提交 d2792c8c 编写于 作者: R roland

6912521: System.arraycopy works slower than the simple loop for little lengths

Summary: convert small array copies to series of loads and stores
Reviewed-by: kvn, vlivanov
上级 1ca13ea7
此差异已折叠。
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_ARRAYCOPYNODE_HPP
#define SHARE_VM_OPTO_ARRAYCOPYNODE_HPP
#include "opto/callnode.hpp"
class GraphKit;
class ArrayCopyNode : public CallNode {
private:
// What kind of arraycopy variant is this?
enum {
None, // not set yet
ArrayCopy, // System.arraycopy()
CloneBasic, // A clone that can be copied by 64 bit chunks
CloneOop, // An oop array clone
CopyOf, // Arrays.copyOf()
CopyOfRange // Arrays.copyOfRange()
} _kind;
#ifndef PRODUCT
static const char* _kind_names[CopyOfRange+1];
#endif
// Is the alloc obtained with
// AllocateArrayNode::Ideal_array_allocation() tighly coupled
// (arraycopy follows immediately the allocation)?
// We cache the result of LibraryCallKit::tightly_coupled_allocation
// here because it's much easier to find whether there's a tightly
// couple allocation at parse time than at macro expansion time. At
// macro expansion time, for every use of the allocation node we
// would need to figure out whether it happens after the arraycopy (and
// can be ignored) or between the allocation and the arraycopy. At
// parse time, it's straightforward because whatever happens after
// the arraycopy is not parsed yet so doesn't exist when
// LibraryCallKit::tightly_coupled_allocation() is called.
bool _alloc_tightly_coupled;
bool _arguments_validated;
static const TypeFunc* arraycopy_type() {
const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
fields[Src] = TypeInstPtr::BOTTOM;
fields[SrcPos] = TypeInt::INT;
fields[Dest] = TypeInstPtr::BOTTOM;
fields[DestPos] = TypeInt::INT;
fields[Length] = TypeInt::INT;
fields[SrcLen] = TypeInt::INT;
fields[DestLen] = TypeInt::INT;
fields[SrcKlass] = TypeKlassPtr::BOTTOM;
fields[DestKlass] = TypeKlassPtr::BOTTOM;
const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
// create result type (range)
fields = TypeTuple::fields(0);
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
return TypeFunc::make(domain, range);
}
ArrayCopyNode(Compile* C, bool alloc_tightly_coupled);
intptr_t get_length_if_constant(PhaseGVN *phase) const;
int get_count(PhaseGVN *phase) const;
static const TypePtr* get_address_type(PhaseGVN *phase, Node* n);
Node* try_clone_instance(PhaseGVN *phase, bool can_reshape, int count);
Node* conv_I2X_offset(PhaseGVN *phase, Node* offset, const TypeAryPtr* ary_t);
bool prepare_array_copy(PhaseGVN *phase, bool can_reshape,
Node*& adr_src, Node*& base_src, Node*& adr_dest, Node*& base_dest,
BasicType& copy_type, const Type*& value_type, bool& disjoint_bases);
void array_copy_test_overlap(PhaseGVN *phase, bool can_reshape,
bool disjoint_bases, int count,
Node*& forward_ctl, Node*& backward_ctl);
Node* array_copy_forward(PhaseGVN *phase, bool can_reshape, Node* ctl,
Node* start_mem_src, Node* start_mem_dest,
const TypePtr* atp_src, const TypePtr* atp_dest,
Node* adr_src, Node* base_src, Node* adr_dest, Node* base_dest,
BasicType copy_type, const Type* value_type, int count);
Node* array_copy_backward(PhaseGVN *phase, bool can_reshape, Node* ctl,
Node *start_mem_src, Node* start_mem_dest,
const TypePtr* atp_src, const TypePtr* atp_dest,
Node* adr_src, Node* base_src, Node* adr_dest, Node* base_dest,
BasicType copy_type, const Type* value_type, int count);
bool finish_transform(PhaseGVN *phase, bool can_reshape,
Node* ctl, Node *mem);
public:
enum {
Src = TypeFunc::Parms,
SrcPos,
Dest,
DestPos,
Length,
SrcLen,
DestLen,
SrcKlass,
DestKlass,
ParmLimit
};
static ArrayCopyNode* make(GraphKit* kit, bool may_throw,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* length,
bool alloc_tightly_coupled,
Node* src_klass = NULL, Node* dest_klass = NULL,
Node* src_length = NULL, Node* dest_length = NULL);
void connect_outputs(GraphKit* kit);
