- 19 12月, 2019 1 次提交
-
-
由 Singh, Brijesh 提交于
commit 05d5a48635259e621ea26d01e8316c6feeb34190 upstream. Errata#1096: On a nested data page fault when CR.SMAP=1 and the guest data read generates a SMAP violation, GuestInstrBytes field of the VMCB on a VMEXIT will incorrectly return 0h instead the correct guest instruction bytes . Recommend Workaround: To determine what instruction the guest was executing the hypervisor will have to decode the instruction at the instruction pointer. The recommended workaround can not be implemented for the SEV guest because guest memory is encrypted with the guest specific key, and instruction decoder will not be able to decode the instruction bytes. If we hit this errata in the SEV guest then log the message and request a guest shutdown. Reported-by: NVenkatesh Srinivas <venkateshs@google.com> Cc: Jim Mattson <jmattson@google.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Joerg Roedel <joro@8bytes.org> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: NBrijesh Singh <brijesh.singh@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NWANG Siyuan <Siyuan.Wang@amd.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
- 16 9月, 2019 2 次提交
-
-
由 Ben Gardon 提交于
[ Upstream commit bc8a3d8925a8fa09fa550e0da115d95851ce33c6 ] KVM bases its memory usage limits on the total number of guest pages across all memslots. However, those limits, and the calculations to produce them, use 32 bit unsigned integers. This can result in overflow if a VM has more guest pages that can be represented by a u32. As a result of this overflow, KVM can use a low limit on the number of MMU pages it will allocate. This makes KVM unable to map all of guest memory at once, prompting spurious faults. Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch introduced no new failures. Signed-off-by: NBen Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Vitaly Kuznetsov 提交于
[ Upstream commit 87ee613d076351950b74383215437f841ebbeb75 ] In most common cases VP index of a vcpu matches its vcpu index. Userspace is, however, free to set any mapping it wishes and we need to account for that when we need to find a vCPU with a particular VP index. To keep search algorithms optimal in both cases introduce 'num_mismatched_vp_indexes' counter showing how many vCPUs with mismatching VP index we have. In case the counter is zero we can assume vp_index == vcpu_idx. Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: NRoman Kagan <rkagan@virtuozzo.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 16 8月, 2019 1 次提交
-
-
由 Wanpeng Li 提交于
commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream. After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting in the VMs after stress testing: INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073) Call Trace: flush_tlb_mm_range+0x68/0x140 tlb_flush_mmu.part.75+0x37/0xe0 tlb_finish_mmu+0x55/0x60 zap_page_range+0x142/0x190 SyS_madvise+0x3cd/0x9c0 system_call_fastpath+0x1c/0x21 swait_active() sustains to be true before finish_swait() is called in kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account by kvm_vcpu_on_spin() loop greatly increases the probability condition kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv is enabled the yield-candidate vCPU's VMCS RVI field leaks(by vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current VMCS. This patch fixes it by checking conservatively a subset of events. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Marc Zyngier <Marc.Zyngier@arm.com> Cc: stable@vger.kernel.org Fixes: 98f4a146 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop) Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 07 8月, 2019 1 次提交
-
-
由 Josh Poimboeuf 提交于
[ Upstream commit 3901336ed9887b075531bffaeef7742ba614058b ] After making a change to improve objtool's sibling call detection, it started showing the following warning: arch/x86/kvm/vmx/nested.o: warning: objtool: .fixup+0x15: sibling call from callable instruction with modified stack frame The problem is the ____kvm_handle_fault_on_reboot() macro. It does a fake call by pushing a fake RIP and doing a jump. That tricks the unwinder into printing the function which triggered the exception, rather than the .fixup code. Instead of the hack to make it look like the original function made the call, just change the macro so that the original function actually does make the call. This allows removal of the hack, and also makes