- 20 11月, 2019 38 次提交
-
-
由 Andrew Murray 提交于
commit cc6795aeffea0a80d0baf9ad31ba926a6c42cef5 upstream. Many PMU drivers do not have the capability to exclude counting events that occur in specific contexts such as idle, kernel, guest, etc. These drivers indicate this by returning an error in their event_init upon testing the events attribute flags. This approach is error prone and often inconsistent. Let's instead allow PMU drivers to advertise their inability to exclude based on context via a new capability: PERF_PMU_CAP_NO_EXCLUDE. This allows the perf core to reject requests for exclusion events where there is no support in the PMU. Signed-off-by: NAndrew Murray <andrew.murray@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Russell King <linux@armlinux.org.uk> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linuxppc-dev@lists.ozlabs.org Cc: robin.murphy@arm.com Cc: suzuki.poulose@arm.com Link: https://lkml.kernel.org/r/1547128414-50693-4-git-send-email-andrew.murray@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Andrew Murray 提交于
commit 486efe9f8e30bac1e236f867df164f4966f3e207 upstream. Add a function that tests if any of the perf event exclusion flags are set on a given event. Signed-off-by: NAndrew Murray <andrew.murray@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Russell King <linux@armlinux.org.uk> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linuxppc-dev@lists.ozlabs.org Cc: robin.murphy@arm.com Cc: suzuki.poulose@arm.com Link: https://lkml.kernel.org/r/1547128414-50693-3-git-send-email-andrew.murray@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Alexander Shishkin 提交于
commit 72e830f68428ab9ea9eca65d160795f4e02cecfc upstream. Now that all AUX allocations are high-order by default, the software double buffering PMU capability doesn't make sense any more, get rid of it. In case some PMUs choose to opt out, we can re-introduce it. Signed-off-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: adrian.hunter@intel.com Link: http://lkml.kernel.org/r/20190503085536.24119-3-alexander.shishkin@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Alexander Shishkin 提交于
commit 26ae4f4406f88d82d79c85c11ac5fae18213cd38 upstream. This recent commit: 5768402fd9c6e87 ("perf/ring_buffer: Use high order allocations for AUX buffers optimistically") overlooked the fact that the previous one page granularity of the AUX buffer provided an implicit double buffering capability to the PMU driver, which went away when the entire buffer became one high-order page. Always make the full-trace mode AUX allocation at least two-part to preserve the previous behavior and allow the implicit double buffering to continue. Reported-by: NAmmy Yi <ammy.yi@intel.com> Signed-off-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: adrian.hunter@intel.com Fixes: 5768402fd9c6e87 ("perf/ring_buffer: Use high order allocations for AUX buffers optimistically") Link: http://lkml.kernel.org/r/20190503085536.24119-2-alexander.shishkin@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Kan Liang 提交于
commit 6466ec14aaf44ff14a05369dcf0929d0f01171c6 upstream. XMM registers can be collected on Icelake and later platforms. Add specific arch__intr_reg_mask(), which creating an event to check if the kernel and hardware can collect XMM registers. Test on Skylake which doesn't support XMM registers collection. There is nothing changed. #perf record -I? available registers: AX BX CX DX SI DI BP SP IP FLAGS CS SS R8 R9 R10 R11 R12 R13 R14 R15 Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] -I, --intr-regs[=<any register>] sample selected machine registers on interrupt, use '-I?' to list register names #perf record -I [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.905 MB perf.data (2520 samples) ] #perf evlist -v cycles: size: 112, { sample_period, sample_freq }: 4000, sample_type: IP|TID|TIME|CPU|PERIOD|REGS_INTR, read_format: ID, disabled: 1, inherit: 1, mmap: 1, comm: 1, freq: 1, task: 1, precise_ip: 3, sample_id_all: 1, exclude_guest: 1, mmap2: 1, comm_exec: 1, ksymbol: 1, bpf_event: 1, sample_regs_intr: 0xff0fff Test on Icelake which support XMM registers collection. #perf record -I? available registers: AX BX CX DX SI DI BP SP IP FLAGS CS SS R8 R9 R10 R11 R12 R13 R14 R15 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 XMM9 XMM10 XMM11 XMM12 XMM13 XMM14 XMM15 Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] -I, --intr-regs[=<any register>] sample selected machine registers on interrupt, use '-I?' to list register names #perf record -I [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.800 MB perf.data (318 samples) ] #perf evlist -v cycles: size: 112, { sample_period, sample_freq }: 4000, sample_type: IP|TID|TIME|CPU|PERIOD|REGS_INTR, read_format: ID, disabled: 1, inherit: 1, mmap: 1, comm: 1, freq: 1, task: 1, precise_ip: 3, sample_id_all: 1, exclude_guest: 1, mmap2: 1, comm_exec: 1, ksymbol: 1, bpf_event: 1, sample_regs_intr: 0xffffffff00ff0fff Committer notes: Don't set attr.sample_period as a named struct init, as it is part of an unnamed union in 'struct perf_event_attr', and doing so breaks the build on older gcc versions, such as: gcc version 4.1.2 20080704 (Red Hat 4.1.2-55) gcc version 4.4.7 20120313 (Red Hat 4.4.7-23) (GCC) arch/x86/util/perf_regs.c: In function 'arch__intr_reg_mask': arch/x86/util/perf_regs.c:279: error: unknown field 'sample_period' specified in initializer cc1: warnings being treated as errors arch/x86/util/perf_regs.c:279: warning: missing braces around initializer arch/x86/util/perf_regs.c:279: warning: (near initialization for 'attr.<anonymous>') Signed-off-by: NKan Liang <kan.liang@linux.intel.com> [ Only on a lenovo t480s, a skylake machine, where the XMM registers didn't show up in -I?/--user-regs=? as expected ] Tested-by: NArnaldo Carvalho de Melo <acme@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/1557865174-56264-3-git-send-email-kan.liang@linux.intel.comSigned-off-by: NArnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Kan Liang 提交于