bool is_arraycopy() const { assert(_kind != None, "should bet set"); return _kind == ArrayCopy; }
bool is_arraycopy_validated() const { assert(_kind != None, "should bet set"); return _kind == ArrayCopy && _arguments_validated; }
bool is_clonebasic() const { assert(_kind != None, "should bet set"); return _kind == CloneBasic; }
bool is_cloneoop() const { assert(_kind != None, "should bet set"); return _kind == CloneOop; }
bool is_copyof() const { assert(_kind != None, "should bet set"); return _kind == CopyOf; }
bool is_copyof_validated() const { assert(_kind != None, "should bet set"); return _kind == CopyOf && _arguments_validated; }
bool is_copyofrange() const { assert(_kind != None, "should bet set"); return _kind == CopyOfRange; }
bool is_copyofrange_validated() const { assert(_kind != None, "should bet set"); return _kind == CopyOfRange && _arguments_validated; }
void set_arraycopy(bool validated) { assert(_kind == None, "shouldn't bet set yet"); _kind = ArrayCopy; _arguments_validated = validated; }
void set_clonebasic() { assert(_kind == None, "shouldn't bet set yet"); _kind = CloneBasic; }
void set_cloneoop() { assert(_kind == None, "shouldn't bet set yet"); _kind = CloneOop; }
void set_copyof(bool validated) { assert(_kind == None, "shouldn't bet set yet"); _kind = CopyOf; _arguments_validated = validated; }
void set_copyofrange(bool validated) { assert(_kind == None, "shouldn't bet set yet"); _kind = CopyOfRange; _arguments_validated = validated; }
virtual int Opcode() const;
virtual uint size_of() const; // Size is bigger
virtual bool guaranteed_safepoint() { return false; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
bool is_alloc_tightly_coupled() const { return _alloc_tightly_coupled; }
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
#endif // SHARE_VM_OPTO_ARRAYCOPYNODE_HPP
......@@ -1875,194 +1875,3 @@ void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag) cons
log->tail(tag);
}
}
ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled)
: CallNode(arraycopy_type(), NULL, TypeRawPtr::BOTTOM),
_alloc_tightly_coupled(alloc_tightly_coupled),
_kind(None),
_arguments_validated(false) {
init_class_id(Class_ArrayCopy);
init_flags(Flag_is_macro);
C->add_macro_node(this);
}
uint ArrayCopyNode::size_of() const { return sizeof(*this); }
ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* length,
bool alloc_tightly_coupled,
Node* src_klass, Node* dest_klass,
Node* src_length, Node* dest_length) {
ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled);
Node* prev_mem = kit->set_predefined_input_for_runtime_call(ac);
ac->init_req(ArrayCopyNode::Src, src);
ac->init_req(ArrayCopyNode::SrcPos, src_offset);
ac->init_req(ArrayCopyNode::Dest, dest);
ac->init_req(ArrayCopyNode::DestPos, dest_offset);
ac->init_req(ArrayCopyNode::Length, length);
ac->init_req(ArrayCopyNode::SrcLen, src_length);
ac->init_req(ArrayCopyNode::DestLen, dest_length);
ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
if (may_throw) {
ac->set_req(TypeFunc::I_O , kit->i_o());
kit->add_safepoint_edges(ac, false);
}
return ac;
}
void ArrayCopyNode::connect_outputs(GraphKit* kit) {
kit->set_all_memory_call(this, true);
kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true);
kit->set_all_memory_call(this);
}
#ifndef PRODUCT
const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
void ArrayCopyNode::dump_spec(outputStream *st) const {
CallNode::dump_spec(st);
st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
}
#endif
int ArrayCopyNode::get_count(PhaseGVN *phase) const {
Node* src = in(ArrayCopyNode::Src);
const Type* src_type = phase->type(src);
assert(is_clonebasic(), "unexpected arraycopy type");
if (src_type->isa_instptr()) {
const TypeInstPtr* inst_src = src_type->is_instptr();
ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
// ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
// fields into account. They are rare anyway so easier to simply
// skip instances with injected fields.