objtool happy. I triggered a vmx instruction exception and verified that the stack trace is still sane: kernel BUG at arch/x86/kvm/x86.c:358! invalid opcode: 0000 [#1] SMP PTI CPU: 28 PID: 4096 Comm: qemu-kvm Not tainted 5.2.0+ #16 Hardware name: Lenovo THINKSYSTEM SD530 -[7X2106Z000]-/-[7X2106Z000]-, BIOS -[TEE113Z-1.00]- 07/17/2017 RIP: 0010:kvm_spurious_fault+0x5/0x10 Code: 00 00 00 00 00 8b 44 24 10 89 d2 45 89 c9 48 89 44 24 10 8b 44 24 08 48 89 44 24 08 e9 d4 40 22 00 0f 1f 40 00 0f 1f 44 00 00 <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41 RSP: 0018:ffffbf91c683bd00 EFLAGS: 00010246 RAX: 000061f040000000 RBX: ffff9e159c77bba0 RCX: ffff9e15a5c87000 RDX: 0000000665c87000 RSI: ffff9e15a5c87000 RDI: ffff9e159c77bba0 RBP: 0000000000000000 R08: 0000000000000000 R09: ffff9e15a5c87000 R10: 0000000000000000 R11: fffff8f2d99721c0 R12: ffff9e159c77bba0 R13: ffffbf91c671d960 R14: ffff9e159c778000 R15: 0000000000000000 FS: 00007fa341cbe700(0000) GS:ffff9e15b7400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fdd38356804 CR3: 00000006759de003 CR4: 00000000007606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: loaded_vmcs_init+0x4f/0xe0 alloc_loaded_vmcs+0x38/0xd0 vmx_create_vcpu+0xf7/0x600 kvm_vm_ioctl+0x5e9/0x980 ? __switch_to_asm+0x40/0x70 ? __switch_to_asm+0x34/0x70 ? __switch_to_asm+0x40/0x70 ? __switch_to_asm+0x34/0x70 ? free_one_page+0x13f/0x4e0 do_vfs_ioctl+0xa4/0x630 ksys_ioctl+0x60/0x90 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x55/0x1c0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fa349b1ee5b Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPaolo Bonzini <pbonzini@redhat.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/64a9b64d127e87b6920a97afde8e96ea76f6524e.1563413318.git.jpoimboe@redhat.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 03 4月, 2019 2 次提交
-
-
由 Sean Christopherson 提交于
commit 0cf9135b773bf32fba9dd8e6699c1b331ee4b749 upstream. The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES regardless of hardware support under the pretense that KVM fully emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts). Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so that it's emulated on AMD hosts. Fixes: 1eaafe91 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported") Cc: stable@vger.kernel.org Reported-by: NXiaoyao Li <xiaoyao.li@linux.intel.com> Cc: Jim Mattson <jmattson@google.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Sean Christopherson 提交于
commit 45def77ebf79e2e8942b89ed79294d97ce914fa0 upstream. Most (all?) x86 platforms provide a port IO based reset mechanism, e.g. OUT 92h or CF9h. Userspace may emulate said mechanism, i.e. reset a vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM that it is doing a reset, e.g. Qemu jams vCPU state and resumes running. To avoid corruping %rip after such a reset, commit 0967b7bf ("KVM: Skip pio instruction when it is emulated, not executed") changed the behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the instruction prior to exiting to userspace. Full emulation doesn't need such tricks becase re-emulating the instruction will naturally handle %rip being changed to point at the reset vector. Updating %rip prior to executing to userspace has several drawbacks: - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation fails it will likely yell about the wrong address. - Single step exits to userspace for are effectively dropped as KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO. - Behavior of PIO emulation is different depending on whether it goes down the fast path or the slow path. Rather than skip the PIO instruction before exiting to userspace, snapshot the linear %rip and cancel PIO completion if the current value does not match the snapshot. For a 64-bit vCPU, i.e. the most common scenario, the snapshot and comparison has negligible overhead as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra VMREAD in this case. All other alternatives to snapshotting the linear %rip that don't rely on an explicit reset announcenment suffer from one corner case or another. For example, canceling PIO completion on any write to %rip fails if userspace does a save/restore of %rip, and attempting to avoid that issue by canceling PIO only if %rip changed then fails if PIO collides with the reset %rip. Attempting to zero in on the exact reset vector won't work for APs, which means adding more hooks such as the vCPU's MP_STATE, and so on and so forth. Checking for a linear %rip match technically suffers from corner cases, e.g. userspace could theoretically rewrite the underlying code page and expect a different instruction to execute, or the guest hardcodes a PIO reset at 0xfffffff0, but those are far, far outside of what can be considered normal operation. Fixes: 432baf60 ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O") Cc: <stable@vger.kernel.org> Reported-by: NJim Mattson <jmattson@google.