commit af785e75bf616704cab031e66403b6adcf5b700a upstream. There may be different register mask for use with intr or user on some platforms, e.g. Icelake. Add weak functions arch__intr_reg_mask() and arch__user_reg_mask() to return intr and user register mask respectively. Check mask before printing or comparing the register name. Generic code always return PERF_REGS_MASK. No functional change. Suggested-by: NArnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Tested-by: NRavi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/1557865174-56264-2-git-send-email-kan.liang@linux.intel.comSigned-off-by: NArnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Kan Liang 提交于
commit aeea9062d949584ac1f2f9a20f0e5ed306539a3e upstream. The available registers for --int-regs and --user-regs may be different, e.g. XMM registers. Split parse_regs into two dedicated functions for --int-regs and --user-regs respectively. Modify the warning message. "--user-regs=?" should be applied to show the available registers for --user-regs. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Tested-by: NRavi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/1557865174-56264-1-git-send-email-kan.liang@linux.intel.com [ Changed docs as suggested by Ravi and agreed by Kan ] Signed-off-by: NArnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Arnaldo Carvalho de Melo 提交于
commit 4c1cf20334ae6e390e1ea787ef76c40a161370d1 upstream. Add quotes around the register name and suggest using 'perf record -I?' to get the list of available registers. Before: # perf record -Idi,xmm20,xmm1 Warning: unknown register xmm20, check man page Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] -I, --intr-regs[=<any register>] sample selected machine registers on interrupt, use -I ? to list register names # # perf record -Idi,xmm20,xmm1 Warning: unknown register "xmm20", check man page or run "perf record -I?" Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] -I, --intr-regs[=<any register>] sample selected machine registers on interrupt, use -I ? to list register names # Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: https://lkml.kernel.org/n/tip-9a9hyuum8c0oggg86xd3sxc5@git.kernel.orgSigned-off-by: NArnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Arnaldo Carvalho de Melo 提交于
commit 8e5bc76f2ce39ffd48350d6dd9318d78d07b0bfa upstream. $ perf record -h -I Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] -I, --intr-regs[=<any register>] sample selected machine registers on interrupt, use -I ? to list register names $ m $ perf record -I ? Workload failed: No such file or directory $ After: $ perf record -h -I Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] -I, --intr-regs[=<any register>] sample selected machine registers on interrupt, use '-I?' to list register names $ $ perf record -I? available registers: AX BX CX DX SI DI BP SP IP FLAGS CS SS R8 R9 R10 R11 R12 R13 R14 R15 Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] -I, --intr-regs[=<any register>] sample selected machine registers on interrupt, use '-I?' to list register names $ Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Fixes: bcc84ec6 ("perf record: Add ability to name registers to record") Link: https://lkml.kernel.org/n/tip-r0xhfhy5radmkhhcbcfs5izf@git.kernel.orgSigned-off-by: NArnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Andi Kleen 提交于
commit ca138a7aabc68bf727918bb40ce08157cd5ec0a5 upstream. Icelake and later platforms support collecting XMM registers with PEBS event. Add support for 'perf script' to dump them, and support for the register parser in 'perf record -I=' ... to configure them. For now they are just printed in hex, we could potentially later add other formats too. Committer testing: Before: # perf record -IXMM0 Warning: unknown register XMM0, check man page or run 'perf record -I?' Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] # # perf record -I? available registers: AX BX CX DX SI DI BP SP IP FLAGS CS SS R8 R9 R10 R11 R12 R13 R14 R15 Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] # After: # perf record -IXMM0 Error: The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (cycles). /bin/dmesg | grep -i perf may provide additional information. # # perf record -I? available registers: AX BX CX DX SI DI BP SP IP FLAGS CS SS R8 R9 R10 R11 R12 R13 R14 R15 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 XMM9 XMM10 XMM11 XMM12 XMM13 XMM14 XMM15 Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] -I, --intr-regs[=<any register>] sample selected machine registers on interrupt, use -I ? to list register names # More work is needed to, when faced with such error, warn the user that that register is not available on the running platform. Signed-off-by: NAndi Kleen <ak@linux.intel.com> Tested-by: NArnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190506141926.13659-1-kan.liang@linux.intel.comSigned-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NArnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Kan Liang 提交于
