1. 15 8月, 2018 1 次提交
  2. 05 8月, 2018 1 次提交
    • N
      x86: Don't include linux/irq.h from asm/hardirq.h · 447ae316
      Nicolai Stange 提交于
      The next patch in this series will have to make the definition of
      irq_cpustat_t available to entering_irq().
      
      Inclusion of asm/hardirq.h into asm/apic.h would cause circular header
      dependencies like
      
        asm/smp.h
          asm/apic.h
            asm/hardirq.h
              linux/irq.h
                linux/topology.h
                  linux/smp.h
                    asm/smp.h
      
      or
      
        linux/gfp.h
          linux/mmzone.h
            asm/mmzone.h
              asm/mmzone_64.h
                asm/smp.h
                  asm/apic.h
                    asm/hardirq.h
                      linux/irq.h
                        linux/irqdesc.h
                          linux/kobject.h
                            linux/sysfs.h
                              linux/kernfs.h
                                linux/idr.h
                                  linux/gfp.h
      
      and others.
      
      This causes compilation errors because of the header guards becoming
      effective in the second inclusion: symbols/macros that had been defined
      before wouldn't be available to intermediate headers in the #include chain
      anymore.
      
      A possible workaround would be to move the definition of irq_cpustat_t
      into its own header and include that from both, asm/hardirq.h and
      asm/apic.h.
      
      However, this wouldn't solve the real problem, namely asm/harirq.h
      unnecessarily pulling in all the linux/irq.h cruft: nothing in
      asm/hardirq.h itself requires it. Also, note that there are some other
      archs, like e.g. arm64, which don't have that #include in their
      asm/hardirq.h.
      
      Remove the linux/irq.h #include from x86' asm/hardirq.h.
      
      Fix resulting compilation errors by adding appropriate #includes to *.c
      files as needed.
      
      Note that some of these *.c files could be cleaned up a bit wrt. to their
      set of #includes, but that should better be done from separate patches, if
      at all.
      Signed-off-by: NNicolai Stange <nstange@suse.de>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      447ae316
  3. 31 7月, 2018 1 次提交
  4. 24 7月, 2018 1 次提交
  5. 02 7月, 2018 1 次提交
    • T
      Revert "x86/apic: Ignore secondary threads if nosmt=force" · 506a66f3
      Thomas Gleixner 提交于
      Dave Hansen reported, that it's outright dangerous to keep SMT siblings
      disabled completely so they are stuck in the BIOS and wait for SIPI.
      
      The reason is that Machine Check Exceptions are broadcasted to siblings and
      the soft disabled sibling has CR4.MCE = 0. If a MCE is delivered to a
      logical core with CR4.MCE = 0, it asserts IERR#, which shuts down or
      reboots the machine. The MCE chapter in the SDM contains the following
      blurb:
      
          Because the logical processors within a physical package are tightly
          coupled with respect to shared hardware resources, both logical
          processors are notified of machine check errors that occur within a
          given physical processor. If machine-check exceptions are enabled when
          a fatal error is reported, all the logical processors within a physical
          package are dispatched to the machine-check exception handler. If
          machine-check exceptions are disabled, the logical processors enter the
          shutdown state and assert the IERR# signal. When enabling machine-check
          exceptions, the MCE flag in control register CR4 should be set for each
          logical processor.
      
      Reverting the commit which ignores siblings at enumeration time solves only
      half of the problem. The core cpuhotplug logic needs to be adjusted as
      well.
      
      This thoughtful engineered mechanism also turns the boot process on all
      Intel HT enabled systems into a MCE lottery. MCE is enabled on the boot CPU
      before the secondary CPUs are brought up. Depending on the number of
      physical cores the window in which this situation can happen is smaller or
      larger. On a HSW-EX it's about 750ms:
      
      MCE is enabled on the boot CPU:
      
      [    0.244017] mce: CPU supports 22 MCE banks
      
      The corresponding sibling #72 boots:
      
      [    1.008005] .... node  #0, CPUs:    #72
      
      That means if an MCE hits on physical core 0 (logical CPUs 0 and 72)
      between these two points the machine is going to shutdown. At least it's a
      known safe state.
      
      It's obvious that the early boot can be hit by an MCE as well and then runs
      into the same situation because MCEs are not yet enabled on the boot CPU.
      But after enabling them on the boot CPU, it does not make any sense to
      prevent the kernel from recovering.
      
      Adjust the nosmt kernel parameter documentation as well.
      
      Reverts: 2207def7 ("x86/apic: Ignore secondary threads if nosmt=force")
      Reported-by: NDave Hansen <dave.hansen@intel.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Tested-by: NTony Luck <tony.luck@intel.com>
      506a66f3
  6. 21 6月, 2018 2 次提交
    • T
      x86/apic: Ignore secondary threads if nosmt=force · 2207def7
      Thomas Gleixner 提交于
      nosmt on the kernel command line merely prevents the onlining of the
      secondary SMT siblings.
      
      nosmt=force makes the APIC detection code ignore the secondary SMT siblings
      completely, so they even do not show up as possible CPUs. That reduces the
      amount of memory allocations for per cpu variables and saves other
      resources from being allocated too large.
      