if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
return -1;
}
int nb_fields = ik->nof_nonstatic_fields();
return nb_fields;
}
return -1;
}
Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
assert(is_clonebasic(), "unexpected arraycopy type");
Node* src = in(ArrayCopyNode::Src);
Node* dest = in(ArrayCopyNode::Dest);
Node* ctl = in(TypeFunc::Control);
Node* in_mem = in(TypeFunc::Memory);
const Type* src_type = phase->type(src);
const Type* dest_type = phase->type(dest);
assert(src->is_AddP(), "should be base + off");
assert(dest->is_AddP(), "should be base + off");
Node* base_src = src->in(AddPNode::Base);
Node* base_dest = dest->in(AddPNode::Base);
MergeMemNode* mem = MergeMemNode::make(in_mem);
const TypeInstPtr* inst_src = src_type->is_instptr();
if (!inst_src->klass_is_exact()) {
ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
assert(!ik->is_interface() && !ik->has_subklass(), "inconsistent klass hierarchy");
phase->C->dependencies()->assert_leaf_type(ik);
}
ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
for (int i = 0; i < count; i++) {
ciField* field = ik->nonstatic_field_at(i);
int fieldidx = phase->C->alias_type(field)->index();
const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
Node* off = phase->MakeConX(field->offset());
Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
BasicType bt = field->layout_type();
const Type *type;
if (bt == T_OBJECT) {
if (!field->type()->is_loaded()) {
type = TypeInstPtr::BOTTOM;
} else {
ciType* field_klass = field->type();
type = TypeOopPtr::make_from_klass(field_klass->as_klass());
}
} else {
type = Type::get_const_basic_type(bt);
}
Node* v = LoadNode::make(*phase, ctl, mem->memory_at(fieldidx), next_src, adr_type, type, bt, MemNode::unordered);
v = phase->transform(v);
Node* s = StoreNode::make(*phase, ctl, mem->memory_at(fieldidx), next_dest, adr_type, v, bt, MemNode::unordered);
s = phase->transform(s);
mem->set_memory_at(fieldidx, s);
}
if (!finish_transform(phase, can_reshape, ctl, mem)) {
return NULL;
}
return mem;
}
bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
Node* ctl, Node *mem) {
if (can_reshape) {
PhaseIterGVN* igvn = phase->is_IterGVN();
assert(is_clonebasic(), "unexpected arraycopy type");
Node* out_mem = proj_out(TypeFunc::Memory);
if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
assert(!GraphKit::use_ReduceInitialCardMarks(), "can only happen with card marking");
return false;
}
igvn->replace_node(out_mem->raw_out(0), mem);
Node* out_ctl = proj_out(TypeFunc::Control);
igvn->replace_node(out_ctl, ctl);
}
return true;
}
Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if (remove_dead_region(phase, can_reshape)) return this;
if (StressArrayCopyMacroNode && !can_reshape) return NULL;
// See if it's a small array copy and we can inline it as
// loads/stores
// Here we can only do:
// - clone for which we don't need to do card marking
if (!is_clonebasic()) {
return NULL;
}
if (in(TypeFunc::Control)->is_top() || in(TypeFunc::Memory)->is_top()) {
return NULL;
}
int count = get_count(phase);
if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
return NULL;
}
Node* mem = try_clone_instance(phase, can_reshape, count);
return mem;
}
......@@ -1083,117 +1083,4 @@ public:
#endif
};
class GraphKit;
class ArrayCopyNode : public CallNode {
private:
// What kind of arraycopy variant is this?
enum {
None, // not set yet
ArrayCopy, // System.arraycopy()
CloneBasic, // A clone that can be copied by 64 bit chunks
CloneOop, // An oop array clone
CopyOf, // Arrays.copyOf()
CopyOfRange // Arrays.copyOfRange()
} _kind;
#ifndef PRODUCT
static const char* _kind_names[CopyOfRange+1];
#endif
// Is the alloc obtained with
// AllocateArrayNode::Ideal_array_allocation() tighly coupled
// (arraycopy follows immediately the allocation)?
// We cache the result of LibraryCallKit::tightly_coupled_allocation
// here because it's much easier to find whether there's a tightly
// couple allocation at parse time than at macro expansion time. At
// macro expansion time, for every use of the allocation node we
// would need to figure out whether it happens after the arraycopy (and
// can be ignored) or between the allocation and the arraycopy. At
// parse time, it's straightforward because whatever happens after
// the arraycopy is not parsed yet so doesn't exist when
// LibraryCallKit::tightly_coupled_allocation() is called.
bool _alloc_tightly_coupled;
bool _arguments_validated;
static const TypeFunc* arraycopy_type() {
const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
fields[Src] = TypeInstPtr::BOTTOM;
fields[SrcPos] = TypeInt::INT;
fields[Dest] = TypeInstPtr::BOTTOM;
fields[DestPos] = TypeInt::INT;
fields[Length] = TypeInt::INT;
fields[SrcLen] = TypeInt::INT;
fields[DestLen] = TypeInt::INT;
fields[SrcKlass] = TypeKlassPtr::BOTTOM;
fields[DestKlass] = TypeKlassPtr::BOTTOM;
const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
// create result type (range)
fields = TypeTuple::fields(0);
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
return TypeFunc::make(domain, range);
}
ArrayCopyNode(Compile* C, bool alloc_tightly_coupled);
int get_count(PhaseGVN *phase) const;
static const TypePtr* get_address_type(PhaseGVN *phase, Node* n);
Node* try_clone_instance(PhaseGVN *phase, bool can_reshape, int count);
bool finish_transform(PhaseGVN *phase, bool can_reshape,
Node* ctl, Node *mem);