commit 6e394376ee89233508fa21d006546357f8efee31 upstream. Add Intel Icelake uncore support: - The init code is based on Skylake - Add new PCI id for IMC - New MSR address for CBOX - Get CBOX# from CNL_UNC_CBO_CONFIG MSR directly - Create a new PMU for fixed clocktick counter Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-13-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Kan Liang 提交于
commit 6017608936c1825ff5d7325270484042f597edff upstream. Add Icelake core PMU perf code, including constraint tables and the main enable code. Icelake expanded the generic counters to always 8 even with HT on, but a range of events cannot be scheduled on the extra 4 counters. Add new constraint ranges to describe this to the scheduler. The number of constraints that need to be checked is larger now than with earlier CPUs. At some point we may need a new data structure to look them up more efficiently than with linear search. So far it still seems to be acceptable however. Icelake added a new fixed counter SLOTS. Full support for it is added later in the patch series. The cache events table is identical to Skylake. Compare to PEBS instruction event on generic counter, fixed counter 0 has less skid. Force instruction:ppp always in fixed counter 0. Originally-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Peter Zijlstra 提交于
commit 63b79f6ebc464afb730bc45762c820795e276da1 upstream. Icelake extended the general counters to 8, even when SMT is enabled. However only a (large) subset of the events can be used on all 8 counters. The events that can or cannot be used on all counters are organized in ranges. A lot of scheduler constraints are required to handle all this. To avoid blowing up the tables add event code ranges to the constraint tables, and a new inline function to match them. Originally-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # developer hat on Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # maintainer hat on Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-8-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Andi Kleen 提交于
commit d3617b98b04583df222f34992e65712862a77bf1 upstream. With adaptive PEBS the CPU can directly supply the LBR information, so we don't need to read it again. But the LBRs still need to be enabled. Add a special count to the cpuc that distinguishes these two cases, and avoid reading the LBRs unnecessarily when PEBS is active. Signed-off-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-7-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Kan Liang 提交于
commit c22497f5838c237e3094a4dfb99d1c5de6353239 upstream. Adaptive PEBS is a new way to report PEBS sampling information. Instead of a fixed size record for all PEBS events it allows to configure the PEBS record to only include the information needed. Events can then opt in to use such an extended record, or stay with a basic record which only contains the IP. The major new feature is to support LBRs in PEBS record. Besides normal LBR, this allows (much faster) large PEBS, while still supporting callstacks through callstack LBR. So essentially a lot of profiling can now be done without frequent interrupts, dropping the overhead significantly. The main requirement still is to use a period, and not use frequency mode, because frequency mode requires reevaluating the frequency on each overflow. The floating point state (XMM) is also supported, which allows efficient profiling of FP function arguments. Introduce specific drain function to handle variable length records. Use a new callback to parse the new record format, and also handle the STATUS field now being at a different offset. Add code to set up the configuration register. Since there is only a single register, all events either get the full super set of all events, or only the basic record. Originally-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-6-kan.liang@linux.intel.com [ Renamed GPRS => GP. ] Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Kan Liang 提交于
commit 477f00f9617009a9a3a9271885231573b728ca4f upstream. The drain_pebs() could be called twice in a short period for auto-reload event in pmu::read(). The intel_pmu_save_and_restart_reload() should be called to update the event->count. This case should also be handled on Icelake. Extract the code for later reuse. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-5-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Andi Kleen 提交于
commit 48f38aa4cc5a48bc0fe85c5c4b1ab171fbb539b6 upstream. Extract some code related to memory profiling from the PEBS record parser into separate functions. It can be reused by the upcoming adaptive PEBS parser. No functional changes. Rename intel_hsw_weight to intel_get_tsx_weight, and intel_hsw_transaction to intel_get_tsx_transaction. Because the input is not the hsw pebs format anymore. Signed-off-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-4-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Kan Liang 提交于
