提交 4e61911e 编写于 作者: K kvn

6714406: Node::dominates() does not always check for TOP

Summary: Add missed checks for TOP and missed checks for non-dominating cases
Reviewed-by: rasbold, jrose, never
上级 a51a2bc0
......@@ -253,11 +253,17 @@ bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
return false; // Conservative answer for dead code
// Check 'dom'.
// Check 'dom'. Skip Proj and CatchProj nodes.
dom = dom->find_exact_control(dom);
if (dom == NULL || dom->is_top())
return false; // Conservative answer for dead code
if (dom == sub) {
// For the case when, for example, 'sub' is Initialize and the original
// 'dom' is Proj node of the 'sub'.
return false;
}
if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
return true;
......@@ -271,6 +277,7 @@ bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
sub->is_Region(), "expecting only these nodes");
// Get control edge of 'sub'.
Node* orig_sub = sub;
sub = sub->find_exact_control(sub->in(0));
if (sub == NULL || sub->is_top())
return false; // Conservative answer for dead code
......@@ -296,14 +303,16 @@ bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
for (uint next = 0; next < dom_list.size(); next++) {
Node* n = dom_list.at(next);
if (n == orig_sub)
return false; // One of dom's inputs dominated by sub.
if (!n->is_CFG() && n->pinned()) {
// Check only own control edge for pinned non-control nodes.
n = n->find_exact_control(n->in(0));
if (n == NULL || n->is_top())
return false; // Conservative answer for dead code
assert(n->is_CFG(), "expecting control");
}
if (n->is_Con() || n->is_Start() || n->is_Root()) {
dom_list.push(n);
} else if (n->is_Con() || n->is_Start() || n->is_Root()) {
only_dominating_controls = true;
} else if (n->is_CFG()) {
if (n->dominates(sub, nlist))
......
......@@ -1039,6 +1039,9 @@ Node* Node::find_exact_control(Node* ctrl) {
//--------------------------dominates------------------------------------------
// Helper function for MemNode::all_controls_dominate().
// Check if 'this' control node dominates or equal to 'sub' control node.
// We already know that if any path back to Root or Start reaches 'this',
// then all paths so, so this is a simple search for one example,
// not an exhaustive search for a counterexample.
bool Node::dominates(Node* sub, Node_List &nlist) {
assert(this->is_CFG(), "expecting control");
assert(sub != NULL && sub->is_CFG(), "expecting control");
......@@ -1047,110 +1050,115 @@ bool Node::dominates(Node* sub, Node_List &nlist) {
int iterations_without_region_limit = DominatorSearchLimit;
Node* orig_sub = sub;
Node* dom = this;
bool met_dom = false;
nlist.clear();
bool this_dominates = false;
bool result = false; // Conservative answer
while (sub != NULL) { // walk 'sub' up the chain to 'this'
if (sub == this) {
// Walk 'sub' backward up the chain to 'dom', watching for regions.
// After seeing 'dom', continue up to Root or Start.
// If we hit a region (backward split point), it may be a loop head.
// Keep going through one of the region's inputs. If we reach the
// same region again, go through a different input. Eventually we
// will either exit through the loop head, or give up.
// (If we get confused, break out and return a conservative 'false'.)
while (sub != NULL) {
if (sub->is_top()) break; // Conservative answer for dead code.
if (sub == dom) {
if (nlist.size() == 0) {
// No Region nodes except loops were visited before and the EntryControl
// path was taken for loops: it did not walk in a cycle.
result = true;
break;
} else if (this_dominates) {
result = false; // already met before: walk in a cycle
break;
return true;
} else if (met_dom) {
break; // already met before: walk in a cycle
} else {
// Region nodes were visited. Continue walk up to Start or Root
// to make sure that it did not walk in a cycle.
this_dominates = true; // first time meet
met_dom = true; // first time meet
iterations_without_region_limit = DominatorSearchLimit; // Reset
}
}
if (sub->is_Start() || sub->is_Root()) {
result = this_dominates;
break;
// Success if we met 'dom' along a path to Start or Root.
// We assume there are no alternative paths that avoid 'dom'.
