c1_LIRGenerator.cpp 81.0 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
/*
 * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_c1_LIRGenerator.cpp.incl"

#ifdef ASSERT
#define __ gen()->lir(__FILE__, __LINE__)->
#else
#define __ gen()->lir()->
#endif


void PhiResolverState::reset(int max_vregs) {
  // Initialize array sizes
  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  _virtual_operands.trunc_to(0);
  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  _other_operands.trunc_to(0);
  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  _vreg_table.trunc_to(0);
}



//--------------------------------------------------------------
// PhiResolver

// Resolves cycles:
//
//  r1 := r2  becomes  temp := r1
//  r2 := r1           r1 := r2
//                     r2 := temp
// and orders moves:
//
//  r2 := r3  becomes  r1 := r2
//  r1 := r2           r2 := r3

PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
 : _gen(gen)
 , _state(gen->resolver_state())
 , _temp(LIR_OprFact::illegalOpr)
{
  // reinitialize the shared state arrays
  _state.reset(max_vregs);
}


void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  assert(src->is_valid(), "");
  assert(dest->is_valid(), "");
  __ move(src, dest);
}


void PhiResolver::move_temp_to(LIR_Opr dest) {
  assert(_temp->is_valid(), "");
  emit_move(_temp, dest);
  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
}


void PhiResolver::move_to_temp(LIR_Opr src) {
  assert(_temp->is_illegal(), "");
  _temp = _gen->new_register(src->type());
  emit_move(src, _temp);
}


// Traverse assignment graph in depth first order and generate moves in post order
// ie. two assignments: b := c, a := b start with node c:
// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
// Generates moves in this order: move b to a and move c to b
// ie. cycle a := b, b := a start with node a
// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
// Generates moves in this order: move b to temp, move a to b, move temp to a
void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
  if (!dest->visited()) {
    dest->set_visited();
    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
      move(dest, dest->destination_at(i));
    }
  } else if (!dest->start_node()) {
    // cylce in graph detected
    assert(_loop == NULL, "only one loop valid!");
    _loop = dest;
    move_to_temp(src->operand());
    return;
  } // else dest is a start node

  if (!dest->assigned()) {
    if (_loop == dest) {
      move_temp_to(dest->operand());
      dest->set_assigned();
    } else if (src != NULL) {
      emit_move(src->operand(), dest->operand());
      dest->set_assigned();
    }
  }
}


PhiResolver::~PhiResolver() {
  int i;
  // resolve any cycles in moves from and to virtual registers
  for (i = virtual_operands().length() - 1; i >= 0; i --) {
    ResolveNode* node = virtual_operands()[i];
    if (!node->visited()) {
      _loop = NULL;
      move(NULL, node);
      node->set_start_node();
      assert(_temp->is_illegal(), "move_temp_to() call missing");
    }
  }

  // generate move for move from non virtual register to abitrary destination
  for (i = other_operands().length() - 1; i >= 0; i --) {
    ResolveNode* node = other_operands()[i];
    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
      emit_move(node->operand(), node->destination_at(j)->operand());
    }
  }
}


ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
  ResolveNode* node;
  if (opr->is_virtual()) {
    int vreg_num = opr->vreg_number();
    node = vreg_table().at_grow(vreg_num, NULL);
    assert(node == NULL || node->operand() == opr, "");
    if (node == NULL) {
      node = new ResolveNode(opr);
      vreg_table()[vreg_num] = node;
    }
    // Make sure that all virtual operands show up in the list when
    // they are used as the source of a move.
    if (source && !virtual_operands().contains(node)) {
      virtual_operands().append(node);
    }
  } else {
    assert(source, "");
    node = new ResolveNode(opr);
    other_operands().append(node);
  }
  return node;
}


void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
  assert(dest->is_virtual(), "");
  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
  assert(src->is_valid(), "");
  assert(dest->is_valid(), "");
  ResolveNode* source = source_node(src);
  source->append(destination_node(dest));
}


//--------------------------------------------------------------
// LIRItem

void LIRItem::set_result(LIR_Opr opr) {
  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
  value()->set_operand(opr);

  if (opr->is_virtual()) {
    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
  }

  _result = opr;
}

void LIRItem::load_item() {
  if (result()->is_illegal()) {
    // update the items result
    _result = value()->operand();
  }
  if (!result()->is_register()) {
    LIR_Opr reg = _gen->new_register(value()->type());
    __ move(result(), reg);
    if (result()->is_constant()) {
      _result = reg;
    } else {
      set_result(reg);
    }
  }
}


void LIRItem::load_for_store(BasicType type) {
  if (_gen->can_store_as_constant(value(), type)) {
    _result = value()->operand();
    if (!_result->is_constant()) {
      _result = LIR_OprFact::value_type(value()->type());
    }
  } else if (type == T_BYTE || type == T_BOOLEAN) {
    load_byte_item();
  } else {
    load_item();
  }
}

void LIRItem::load_item_force(LIR_Opr reg) {
  LIR_Opr r = result();
  if (r != reg) {
    if (r->type() != reg->type()) {
      // moves between different types need an intervening spill slot
      LIR_Opr tmp = _gen->force_to_spill(r, reg->type());
      __ move(tmp, reg);
    } else {
      __ move(r, reg);
    }
    _result = reg;
  }
}

ciObject* LIRItem::get_jobject_constant() const {
  ObjectType* oc = type()->as_ObjectType();
  if (oc) {
    return oc->constant_value();
  }
  return NULL;
}


jint LIRItem::get_jint_constant() const {
  assert(is_constant() && value() != NULL, "");
  assert(type()->as_IntConstant() != NULL, "type check");
  return type()->as_IntConstant()->value();
}


jint LIRItem::get_address_constant() const {
  assert(is_constant() && value() != NULL, "");
  assert(type()->as_AddressConstant() != NULL, "type check");
  return type()->as_AddressConstant()->value();
}


jfloat LIRItem::get_jfloat_constant() const {
  assert(is_constant() && value() != NULL, "");
  assert(type()->as_FloatConstant() != NULL, "type check");
  return type()->as_FloatConstant()->value();
}


jdouble LIRItem::get_jdouble_constant() const {
  assert(is_constant() && value() != NULL, "");
  assert(type()->as_DoubleConstant() != NULL, "type check");
  return type()->as_DoubleConstant()->value();
}


jlong LIRItem::get_jlong_constant() const {
  assert(is_constant() && value() != NULL, "");
  assert(type()->as_LongConstant() != NULL, "type check");
  return type()->as_LongConstant()->value();
}



//--------------------------------------------------------------


void LIRGenerator::init() {
  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");

#ifdef _LP64
  _card_table_base = new LIR_Const((jlong)ct->byte_map_base);
#else
  _card_table_base = new LIR_Const((jint)ct->byte_map_base);
#endif
}


void LIRGenerator::block_do_prolog(BlockBegin* block) {
#ifndef PRODUCT
  if (PrintIRWithLIR) {
    block->print();
  }
#endif

  // set up the list of LIR instructions
  assert(block->lir() == NULL, "LIR list already computed for this block");
  _lir = new LIR_List(compilation(), block);
  block->set_lir(_lir);

  __ branch_destination(block->label());

  if (LIRTraceExecution &&
      Compilation::current_compilation()->hir()->start()->block_id() != block->block_id() &&
      !block->is_set(BlockBegin::exception_entry_flag)) {
    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
    trace_block_entry(block);
  }
}


void LIRGenerator::block_do_epilog(BlockBegin* block) {
#ifndef PRODUCT
  if (PrintIRWithLIR) {
    tty->cr();
  }
#endif

  // LIR_Opr for unpinned constants shouldn't be referenced by other
  // blocks so clear them out after processing the block.
  for (int i = 0; i < _unpinned_constants.length(); i++) {
    _unpinned_constants.at(i)->clear_operand();
  }
  _unpinned_constants.trunc_to(0);

  // clear our any registers for other local constants
  _constants.trunc_to(0);
  _reg_for_constants.trunc_to(0);
}


void LIRGenerator::block_do(BlockBegin* block) {
  CHECK_BAILOUT();

  block_do_prolog(block);
  set_block(block);