commit 878068ea270ea82767ff1d26c91583263c81fba0 upstream. Starting from Icelake, XMM registers can be collected in PEBS record. But current code only output the pt_regs. Add a new struct x86_perf_regs for both pt_regs and xmm_regs. The xmm_regs will be used later to keep a pointer to PEBS record which has XMM information. XMM registers are 128 bit. To simplify the code, they are handled like two different registers, which means setting two bits in the register bitmap. This also allows only sampling the lower 64bit bits in XMM. The index of XMM registers starts from 32. There are 16 XMM registers. So all reserved space for regs are used. Remove REG_RESERVED. Add PERF_REG_X86_XMM_MAX, which stands for the max number of all x86 regs including both GPRs and XMM. Add REG_NOSUPPORT for 32bit to exclude unsupported registers. Previous platforms can not collect XMM information in PEBS record. Adding pebs_no_xmm_regs to indicate the unsupported platforms. The common code still validates the supported registers. However, it cannot check model specific registers, e.g. XMM. Add extra check in x86_pmu_hw_config() to reject invalid config of regs_user and regs_intr. The regs_user never supports XMM collection. The regs_intr only supports XMM collection when sampling PEBS event on icelake and later platforms. Originally-by: NAndi Kleen <ak@linux.intel.com> Suggested-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-3-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NShen, Xiaochen <xiaochen.shen@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Keith Busch 提交于
commit 13bac55ef7aef8ecb67ff3005d24b05a464d28ea upstream. Platforms may provide system memory where some physical address ranges perform differently than others, or is cached by the system on the memory side. Add documentation describing a high level overview of such systems and the perforamnce and caching attributes the kernel provides for applications wishing to query this information. Reviewed-by: NMike Rapoport <rppt@linux.ibm.com> Reviewed-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Tested-by: NBrice Goglin <Brice.Goglin@inria.fr> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Keith Busch 提交于
commit d9e8844c7d8165d97848950ae6bf66b2be86ef06 upstream. Register memory side cache attributes with the memory's node if HMAT provides the side cache iniformation table. Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Tested-by: NBrice Goglin <Brice.Goglin@inria.fr> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Keith Busch 提交于
commit 8d59f5a2ca765f65fd86db86f233678c3770819f upstream. Save the best performance access attributes and register these with the memory's node if HMAT provides the locality table. While HMAT does make it possible to know performance for all possible initiator-target pairings, we export only the local pairings at this time. Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Tested-by: NBrice Goglin <Brice.Goglin@inria.fr> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Keith Busch 提交于
commit 665ac7e92757fb74d249b2817dd91b3d9439d0a0 upstream. If the HMAT Subsystem Address Range provides a valid processor proximity domain for a memory domain, or a processor domain matches the performance access of the valid processor proximity domain, register the memory target with that initiator so this relationship will be visible under the node's sysfs directory. Since HMAT requires valid address ranges have an equivalent SRAT entry, verify each memory target satisfies this requirement. Reviewed-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NBrice Goglin <Brice.Goglin@inria.fr> Tested-by: NBrice Goglin <Brice.Goglin@inria.fr> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Keith Busch 提交于
commit acc02a109b0497e917c83f986a89c51e47d0022c upstream. System memory may have caches to help improve access speed to frequently requested address ranges. While the system provided cache is transparent to the software accessing these memory ranges, applications can optimize their own access based on cache attributes. Provide a new API for the kernel to register these memory-side caches under the memory node that provides it. The new sysfs representation is modeled from the existing cpu cacheinfo attributes, as seen from /sys/devices/system/cpu/<cpu>/cache/. Unlike CPU cacheinfo though, the node cache level is reported from the view of the memory. A higher level number is nearer to the CPU, while lower levels are closer to the last level memory. The exported attributes are the cache size, the line size, associativity indexing, and write back policy, and add the attributes for the system memory caches to sysfs stable documentation. Signed-off-by: NKeith Busch <keith.busch@intel.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NBrice Goglin <Brice.Goglin@inria.fr> Tested-by: NBrice Goglin <Brice.Goglin@inria.fr> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Keith Busch 提交于