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 24 3月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit 152482580a1b0accb60676063a1ac57b2d12daf6 upstream. kvm_arch_memslots_updated() is at this point in time an x86-specific hook for handling MMIO generation wraparound. x86 stashes 19 bits of the memslots generation number in its MMIO sptes in order to avoid full page fault walks for repeat faults on emulated MMIO addresses. Because only 19 bits are used, wrapping the MMIO generation number is possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that the generation has changed so that it can invalidate all MMIO sptes in case the effective MMIO generation has wrapped so as to avoid using a stale spte, e.g. a (very) old spte that was created with generation==0. Given that the purpose of kvm_arch_memslots_updated() is to prevent consuming stale entries, it needs to be called before the new generation is propagated to memslots. Invalidating the MMIO sptes after updating memslots means that there is a window where a vCPU could dereference the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO spte that was created with (pre-wrap) generation==0. Fixes: e59dbe09 ("KVM: Introduce kvm_arch_memslots_updated()") Cc: <stable@vger.kernel.org> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 10 1月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit e81434995081fd7efb755fd75576b35dbb0850b1 upstream. ____kvm_handle_fault_on_reboot() provides a generic exception fixup handler that is used to cleanly handle faults on VMX/SVM instructions during reboot (or at least try to). If there isn't a reboot in progress, ____kvm_handle_fault_on_reboot() treats any exception as fatal to KVM and invokes kvm_spurious_fault(), which in turn generates a BUG() to get a stack trace and die. When it was originally added by commit 4ecac3fd ("KVM: Handle virtualization instruction #UD faults during reboot"), the "call" to kvm_spurious_fault() was handcoded as PUSH+JMP, where the PUSH'd value is the RIP of the faulting instructing. The PUSH+JMP trickery is necessary because the exception fixup handler code lies outside of its associated function, e.g. right after the function. An actual CALL from the .fixup code would show a slightly bogus stack trace, e.g. an extra "random" function would be inserted into the trace, as the return RIP on the stack would point to no known function (and the unwinder will likely try to guess who owns the RIP). Unfortunately, the JMP was replaced with a CALL when the macro was reworked to not spin indefinitely during reboot (commit b7c4145b "KVM: Don't spin on virt instruction faults during reboot"). This causes the aforementioned behavior where a bogus function is inserted into the stack trace, e.g. my builds like to blame free_kvm_area(). Revert the CALL back to a JMP. The changelog for commit b7c4145b ("KVM: Don't spin on virt instruction faults during reboot") contains nothing that indicates the switch to CALL was deliberate. This is backed up by the fact that the PUSH <insn RIP> was left intact. Note that an alternative to the PUSH+JMP magic would be to JMP back to the "real" code and CALL from there, but that would require adding a JMP in the non-faulting path to avoid calling kvm_spurious_fault() and would add no value, i.e. the stack trace would be the same. Using CALL: ------------[ cut here ]------------ kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356! invalid opcode: 0000 [#1] SMP CPU: 4 PID: 1057 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm] Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41 RSP: 0018:ffffc900004bbcc8 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff888273fd8000 R08: 00000000000003e8 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000371fb0 R13: 0000000000000000 R14: 000000026d763cf4 R15: ffff888273fd8000 FS: 00007f3d69691700(0000) GS:ffff888277800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f89bc56fe0 CR3: 0000000271a5a001 CR4: 0000000000362ee0 Call Trace: free_kvm_area+0x1044/0x43ea [kvm_intel] ? vmx_vcpu_run+0x156/0x630 [kvm_intel] ? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? __set_task_blocked+0x38/0x90 ? __set_current_blocked+0x50/0x60 ? __fpu__restore_sig+0x97/0x490 ? do_vfs_ioctl+0xa1/0x620 ? __x64_sys_futex+0x89/0x180 ? ksys_ioctl+0x66/0x70 ? __x64_sys_ioctl+0x16/0x20 ? do_syscall_64+0x4f/0x100 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc ---[ end trace 9775b14b123b1713 ]--- Using JMP: ------------[ cut here ]------------ kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356! invalid opcode: 0000 [#1] SMP CPU: 6 PID: 1067 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm] Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41 RSP: 0018:ffffc90000497cd0 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff88827058bd40 R08: 00000000000003e8 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000369fb0 R13: 0000000000000000 R14: 00000003c8fc6642 R15: ffff88827058bd40 FS: 00007f3d7219e700(0000) GS:ffff888277900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3d64001000 CR3: 0000000271c6b004 CR4: 0000000000362ee0 Call Trace: vmx_vcpu_run+0x156/0x630 [kvm_intel] ? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? __set_task_blocked+0x38/0x90 ? __set_current_blocked+0x50/0x60 ? __fpu__restore_sig+0x97/0x490 ? do_vfs_ioctl+0xa1/0x620 ? __x64_sys_futex+0x89/0x180 ? ksys_ioctl+0x66/0x70 ? __x64_sys_ioctl+0x16/0x20 ? do_syscall_64+0x4f/0x100 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc ---[ end trace f9daedb85ab3ddba ]--- Fixes: b7c4145b ("KVM: Don't spin on virt instruction faults during reboot") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 06 12月, 2018 1 次提交
-
-
由 Leonid Shatz 提交于
commit 326e742533bf0a23f0127d8ea62fb558ba665f08 upstream. Since commit e79f245d ("X86/KVM: Properly update 'tsc_offset' to represent the running guest"), vcpu->arch.tsc_offset meaning was changed to always reflect the tsc_offset value set on active VMCS. Regardless if vCPU is currently running L1 or L2. However, above mentioned commit failed to also change kvm_vcpu_write_tsc_offset() to set vcpu->arch.tsc_offset correctly. This is because vmx_write_tsc_offset() could set the tsc_offset value in active VMCS to given offset parameter *plus vmcs12->tsc_offset*. However, kvm_vcpu_write_tsc_offset() just sets vcpu->arch.tsc_offset to given offset parameter. Without taking into account the possible addition of vmcs12->tsc_offset. (Same is true for SVM case). Fix this issue by changing kvm_x86_ops->write_tsc_offset() to return actually set tsc_offset in active VMCS and modify kvm_vcpu_write_tsc_offset() to set returned value in vcpu->arch.tsc_offset. In addition, rename write_tsc_offset() callback to write_l1_tsc_offset() to make it clear that it is meant to set L1 TSC offset. Fixes: e79f245d ("X86/KVM: Properly update 'tsc_offset' to represent the running guest") Reviewed-by: NLiran Alon <liran.alon@oracle.com> Reviewed-by: NMihai Carabas <mihai.carabas@oracle.com> Reviewed-by: NKrish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: NLeonid Shatz <leonid.shatz@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 14 11月, 2018 1 次提交
-
-
由 Jim Mattson 提交于
[ Upstream commit cfb634fe ] According to volume 3 of the SDM, bits 63:15 and 12:4 of the exit qualification field for debug exceptions are reserved (cleared to 0). However, the SDM is incorrect about bit 16 (corresponding to DR6.RTM). This bit should be set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional regions was enabled. Note that this is the opposite of DR6.RTM, which "indicates (when clear) that a debug exception (#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional regions was enabled." There is still an issue with stale DR6 bits potentially being misreported for the current debug exception. DR6 should not have been modified before vectoring the #DB exception, and the "new DR6 bits" should be available somewhere, but it was and they aren't. Fixes: b96fb439 ("KVM: nVMX: fixes to nested virt interrupt injection") Signed-off-by: NJim Mattson <jmattson@google.com> Reviewed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 20 9月, 2018 3 次提交
-
-
由 Drew Schmitt 提交于