  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
    if (instr->is_pinned()) do_root(instr);
  }

  set_block(NULL);
  block_do_epilog(block);
}


//-------------------------LIRGenerator-----------------------------

// This is where the tree-walk starts; instr must be root;
void LIRGenerator::do_root(Value instr) {
  CHECK_BAILOUT();

  InstructionMark im(compilation(), instr);

  assert(instr->is_pinned(), "use only with roots");
  assert(instr->subst() == instr, "shouldn't have missed substitution");

  instr->visit(this);

  assert(!instr->has_uses() || instr->operand()->is_valid() ||
         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
}


// This is called for each node in tree; the walk stops if a root is reached
void LIRGenerator::walk(Value instr) {
  InstructionMark im(compilation(), instr);
  //stop walk when encounter a root
  if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
  } else {
    assert(instr->subst() == instr, "shouldn't have missed substitution");
    instr->visit(this);
    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
  }
}


CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
  int index;
  Value value;
  for_each_stack_value(state, index, value) {
    assert(value->subst() == value, "missed substition");
    if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
      walk(value);
      assert(value->operand()->is_valid(), "must be evaluated now");
    }
  }
  ValueStack* s = state;
  int bci = x->bci();
  for_each_state(s) {
    IRScope* scope = s->scope();
    ciMethod* method = scope->method();

    MethodLivenessResult liveness = method->liveness_at_bci(bci);
    if (bci == SynchronizationEntryBCI) {
      if (x->as_ExceptionObject() || x->as_Throw()) {
        // all locals are dead on exit from the synthetic unlocker
        liveness.clear();
      } else {
        assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
      }
    }
    if (!liveness.is_valid()) {
      // Degenerate or breakpointed method.
      bailout("Degenerate or breakpointed method");
    } else {
      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
      for_each_local_value(s, index, value) {
        assert(value->subst() == value, "missed substition");
        if (liveness.at(index) && !value->type()->is_illegal()) {
          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
            walk(value);
            assert(value->operand()->is_valid(), "must be evaluated now");
          }
        } else {
          // NULL out this local so that linear scan can assume that all non-NULL values are live.
          s->invalidate_local(index);
        }
      }
    }
    bci = scope->caller_bci();
  }

  return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers());
}


CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
  return state_for(x, x->lock_stack());
}


void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
  if (!obj->is_loaded() || PatchALot) {
    assert(info != NULL, "info must be set if class is not loaded");
    __ oop2reg_patch(NULL, r, info);
  } else {
    // no patching needed
    __ oop2reg(obj->encoding(), r);
  }
}


void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
  CodeStub* stub = new RangeCheckStub(range_check_info, index);
  if (index->is_constant()) {
    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
                index->as_jint(), null_check_info);
    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
  } else {
    cmp_reg_mem(lir_cond_aboveEqual, index, array,
                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
  }
}


void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
  CodeStub* stub = new RangeCheckStub(info, index, true);
  if (index->is_constant()) {
    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
  } else {
    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
                java_nio_Buffer::limit_offset(), T_INT, info);
    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
  }
  __ move(index, result);
}


// increment a counter returning the incremented value
LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) {
  LIR_Address* counter = new LIR_Address(base, offset, T_INT);
  LIR_Opr result = new_register(T_INT);
  __ load(counter, result);
  __ add(result, LIR_OprFact::intConst(increment), result);
  __ store(result, counter);
  return result;
}


void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
  LIR_Opr result_op = result;
  LIR_Opr left_op   = left;
  LIR_Opr right_op  = right;

  if (TwoOperandLIRForm && left_op != result_op) {
    assert(right_op != result_op, "malformed");
    __ move(left_op, result_op);
    left_op = result_op;
  }

  switch(code) {
    case Bytecodes::_dadd:
    case Bytecodes::_fadd:
    case Bytecodes::_ladd:
    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
    case Bytecodes::_fmul:
    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;

    case Bytecodes::_dmul:
      {
        if (is_strictfp) {
          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
        } else {
          __ mul(left_op, right_op, result_op); break;
        }
      }
      break;

    case Bytecodes::_imul:
      {
        bool    did_strength_reduce = false;

        if (right->is_constant()) {
          int c = right->as_jint();
          if (is_power_of_2(c)) {
            // do not need tmp here
            __ shift_left(left_op, exact_log2(c), result_op);
            did_strength_reduce = true;
          } else {
            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
          }
        }
        // we couldn't strength reduce so just emit the multiply
        if (!did_strength_reduce) {
          __ mul(left_op, right_op, result_op);
        }
      }
      break;

    case Bytecodes::_dsub:
    case Bytecodes::_fsub:
    case Bytecodes::_lsub:
    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;

    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
    // ldiv and lrem are implemented with a direct runtime call

    case Bytecodes::_ddiv:
      {
        if (is_strictfp) {
          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
        } else {
          __ div (left_op, right_op, result_op); break;
        }
      }
      break;

    case Bytecodes::_drem:
    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;

    default: ShouldNotReachHere();
  }
}


void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
  arithmetic_op(code, result, left, right, false, tmp);
}


void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
}


void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
  arithmetic_op(code, result, left, right, is_strictfp, tmp);
}


void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
  if (TwoOperandLIRForm && value != result_op) {
    assert(count != result_op, "malformed");
    __ move(value, result_op);
    value = result_op;
  }

  assert(count->is_constant() || count->is_register(), "must be");
  switch(code) {
  case Bytecodes::_ishl:
  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
  case Bytecodes::_ishr:
  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
  case Bytecodes::_iushr:
  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
  default: ShouldNotReachHere();
  }
}


void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
  if (TwoOperandLIRForm && left_op != result_op) {
    assert(right_op != result_op, "malformed");
    __ move(left_op, result_op);
    left_op = result_op;
  }

  switch(code) {
    case Bytecodes::_iand:
    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;

    case Bytecodes::_ior:
    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;

    case Bytecodes::_ixor:
    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;

    default: ShouldNotReachHere();
  }
}


void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
  if (!GenerateSynchronizationCode) return;
  // for slow path, use debug info for state after successful locking
  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
  __ load_stack_address_monitor(monitor_no, lock);
  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
}


void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, int monitor_no) {
  if (!GenerateSynchronizationCode) return;
  // setup registers
  LIR_Opr hdr = lock;
  lock = new_hdr;
  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
  __ load_stack_address_monitor(monitor_no, lock);
  __ unlock_object(hdr, object, lock, slow_path);
}


void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
  jobject2reg_with_patching(klass_reg, klass, info);
  // If klass is not loaded we do not know if the klass has finalizers:
  if (UseFastNewInstance && klass->is_loaded()
      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {

    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;

    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);

    assert(klass->is_loaded(), "must be loaded");
    // allocate space for instance
    assert(klass->size_helper() >= 0, "illegal instance size");
    const int instance_size = align_object_size(klass->size_helper());
    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
  } else {
    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
    __ branch_destination(slow_path->continuation());
  }
}


static bool is_constant_zero(Instruction* inst) {
  IntConstant* c = inst->type()->as_IntConstant();
  if (c) {
    return (c->value() == 0);
  }
  return false;
}


static bool positive_constant(Instruction* inst) {
  IntConstant* c = inst->type()->as_IntConstant();
  if (c) {
    return (c->value() >= 0);
  }
  return false;
}


static ciArrayKlass* as_array_klass(ciType* type) {
  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
    return (ciArrayKlass*)type;
  } else {
    return NULL;
  }
}

void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
  Instruction* src     = x->argument_at(0);
  Instruction* src_pos = x->argument_at(1);
  Instruction* dst     = x->argument_at(2);
  Instruction* dst_pos = x->argument_at(3);
  Instruction* length  = x->argument_at(4);

  // first try to identify the likely type of the arrays involved
  ciArrayKlass* expected_type = NULL;
  bool is_exact = false;
  {
    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
      // the types exactly match so the type is fully known
      is_exact = true;
      expected_type = src_exact_type;
    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
      ciArrayKlass* src_type = NULL;
      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
        src_type = (ciArrayKlass*) src_exact_type;
      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
        src_type = (ciArrayKlass*) src_declared_type;
      }
      if (src_type != NULL) {
        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
          is_exact = true;
          expected_type = dst_type;
        }
      }
    }
    // at least pass along a good guess
    if (expected_type == NULL) expected_type = dst_exact_type;
    if (expected_type == NULL) expected_type = src_declared_type;
    if (expected_type == NULL) expected_type = dst_declared_type;
  }