commit e1cf33aafb8462c7d0a0e6349925870316f040ee upstream. Heterogeneous memory systems provide memory nodes with different latency and bandwidth performance attributes. Provide a new kernel interface for subsystems to register the attributes under the memory target node's initiator access class. If the system provides this information, applications may query these attributes when deciding which node to request memory. The following example shows the new sysfs hierarchy for a node exporting performance attributes: # tree -P "read*|write*"/sys/devices/system/node/nodeY/accessZ/initiators/ /sys/devices/system/node/nodeY/accessZ/initiators/ |-- read_bandwidth |-- read_latency |-- write_bandwidth `-- write_latency The bandwidth is exported as MB/s and latency is reported in nanoseconds. The values are taken from the platform as reported by the manufacturer. Memory accesses from an initiator node that is not one of the memory's access "Z" initiator nodes linked in the same directory may observe different performance than reported here. When a subsystem makes use of this interface, initiators of a different access number may not have the same performance relative to initiators in other access numbers, or omitted from the any access class' initiators. Descriptions for memory access initiator performance access attributes are added to sysfs stable documentation. Acked-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Tested-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: NBrice Goglin <Brice.Goglin@inria.fr> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Keith Busch 提交于
commit 08d9dbe72b1f899468b2b34f9309e88a84f440f2 upstream. Systems may be constructed with various specialized nodes. Some nodes may provide memory, some provide compute devices that access and use that memory, and others may provide both. Nodes that provide memory are referred to as memory targets, and nodes that can initiate memory access are referred to as memory initiators. Memory targets will often have varying access characteristics from different initiators, and platforms may have ways to express those relationships. In preparation for these systems, provide interfaces for the kernel to export the memory relationship among different nodes memory targets and their initiators with symlinks to each other. If a system provides access locality for each initiator-target pair, nodes may be grouped into ranked access classes relative to other nodes. The new interface allows a subsystem to register relationships of varying classes if available and desired to be exported. A memory initiator may have multiple memory targets in the same access class. The target memory's initiators in a given class indicate the nodes access characteristics share the same performance relative to other linked initiator nodes. Each target within an initiator's access class, though, do not necessarily perform the same as each other. A memory target node may have multiple memory initiators. All linked initiators in a target's class have the same access characteristics to that target. The following example show the nodes' new sysfs hierarchy for a memory target node 'Y' with access class 0 from initiator node 'X': # symlinks -v /sys/devices/system/node/nodeX/access0/ relative: /sys/devices/system/node/nodeX/access0/targets/nodeY -> ../../nodeY # symlinks -v /sys/devices/system/node/nodeY/access0/ relative: /sys/devices/system/node/nodeY/access0/initiators/nodeX -> ../../nodeX The new attributes are added to the sysfs stable documentation. Reviewed-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: NBrice Goglin <Brice.Goglin@inria.fr> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Keith Busch 提交于
commit 3accf7ae37a96c3bf4b51999f3c395ac5ffcd6d4 upstream. Systems may provide different memory types and export this information in the ACPI Heterogeneous Memory Attribute Table (HMAT). Parse these tables provided by the platform and report the memory access and caching attributes to the kernel messages. Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Tested-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Tested-by: NBrice Goglin <Brice.Goglin@inria.fr> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Keith Busch 提交于
commit 3bc0e8eb179deebf1c06f5c4261d362c24b26ce1 upstream. The Heterogeneous Memory Attribute Table (HMAT) header has different field lengths than the existing parsing uses. Add the HMAT type to the parsing rules so it may be generically parsed. Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Tested-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Tested-by: NBrice Goglin <Brice.Goglin@inria.fr> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Keith Busch 提交于
commit 60574d1e05b094d222162260dd9cac49f4d0996a upstream. Parsing entries in an ACPI table had assumed a generic header structure. There is no standard ACPI header, though, so less common layouts with different field sizes required custom parsers to go through their subtable entry list. Create the infrastructure for adding different table types so parsing the entries array may be more reused for all ACPI system tables and the common code doesn't need to be duplicated. Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Tested-by: NJonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Tested-by: NBrice Goglin <Brice.Goglin@inria.fr> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Erik Schmauss 提交于