Add KVM_CAP_MSR_PLATFORM_INFO so that userspace can disable guest access to reads of MSR_PLATFORM_INFO. Disabling access to reads of this MSR gives userspace the control to "expose" this platform-dependent information to guests in a clear way. As it exists today, guests that read this MSR would get unpopulated information if userspace hadn't already set it (and prior to this patch series, only the CPUID faulting information could have been populated). This existing interface could be confusing if guests don't handle the potential for incorrect/incomplete information gracefully (e.g. zero reported for base frequency). Signed-off-by: NDrew Schmitt <dasch@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Liran Alon 提交于
In case L1 do not intercept L2 HLT or enter L2 in HLT activity-state, it is possible for a vCPU to be blocked while it is in guest-mode. According to Intel SDM 26.6.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery: "These events wake the logical processor if it just entered the HLT state because of a VM entry". Therefore, if L1 enters L2 in HLT activity-state and L2 has a pending deliverable interrupt in vmcs12->guest_intr_status.RVI, then the vCPU should be waken from the HLT state and injected with the interrupt. In addition, if while the vCPU is blocked (while it is in guest-mode), it receives a nested posted-interrupt, then the vCPU should also be waken and injected with the posted interrupt. To handle these cases, this patch enhances kvm_vcpu_has_events() to also check if there is a pending interrupt in L2 virtual APICv provided by L1. That is, it evaluates if there is a pending virtual interrupt for L2 by checking RVI[7:4] > VPPR[7:4] as specified in Intel SDM 29.2.1 Evaluation of Pending Interrupts. Note that this also handles the case of nested posted-interrupt by the fact RVI is updated in vmx_complete_nested_posted_interrupt() which is called from kvm_vcpu_check_block() -> kvm_arch_vcpu_runnable() -> kvm_vcpu_running() -> vmx_check_nested_events() -> vmx_complete_nested_posted_interrupt(). Reviewed-by: NNikita Leshenko <nikita.leshchenko@oracle.com> Reviewed-by: NDarren Kenny <darren.kenny@oracle.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
A VMX preemption timer value of '0' is guaranteed to cause a VMExit prior to the CPU executing any instructions in the guest. Use the preemption timer (if it's supported) to trigger immediate VMExit in place of the current method of sending a self-IPI. This ensures that pending VMExit injection to L1 occurs prior to executing any instructions in the guest (regardless of nesting level). When deferring VMExit injection, KVM generates an immediate VMExit from the (possibly nested) guest by sending itself an IPI. Because hardware interrupts are blocked prior to VMEnter and are unblocked (in hardware) after VMEnter, this results in taking a VMExit(INTR) before any guest instruction is executed. But, as this approach relies on the IPI being received before VMEnter executes, it only works as intended when KVM is running as L0. Because there are no architectural guarantees regarding when IPIs are delivered, when running nested the INTR may "arrive" long after L2 is running e.g. L0 KVM doesn't force an immediate switch to L1 to deliver an INTR. For the most part, this unintended delay is not an issue since the events being injected to L1 also do not have architectural guarantees regarding their timing. The notable exception is the VMX preemption timer[1], which is architecturally guaranteed to cause a VMExit prior to executing any instructions in the guest if the timer value is '0' at VMEnter. Specifically, the delay in injecting the VMExit causes the preemption timer KVM unit test to fail when run in a nested guest. Note: this approach is viable even on CPUs with a broken preemption timer, as broken in this context only means the timer counts at the wrong rate. There are no known errata affecting timer value of '0'. [1] I/O SMIs also have guarantees on when they arrive, but I have no idea if/how those are emulated in KVM. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> [Use a hook for SVM instead of leaving the default in x86.c - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 08 9月, 2018 1 次提交
-
-
由 Wanpeng Li 提交于