  // if a probable array type has been identified, figure out if any
  // of the required checks for a fast case can be elided.
  int flags = LIR_OpArrayCopy::all_flags;
  if (expected_type != NULL) {
    // try to skip null checks
    if (src->as_NewArray() != NULL)
      flags &= ~LIR_OpArrayCopy::src_null_check;
    if (dst->as_NewArray() != NULL)
      flags &= ~LIR_OpArrayCopy::dst_null_check;

    // check from incoming constant values
    if (positive_constant(src_pos))
      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
    if (positive_constant(dst_pos))
      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
    if (positive_constant(length))
      flags &= ~LIR_OpArrayCopy::length_positive_check;

    // see if the range check can be elided, which might also imply
    // that src or dst is non-null.
    ArrayLength* al = length->as_ArrayLength();
    if (al != NULL) {
      if (al->array() == src) {
        // it's the length of the source array
        flags &= ~LIR_OpArrayCopy::length_positive_check;
        flags &= ~LIR_OpArrayCopy::src_null_check;
        if (is_constant_zero(src_pos))
          flags &= ~LIR_OpArrayCopy::src_range_check;
      }
      if (al->array() == dst) {
        // it's the length of the destination array
        flags &= ~LIR_OpArrayCopy::length_positive_check;
        flags &= ~LIR_OpArrayCopy::dst_null_check;
        if (is_constant_zero(dst_pos))
          flags &= ~LIR_OpArrayCopy::dst_range_check;
      }
    }
    if (is_exact) {
      flags &= ~LIR_OpArrayCopy::type_check;
    }
  }

  if (src == dst) {
    // moving within a single array so no type checks are needed
    if (flags & LIR_OpArrayCopy::type_check) {
      flags &= ~LIR_OpArrayCopy::type_check;
    }
  }
  *flagsp = flags;
  *expected_typep = (ciArrayKlass*)expected_type;
}


LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
  assert(opr->is_register(), "why spill if item is not register?");

  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
    LIR_Opr result = new_register(T_FLOAT);
    set_vreg_flag(result, must_start_in_memory);
    assert(opr->is_register(), "only a register can be spilled");
    assert(opr->value_type()->is_float(), "rounding only for floats available");
    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
    return result;
  }
  return opr;
}


LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
  assert(type2size[t] == type2size[value->type()], "size mismatch");
  if (!value->is_register()) {
    // force into a register
    LIR_Opr r = new_register(value->type());
    __ move(value, r);
    value = r;
  }

  // create a spill location
  LIR_Opr tmp = new_register(t);
  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);

  // move from register to spill
  __ move(value, tmp);
  return tmp;
}


void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
  if (if_instr->should_profile()) {
    ciMethod* method = if_instr->profiled_method();
    assert(method != NULL, "method should be set if branch is profiled");
    ciMethodData* md = method->method_data();
    if (md == NULL) {
      bailout("out of memory building methodDataOop");
      return;
    }
    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
    assert(data != NULL, "must have profiling data");
    assert(data->is_BranchData(), "need BranchData for two-way branches");
    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
    LIR_Opr md_reg = new_register(T_OBJECT);
    __ move(LIR_OprFact::oopConst(md->encoding()), md_reg);
    LIR_Opr data_offset_reg = new_register(T_INT);
    __ cmove(lir_cond(cond),
             LIR_OprFact::intConst(taken_count_offset),
             LIR_OprFact::intConst(not_taken_count_offset),
             data_offset_reg);
    LIR_Opr data_reg = new_register(T_INT);
    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
    __ move(LIR_OprFact::address(data_addr), data_reg);
    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
    // Use leal instead of add to avoid destroying condition codes on x86
    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
    __ move(data_reg, LIR_OprFact::address(data_addr));
  }
}


// Phi technique:
// This is about passing live values from one basic block to the other.
// In code generated with Java it is rather rare that more than one
// value is on the stack from one basic block to the other.
// We optimize our technique for efficient passing of one value
// (of type long, int, double..) but it can be extended.
// When entering or leaving a basic block, all registers and all spill
// slots are release and empty. We use the released registers
// and spill slots to pass the live values from one block
// to the other. The topmost value, i.e., the value on TOS of expression
// stack is passed in registers. All other values are stored in spilling
// area. Every Phi has an index which designates its spill slot
// At exit of a basic block, we fill the register(s) and spill slots.
// At entry of a basic block, the block_prolog sets up the content of phi nodes
// and locks necessary registers and spilling slots.


// move current value to referenced phi function
void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
  Phi* phi = sux_val->as_Phi();
  // cur_val can be null without phi being null in conjunction with inlining
  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
    LIR_Opr operand = cur_val->operand();
    if (cur_val->operand()->is_illegal()) {
      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
             "these can be produced lazily");
      operand = operand_for_instruction(cur_val);
    }
    resolver->move(operand, operand_for_instruction(phi));
  }
}


// Moves all stack values into their PHI position
void LIRGenerator::move_to_phi(ValueStack* cur_state) {
  BlockBegin* bb = block();
  if (bb->number_of_sux() == 1) {
    BlockBegin* sux = bb->sux_at(0);
    assert(sux->number_of_preds() > 0, "invalid CFG");

    // a block with only one predecessor never has phi functions
    if (sux->number_of_preds() > 1) {
      int max_phis = cur_state->stack_size() + cur_state->locals_size();
      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);

      ValueStack* sux_state = sux->state();
      Value sux_value;
      int index;

      for_each_stack_value(sux_state, index, sux_value) {
        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
      }

      // Inlining may cause the local state not to match up, so walk up
      // the caller state until we get to the same scope as the
      // successor and then start processing from there.
      while (cur_state->scope() != sux_state->scope()) {
        cur_state = cur_state->caller_state();
        assert(cur_state != NULL, "scopes don't match up");
      }

      for_each_local_value(sux_state, index, sux_value) {
        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
      }

      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
    }
  }
}


LIR_Opr LIRGenerator::new_register(BasicType type) {
  int vreg = _virtual_register_number;
  // add a little fudge factor for the bailout, since the bailout is
  // only checked periodically.  This gives a few extra registers to
  // hand out before we really run out, which helps us keep from
  // tripping over assertions.
  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
    bailout("out of virtual registers");
    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
      // wrap it around
      _virtual_register_number = LIR_OprDesc::vreg_base;
    }
  }
  _virtual_register_number += 1;
  if (type == T_ADDRESS) type = T_INT;
  return LIR_OprFact::virtual_register(vreg, type);
}


// Try to lock using register in hint
LIR_Opr LIRGenerator::rlock(Value instr) {
  return new_register(instr->type());
}


// does an rlock and sets result
LIR_Opr LIRGenerator::rlock_result(Value x) {
  LIR_Opr reg = rlock(x);
  set_result(x, reg);
  return reg;
}


// does an rlock and sets result
LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
  LIR_Opr reg;
  switch (type) {
  case T_BYTE:
  case T_BOOLEAN:
    reg = rlock_byte(type);
    break;
  default:
    reg = rlock(x);
    break;
  }

  set_result(x, reg);
  return reg;
}


//---------------------------------------------------------------------
ciObject* LIRGenerator::get_jobject_constant(Value value) {
  ObjectType* oc = value->type()->as_ObjectType();
  if (oc) {
    return oc->constant_value();
  }
  return NULL;
}


void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  assert(block()->next() == x, "ExceptionObject must be first instruction of block");

  // no moves are created for phi functions at the begin of exception
  // handlers, so assign operands manually here
  for_each_phi_fun(block(), phi,
                   operand_for_instruction(phi));

  LIR_Opr thread_reg = getThreadPointer();
  __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
          exceptionOopOpr());
  __ move(LIR_OprFact::oopConst(NULL),
          new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  __ move(LIR_OprFact::oopConst(NULL),
          new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));

  LIR_Opr result = new_register(T_OBJECT);
  __ move(exceptionOopOpr(), result);
  set_result(x, result);
}