public:
enum {
Src = TypeFunc::Parms,
SrcPos,
Dest,
DestPos,
Length,
SrcLen,
DestLen,
SrcKlass,
DestKlass,
ParmLimit
};
static ArrayCopyNode* make(GraphKit* kit, bool may_throw,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* length,
bool alloc_tightly_coupled,
Node* src_klass = NULL, Node* dest_klass = NULL,
Node* src_length = NULL, Node* dest_length = NULL);
void connect_outputs(GraphKit* kit);
bool is_arraycopy() const { assert(_kind != None, "should bet set"); return _kind == ArrayCopy; }
bool is_arraycopy_validated() const { assert(_kind != None, "should bet set"); return _kind == ArrayCopy && _arguments_validated; }
bool is_clonebasic() const { assert(_kind != None, "should bet set"); return _kind == CloneBasic; }
bool is_cloneoop() const { assert(_kind != None, "should bet set"); return _kind == CloneOop; }
bool is_copyof() const { assert(_kind != None, "should bet set"); return _kind == CopyOf; }
bool is_copyofrange() const { assert(_kind != None, "should bet set"); return _kind == CopyOfRange; }
void set_arraycopy(bool validated) { assert(_kind == None, "shouldn't bet set yet"); _kind = ArrayCopy; _arguments_validated = validated; }
void set_clonebasic() { assert(_kind == None, "shouldn't bet set yet"); _kind = CloneBasic; }
void set_cloneoop() { assert(_kind == None, "shouldn't bet set yet"); _kind = CloneOop; }
void set_copyof() { assert(_kind == None, "shouldn't bet set yet"); _kind = CopyOf; _arguments_validated = false; }
void set_copyofrange() { assert(_kind == None, "shouldn't bet set yet"); _kind = CopyOfRange; _arguments_validated = false; }
virtual int Opcode() const;
virtual uint size_of() const; // Size is bigger
virtual bool guaranteed_safepoint() { return false; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
bool is_alloc_tightly_coupled() const { return _alloc_tightly_coupled; }
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
#endif // SHARE_VM_OPTO_CALLNODE_HPP
......@@ -24,6 +24,7 @@
#include "precompiled.hpp"
#include "opto/addnode.hpp"
#include "opto/arraycopynode.hpp"
#include "opto/callnode.hpp"
#include "opto/castnode.hpp"
#include "opto/cfgnode.hpp"
......
......@@ -42,6 +42,7 @@
#include "opto/chaitin.hpp"
#include "opto/compile.hpp"
#include "opto/connode.hpp"
#include "opto/convertnode.hpp"
#include "opto/divnode.hpp"
#include "opto/escape.hpp"
#include "opto/idealGraphPrinter.hpp"
......@@ -3866,6 +3867,26 @@ int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
return SSC_full_test;
}
Node* Compile::conv_I2X_index(PhaseGVN *phase, Node* idx, const TypeInt* sizetype) {
#ifdef _LP64
// The scaled index operand to AddP must be a clean 64-bit value.
// Java allows a 32-bit int to be incremented to a negative
// value, which appears in a 64-bit register as a large
// positive number. Using that large positive number as an
// operand in pointer arithmetic has bad consequences.
// On the other hand, 32-bit overflow is rare, and the possibility
// can often be excluded, if we annotate the ConvI2L node with
// a type assertion that its value is known to be a small positive
// number. (The prior range check has ensured this.)
// This assertion is used by ConvI2LNode::Ideal.
int index_max = max_jint - 1; // array size is max_jint, index is one less
if (sizetype != NULL) index_max = sizetype->_hi - 1;
const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
idx = phase->transform(new ConvI2LNode(idx, lidxtype));
#endif
return idx;
}
// The message about the current inlining is accumulated in
// _print_inlining_stream and transfered into the _print_inlining_list
// once we know whether inlining succeeds or not. For regular
......
......@@ -74,6 +74,7 @@ class SafePointNode;
class JVMState;
class Type;
class TypeData;
class TypeInt;
class TypePtr;
class TypeOopPtr;
class TypeFunc;
......@@ -1221,6 +1222,8 @@ class Compile : public Phase {
enum { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test };
int static_subtype_check(ciKlass* superk, ciKlass* subk);
static Node* conv_I2X_index(PhaseGVN *phase, Node* offset, const TypeInt* sizetype);
// Auxiliary method for randomized fuzzing/stressing
static bool randomized_select(int count);
};
......
......@@ -1660,22 +1660,7 @@ Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
// must be correct type for alignment purposes
Node* base = basic_plus_adr(ary, header);
#ifdef _LP64
// The scaled index operand to AddP must be a clean 64-bit value.
// Java allows a 32-bit int to be incremented to a negative
// value, which appears in a 64-bit register as a large
// positive number. Using that large positive number as an
// operand in pointer arithmetic has bad consequences.
// On the other hand, 32-bit overflow is rare, and the possibility
// can often be excluded, if we annotate the ConvI2L node with
// a type assertion that its value is known to be a small positive
// number. (The prior range check has ensured this.)
// This assertion is used by ConvI2LNode::Ideal.
int index_max = max_jint - 1; // array size is max_jint, index is one less
if (sizetype != NULL) index_max = sizetype->_hi - 1;
const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
idx = _gvn.transform( new ConvI2LNode(idx, lidxtype) );
#endif
idx = Compile::conv_I2X_index(&_gvn, idx, sizetype);
Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
return basic_plus_adr(ary, base, scale);
}
......