Dan Carpenter reported that the untrusted data returns from kvm_register_read() results in the following static checker warning: arch/x86/kvm/lapic.c:576 kvm_pv_send_ipi() error: buffer underflow 'map->phys_map' 's32min-s32max' KVM guest can easily trigger this by executing the following assembly sequence in Ring0: mov $10, %rax mov $0xFFFFFFFF, %rbx mov $0xFFFFFFFF, %rdx mov $0, %rsi vmcall As this will cause KVM to execute the following code-path: vmx_handle_exit() -> handle_vmcall() -> kvm_emulate_hypercall() -> kvm_pv_send_ipi() which will reach out-of-bounds access. This patch fixes it by adding a check to kvm_pv_send_ipi() against map->max_apic_id, ignoring destinations that are not present and delivering the rest. We also check whether or not map->phys_map[min + i] is NULL since the max_apic_id is set to the max apic id, some phys_map maybe NULL when apic id is sparse, especially kvm unconditionally set max_apic_id to 255 to reserve enough space for any xAPIC ID. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Reviewed-by: NLiran Alon <liran.alon@oracle.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Liran Alon <liran.alon@oracle.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NWanpeng Li <wanpengli@tencent.com> [Add second "if (min > map->max_apic_id)" to complete the fix. -Radim] Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
- 07 9月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
kvm_unmap_hva is long gone, and we only have kvm_unmap_hva_range to deal with. Drop the now obsolete code. Fixes: fb1522e0 ("KVM: update to new mmu_notifier semantic v2") Cc: James Hogan <jhogan@kernel.org> Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
- 30 8月, 2018 5 次提交
-
-
由 Sean Christopherson 提交于
Allowing x86_emulate_instruction() to be called directly has led to subtle bugs being introduced, e.g. not setting EMULTYPE_NO_REEXECUTE in the emulation type. While most of the blame lies on re-execute being opt-out, exporting x86_emulate_instruction() also exposes its cr2 parameter, which may have contributed to commit d391f120 ("x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested") using x86_emulate_instruction() instead of emulate_instruction() because "hey, I have a cr2!", which in turn introduced its EMULTYPE_NO_REEXECUTE bug. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Sean Christopherson 提交于
Lack of the kvm_ prefix gives the impression that it's a VMX or SVM specific function, and there's no conflict that prevents adding the kvm_ prefix. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Sean Christopherson 提交于
retry_instruction() and reexecute_instruction() are a package deal, i.e. there is no scenario where one is allowed and the other is not. Merge their controlling emulation type flags to enforce this in code. Name the combined flag EMULTYPE_ALLOW_RETRY to make it abundantly clear that we are allowing re{try,execute} to occur, as opposed to explicitly requesting retry of a previously failed instruction. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Sean Christopherson 提交于
Re-execution of an instruction after emulation decode failure is intended to be used only when emulating shadow page accesses. Invert the flag to make allowing re-execution opt-in since that behavior is by far in the minority. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Sean Christopherson 提交于
Re-execution after an emulation decode failure is only intended to handle a case where two or vCPUs race to write a shadowed page, i.e. we should never re-execute an instruction as part of RSM emulation. Add a new helper, kvm_emulate_instruction_from_buffer(), to support emulating from a pre-defined buffer. This eliminates the last direct call to x86_emulate_instruction() outside of kvm_mmu_page_fault(), which means x86_emulate_instruction() can be unexported in a future patch. Fixes: 7607b717 ("KVM: SVM: install RSM intercept") Cc: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
- 06 8月, 2018 13 次提交
-
-
由 Wanpeng Li 提交于
Using hypercall to send IPIs by one vmexit instead of one by one for xAPIC/x2APIC physical mode and one vmexit per-cluster for x2APIC cluster mode. Intel guest can enter x2apic cluster mode when interrupt remmaping is enabled in qemu, however, latest AMD EPYC still just supports xapic mode which can get great improvement by Exit-less IPIs. This patchset lets a guest send multicast IPIs, with at most 128 destinations per hypercall in 64-bit mode and 64 vCPUs per hypercall in 32-bit mode. Hardware: Xeon Skylake 2.5GHz, 2 sockets, 40 cores, 80 threads, the VM is 80 vCPUs, IPI microbenchmark(https://lkml.org/lkml/2017/12/19/141): x2apic cluster mode, vanilla Dry-run: 0, 2392199 ns Self-IPI: 6907514, 15027589 ns Normal IPI: 223910476, 251301666 ns Broadcast IPI: 0, 9282161150 ns Broadcast lock: 0, 