commit 9a8d961f1ef835b0d338fbe13da03cb424e87ae5 upstream. ACPICA commit a216e8ca9f7c79f90788b193e2e61151b2c973c0 This change reserves several field and renames subtable 0 to "memory proximity domain attributes" Link: https://github.com/acpica/acpica/commit/a216e8caSigned-off-by: NErik Schmauss <erik.schmauss@intel.com> Signed-off-by: NBob Moore <robert.moore@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NFan Du <fan.du@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Dave Jiang 提交于
commit 528314b503f855b268ae7861ea4e206fbbfb8356 upstream. IOATDMA 3.4 supports PCIe LTR mechanism. The registers are non-standard PCIe LTR support. This needs to be setup in order to not suffer performance impact and provide proper power management. The channel is set to active when it is allocated, and to passive when it's freed. Signed-off-by: NDave Jiang <dave.jiang@intel.com> Signed-off-by: NVinod Koul <vkoul@kernel.org> Signed-off-by: NLin Wang <lin.x.wang@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Dave Jiang 提交于
commit e0100d40906d5dbe6d09d31083c1a5aaccc947fa upstream. Adding support for new feature on ioatdma 3.4 hardware that provides descriptor pre-fetching in order to reduce small DMA latencies. Signed-off-by: NDave Jiang <dave.jiang@intel.com> Signed-off-by: NVinod Koul <vkoul@kernel.org> Signed-off-by: NLin Wang <lin.x.wang@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Dave Jiang 提交于
commit 11e31e281bd8f482a9277268f7b0d9c213584271 upstream. IOATDMA v3.4 does not support DCA. Disable Signed-off-by: NDave Jiang <dave.jiang@intel.com> Signed-off-by: NVinod Koul <vkoul@kernel.org> Signed-off-by: NLin Wang <lin.x.wang@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Dave Jiang 提交于
commit 4d75873f814055359bb6722c4e35a185d02157a8 upsream. Add Snowridge Xeon-D ioatdma PCI device id. Also applies for Icelake SP Xeon. This introduces ioatdma v3.4 platform. Also bumping driver version to 5.0 since we are adding additional code for 3.4 support. Signed-off-by: NDave Jiang <dave.jiang@intel.com> Signed-off-by: NVinod Koul <vkoul@kernel.org> Signed-off-by: NLin Wang <lin.x.wang@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Felipe Balbi 提交于
commit d6112f8def514e019658bcc9b57d53acdb71ca3f upstream. PCIe r4.0, sec 7.5.1.1.4 defines a new bit in the Status Register: Immediate Readiness – This optional bit, when Set, indicates the Function is guaranteed to be ready to successfully complete valid configuration accesses at any time following any reset that the host is capable of issuing Configuration Requests to this Function. When this bit is Set, for accesses to this Function, software is exempt from all requirements to delay configuration accesses following any type of reset, including but not limited to the timing requirements defined in Section 6.6. This means that all delays after a Conventional or Function Reset can be skipped. This patch reads such bit and caches its value in a flag inside struct pci_dev to be checked later if we should delay or can skip delays after a reset. While at that, also move the explicit msleep(100) call from pcie_flr() and pci_af_flr() to pci_dev_wait(). Signed-off-by: NFelipe Balbi <felipe.balbi@linux.intel.com> [bhelgaas: rename PCI_STATUS_IMMEDIATE to PCI_STATUS_IMM_READY] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Signed-off-by: NLin Wang <lin.x.wang@intel.com> Signed-off-by: NJeffle Xu <jefflexu@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Chris Down 提交于
commit 0e4b01df865935007bd712cbc8e7299005b28894 upstream. We're trying to use memory.high to limit workloads, but have found that containment can frequently fail completely and cause OOM situations outside of the cgroup. This happens especially with swap space -- either when none is configured, or swap is full. These failures often also don't have enough warning to allow one to react, whether for a human or for a daemon monitoring PSI. Here is output from a simple program showing how long it takes in usec (column 2) to allocate a megabyte of anonymous memory (column 1) when a cgroup is already beyond its memory high setting, and no swap is available: [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \ > --wait -t timeout 300 /root/mdf [...] 95 1035 96 1038 97 1000 98 1036 99 1048 100 1590 101 1968 102 1776 103 1863 104 1757 105 1921 106 1893 107 1760 108 1748 109 1843 110 1716 111 1924 112 1776 113 1831 114 1766 115 1836 116 1588 117 1912 118 1802 119 1857 120 1731 [...] [System OOM in 2-3 seconds] The delay does go up extremely marginally past the 100MB memory.high threshold, as now we spend time scanning before returning to usermode, but it's nowhere near enough to contain growth. It also doesn't get worse the more pages you have, since it only considers nr_pages. The current situation goes against both the expectations of users of memory.high, and our intentions as cgroup v2 developers. In cgroup-v2.txt, we claim that we will throttle and only under "extreme conditions" will memory.high protection be breached. Likewise, cgroup v2 users generally also expect that memory.high should throttle workloads as they exceed their high threshold. However, as