......@@ -30,6 +30,7 @@
#include "compiler/compileLog.hpp"
#include "oops/objArrayKlass.hpp"
#include "opto/addnode.hpp"
#include "opto/arraycopynode.hpp"
#include "opto/callGenerator.hpp"
#include "opto/castnode.hpp"
#include "opto/cfgnode.hpp"
......@@ -3876,18 +3877,57 @@ bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
// Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
// This will fail a store-check if x contains any non-nulls.
Node* alloc = tightly_coupled_allocation(newcopy, NULL);
// ArrayCopyNode:Ideal may transform the ArrayCopyNode to
// loads/stores but it is legal only if we're sure the
// Arrays.copyOf would succeed. So we need all input arguments
// to the copyOf to be validated, including that the copy to the
// new array won't trigger an ArrayStoreException. That subtype
// check can be optimized if we know something on the type of
// the input array from type speculation.
if (_gvn.type(klass_node)->singleton()) {
ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
int test = C->static_subtype_check(superk, subk);
if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
if (t_original->speculative_type() != NULL) {
original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
}
}
}
ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, alloc != NULL,
bool validated = false;
// Reason_class_check rather than Reason_intrinsic because we
// want to intrinsify even if this traps.
if (!too_many_traps(Deoptimization::Reason_class_check)) {
Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
klass_node);
if (not_subtype_ctrl != top()) {
PreserveJVMState pjvms(this);
set_control(not_subtype_ctrl);
uncommon_trap(Deoptimization::Reason_class_check,
Deoptimization::Action_make_not_entrant);
assert(stopped(), "Should be stopped");
}
validated = true;
}
ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
load_object_klass(original), klass_node);
if (!is_copyOfRange) {
ac->set_copyof();
ac->set_copyof(validated);
} else {
ac->set_copyofrange();
ac->set_copyofrange(validated);
}
Node* n = _gvn.transform(ac);
assert(n == ac, "cannot disappear");
ac->connect_outputs(this);
if (n == ac) {
ac->connect_outputs(this);
} else {
assert(validated, "shouldn't transform if all arguments not validated");
set_all_memory(n);
}
}
} // original reexecute is set back here
......
......@@ -23,6 +23,7 @@
*/
#include "precompiled.hpp"
#include "opto/arraycopynode.hpp"
#include "oops/objArrayKlass.hpp"
#include "opto/convertnode.hpp"
#include "opto/graphKit.hpp"
......@@ -519,7 +520,7 @@ Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode*
// Test S[] against D[], not S against D, because (probably)
// the secondary supertype cache is less busy for S[] than S.
// This usually only matters when D is an interface.
Node* not_subtype_ctrl = ac->is_arraycopy_validated() ? top() :
Node* not_subtype_ctrl = (ac->is_arraycopy_validated() || ac->is_copyof_validated() || ac->is_copyofrange_validated()) ? top() :
Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, &_igvn);
// Plug failing path into checked_oop_disjoint_arraycopy
if (not_subtype_ctrl != top()) {
......
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 6912521
* @summary small array copy as loads/stores
* @run main/othervm -XX:-BackgroundCompilation -XX:-UseOnStackReplacement -XX:CompileCommand=dontinline,TestArrayCopyAsLoadsStores::m* -XX:TypeProfileLevel=200 TestArrayCopyAsLoadsStores
* @run main/othervm -XX:-BackgroundCompilation -XX:-UseOnStackReplacement -XX:CompileCommand=dontinline,TestArrayCopyAsLoadsStores::m* -XX:+IgnoreUnrecognizedVMOptions -XX:+StressArrayCopyMacroNode -XX:TypeProfileLevel=200 TestArrayCopyAsLoadsStores
*
*/
import java.lang.annotation.*;
import java.lang.reflect.*;
import java.util.*;
public class TestArrayCopyAsLoadsStores {
public enum ArraySrc {
SMALL,
LARGE,
ZERO
}
public enum ArrayDst {
NONE,
NEW,
SRC
}
static class A {
}
static class B extends A {
}
static final A[] small_a_src = new A[5];
static final A[] large_a_src = new A[10];
static final A[] zero_a_src = new A[0];
static final int[] small_int_src = new int[5];
static final int[] large_int_src = new int[10];
static final int[] zero_int_src = new int[0];
static final Object[] small_object_src = new Object[5];
static Object src;
@Retention(RetentionPolicy.RUNTIME)
@interface Args {
ArraySrc src();
ArrayDst dst() default ArrayDst.NONE;
int[] extra_args() default {};
}
// array clone should be compiled as loads/stores
@Args(src=ArraySrc.SMALL)
static A[] m1() throws CloneNotSupportedException {
return (A[])small_a_src.clone();
}
@Args(src=ArraySrc.SMALL)
static int[] m2() throws CloneNotSupportedException {
return (int[])small_int_src.clone();
}
// new array allocation should be optimized out
@Args(src=ArraySrc.SMALL)
static int m3() throws CloneNotSupportedException {
int[] array_clone = (int[])small_int_src.clone();