8812934104 ns x2apic cluster mode, pv-ipi Dry-run: 0, 2449341 ns Self-IPI: 6720360, 15028732 ns Normal IPI: 228643307, 255708477 ns Broadcast IPI: 0, 7572293590 ns => 22% performance boost Broadcast lock: 0, 8316124651 ns x2apic physical mode, vanilla Dry-run: 0, 3135933 ns Self-IPI: 8572670, 17901757 ns Normal IPI: 226444334, 255421709 ns Broadcast IPI: 0, 19845070887 ns Broadcast lock: 0, 19827383656 ns x2apic physical mode, pv-ipi Dry-run: 0, 2446381 ns Self-IPI: 6788217, 15021056 ns Normal IPI: 219454441, 249583458 ns Broadcast IPI: 0, 7806540019 ns => 154% performance boost Broadcast lock: 0, 9143618799 ns Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tianyu Lan 提交于
This patch is to provide a way for platforms to register hv tlb remote flush callback and this helps to optimize operation of tlb flush among vcpus for nested virtualization case. Signed-off-by: NLan Tianyu <Tianyu.Lan@microsoft.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
It is a duplicate of X86_CR3_PCID_NOFLUSH. So just use that instead. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
Adds support for storing multiple previous CR3/root_hpa pairs maintained as an LRU cache, so that the lockless CR3 switch path can be used when switching back to any of them. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
This needs a minor bug fix. The updated patch is as follows. Thanks, Junaid ------------------------------------------------------------------------------ kvm_mmu_invlpg() and kvm_mmu_invpcid_gva() only need to flush the TLB entries for the specific guest virtual address, instead of flushing all TLB entries associated with the VM. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
kvm_mmu_free_roots() now takes a mask specifying which roots to free, so that either one of the roots (active/previous) can be individually freed when needed. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
This allows invlpg() to be called using either the active root_hpa or the prev_root_hpa. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
When PCIDs are enabled, the MSb of the source operand for a MOV-to-CR3 instruction indicates that the TLB doesn't need to be flushed. This change enables this optimization for MOV-to-CR3s in the guest that have been intercepted by KVM for shadow paging and are handled within the fast CR3 switch path. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
Implement support for INVPCID in shadow paging mode as well. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
The KVM_REQ_LOAD_CR3 request loads the hardware CR3 using the current root_hpa. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Junaid Shahid 提交于
When using shadow paging, a CR3 switch in the guest results in a VM Exit. In the common case, that VM exit doesn't require much processing by KVM. However, it does acquire the MMU lock, which can start showing signs of contention under some workloads even on a 2 VCPU VM when the guest is using KPTI. Therefore, we add a fast path that avoids acquiring the MMU lock in the most common cases e.g. when switching back and forth between the kernel and user mode CR3s used by KPTI with no guest page table changes in between. For now, this fast path is implemented only for 64-bit guests and hosts to avoid the handling of PDPTEs, but it can be extended later to 32-bit guests and/or hosts as well. Signed-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Jim Mattson 提交于
For nested virtualization L0 KVM is managing a bit of state for L2 guests, this state can not be captured through the currently available IOCTLs. In fact the state captured through all of these IOCTLs is usually a mix of L1 and L2 state. It is also dependent on whether the L2 guest was running at the moment when the process was interrupted to save its state. With this capability, there are two new vcpu ioctls: KVM_GET_NESTED_STATE and KVM_SET_NESTED_STATE. These can be used for saving and restoring a VM that is in VMX operation. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: x86@kernel.org Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: NJim Mattson <jmattson@google.com> [karahmed@ - rename structs and functions and make them ready for AMD and address previous comments. - handle nested.smm state. - rebase & a bit of refactoring. - Merge 7/8 and 8/8 into one patch. ] Signed-off-by: NKarimAllah Ahmed <karahmed@amazon.de> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