//----------------------------------------------------------------------
//----------------------------------------------------------------------
//----------------------------------------------------------------------
//----------------------------------------------------------------------
//                        visitor functions
//----------------------------------------------------------------------
//----------------------------------------------------------------------
//----------------------------------------------------------------------
//----------------------------------------------------------------------

void LIRGenerator::do_Phi(Phi* x) {
  // phi functions are never visited directly
  ShouldNotReachHere();
}


// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
void LIRGenerator::do_Constant(Constant* x) {
  if (x->state() != NULL) {
    // Any constant with a ValueStack requires patching so emit the patch here
    LIR_Opr reg = rlock_result(x);
    CodeEmitInfo* info = state_for(x, x->state());
    __ oop2reg_patch(NULL, reg, info);
  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
    if (!x->is_pinned()) {
      // unpinned constants are handled specially so that they can be
      // put into registers when they are used multiple times within a
      // block.  After the block completes their operand will be
      // cleared so that other blocks can't refer to that register.
      set_result(x, load_constant(x));
    } else {
      LIR_Opr res = x->operand();
      if (!res->is_valid()) {
        res = LIR_OprFact::value_type(x->type());
      }
      if (res->is_constant()) {
        LIR_Opr reg = rlock_result(x);
        __ move(res, reg);
      } else {
        set_result(x, res);
      }
    }
  } else {
    set_result(x, LIR_OprFact::value_type(x->type()));
  }
}


void LIRGenerator::do_Local(Local* x) {
  // operand_for_instruction has the side effect of setting the result
  // so there's no need to do it here.
  operand_for_instruction(x);
}


void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  Unimplemented();
}


void LIRGenerator::do_Return(Return* x) {
  if (DTraceMethodProbes) {
    BasicTypeList signature;
    signature.append(T_INT);    // thread
    signature.append(T_OBJECT); // methodOop
    LIR_OprList* args = new LIR_OprList();
    args->append(getThreadPointer());
    LIR_Opr meth = new_register(T_OBJECT);
    __ oop2reg(method()->encoding(), meth);
    args->append(meth);
    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  }

  if (x->type()->is_void()) {
    __ return_op(LIR_OprFact::illegalOpr);
  } else {
    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
    LIRItem result(x->result(), this);

    result.load_item_force(reg);
    __ return_op(result.result());
  }
  set_no_result(x);
}


// Example: object.getClass ()
void LIRGenerator::do_getClass(Intrinsic* x) {
  assert(x->number_of_arguments() == 1, "wrong type");

  LIRItem rcvr(x->argument_at(0), this);
  rcvr.load_item();
  LIR_Opr result = rlock_result(x);

  // need to perform the null check on the rcvr
  CodeEmitInfo* info = NULL;
  if (x->needs_null_check()) {
    info = state_for(x, x->state()->copy_locks());
  }
  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
  __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
                          klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
}


// Example: Thread.currentThread()
void LIRGenerator::do_currentThread(Intrinsic* x) {
  assert(x->number_of_arguments() == 0, "wrong type");
  LIR_Opr reg = rlock_result(x);
  __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
}


void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  assert(x->number_of_arguments() == 1, "wrong type");
  LIRItem receiver(x->argument_at(0), this);

  receiver.load_item();
  BasicTypeList signature;
  signature.append(T_OBJECT); // receiver
  LIR_OprList* args = new LIR_OprList();
  args->append(receiver.result());
  CodeEmitInfo* info = state_for(x, x->state());
  call_runtime(&signature, args,
               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
               voidType, info);

  set_no_result(x);
}


//------------------------local access--------------------------------------

LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  if (x->operand()->is_illegal()) {
    Constant* c = x->as_Constant();
    if (c != NULL) {
      x->set_operand(LIR_OprFact::value_type(c->type()));
    } else {
      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
      // allocate a virtual register for this local or phi
      x->set_operand(rlock(x));
      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
    }
  }
  return x->operand();
}


Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  if (opr->is_virtual()) {
    return instruction_for_vreg(opr->vreg_number());
  }
  return NULL;
}


Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  if (reg_num < _instruction_for_operand.length()) {
    return _instruction_for_operand.at(reg_num);
  }
  return NULL;
}


void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  if (_vreg_flags.size_in_bits() == 0) {
    BitMap2D temp(100, num_vreg_flags);
    temp.clear();
    _vreg_flags = temp;
  }
  _vreg_flags.at_put_grow(vreg_num, f, true);
}

bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
    return false;
  }
  return _vreg_flags.at(vreg_num, f);
}


// Block local constant handling.  This code is useful for keeping
// unpinned constants and constants which aren't exposed in the IR in
// registers.  Unpinned Constant instructions have their operands
// cleared when the block is finished so that other blocks can't end
// up referring to their registers.

LIR_Opr LIRGenerator::load_constant(Constant* x) {
  assert(!x->is_pinned(), "only for unpinned constants");
  _unpinned_constants.append(x);
  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
}


LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  BasicType t = c->type();
  for (int i = 0; i < _constants.length(); i++) {
    LIR_Const* other = _constants.at(i);
    if (t == other->type()) {
      switch (t) {
      case T_INT:
      case T_FLOAT:
        if (c->as_jint_bits() != other->as_jint_bits()) continue;
        break;
      case T_LONG:
      case T_DOUBLE:
        if (c->as_jint_hi_bits() != other->as_jint_lo_bits()) continue;
        if (c->as_jint_lo_bits() != other->as_jint_hi_bits()) continue;
        break;
      case T_OBJECT:
        if (c->as_jobject() != other->as_jobject()) continue;
        break;
      }
      return _reg_for_constants.at(i);
    }
  }

  LIR_Opr result = new_register(t);
  __ move((LIR_Opr)c, result);
  _constants.append(c);
  _reg_for_constants.append(result);
  return result;
}

// Various barriers

void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  switch (Universe::heap()->barrier_set()->kind()) {
    case BarrierSet::CardTableModRef:
    case BarrierSet::CardTableExtension:
      CardTableModRef_post_barrier(addr,  new_val);
      break;
    case BarrierSet::ModRef:
    case BarrierSet::Other:
      // No post barriers
      break;
    default      :
      ShouldNotReachHere();
    }
}

void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {

  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(sizeof(*((CardTableModRefBS*)bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)bs)->byte_map_base);
  if (addr->is_address()) {
    LIR_Address* address = addr->as_address_ptr();
    LIR_Opr ptr = new_register(T_OBJECT);
    if (!address->index()->is_valid() && address->disp() == 0) {
      __ move(address->base(), ptr);
    } else {
      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
      __ leal(addr, ptr);
    }
    addr = ptr;
  }
  assert(addr->is_register(), "must be a register at this point");

  LIR_Opr tmp = new_pointer_register();
  if (TwoOperandLIRForm) {
    __ move(addr, tmp);
    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  } else {
    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  }
  if (can_inline_as_constant(card_table_base)) {
    __ move(LIR_OprFact::intConst(0),
              new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  } else {
    __ move(LIR_OprFact::intConst(0),
              new LIR_Address(tmp, load_constant(card_table_base),
                              T_BYTE));
  }
}


//------------------------field access--------------------------------------

// Comment copied form templateTable_i486.cpp
// ----------------------------------------------------------------------------
// Volatile variables demand their effects be made known to all CPU's in
// order.  Store buffers on most chips allow reads & writes to reorder; the
// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
// memory barrier (i.e., it's not sufficient that the interpreter does not
// reorder volatile references, the hardware also must not reorder them).
//
// According to the new Java Memory Model (JMM):
// (1) All volatiles are serialized wrt to each other.
// ALSO reads & writes act as aquire & release, so:
// (2) A read cannot let unrelated NON-volatile memory refs that happen after
// the read float up to before the read.  It's OK for non-volatile memory refs
// that happen before the volatile read to float down below it.
// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
// that happen BEFORE the write float down to after the write.  It's OK for
// non-volatile memory refs that happen after the volatile write to float up
// before it.
//
// We only put in barriers around volatile refs (they are expensive), not
// _between_ memory refs (that would require us to track the flavor of the
// previous memory refs).  Requirements (2) and (3) require some barriers
// before volatile stores and after volatile loads.  These nearly cover
// requirement (1) but miss the volatile-store-volatile-load case.  This final
// case is placed after volatile-stores although it could just as well go
// before volatile-loads.