return array_clone[0] + array_clone[1] + array_clone[2] +
array_clone[3] + array_clone[4];
}
// should not be compiled as loads/stores
@Args(src=ArraySrc.LARGE)
static int[] m4() throws CloneNotSupportedException {
return (int[])large_int_src.clone();
}
// check that array of length 0 is handled correctly
@Args(src=ArraySrc.ZERO)
static int[] m5() throws CloneNotSupportedException {
return (int[])zero_int_src.clone();
}
// array copy should be compiled as loads/stores
@Args(src=ArraySrc.SMALL, dst=ArrayDst.NEW)
static void m6(int[] src, int[] dest) {
System.arraycopy(src, 0, dest, 0, 5);
}
// array copy should not be compiled as loads/stores
@Args(src=ArraySrc.LARGE, dst=ArrayDst.NEW)
static void m7(int[] src, int[] dest) {
System.arraycopy(src, 0, dest, 0, 10);
}
// array copy should be compiled as loads/stores
@Args(src=ArraySrc.SMALL)
static A[] m8(A[] src) {
src[0] = src[0]; // force null check
A[] dest = new A[5];
System.arraycopy(src, 0, dest, 0, 5);
return dest;
}
// array copy should not be compiled as loads/stores: we would
// need to emit GC barriers
@Args(src=ArraySrc.SMALL, dst=ArrayDst.NEW)
static void m9(A[] src, A[] dest) {
System.arraycopy(src, 0, dest, 0, 5);
}
// overlapping array regions: copy backward
@Args(src=ArraySrc.SMALL, dst=ArrayDst.SRC)
static void m10(int[] src, int[] dest) {
System.arraycopy(src, 0, dest, 1, 4);
}
static boolean m10_check(int[] src, int[] dest) {
boolean failure = false;
for (int i = 0; i < 5; i++) {
int j = Math.max(i - 1, 0);
if (dest[i] != src[j]) {
System.out.println("Test m10 failed for " + i + " src[" + j +"]=" + src[j] + ", dest[" + i + "]=" + dest[i]);
failure = true;
}
}
return failure;
}
// overlapping array regions: copy forward
@Args(src=ArraySrc.SMALL, dst=ArrayDst.SRC)
static void m11(int[] src, int[] dest) {
System.arraycopy(src, 1, dest, 0, 4);
}
static boolean m11_check(int[] src, int[] dest) {
boolean failure = false;
for (int i = 0; i < 5; i++) {
int j = Math.min(i + 1, 4);
if (dest[i] != src[j]) {
System.out.println("Test m11 failed for " + i + " src[" + j +"]=" + src[j] + ", dest[" + i + "]=" + dest[i]);
failure = true;
}
}
return failure;
}
// overlapping array region with unknown src/dest offsets: compiled code must include both forward and backward copies
@Args(src=ArraySrc.SMALL, dst=ArrayDst.SRC, extra_args={0,1})
static void m12(int[] src, int[] dest, int srcPos, int destPos) {
System.arraycopy(src, srcPos, dest, destPos, 4);
}
static boolean m12_check(int[] src, int[] dest) {
boolean failure = false;
for (int i = 0; i < 5; i++) {
int j = Math.max(i - 1, 0);
if (dest[i] != src[j]) {
System.out.println("Test m10 failed for " + i + " src[" + j +"]=" + src[j] + ", dest[" + i + "]=" + dest[i]);
failure = true;
}
}
return failure;
}
// Array allocation and copy should optimize out
@Args(src=ArraySrc.SMALL)
static int m13(int[] src) {
int[] dest = new int[5];
System.arraycopy(src, 0, dest, 0, 5);
return dest[0] + dest[1] + dest[2] + dest[3] + dest[4];
}
// Check that copy of length 0 is handled correctly
@Args(src=ArraySrc.ZERO, dst=ArrayDst.NEW)
static void m14(int[] src, int[] dest) {
System.arraycopy(src, 0, dest, 0, 0);
}
// copyOf should compile to loads/stores
@Args(src=ArraySrc.SMALL)
static A[] m15() {
return Arrays.copyOf(small_a_src, 5, A[].class);
}
static Object[] helper16(int i) {
Object[] arr = null;
if ((i%2) == 0) {
arr = small_a_src;
} else {
arr = small_object_src;
}
return arr;
}
// CopyOf may need subtype check
@Args(src=ArraySrc.SMALL, dst=ArrayDst.NONE, extra_args={0})
static A[] m16(A[] unused_src, int i) {
Object[] arr = helper16(i);
return Arrays.copyOf(arr, 5, A[].class);
}
static Object[] helper17_1(int i) {
Object[] arr = null;
if ((i%2) == 0) {
arr = small_a_src;
} else {
arr = small_object_src;
}
return arr;
}
static A[] helper17_2(Object[] arr) {
return Arrays.copyOf(arr, 5, A[].class);
}
// CopyOf may leverage type speculation
@Args(src=ArraySrc.SMALL, dst=ArrayDst.NONE, extra_args={0})
static A[] m17(A[] unused_src, int i) {
Object[] arr = helper17_1(i);
return helper17_2(arr);
}
static Object[] helper18_1(int i) {
Object[] arr = null;
if ((i%2) == 0) {
arr = small_a_src;
} else {
arr = small_object_src;
}
return arr;
}
static Object[] helper18_2(Object[] arr) {
return Arrays.copyOf(arr, 5, Object[].class);
}
// CopyOf should not attempt to use type speculation if it's not needed
@Args(src=ArraySrc.SMALL, dst=ArrayDst.NONE, extra_args={0})
static Object[] m18(A[] unused_src, int i) {
Object[] arr = helper18_1(i);
return helper18_2(arr);
}
static Object[] helper19(int i) {
Object[] arr = null;
if ((i%2) == 0) {
arr = small_a_src;
} else {
arr = small_object_src;
}
return arr;
}
// CopyOf may need subtype check. Test is run to make type check
// fail and cause deoptimization. Next compilation should not
// compile as loads/stores because the first compilation
// deoptimized.