seen above, this isn't always how it works in practice -- even on banal setups like those with no swap, or where swap has become exhausted, we can end up with memory.high being breached and us having no weapons left in our arsenal to combat runaway growth with, since reclaim is futile. It's also hard for system monitoring software or users to tell how bad the situation is, as "high" events for the memcg may in some cases be benign, and in others be catastrophic. The current status quo is that we fail containment in a way that doesn't provide any advance warning that things are about to go horribly wrong (for example, we are about to invoke the kernel OOM killer). This patch introduces explicit throttling when reclaim is failing to keep memcg size contained at the memory.high setting. It does so by applying an exponential delay curve derived from the memcg's overage compared to memory.high. In the normal case where the memcg is either below or only marginally over its memory.high setting, no throttling will be performed. This composes well with system health monitoring and remediation, as these allocator delays are factored into PSI's memory pressure calculations. This both creates a mechanism system administrators or applications consuming the PSI interface to trivially see that the memcg in question is struggling and use that to make more reasonable decisions, and permits them enough time to act. Either of these can act with significantly more nuance than that we can provide using the system OOM killer. This is a similar idea to memory.oom_control in cgroup v1 which would put the cgroup to sleep if the threshold was violated, but it's also significantly improved as it results in visible memory pressure, and also doesn't schedule indefinitely, which previously made tracing and other introspection difficult (ie. it's clamped at 2*HZ per allocation through MEMCG_MAX_HIGH_DELAY_JIFFIES). Contrast the previous results with a kernel with this patch: [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \ > --wait -t timeout 300 /root/mdf [...] 95 1002 96 1000 97 1002 98 1003 99 1000 100 1043 101 84724 102 330628 103 610511 104 1016265 105 1503969 106 2391692 107 2872061 108 3248003 109 4791904 110 5759832 111 6912509 112 8127818 113 9472203 114 12287622 115 12480079 116 14144008 117 15808029 118 16384500 119 16383242 120 16384979 [...] As you can see, in the normal case, memory allocation takes around 1000 usec. However, as we exceed our memory.high, things start to increase exponentially, but fairly leniently at first. Our first megabyte over memory.high takes us 0.16 seconds, then the next is 0.46 seconds, then the next is almost an entire second. This gets worse until we reach our eventual 2*HZ clamp per batch, resulting in 16 seconds per megabyte. However, this is still making forward progress, so permits tracing or further analysis with programs like GDB. We use an exponential curve for our delay penalty for a few reasons: 1. We run mem_cgroup_handle_over_high to potentially do reclaim after we've already performed allocations, which means that temporarily going over memory.high by a small amount may be perfectly legitimate, even for compliant workloads. We don't want to unduly penalise such cases. 2. An exponential curve (as opposed to a static or linear delay) allows ramping up memory pressure stats more gradually, which can be useful to work out that you have set memory.high too low, without destroying application performance entirely. This patch expands on earlier work by Johannes Weiner. Thanks! [akpm@linux-foundation.org: fix max() warning] [akpm@linux-foundation.org: fix __udivdi3 ref on 32-bit] [akpm@linux-foundation.org: fix it even more] [chris@chrisdown.name: fix 64-bit divide even more] Link: http://lkml.kernel.org/r/20190723180700.GA29459@chrisdown.nameSigned-off-by: NChris Down <chris@chrisdown.name> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NXu Yu <xuyu@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com>
-
由 Qian Cai 提交于
commit 2b38d01b4de8b1bbda7f5f7e91252609557635fc upstream set_zspage_inuse() was introduced in the commit 4f42047b ("zsmalloc: use accessor") but all the users of it were removed later by the commits, bdb0af7c ("zsmalloc: factor page chain functionality out") 3783689a ("zsmalloc: introduce zspage structure") so the function can be safely removed now. Link: http://lkml.kernel.org/r/1568658408-19374-1-git-send-email-cai@lca.pwSigned-off-by: NQian Cai <cai@lca.pw> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NHui Zhu <teawaterz@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Joerg Roedel 提交于