void LIRGenerator::do_StoreField(StoreField* x) {
  bool needs_patching = x->needs_patching();
  bool is_volatile = x->field()->is_volatile();
  BasicType field_type = x->field_type();
  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);

  CodeEmitInfo* info = NULL;
  if (needs_patching) {
    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
    info = state_for(x, x->state_before());
  } else if (x->needs_null_check()) {
    NullCheck* nc = x->explicit_null_check();
    if (nc == NULL) {
      info = state_for(x, x->lock_stack());
    } else {
      info = state_for(nc);
    }
  }


  LIRItem object(x->obj(), this);
  LIRItem value(x->value(),  this);

  object.load_item();

  if (is_volatile || needs_patching) {
    // load item if field is volatile (fewer special cases for volatiles)
    // load item if field not initialized
    // load item if field not constant
    // because of code patching we cannot inline constants
    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
      value.load_byte_item();
    } else  {
      value.load_item();
    }
  } else {
    value.load_for_store(field_type);
  }

  set_no_result(x);

  if (PrintNotLoaded && needs_patching) {
    tty->print_cr("   ###class not loaded at store_%s bci %d",
                  x->is_static() ?  "static" : "field", x->bci());
  }

  if (x->needs_null_check() &&
      (needs_patching ||
       MacroAssembler::needs_explicit_null_check(x->offset()))) {
    // emit an explicit null check because the offset is too large
    __ null_check(object.result(), new CodeEmitInfo(info));
  }

  LIR_Address* address;
  if (needs_patching) {
    // we need to patch the offset in the instruction so don't allow
    // generate_address to try to be smart about emitting the -1.
    // Otherwise the patching code won't know how to find the
    // instruction to patch.
    address = new LIR_Address(object.result(), max_jint, field_type);
  } else {
    address = generate_address(object.result(), x->offset(), field_type);
  }

  if (is_volatile && os::is_MP()) {
    __ membar_release();
  }

  if (is_volatile) {
    assert(!needs_patching && x->is_loaded(),
           "how do we know it's volatile if it's not loaded");
    volatile_field_store(value.result(), address, info);
  } else {
    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
    __ store(value.result(), address, info, patch_code);
  }

  if (is_oop) {
    post_barrier(object.result(), value.result());
  }

  if (is_volatile && os::is_MP()) {
    __ membar();
  }
}


void LIRGenerator::do_LoadField(LoadField* x) {
  bool needs_patching = x->needs_patching();
  bool is_volatile = x->field()->is_volatile();
  BasicType field_type = x->field_type();

  CodeEmitInfo* info = NULL;
  if (needs_patching) {
    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
    info = state_for(x, x->state_before());
  } else if (x->needs_null_check()) {
    NullCheck* nc = x->explicit_null_check();
    if (nc == NULL) {
      info = state_for(x, x->lock_stack());
    } else {
      info = state_for(nc);
    }
  }

  LIRItem object(x->obj(), this);

  object.load_item();

  if (PrintNotLoaded && needs_patching) {
    tty->print_cr("   ###class not loaded at load_%s bci %d",
                  x->is_static() ?  "static" : "field", x->bci());
  }

  if (x->needs_null_check() &&
      (needs_patching ||
       MacroAssembler::needs_explicit_null_check(x->offset()))) {
    // emit an explicit null check because the offset is too large
    __ null_check(object.result(), new CodeEmitInfo(info));
  }

  LIR_Opr reg = rlock_result(x, field_type);
  LIR_Address* address;
  if (needs_patching) {
    // we need to patch the offset in the instruction so don't allow
    // generate_address to try to be smart about emitting the -1.
    // Otherwise the patching code won't know how to find the
    // instruction to patch.
    address = new LIR_Address(object.result(), max_jint, field_type);
  } else {
    address = generate_address(object.result(), x->offset(), field_type);
  }

  if (is_volatile) {
    assert(!needs_patching && x->is_loaded(),
           "how do we know it's volatile if it's not loaded");
    volatile_field_load(address, reg, info);
  } else {
    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
    __ load(address, reg, info, patch_code);
  }

  if (is_volatile && os::is_MP()) {
    __ membar_acquire();
  }
}


//------------------------java.nio.Buffer.checkIndex------------------------

// int java.nio.Buffer.checkIndex(int)
void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  // NOTE: by the time we are in checkIndex() we are guaranteed that
  // the buffer is non-null (because checkIndex is package-private and
  // only called from within other methods in the buffer).
  assert(x->number_of_arguments() == 2, "wrong type");
  LIRItem buf  (x->argument_at(0), this);
  LIRItem index(x->argument_at(1), this);
  buf.load_item();
  index.load_item();

  LIR_Opr result = rlock_result(x);
  if (GenerateRangeChecks) {
    CodeEmitInfo* info = state_for(x);
    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
    if (index.result()->is_constant()) {
      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
      __ branch(lir_cond_belowEqual, T_INT, stub);
    } else {
      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
                  java_nio_Buffer::limit_offset(), T_INT, info);
      __ branch(lir_cond_aboveEqual, T_INT, stub);
    }
    __ move(index.result(), result);
  } else {
    // Just load the index into the result register
    __ move(index.result(), result);
  }
}


//------------------------array access--------------------------------------


void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  LIRItem array(x->array(), this);
  array.load_item();
  LIR_Opr reg = rlock_result(x);

  CodeEmitInfo* info = NULL;
  if (x->needs_null_check()) {
    NullCheck* nc = x->explicit_null_check();
    if (nc == NULL) {
      info = state_for(x);
    } else {
      info = state_for(nc);
    }
  }
  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
}


void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  bool use_length = x->length() != NULL;
  LIRItem array(x->array(), this);
  LIRItem index(x->index(), this);
  LIRItem length(this);
  bool needs_range_check = true;

  if (use_length) {
    needs_range_check = x->compute_needs_range_check();
    if (needs_range_check) {
      length.set_instruction(x->length());
      length.load_item();
    }
  }

  array.load_item();
  if (index.is_constant() && can_inline_as_constant(x->index())) {
    // let it be a constant
    index.dont_load_item();
  } else {
    index.load_item();
  }

  CodeEmitInfo* range_check_info = state_for(x);
  CodeEmitInfo* null_check_info = NULL;
  if (x->needs_null_check()) {
    NullCheck* nc = x->explicit_null_check();
    if (nc != NULL) {
      null_check_info = state_for(nc);
    } else {
      null_check_info = range_check_info;
    }
  }

  // emit array address setup early so it schedules better
  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);

  if (GenerateRangeChecks && needs_range_check) {
    if (use_length) {
      // TODO: use a (modified) version of array_range_check that does not require a
      //       constant length to be loaded to a register
      __ cmp(lir_cond_belowEqual, length.result(), index.result());
      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
    } else {
      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
      // The range check performs the null check, so clear it out for the load
      null_check_info = NULL;
    }
  }

  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
}


void LIRGenerator::do_NullCheck(NullCheck* x) {
  if (x->can_trap()) {
    LIRItem value(x->obj(), this);
    value.load_item();
    CodeEmitInfo* info = state_for(x);
    __ null_check(value.result(), info);
  }
}


void LIRGenerator::do_Throw(Throw* x) {
  LIRItem exception(x->exception(), this);
  exception.load_item();
  set_no_result(x);
  LIR_Opr exception_opr = exception.result();
  CodeEmitInfo* info = state_for(x, x->state());

#ifndef PRODUCT
  if (PrintC1Statistics) {
    increment_counter(Runtime1::throw_count_address());
  }
#endif

  // check if the instruction has an xhandler in any of the nested scopes
  bool unwind = false;
  if (info->exception_handlers()->length() == 0) {
    // this throw is not inside an xhandler
    unwind = true;
  } else {
    // get some idea of the throw type
    bool type_is_exact = true;
    ciType* throw_type = x->exception()->exact_type();
    if (throw_type == NULL) {
      type_is_exact = false;
      throw_type = x->exception()->declared_type();
    }
    if (throw_type != NULL && throw_type->is_instance_klass()) {
      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
    }
  }