@Args(src=ArraySrc.SMALL, dst=ArrayDst.NONE, extra_args={0})
static A[] m19(A[] unused_src, int i) {
Object[] arr = helper19(i);
return Arrays.copyOf(arr, 5, A[].class);
}
// copyOf for large array should not compile to loads/stores
@Args(src=ArraySrc.LARGE)
static A[] m20() {
return Arrays.copyOf(large_a_src, 10, A[].class);
}
// check zero length copyOf is handled correctly
@Args(src=ArraySrc.ZERO)
static A[] m21() {
return Arrays.copyOf(zero_a_src, 0, A[].class);
}
// Run with srcPos=0 for a 1st compile, then with incorrect value
// of srcPos to cause deoptimization, then with srcPos=0 for a 2nd
// compile. The 2nd compile shouldn't turn arraycopy into
// loads/stores because input arguments are no longer known to be
// valid.
@Args(src=ArraySrc.SMALL, dst=ArrayDst.NEW, extra_args={0})
static void m22(int[] src, int[] dest, int srcPos) {
System.arraycopy(src, srcPos, dest, 0, 5);
}
// copyOfRange should compile to loads/stores
@Args(src=ArraySrc.SMALL)
static A[] m23() {
return Arrays.copyOfRange(small_a_src, 1, 4, A[].class);
}
static boolean m23_check(A[] src, A[] dest) {
boolean failure = false;
for (int i = 0; i < 3; i++) {
if (src[i+1] != dest[i]) {
System.out.println("Test m23 failed for " + i + " src[" + (i+1) +"]=" + dest[i] + ", dest[" + i + "]=" + dest[i]);
failure = true;
}
}
return failure;
}
// array copy should be compiled as loads/stores. Invoke then with
// incompatible array type to verify we don't allow a forbidden
// arraycopy to happen.
@Args(src=ArraySrc.SMALL)
static A[] m24(Object[] src) {
src[0] = src[0]; // force null check
A[] dest = new A[5];
System.arraycopy(src, 0, dest, 0, 5);
return dest;
}
// overlapping array region with unknown src/dest offsets but
// length 1: compiled code doesn't need both forward and backward
// copies
@Args(src=ArraySrc.SMALL, dst=ArrayDst.SRC, extra_args={0,1})
static void m25(int[] src, int[] dest, int srcPos, int destPos) {
System.arraycopy(src, srcPos, dest, destPos, 1);
}
static boolean m25_check(int[] src, int[] dest) {
boolean failure = false;
if (dest[1] != src[0]) {
System.out.println("Test m10 failed for src[0]=" + src[0] + ", dest[1]=" + dest[1]);
return true;
}
return false;
}
final HashMap<String,Method> tests = new HashMap<>();
{
for (Method m : this.getClass().getDeclaredMethods()) {
if (m.getName().matches("m[0-9]+(_check)?")) {
assert(Modifier.isStatic(m.getModifiers())) : m;
tests.put(m.getName(), m);
}
}
}
boolean success = true;
void doTest(String name) throws Exception {
Method m = tests.get(name);
Method m_check = tests.get(name + "_check");
Class[] paramTypes = m.getParameterTypes();
Object[] params = new Object[paramTypes.length];
Class retType = m.getReturnType();
boolean isIntArray = (retType.isPrimitive() && !retType.equals(Void.TYPE)) ||
(retType.equals(Void.TYPE) && paramTypes[0].getComponentType().isPrimitive()) ||
(retType.isArray() && retType.getComponentType().isPrimitive());
Args args = m.getAnnotation(Args.class);
Object src = null;
switch(args.src()) {
case SMALL: {
if (isIntArray) {
src = small_int_src;
} else {
src = small_a_src;
}
break;
}
case LARGE: {
if (isIntArray) {
src = large_int_src;
} else {
src = large_a_src;
}
break;
}
case ZERO: {
assert isIntArray;
if (isIntArray) {
src = zero_int_src;
} else {
src = zero_a_src;
}
break;
}
}
for (int i = 0; i < 20000; i++) {
boolean failure = false;
int p = 0;
if (params.length > 0) {
if (isIntArray) {
params[0] = ((int[])src).clone();
} else {
params[0] = ((A[])src).clone();
}
p++;
}
if (params.length > 1) {
switch(args.dst()) {
case NEW: {
if (isIntArray) {
params[1] = new int[((int[])params[0]).length];
} else {
params[1] = new A[((A[])params[0]).length];
}
p++;
