top(), (hr->is_young()) ? "YES" : "NO");
  }
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
    st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
                 "age: %4d, y: %d, surv: %d",
                        csr->bottom(), csr->end(),
                        csr->top(),
                        csr->prev_top_at_mark_start(),
                        csr->next_top_at_mark_start(),
                        csr->top_at_conc_mark_count(),
                        csr->age_in_surv_rate_group_cond(),
                        csr->is_young(),
                        csr->is_survivor());
    csr = next;
  }
}
#endif // !PRODUCT

2835
void
2836 2837
G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
                                                  double target_pause_time_ms) {
2838 2839 2840
  // Set this here - in case we're not doing young collections.
  double non_young_start_time_sec = os::elapsedTime();

2841 2842
  start_recording_regions();

2843 2844 2845 2846
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
2847 2848 2849 2850

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;

2851
  double time_remaining_ms = target_pause_time_ms - base_time_ms;
2852 2853

  // the 10% and 50% values are arbitrary...
2854 2855
  if (time_remaining_ms < 0.10 * target_pause_time_ms) {
    time_remaining_ms = 0.50 * target_pause_time_ms;
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
    _within_target = false;
  } else {
    _within_target = true;
  }

  // We figure out the number of bytes available for future to-space.
  // For new regions without marking information, we must assume the
  // worst-case of complete survival.  If we have marking information for a
  // region, we can bound the amount of live data.  We can add a number of
  // such regions, as long as the sum of the live data bounds does not
  // exceed the available evacuation space.
  size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;

  size_t expansion_bytes =
    _g1->expansion_regions() * HeapRegion::GrainBytes;

2872 2873
  _collection_set_bytes_used_before = 0;
  _collection_set_size = 0;
2874 2875 2876 2877

  // Adjust for expansion and slop.
  max_live_bytes = max_live_bytes + expansion_bytes;

2878
  assert(_g1->regions_accounted_for(), "Region leakage!");
2879 2880 2881 2882 2883 2884 2885

  HeapRegion* hr;
  if (in_young_gc_mode()) {
    double young_start_time_sec = os::elapsedTime();

    if (G1PolicyVerbose > 0) {
      gclog_or_tty->print_cr("Adding %d young regions to the CSet",
2886
                    _g1->young_list()->length());
2887
    }
2888

2889 2890
    _young_cset_length  = 0;
    _last_young_gc_full = full_young_gcs() ? true : false;
2891

2892 2893 2894 2895
    if (_last_young_gc_full)
      ++_full_young_pause_num;
    else
      ++_partial_young_pause_num;
2896 2897 2898 2899 2900 2901

    // The young list is laid with the survivor regions from the previous
    // pause are appended to the RHS of the young list, i.e.
    //   [Newly Young Regions ++ Survivors from last pause].

    hr = _g1->young_list()->first_survivor_region();
2902
    while (hr != NULL) {
2903 2904 2905 2906
      assert(hr->is_survivor(), "badly formed young list");
      hr->set_young();
      hr = hr->get_next_young_region();
    }
2907

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    // Clear the fields that point to the survivor list - they are
    // all young now.
    _g1->young_list()->clear_survivors();

    if (_g1->mark_in_progress())
      _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);

    _young_cset_length = _inc_cset_young_index;
    _collection_set = _inc_cset_head;
    _collection_set_size = _inc_cset_size;
    _collection_set_bytes_used_before = _inc_cset_bytes_used_before;

    // For young regions in the collection set, we assume the worst
    // case of complete survival
    max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;

    time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
    predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;

    // The number of recorded young regions is the incremental
    // collection set's current size
    set_recorded_young_regions(_inc_cset_size);
    set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
    set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
#if PREDICTIONS_VERBOSE
    set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
#endif // PREDICTIONS_VERBOSE

    if (G1PolicyVerbose > 0) {
      gclog_or_tty->print_cr("  Added " PTR_FORMAT " Young Regions to CS.",
                             _inc_cset_size);
      gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
                            max_live_bytes/K);
2941 2942
    }

2943
    assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");
2944 2945 2946 2947 2948

    double young_end_time_sec = os::elapsedTime();
    _recorded_young_cset_choice_time_ms =
      (young_end_time_sec - young_start_time_sec) * 1000.0;

2949 2950
    // We are doing young collections so reset this.
    non_young_start_time_sec = young_end_time_sec;
2951

2952 2953 2954
    // Note we can use either _collection_set_size or
    // _young_cset_length here
    if (_collection_set_size > 0 && _last_young_gc_full) {
2955 2956 2957 2958 2959 2960 2961 2962 2963
      // don't bother adding more regions...
      goto choose_collection_set_end;
    }
  }

  if (!in_young_gc_mode() || !full_young_gcs()) {
    bool should_continue = true;
    NumberSeq seq;
    double avg_prediction = 100000000000000000.0; // something very large
2964

2965 2966 2967
    do {
      hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
                                                      avg_prediction);
2968
      if (hr != NULL) {
2969 2970 2971 2972
        double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
        time_remaining_ms -= predicted_time_ms;
        predicted_pause_time_ms += predicted_time_ms;
        add_to_collection_set(hr);
2973
        record_non_young_cset_region(hr);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
        max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
        if (G1PolicyVerbose > 0) {
          gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
                        max_live_bytes/K);
        }
        seq.add(predicted_time_ms);
        avg_prediction = seq.avg() + seq.sd();
      }
      should_continue =
        ( hr != NULL) &&
        ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
          : _collection_set_size < _young_list_fixed_length );
    } while (should_continue);

    if (!adaptive_young_list_length() &&
        _collection_set_size < _young_list_fixed_length)
      _should_revert_to_full_young_gcs  = true;
  }

choose_collection_set_end:
2994 2995
  stop_incremental_cset_building();

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
  count_CS_bytes_used();

  end_recording_regions();

  double non_young_end_time_sec = os::elapsedTime();
  _recorded_non_young_cset_choice_time_ms =
    (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
}

void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
  G1CollectorPolicy::record_full_collection_end();
  _collectionSetChooser->updateAfterFullCollection();
}

void G1CollectorPolicy_BestRegionsFirst::
expand_if_possible(size_t numRegions) {
  size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
  _g1->expand(expansion_bytes);
}

void G1CollectorPolicy_BestRegionsFirst::
3017 3018
record_collection_pause_end() {
  G1CollectorPolicy::record_collection_pause_end();
3019 3020
  assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
}