commit 1a0a610d5f056c6195ae9808962477a94d1d72c8 upstream. Commit 3f8fd02b1bf1 ("mm/vmalloc: Sync unmappings in __purge_vmap_area_lazy()") introduced a call to vmalloc_sync_all() in the vunmap() code-path. While this change was necessary to maintain correctness on x86-32-pae kernels, it also adds additional cycles for architectures that don't need it. Specifically on x86-64 with CONFIG_VMAP_STACK=y some people reported severe performance regressions in micro-benchmarks because it now also calls the x86-64 implementation of vmalloc_sync_all() on vunmap(). But the vmalloc_sync_all() implementation on x86-64 is only needed for newly created mappings. To avoid the unnecessary work on x86-64 and to gain the performance back, split up vmalloc_sync_all() into two functions: * vmalloc_sync_mappings(), and * vmalloc_sync_unmappings() Most call-sites to vmalloc_sync_all() only care about new mappings being synchronized. The only exception is the new call-site added in the above mentioned commit. Shile Zhang directed us to a report of an 80% regression in reaim throughput. Link: http://lkml.kernel.org/r/20191009124418.8286-1-joro@8bytes.org Link: https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/4D3JPPHBNOSPFK2KEPC6KGKS6J25AIDB/ Link: http://lkml.kernel.org/r/20191113095530.228959-1-shile.zhang@linux.alibaba.com Fixes: 3f8fd02b1bf1 ("mm/vmalloc: Sync unmappings in __purge_vmap_area_lazy()") Signed-off-by: NJoerg Roedel <jroedel@suse.de> Reported-by: Nkernel test robot <oliver.sang@intel.com> Reported-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [GHES] Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Vitaly Wool 提交于
commit 068619e32ff6229a09407d267e36ea7710b96ea1 upstream zswap_writeback_entry() maps a handle to read swpentry first, and then in the most common case it would map the same handle again. This is ok when zbud is the backend since its mapping callback is plain and simple, but it slows things down for z3fold. Since there's hardly a point in unmapping a handle _that_ fast as zswap_writeback_entry() does when it reads swpentry, the suggestion is to keep the handle mapped till the end. Link: http://lkml.kernel.org/r/20190916004640.b453167d3556c4093af4cf7d@gmail.comSigned-off-by: NHui Zhu <teawaterz@linux.alibaba.com> Signed-off-by: NVitaly Wool <vitalywool@gmail.com> Reviewed-by: NDan Streetman <ddstreet@ieee.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Vitaly Wool <vitalywool@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
- 19 11月, 2019 2 次提交
-
-
由 Gao Xiang 提交于
commit 2209fda323e2fd2a2d0885595fd5097717f8d2aa upstream Update the LZ4 compression module based on LZ4 v1.8.3 in order for the erofs file system to use the newest LZ4_decompress_safe_partial() which can now decode exactly the nb of bytes requested [1] to take place of the open hacked code in the erofs file system itself. Currently, apart from the erofs file system, no other users use LZ4_decompress_safe_partial, so no worry about the interface. In addition, LZ4 v1.8.x boosts up decompression speed compared to the current code which is based on LZ4 v1.7.3, mainly due to shortcut optimization for the specific common LZ4-sequences [2]. lzbench testdata (tested in kirin710, 8 cores, 4 big cores at 2189Mhz, 2GB DDR RAM at 1622Mhz, with enwik8 testdata [3]): Compressor name Compress. Decompress. Compr. size Ratio Filename memcpy 5004 MB/s 4924 MB/s 100000000 100.00 enwik8 lz4hc 1.7.3 -9 12 MB/s 653 MB/s 42203253 42.20 enwik8 lz4hc 1.8.0 -9 12 MB/s 908 MB/s 42203096 42.20 enwik8 lz4hc 1.8.3 -9 11 MB/s 965 MB/s 42203094 42.20 enwik8 [1] https://github.com/lz4/lz4/issues/566 https://github.com/lz4/lz4/commit/08d347b5b217b011ff7487130b79480d8cfdaeb8 [2] v1.8.1 perf: slightly faster compression and decompression speed https://github.com/lz4/lz4/commit/a31b7058cb97e4393da55e78a77a1c6f0c9ae038 v1.8.2 perf: slightly faster HC compression and decompression speed https://github.com/lz4/lz4/commit/45f8603aae389d34c689d3ff7427b314071ccd2c https://github.com/lz4/lz4/commit/1a191b3f8d26b50a7c1d41590b529ec308d768cd [3] http://mattmahoney.net/dc/textdata.html http://mattmahoney.net/dc/enwik8.zip Link: http://lkml.kernel.org/r/1537181207-21932-1-git-send-email-gaoxiang25@huawei.comSigned-off-by: NHui Zhu <teawaterz@linux.alibaba.com> Signed-off-by: NGao Xiang <gaoxiang25@huawei.com> Tested-by: NGuo Xuenan <guoxuenan@huawei.com> Cc: Colin Ian King <colin.king@canonical.com> Cc: Yann Collet <yann.collet.73@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Fang Wei <fangwei1@huawei.com> Cc: Chao Yu <yuchao0@huawei.com> Cc: Miao Xie <miaoxie@huawei.com> Cc: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Cc: Kyungsik Lee <kyungsik.lee@lge.com> Cc: <weidu.du@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Chenwandun 提交于
commit f7daefe4231e57381d92c2e2ad905a899c28e402 upstream Update based on current code. CPU0: CPU1: backing_dev_show backing_dev_store ...... ...... file = zram->backing_dev; down_read(&zram->init_lock); down_read(&zram->init_init_lock) file_path(file, ...); zram->backing_dev = backing_dev; up_read(&zram->init_lock); up_read(&zram->init_lock); gets the value of zram->backing_dev too early in backing_dev_show, which resultin the value being NULL at the beginning, and not NULL later. backtrace: d_path+0xcc/0x174 file_path+0x10/0x18 backing_dev_show+0x40/0xb4 dev_attr_show+0x20/0x54 sysfs_kf_seq_show+0x9c/0x10c kernfs_seq_show+0x28/0x30 seq_read+0x184/0x488 kernfs_fop_read+0x5c/0x1a4 __vfs_read+0x44/0x128 vfs_read+0xa0/0x138 SyS_read+0x54/0xb4 Link: http://lkml.kernel.org/r/1571046839-16814-1-git-send-email-chenwandun@huawei.comSigned-off-by: NHui Zhu <teawaterz@linux.alibaba.com> Signed-off-by: NChenwandun <chenwandun@huawei.com> Acked-by: NMinchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Reviewed-by: NAlex Shi <alex.shi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-