break;
}
case SRC: {
params[1] = params[0];
p++;
break;
}
case NONE: break;
}
}
for (int j = 0; j < args.extra_args().length; j++) {
params[p+j] = args.extra_args()[j];
}
Object res = m.invoke(null, params);
if (retType.isPrimitive() && !retType.equals(Void.TYPE)) {
int s = (int)res;
int sum = 0;
int[] int_res = (int[])src;
for (int j = 0; j < int_res.length; j++) {
sum += int_res[j];
}
failure = (s != sum);
if (failure) {
System.out.println("Test " + name + " failed: result = " + s + " != " + sum);
}
} else {
Object dest = null;
if (!retType.equals(Void.TYPE)) {
dest = res;
} else {
dest = params[1];
}
if (m_check != null) {
failure = (boolean)m_check.invoke(null, new Object[] { src, dest });
} else {
if (isIntArray) {
int[] int_res = (int[])src;
int[] int_dest = (int[])dest;
for (int j = 0; j < int_res.length; j++) {
if (int_res[j] != int_dest[j]) {
System.out.println("Test " + name + " failed for " + j + " src[" + j +"]=" + int_res[j] + ", dest[" + j + "]=" + int_dest[j]);
failure = true;
}
}
} else {
Object[] object_res = (Object[])src;
Object[] object_dest = (Object[])dest;
for (int j = 0; j < object_res.length; j++) {
if (object_res[j] != object_dest[j]) {
System.out.println("Test " + name + " failed for " + j + " src[" + j +"]=" + object_res[j] + ", dest[" + j + "]=" + object_dest[j]);
failure = true;
}
}
}
}
}
if (failure) {
success = false;
break;
}
}
}
public static void main(String[] args) throws Exception {
for (int i = 0; i < small_a_src.length; i++) {
small_a_src[i] = new A();
}
for (int i = 0; i < small_int_src.length; i++) {
small_int_src[i] = i;
}
for (int i = 0; i < large_int_src.length; i++) {
large_int_src[i] = i;
}
for (int i = 0; i < 5; i++) {
small_object_src[i] = new Object();
}
TestArrayCopyAsLoadsStores test = new TestArrayCopyAsLoadsStores();
test.doTest("m1");
test.doTest("m2");
test.doTest("m3");
test.doTest("m4");
test.doTest("m5");
test.doTest("m6");
test.doTest("m7");
test.doTest("m8");
test.doTest("m9");
test.doTest("m10");
test.doTest("m11");
test.doTest("m12");
test.doTest("m13");
test.doTest("m14");
test.doTest("m15");
// make both branches of the If appear taken
for (int i = 0; i < 20000; i++) {
helper16(i);
}
test.doTest("m16");
// load class B so type check in m17 would not be simple comparison
B b = new B();
// make both branches of the If appear taken
for (int i = 0; i < 20000; i++) {
helper17_1(i);
}
test.doTest("m17");
// make both branches of the If appear taken
for (int i = 0; i < 20000; i++) {
helper18_1(i);
}
test.doTest("m18");
// make both branches of the If appear taken
for (int i = 0; i < 20000; i++) {
helper19(i);
}
// Compile
for (int i = 0; i < 20000; i++) {
m19(null, 0);
}
// force deopt
boolean m19_exception = false;
for (int i = 0; i < 10; i++) {
try {
m19(null, 1);
} catch(ArrayStoreException ase) {
m19_exception = true;
}
}
if (!m19_exception) {
System.out.println("Test m19: exception wasn't thrown");
test.success = false;
}
test.doTest("m19");
test.doTest("m20");
test.doTest("m21");
// Compile
int[] dst = new int[small_int_src.length];
for (int i = 0; i < 20000; i++) {
m22(small_int_src, dst, 0);
}
// force deopt
for (int i = 0; i < 10; i++) {
try {
m22(small_int_src, dst, 5);
} catch(ArrayIndexOutOfBoundsException aioobe) {}
}
test.doTest("m22");
test.doTest("m23");
test.doTest("m24");
boolean m24_exception = false;
try {
m24(small_object_src);
} catch(ArrayStoreException ase) {
m24_exception = true;
}
if (!m24_exception) {
System.out.println("Test m24: exception wasn't thrown");
test.success = false;
}
test.doTest("m25");
if (!test.success) {
throw new RuntimeException("some tests failed");
}
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册