  // do null check before moving exception oop into fixed register
  // to avoid a fixed interval with an oop during the null check.
  // Use a copy of the CodeEmitInfo because debug information is
  // different for null_check and throw.
  if (GenerateCompilerNullChecks &&
      (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
    // if the exception object wasn't created using new then it might be null.
    __ null_check(exception_opr, new CodeEmitInfo(info, true));
  }

  if (JvmtiExport::can_post_exceptions() &&
      !block()->is_set(BlockBegin::default_exception_handler_flag)) {
    // we need to go through the exception lookup path to get JVMTI
    // notification done
    unwind = false;
  }

  assert(!block()->is_set(BlockBegin::default_exception_handler_flag) || unwind,
         "should be no more handlers to dispatch to");

  if (DTraceMethodProbes &&
      block()->is_set(BlockBegin::default_exception_handler_flag)) {
    // notify that this frame is unwinding
    BasicTypeList signature;
    signature.append(T_INT);    // thread
    signature.append(T_OBJECT); // methodOop
    LIR_OprList* args = new LIR_OprList();
    args->append(getThreadPointer());
    LIR_Opr meth = new_register(T_OBJECT);
    __ oop2reg(method()->encoding(), meth);
    args->append(meth);
    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  }

  // move exception oop into fixed register
  __ move(exception_opr, exceptionOopOpr());

  if (unwind) {
    __ unwind_exception(LIR_OprFact::illegalOpr, exceptionOopOpr(), info);
  } else {
    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  }
}


void LIRGenerator::do_RoundFP(RoundFP* x) {
  LIRItem input(x->input(), this);
  input.load_item();
  LIR_Opr input_opr = input.result();
  assert(input_opr->is_register(), "why round if value is not in a register?");
  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  if (input_opr->is_single_fpu()) {
    set_result(x, round_item(input_opr)); // This code path not currently taken
  } else {
    LIR_Opr result = new_register(T_DOUBLE);
    set_vreg_flag(result, must_start_in_memory);
    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
    set_result(x, result);
  }
}

void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  LIRItem base(x->base(), this);
  LIRItem idx(this);

  base.load_item();
  if (x->has_index()) {
    idx.set_instruction(x->index());
    idx.load_nonconstant();
  }

  LIR_Opr reg = rlock_result(x, x->basic_type());

  int   log2_scale = 0;
  if (x->has_index()) {
    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
    log2_scale = x->log2_scale();
  }

  assert(!x->has_index() || idx.value() == x->index(), "should match");

  LIR_Opr base_op = base.result();
#ifndef _LP64
  if (x->base()->type()->tag() == longTag) {
    base_op = new_register(T_INT);
    __ convert(Bytecodes::_l2i, base.result(), base_op);
  } else {
    assert(x->base()->type()->tag() == intTag, "must be");
  }
#endif

  BasicType dst_type = x->basic_type();
  LIR_Opr index_op = idx.result();

  LIR_Address* addr;
  if (index_op->is_constant()) {
    assert(log2_scale == 0, "must not have a scale");
    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  } else {
#ifdef IA32
    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
#else
    if (index_op->is_illegal() || log2_scale == 0) {
      addr = new LIR_Address(base_op, index_op, dst_type);
    } else {
      LIR_Opr tmp = new_register(T_INT);
      __ shift_left(index_op, log2_scale, tmp);
      addr = new LIR_Address(base_op, tmp, dst_type);
    }
#endif
  }

  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
    __ unaligned_move(addr, reg);
  } else {
    __ move(addr, reg);
  }
}


void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  int  log2_scale = 0;
  BasicType type = x->basic_type();

  if (x->has_index()) {
    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
    log2_scale = x->log2_scale();
  }

  LIRItem base(x->base(), this);
  LIRItem value(x->value(), this);
  LIRItem idx(this);

  base.load_item();
  if (x->has_index()) {
    idx.set_instruction(x->index());
    idx.load_item();
  }

  if (type == T_BYTE || type == T_BOOLEAN) {
    value.load_byte_item();
  } else {
    value.load_item();
  }

  set_no_result(x);

  LIR_Opr base_op = base.result();
#ifndef _LP64
  if (x->base()->type()->tag() == longTag) {
    base_op = new_register(T_INT);
    __ convert(Bytecodes::_l2i, base.result(), base_op);
  } else {
    assert(x->base()->type()->tag() == intTag, "must be");
  }
#endif

  LIR_Opr index_op = idx.result();
  if (log2_scale != 0) {
    // temporary fix (platform dependent code without shift on Intel would be better)
    index_op = new_register(T_INT);
    __ move(idx.result(), index_op);
    __ shift_left(index_op, log2_scale, index_op);
  }

  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  __ move(value.result(), addr);
}


void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  BasicType type = x->basic_type();
  LIRItem src(x->object(), this);
  LIRItem off(x->offset(), this);

  off.load_item();
  src.load_item();

  LIR_Opr reg = reg = rlock_result(x, x->basic_type());

  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
  if (x->is_volatile() && os::is_MP()) __ membar();
}


void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  BasicType type = x->basic_type();
  LIRItem src(x->object(), this);
  LIRItem off(x->offset(), this);
  LIRItem data(x->value(), this);

  src.load_item();
  if (type == T_BOOLEAN || type == T_BYTE) {
    data.load_byte_item();
  } else {
    data.load_item();
  }
  off.load_item();

  set_no_result(x);

  if (x->is_volatile() && os::is_MP()) __ membar_release();
  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
}


void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  LIRItem src(x->object(), this);
  LIRItem off(x->offset(), this);

  src.load_item();
  if (off.is_constant() && can_inline_as_constant(x->offset())) {
    // let it be a constant
    off.dont_load_item();
  } else {
    off.load_item();
  }

  set_no_result(x);

  LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  __ prefetch(addr, is_store);
}


void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  do_UnsafePrefetch(x, false);
}


void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  do_UnsafePrefetch(x, true);
}


void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  int lng = x->length();

  for (int i = 0; i < lng; i++) {
    SwitchRange* one_range = x->at(i);
    int low_key = one_range->low_key();
    int high_key = one_range->high_key();
    BlockBegin* dest = one_range->sux();
    if (low_key == high_key) {
      __ cmp(lir_cond_equal, value, low_key);
      __ branch(lir_cond_equal, T_INT, dest);
    } else if (high_key - low_key == 1) {
      __ cmp(lir_cond_equal, value, low_key);
      __ branch(lir_cond_equal, T_INT, dest);
      __ cmp(lir_cond_equal, value, high_key);
      __ branch(lir_cond_equal, T_INT, dest);
    } else {
      LabelObj* L = new LabelObj();
      __ cmp(lir_cond_less, value, low_key);
      __ branch(lir_cond_less, L->label());
      __ cmp(lir_cond_lessEqual, value, high_key);
      __ branch(lir_cond_lessEqual, T_INT, dest);
      __ branch_destination(L->label());
    }
  }
  __ jump(default_sux);
}


SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  SwitchRangeList* res = new SwitchRangeList();
  int len = x->length();
  if (len > 0) {
    BlockBegin* sux = x->sux_at(0);
    int key = x->lo_key();
    BlockBegin* default_sux = x->default_sux();
    SwitchRange* range = new SwitchRange(key, sux);
    for (int i = 0; i < len; i++, key++) {
      BlockBegin* new_sux = x->sux_at(i);
      if (sux == new_sux) {
        // still in same range
        range->set_high_key(key);
      } else {
        // skip tests which explicitly dispatch to the default
        if (sux != default_sux) {
          res->append(range);
        }
        range = new SwitchRange(key, new_sux);
      }
      sux = new_sux;
    }
    if (res->length() == 0 || res->last() != range)  res->append(range);
  }
  return res;
}


// we expect the keys to be sorted by increasing value
SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  SwitchRangeList* res = new SwitchRangeList();
  int len = x->length();
  if (len > 0) {
    BlockBegin* default_sux = x->default_sux();
    int key = x->key_at(0);
    BlockBegin* sux = x->sux_at(0);
    SwitchRange* range = new SwitchRange(key, sux);
    for (int i = 1; i < len; i++) {
      int new_key = x->key_at(i);
      BlockBegin* new_sux = x->sux_at(i);
      if (key+1 == new_key && sux == new_sux) {
        // still in same range
        range->set_high_key(new_key);
      } else {
        // skip tests which explicitly dispatch to the default
        if (range->sux() != default_sux) {
          res->append(range);
        }
        range = new SwitchRange(new_key, new_sux);
      }
      key = new_key;
      sux = new_sux;
    }
    if (res->length() == 0 || res->last() != range)  res->append(range);
  }
  return res;
}


void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  LIRItem tag(x->tag(), this);
  tag.load_item();
  set_no_result(x);

  if (x->is_safepoint()) {
    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  }