If the vCPU enters system management mode while running a nested guest, RSM starts processing the vmentry while still in SMM. In that case, however, the pages pointed to by the vmcs12 might be incorrectly loaded from SMRAM. To avoid this, delay the handling of the pages until just before the next vmentry. This is done with a new request and a new entry in kvm_x86_ops, which we will be able to reuse for nested VMX state migration. Extracted from a patch by Jim Mattson and KarimAllah Ahmed. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 05 8月, 2018 2 次提交
-
-
由 Paolo Bonzini 提交于
When nested virtualization is in use, VMENTER operations from the nested hypervisor into the nested guest will always be processed by the bare metal hypervisor, and KVM's "conditional cache flushes" mode in particular does a flush on nested vmentry. Therefore, include the "skip L1D flush on vmentry" bit in KVM's suggested ARCH_CAPABILITIES setting. Add the relevant Documentation. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Nicolai Stange 提交于
The next patch in this series will have to make the definition of irq_cpustat_t available to entering_irq(). Inclusion of asm/hardirq.h into asm/apic.h would cause circular header dependencies like asm/smp.h asm/apic.h asm/hardirq.h linux/irq.h linux/topology.h linux/smp.h asm/smp.h or linux/gfp.h linux/mmzone.h asm/mmzone.h asm/mmzone_64.h asm/smp.h asm/apic.h asm/hardirq.h linux/irq.h linux/irqdesc.h linux/kobject.h linux/sysfs.h linux/kernfs.h linux/idr.h linux/gfp.h and others. This causes compilation errors because of the header guards becoming effective in the second inclusion: symbols/macros that had been defined before wouldn't be available to intermediate headers in the #include chain anymore. A possible workaround would be to move the definition of irq_cpustat_t into its own header and include that from both, asm/hardirq.h and asm/apic.h. However, this wouldn't solve the real problem, namely asm/harirq.h unnecessarily pulling in all the linux/irq.h cruft: nothing in asm/hardirq.h itself requires it. Also, note that there are some other archs, like e.g. arm64, which don't have that #include in their asm/hardirq.h. Remove the linux/irq.h #include from x86' asm/hardirq.h. Fix resulting compilation errors by adding appropriate #includes to *.c files as needed. Note that some of these *.c files could be cleaned up a bit wrt. to their set of #includes, but that should better be done from separate patches, if at all. Signed-off-by: NNicolai Stange <nstange@suse.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 05 7月, 2018 1 次提交
-
-
由 Paolo Bonzini 提交于
Add the logic for flushing L1D on VMENTER. The flush depends on the static key being enabled and the new l1tf_flush_l1d flag being set. The flags is set: - Always, if the flush module parameter is 'always' - Conditionally at: - Entry to vcpu_run(), i.e. after executing user space - From the sched_in notifier, i.e. when switching to a vCPU thread. - From vmexit handlers which are considered unsafe, i.e. where sensitive data can be brought into L1D: - The emulator, which could be a good target for other speculative execution-based threats, - The MMU, which can bring host page tables in the L1 cache. - External interrupts - Nested operations that require the MMU (see above). That is vmptrld, vmptrst, vmclear,vmwrite,vmread. - When handling invept,invvpid [ tglx: Split out from combo patch and reduced to a single flag ] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 26 5月, 2018 1 次提交
-
-
由 Vitaly Kuznetsov 提交于
Implement HvFlushVirtualAddress{List,Space} hypercalls in a simplistic way: do full TLB flush with KVM_REQ_TLB_FLUSH and kick vCPUs which are currently IN_GUEST_MODE. Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
- 17 5月, 2018 1 次提交
-
-
由 Tom Lendacky 提交于
Expose the new virtualized architectural mechanism, VIRT_SSBD, for using speculative store bypass disable (SSBD) under SVM. This will allow guests to use SSBD on hardware that uses non-architectural mechanisms for enabling SSBD. [ tglx: Folded the migration fixup from Paolo Bonzini ] Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 15 5月, 2018 1 次提交
-
-
由 Jim Mattson 提交于
L1 and L2 need to have disjoint mappings, so that L1's APIC access page (under VMX) can be omitted from L2's mappings. Signed-off-by: NJim Mattson <jmattson@google.com> Signed-off-by: NKrish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-