// (This assumption is up to the caller to ensure!)
return met_dom;
}
Node* up = sub->find_exact_control(sub->in(0));
if (up == NULL || up->is_top()) {
result = false; // Conservative answer for dead code
break;
}
if (sub == up && (sub->is_Loop() || sub->is_Region() && sub->req() != 3)) {
// Take first valid path on the way up to 'this'.
Node* up = sub->in(0);
// Normalize simple pass-through regions and projections:
up = sub->find_exact_control(up);
// If sub == up, we found a self-loop. Try to push past it.
if (sub == up && sub->is_Loop()) {
// Take loop entry path on the way up to 'dom'.
up = sub->in(1); // in(LoopNode::EntryControl);
} else if (sub == up && sub->is_Region() && sub->req() != 3) {
// Always take in(1) path on the way up to 'dom' for clone regions
// (with only one input) or regions which merge > 2 paths
// (usually used to merge fast/slow paths).
up = sub->in(1);
} else if (sub == up && sub->is_Region()) {
assert(sub->req() == 3, "sanity");
// Try both paths for Regions with 2 input paths (it may be a loop head).
// It could give conservative 'false' answer without information
// which region's input is the entry path.
iterations_without_region_limit = DominatorSearchLimit; // Reset
// Try both paths for such Regions.
// It is not accurate without regions dominating information.
// With such information the other path should be checked for
// the most dominating Region which was visited before.
bool region_was_visited_before = false;
uint i = 1;
uint size = nlist.size();
if (size == 0) {
// No such Region nodes were visited before.
// Take first valid path on the way up to 'this'.
} else {
// Was this Region node visited before?
intptr_t ni;
int j = size - 1;
for (; j >= 0; j--) {
ni = (intptr_t)nlist.at(j);
if ((Node*)(ni & ~1) == sub) {
if ((ni & 1) != 0) {
break; // Visited 2 paths. Give up.
} else {
// The Region node was visited before only once.
nlist.remove(j);
region_was_visited_before = true;
for (; i < sub->req(); i++) {
Node* in = sub->in(i);
if (in != NULL && !in->is_top() && in != sub) {
break;
}
}
i++; // Take other path.
break;
}
// Was this Region node visited before?
// If so, we have reached it because we accidentally took a
// loop-back edge from 'sub' back into the body of the loop,
// and worked our way up again to the loop header 'sub'.
// So, take the first unexplored path on the way up to 'dom'.
for (int j = nlist.size() - 1; j >= 0; j--) {
intptr_t ni = (intptr_t)nlist.at(j);
Node* visited = (Node*)(ni & ~1);
bool visited_twice_already = ((ni & 1) != 0);
if (visited == sub) {
if (visited_twice_already) {
// Visited 2 paths, but still stuck in loop body. Give up.
return false;
}
}
if (j >= 0 && (ni & 1) != 0) {
result = false; // Visited 2 paths. Give up.
// The Region node was visited before only once.
// (We will repush with the low bit set, below.)
nlist.remove(j);
// We will find a new edge and re-insert.
region_was_visited_before = true;
break;
}
// The Region node was not visited before.
}
for (; i < sub->req(); i++) {
// Find an incoming edge which has not been seen yet; walk through it.
assert(up == sub, "");
uint skip = region_was_visited_before ? 1 : 0;
for (uint i = 1; i < sub->req(); i++) {
Node* in = sub->in(i);
if (in != NULL && !in->is_top() && in != sub) {
break;
}
}
if (i < sub->req()) {
up = sub->in(i);
if (region_was_visited_before && sub != up) {
// Set 0 bit to indicate that both paths were taken.
nlist.push((Node*)((intptr_t)sub + 1));
} else {
nlist.push(sub);
if (skip == 0) {
up = in;
break;
}
--skip; // skip this nontrivial input
}
}
// Set 0 bit to indicate that both paths were taken.
nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
}
if (sub == up) {
result = false; // some kind of tight cycle
break;
if (up == sub) {
break; // some kind of tight cycle
}
if (up == orig_sub && met_dom) {
// returned back after visiting 'dom'
break; // some kind of cycle
}
if (--iterations_without_region_limit < 0) {
result = false; // dead cycle
break;
break; // dead cycle
}
sub = up;
}
return result;
// Did not meet Root or Start node in pred. chain.
// Conservative answer for dead code.
return false;
}
//------------------------------remove_dead_region-----------------------------
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册