  // move values into phi locations
  move_to_phi(x->state());

  int lo_key = x->lo_key();
  int hi_key = x->hi_key();
  int len = x->length();
  CodeEmitInfo* info = state_for(x, x->state());
  LIR_Opr value = tag.result();
  if (UseTableRanges) {
    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  } else {
    for (int i = 0; i < len; i++) {
      __ cmp(lir_cond_equal, value, i + lo_key);
      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
    }
    __ jump(x->default_sux());
  }
}


void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  LIRItem tag(x->tag(), this);
  tag.load_item();
  set_no_result(x);

  if (x->is_safepoint()) {
    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  }

  // move values into phi locations
  move_to_phi(x->state());

  LIR_Opr value = tag.result();
  if (UseTableRanges) {
    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  } else {
    int len = x->length();
    for (int i = 0; i < len; i++) {
      __ cmp(lir_cond_equal, value, x->key_at(i));
      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
    }
    __ jump(x->default_sux());
  }
}


void LIRGenerator::do_Goto(Goto* x) {
  set_no_result(x);

  if (block()->next()->as_OsrEntry()) {
    // need to free up storage used for OSR entry point
    LIR_Opr osrBuffer = block()->next()->operand();
    BasicTypeList signature;
    signature.append(T_INT);
    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
    __ move(osrBuffer, cc->args()->at(0));
    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  }

  if (x->is_safepoint()) {
    ValueStack* state = x->state_before() ? x->state_before() : x->state();

    // increment backedge counter if needed
    increment_backedge_counter(state_for(x, state));

    CodeEmitInfo* safepoint_info = state_for(x, state);
    __ safepoint(safepoint_poll_register(), safepoint_info);
  }

  // emit phi-instruction move after safepoint since this simplifies
  // describing the state as the safepoint.
  move_to_phi(x->state());

  __ jump(x->default_sux());
}


void LIRGenerator::do_Base(Base* x) {
  __ std_entry(LIR_OprFact::illegalOpr);
  // Emit moves from physical registers / stack slots to virtual registers
  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  IRScope* irScope = compilation()->hir()->top_scope();
  int java_index = 0;
  for (int i = 0; i < args->length(); i++) {
    LIR_Opr src = args->at(i);
    assert(!src->is_illegal(), "check");
    BasicType t = src->type();

    // Types which are smaller than int are passed as int, so
    // correct the type which passed.
    switch (t) {
    case T_BYTE:
    case T_BOOLEAN:
    case T_SHORT:
    case T_CHAR:
      t = T_INT;
      break;
    }

    LIR_Opr dest = new_register(t);
    __ move(src, dest);

    // Assign new location to Local instruction for this local
    Local* local = x->state()->local_at(java_index)->as_Local();
    assert(local != NULL, "Locals for incoming arguments must have been created");
    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
    local->set_operand(dest);
    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
    java_index += type2size[t];
  }

  if (DTraceMethodProbes) {
    BasicTypeList signature;
    signature.append(T_INT);    // thread
    signature.append(T_OBJECT); // methodOop
    LIR_OprList* args = new LIR_OprList();
    args->append(getThreadPointer());
    LIR_Opr meth = new_register(T_OBJECT);
    __ oop2reg(method()->encoding(), meth);
    args->append(meth);
    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  }

  if (method()->is_synchronized()) {
    LIR_Opr obj;
    if (method()->is_static()) {
      obj = new_register(T_OBJECT);
      __ oop2reg(method()->holder()->java_mirror()->encoding(), obj);
    } else {
      Local* receiver = x->state()->local_at(0)->as_Local();
      assert(receiver != NULL, "must already exist");
      obj = receiver->operand();
    }
    assert(obj->is_valid(), "must be valid");

    if (method()->is_synchronized() && GenerateSynchronizationCode) {
      LIR_Opr lock = new_register(T_INT);
      __ load_stack_address_monitor(0, lock);

      CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL);
      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);

      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
    }
  }

  // increment invocation counters if needed
  increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL));

  // all blocks with a successor must end with an unconditional jump
  // to the successor even if they are consecutive
  __ jump(x->default_sux());
}


void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  // construct our frame and model the production of incoming pointer
  // to the OSR buffer.
  __ osr_entry(LIR_Assembler::osrBufferPointer());
  LIR_Opr result = rlock_result(x);
  __ move(LIR_Assembler::osrBufferPointer(), result);
}


void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  int i = x->has_receiver() ? 1 : 0;
  for (; i < args->length(); i++) {
    LIRItem* param = args->at(i);
    LIR_Opr loc = arg_list->at(i);
    if (loc->is_register()) {
      param->load_item_force(loc);
    } else {
      LIR_Address* addr = loc->as_address_ptr();
      param->load_for_store(addr->type());
      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
        __ unaligned_move(param->result(), addr);
      } else {
        __ move(param->result(), addr);
      }
    }
  }

  if (x->has_receiver()) {
    LIRItem* receiver = args->at(0);
    LIR_Opr loc = arg_list->at(0);
    if (loc->is_register()) {
      receiver->load_item_force(loc);
    } else {
      assert(loc->is_address(), "just checking");
      receiver->load_for_store(T_OBJECT);
      __ move(receiver->result(), loc);
    }
  }
}


// Visits all arguments, returns appropriate items without loading them
LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  LIRItemList* argument_items = new LIRItemList();
  if (x->has_receiver()) {
    LIRItem* receiver = new LIRItem(x->receiver(), this);
    argument_items->append(receiver);
  }
  int idx = x->has_receiver() ? 1 : 0;
  for (int i = 0; i < x->number_of_arguments(); i++) {
    LIRItem* param = new LIRItem(x->argument_at(i), this);
    argument_items->append(param);
    idx += (param->type()->is_double_word() ? 2 : 1);
  }
  return argument_items;
}


// The invoke with receiver has following phases:
//   a) traverse and load/lock receiver;
//   b) traverse all arguments -> item-array (invoke_visit_argument)
//   c) push receiver on stack
//   d) load each of the items and push on stack
//   e) unlock receiver
//   f) move receiver into receiver-register %o0
//   g) lock result registers and emit call operation
//
// Before issuing a call, we must spill-save all values on stack
// that are in caller-save register. "spill-save" moves thos registers
// either in a free callee-save register or spills them if no free
// callee save register is available.
//
// The problem is where to invoke spill-save.
// - if invoked between e) and f), we may lock callee save
//   register in "spill-save" that destroys the receiver register
//   before f) is executed
// - if we rearange the f) to be earlier, by loading %o0, it
//   may destroy a value on the stack that is currently in %o0
//   and is waiting to be spilled
// - if we keep the receiver locked while doing spill-save,
//   we cannot spill it as it is spill-locked
//
void LIRGenerator::do_Invoke(Invoke* x) {
  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);

  LIR_OprList* arg_list = cc->args();
  LIRItemList* args = invoke_visit_arguments(x);
  LIR_Opr receiver = LIR_OprFact::illegalOpr;

  // setup result register
  LIR_Opr result_register = LIR_OprFact::illegalOpr;
  if (x->type() != voidType) {
    result_register = result_register_for(x->type());
  }

  CodeEmitInfo* info = state_for(x, x->state());

  invoke_load_arguments(x, args, arg_list);

  if (x->has_receiver()) {
    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
    receiver = args->at(0)->result();
  }