      This is not fully equivalent to disabling SMT in the BIOS because the low
      level SMT enabling in the BIOS can result in partitioning of resources
      between the siblings, which is not undone by just ignoring them. Some CPUs
      can use the full resources when their sibling is not onlined, but this is
      depending on the CPU family and model and it's not well documented whether
      this applies to all partitioned resources. That means depending on the
      workload disabling SMT in the BIOS might result in better performance.
      
      Linus analysis of the Intel manual:
      
        The intel optimization manual is not very clear on what the partitioning
        rules are.
      
        I find:
      
          "In general, the buffers for staging instructions between major pipe
           stages  are partitioned. These buffers include µop queues after the
           execution trace cache, the queues after the register rename stage, the
           reorder buffer which stages instructions for retirement, and the load
           and store buffers.
      
           In the case of load and store buffers, partitioning also provided an
           easier implementation to maintain memory ordering for each logical
           processor and detect memory ordering violations"
      
        but some of that partitioning may be relaxed if the HT thread is "not
        active":
      
          "In Intel microarchitecture code name Sandy Bridge, the micro-op queue
           is statically partitioned to provide 28 entries for each logical
           processor,  irrespective of software executing in single thread or
           multiple threads. If one logical processor is not active in Intel
           microarchitecture code name Ivy Bridge, then a single thread executing
           on that processor  core can use the 56 entries in the micro-op queue"
      
        but I do not know what "not active" means, and how dynamic it is. Some of
        that partitioning may be entirely static and depend on the early BIOS
        disabling of HT, and even if we park the cores, the resources will just be
        wasted.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Reviewed-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      2207def7
    • T
      x86/smp: Provide topology_is_primary_thread() · 6a4d2657
      Thomas Gleixner 提交于
      If the CPU is supporting SMT then the primary thread can be found by
      checking the lower APIC ID bits for zero. smp_num_siblings is used to build
      the mask for the APIC ID bits which need to be taken into account.
      
      This uses the MPTABLE or ACPI/MADT supplied APIC ID, which can be different
      than the initial APIC ID in CPUID. But according to AMD the lower bits have
      to be consistent. Intel gave a tentative confirmation as well.
      
      Preparatory patch to support disabling SMT at boot/runtime.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Reviewed-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      6a4d2657
  7. 01 3月, 2018 3 次提交
  8. 17 2月, 2018 1 次提交
    • B
      x86/apic: Set up through-local-APIC mode on the boot CPU if 'noapic' specified · bee3204e
      Baoquan He 提交于
      Currently the kdump kernel becomes very slow if 'noapic' is specified.
      Normal kernel doesn't have this bug.
      
      Kernel parameter 'noapic' is used to disable IO-APIC in system for
      testing or special purpose. Here the root cause is that in kdump
      kernel LAPIC is disabled since commit:
      
        522e6646 ("x86/apic: Disable I/O APIC before shutdown of the local APIC")
      
      In this case we need set up through-local-APIC on boot CPU in
      setup_local_APIC().
      
      In normal kernel the legacy irq mode is enabled by the BIOS. If
      it is virtual wire mode, the local-APIC has been enabled and set as
      through-local-APIC.
      
      Though we fixed the regression introduced by commit 522e6646,
      to further improve robustness set up the through-local-APIC mode
      explicitly, do not rely on the default boot IRQ mode.
      Signed-off-by: NBaoquan He <bhe@redhat.com>
      Reviewed-by: NEric W. Biederman <ebiederm@xmission.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: douly.fnst@cn.fujitsu.com
      Cc: joro@8bytes.org
      Cc: prarit@redhat.com
      Cc: uobergfe@redhat.com
      Link: http://lkml.kernel.org/r/20180214054656.3780-7-bhe@redhat.com
      [ Rewrote the changelog. ]
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      bee3204e
  9. 16 2月, 2018 1 次提交
  10. 15 2月, 2018 1 次提交
  11. 14 1月, 2018 1 次提交
  12. 28 12月, 2017 1 次提交
  13. 10 11月, 2017 1 次提交
  14. 12 10月, 2017 2 次提交
  15. 04 10月, 2017 1 次提交
    • J
      x86/boot: Spell out "boot CPU" for BP · a1652bb8
      Jean Delvare 提交于
      It's not obvious to everybody that BP stands for boot processor. At
      least it was not for me. And BP is also a CPU register on x86, so it
      is ambiguous. Spell out "boot CPU" everywhere instead.
      Signed-off-by: NJean Delvare <jdelvare@suse.de>
      Cc: Alok Kataria <akataria@vmware.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      a1652bb8
  16. 28 9月, 2017 1 次提交
  17. 26 9月, 2017 2 次提交
  18. 25 9月, 2017 12 次提交
  19. 11 9月, 2017 1 次提交
  20. 09 9月, 2017 1 次提交
  21. 31 8月, 2017 1 次提交
  22. 29 8月, 2017 3 次提交