  // emit invoke code
  bool optimized = x->target_is_loaded() && x->target_is_final();
  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");

  switch (x->code()) {
    case Bytecodes::_invokestatic:
      __ call_static(x->target(), result_register,
                     SharedRuntime::get_resolve_static_call_stub(),
                     arg_list, info);
      break;
    case Bytecodes::_invokespecial:
    case Bytecodes::_invokevirtual:
    case Bytecodes::_invokeinterface:
      // for final target we still produce an inline cache, in order
      // to be able to call mixed mode
      if (x->code() == Bytecodes::_invokespecial || optimized) {
        __ call_opt_virtual(x->target(), receiver, result_register,
                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
                            arg_list, info);
      } else if (x->vtable_index() < 0) {
        __ call_icvirtual(x->target(), receiver, result_register,
                          SharedRuntime::get_resolve_virtual_call_stub(),
                          arg_list, info);
      } else {
        int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
        int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
        __ call_virtual(x->target(), receiver, result_register, vtable_offset, arg_list, info);
      }
      break;
    default:
      ShouldNotReachHere();
      break;
  }

  if (x->type()->is_float() || x->type()->is_double()) {
    // Force rounding of results from non-strictfp when in strictfp
    // scope (or when we don't know the strictness of the callee, to
    // be safe.)
    if (method()->is_strict()) {
      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
        result_register = round_item(result_register);
      }
    }
  }

  if (result_register->is_valid()) {
    LIR_Opr result = rlock_result(x);
    __ move(result_register, result);
  }
}


void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  assert(x->number_of_arguments() == 1, "wrong type");
  LIRItem value       (x->argument_at(0), this);
  LIR_Opr reg = rlock_result(x);
  value.load_item();
  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  __ move(tmp, reg);
}



// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
void LIRGenerator::do_IfOp(IfOp* x) {
#ifdef ASSERT
  {
    ValueTag xtag = x->x()->type()->tag();
    ValueTag ttag = x->tval()->type()->tag();
    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  }
#endif

  LIRItem left(x->x(), this);
  LIRItem right(x->y(), this);
  left.load_item();
  if (can_inline_as_constant(right.value())) {
    right.dont_load_item();
  } else {
    right.load_item();
  }

  LIRItem t_val(x->tval(), this);
  LIRItem f_val(x->fval(), this);
  t_val.dont_load_item();
  f_val.dont_load_item();
  LIR_Opr reg = rlock_result(x);

  __ cmp(lir_cond(x->cond()), left.result(), right.result());
  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
}


void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  switch (x->id()) {
  case vmIntrinsics::_intBitsToFloat      :
  case vmIntrinsics::_doubleToRawLongBits :
  case vmIntrinsics::_longBitsToDouble    :
  case vmIntrinsics::_floatToRawIntBits   : {
    do_FPIntrinsics(x);
    break;
  }

  case vmIntrinsics::_currentTimeMillis: {
    assert(x->number_of_arguments() == 0, "wrong type");
    LIR_Opr reg = result_register_for(x->type());
    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
                         reg, new LIR_OprList());
    LIR_Opr result = rlock_result(x);
    __ move(reg, result);
    break;
  }

  case vmIntrinsics::_nanoTime: {
    assert(x->number_of_arguments() == 0, "wrong type");
    LIR_Opr reg = result_register_for(x->type());
    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
                         reg, new LIR_OprList());
    LIR_Opr result = rlock_result(x);
    __ move(reg, result);
    break;
  }

  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  case vmIntrinsics::_getClass:       do_getClass(x);      break;
  case vmIntrinsics::_currentThread:  do_currentThread(x); break;

  case vmIntrinsics::_dlog:           // fall through
  case vmIntrinsics::_dlog10:         // fall through
  case vmIntrinsics::_dabs:           // fall through
  case vmIntrinsics::_dsqrt:          // fall through
  case vmIntrinsics::_dtan:           // fall through
  case vmIntrinsics::_dsin :          // fall through
  case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;

  // java.nio.Buffer.checkIndex
  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;

  case vmIntrinsics::_compareAndSwapObject:
    do_CompareAndSwap(x, objectType);
    break;
  case vmIntrinsics::_compareAndSwapInt:
    do_CompareAndSwap(x, intType);
    break;
  case vmIntrinsics::_compareAndSwapLong:
    do_CompareAndSwap(x, longType);
    break;

    // sun.misc.AtomicLongCSImpl.attemptUpdate
  case vmIntrinsics::_attemptUpdate:
    do_AttemptUpdate(x);
    break;

  default: ShouldNotReachHere(); break;
  }
}


void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  // Need recv in a temporary register so it interferes with the other temporaries
  LIR_Opr recv = LIR_OprFact::illegalOpr;
  LIR_Opr mdo = new_register(T_OBJECT);
  LIR_Opr tmp = new_register(T_INT);
  if (x->recv() != NULL) {
    LIRItem value(x->recv(), this);
    value.load_item();
    recv = new_register(T_OBJECT);
    __ move(value.result(), recv);
  }
  __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
}


void LIRGenerator::do_ProfileCounter(ProfileCounter* x) {
  LIRItem mdo(x->mdo(), this);
  mdo.load_item();

  increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment());
}


LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  LIRItemList args(1);
  LIRItem value(arg1, this);
  args.append(&value);
  BasicTypeList signature;
  signature.append(as_BasicType(arg1->type()));

  return call_runtime(&signature, &args, entry, result_type, info);
}


LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  LIRItemList args(2);
  LIRItem value1(arg1, this);
  LIRItem value2(arg2, this);
  args.append(&value1);
  args.append(&value2);
  BasicTypeList signature;
  signature.append(as_BasicType(arg1->type()));
  signature.append(as_BasicType(arg2->type()));

  return call_runtime(&signature, &args, entry, result_type, info);
}


LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
  // get a result register
  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  LIR_Opr result = LIR_OprFact::illegalOpr;
  if (result_type->tag() != voidTag) {
    result = new_register(result_type);
    phys_reg = result_register_for(result_type);
  }

  // move the arguments into the correct location
  CallingConvention* cc = frame_map()->c_calling_convention(signature);
  assert(cc->length() == args->length(), "argument mismatch");
  for (int i = 0; i < args->length(); i++) {
    LIR_Opr arg = args->at(i);
    LIR_Opr loc = cc->at(i);
    if (loc->is_register()) {
      __ move(arg, loc);
    } else {
      LIR_Address* addr = loc->as_address_ptr();
//           if (!can_store_as_constant(arg)) {
//             LIR_Opr tmp = new_register(arg->type());
//             __ move(arg, tmp);
//             arg = tmp;
//           }
      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
        __ unaligned_move(arg, addr);
      } else {
        __ move(arg, addr);
      }
    }
  }

  if (info) {
    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  } else {
    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  }
  if (result->is_valid()) {
    __ move(phys_reg, result);
  }
  return result;
}


LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
  // get a result register
  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  LIR_Opr result = LIR_OprFact::illegalOpr;
  if (result_type->tag() != voidTag) {
    result = new_register(result_type);
    phys_reg = result_register_for(result_type);
  }

  // move the arguments into the correct location
  CallingConvention* cc = frame_map()->c_calling_convention(signature);

  assert(cc->length() == args->length(), "argument mismatch");
  for (int i = 0; i < args->length(); i++) {
    LIRItem* arg = args->at(i);
    LIR_Opr loc = cc->at(i);
    if (loc->is_register()) {
      arg->load_item_force(loc);
    } else {
      LIR_Address* addr = loc->as_address_ptr();
      arg->load_for_store(addr->type());
      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
        __ unaligned_move(arg->result(), addr);
      } else {
        __ move(arg->result(), addr);
      }
    }
  }

  if (info) {
    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  } else {
    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  }
  if (result->is_valid()) {
    __ move(phys_reg, result);
  }
  return result;
}



void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) {
#ifdef TIERED
  if (_compilation->env()->comp_level() == CompLevel_fast_compile &&
      (method()->code_size() >= Tier1BytecodeLimit || backedge)) {
    int limit = InvocationCounter::Tier1InvocationLimit;
    int offset = in_bytes(methodOopDesc::invocation_counter_offset() +
                          InvocationCounter::counter_offset());
    if (backedge) {
      limit = InvocationCounter::Tier1BackEdgeLimit;
      offset = in_bytes(methodOopDesc::backedge_counter_offset() +
                        InvocationCounter::counter_offset());
    }

    LIR_Opr meth = new_register(T_OBJECT);
    __ oop2reg(method()->encoding(), meth);
    LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment);
    __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit));
    CodeStub* overflow = new CounterOverflowStub(info, info->bci());
    __ branch(lir_cond_aboveEqual, T_INT, overflow);
    __ branch_destination(overflow->continuation());
  }
#endif
}