- 21 12月, 2019 3 次提交
-
-
由 Guillaume Nault 提交于
[ Upstream commit 721c8dafad26ccfa90ff659ee19755e3377b829d ] Syncookies borrow the ->rx_opt.ts_recent_stamp field to store the timestamp of the last synflood. Protect them with READ_ONCE() and WRITE_ONCE() since reads and writes aren't serialised. Use of .rx_opt.ts_recent_stamp for storing the synflood timestamp was introduced by a0f82f64 ("syncookies: remove last_synq_overflow from struct tcp_sock"). But unprotected accesses were already there when timestamp was stored in .last_synq_overflow. Fixes: 1da177e4 ("Linux-2.6.12-rc2") Signed-off-by: NGuillaume Nault <gnault@redhat.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Guillaume Nault 提交于
[ Upstream commit cb44a08f8647fd2e8db5cc9ac27cd8355fa392d8 ] When no synflood occurs, the synflood timestamp isn't updated. Therefore it can be so old that time_after32() can consider it to be in the future. That's a problem for tcp_synq_no_recent_overflow() as it may report that a recent overflow occurred while, in fact, it's just that jiffies has grown past 'last_overflow' + TCP_SYNCOOKIE_VALID + 2^31. Spurious detection of recent overflows lead to extra syncookie verification in cookie_v[46]_check(). At that point, the verification should fail and the packet dropped. But we should have dropped the packet earlier as we didn't even send a syncookie. Let's refine tcp_synq_no_recent_overflow() to report a recent overflow only if jiffies is within the [last_overflow, last_overflow + TCP_SYNCOOKIE_VALID] interval. This way, no spurious recent overflow is reported when jiffies wraps and 'last_overflow' becomes in the future from the point of view of time_after32(). However, if jiffies wraps and enters the [last_overflow, last_overflow + TCP_SYNCOOKIE_VALID] interval (with 'last_overflow' being a stale synflood timestamp), then tcp_synq_no_recent_overflow() still erroneously reports an overflow. In such cases, we have to rely on syncookie verification to drop the packet. We unfortunately have no way to differentiate between a fresh and a stale syncookie timestamp. In practice, using last_overflow as lower bound is problematic. If the synflood timestamp is concurrently updated between the time we read jiffies and the moment we store the timestamp in 'last_overflow', then 'now' becomes smaller than 'last_overflow' and tcp_synq_no_recent_overflow() returns true, potentially dropping a valid syncookie. Reading jiffies after loading the timestamp could fix the problem, but that'd require a memory barrier. Let's just accommodate for potential timestamp growth instead and extend the interval using 'last_overflow - HZ' as lower bound. Signed-off-by: NGuillaume Nault <gnault@redhat.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Guillaume Nault 提交于
[ Upstream commit 04d26e7b159a396372646a480f4caa166d1b6720 ] If no synflood happens for a long enough period of time, then the synflood timestamp isn't refreshed and jiffies can advance so much that time_after32() can't accurately compare them any more. Therefore, we can end up in a situation where time_after32(now, last_overflow + HZ) returns false, just because these two values are too far apart. In that case, the synflood timestamp isn't updated as it should be, which can trick tcp_synq_no_recent_overflow() into rejecting valid syncookies. For example, let's consider the following scenario on a system with HZ=1000: * The synflood timestamp is 0, either because that's the timestamp of the last synflood or, more commonly, because we're working with a freshly created socket. * We receive a new SYN, which triggers synflood protection. Let's say that this happens when jiffies == 2147484649 (that is, 'synflood timestamp' + HZ + 2^31 + 1). * Then tcp_synq_overflow() doesn't update the synflood timestamp, because time_after32(2147484649, 1000) returns false. With: - 2147484649: the value of jiffies, aka. 'now'. - 1000: the value of 'last_overflow' + HZ. * A bit later, we receive the ACK completing the 3WHS. But cookie_v[46]_check() rejects it because tcp_synq_no_recent_overflow() says that we're not under synflood. That's because time_after32(2147484649, 120000) returns false. With: - 2147484649: the value of jiffies, aka. 'now'. - 120000: the value of 'last_overflow' + TCP_SYNCOOKIE_VALID. Of course, in reality jiffies would have increased a bit, but this condition will last for the next 119 seconds, which is far enough to accommodate for jiffie's growth. Fix this by updating the overflow timestamp whenever jiffies isn't within the [last_overflow, last_overflow + HZ] range. That shouldn't have any performance impact since the update still happens at most once per second. Now we're guaranteed to have fresh timestamps while under synflood, so tcp_synq_no_recent_overflow() can safely use it with time_after32() in such situations. Stale timestamps can still make tcp_synq_no_recent_overflow() return the wrong verdict when not under synflood. This will be handled in the next patch. For 64 bits architectures, the problem was introduced with the conversion of ->tw_ts_recent_stamp to 32 bits integer by commit cca9bab1 ("tcp: use monotonic timestamps for PAWS"). The problem has always been there on 32 bits architectures. Fixes: cca9bab1 ("tcp: use monotonic timestamps for PAWS") Fixes: 1da177e4 ("Linux-2.6.12-rc2") Signed-off-by: NGuillaume Nault <gnault@redhat.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 13 12月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
[ Upstream commit 85bdf7db5b53cdcc7a901db12bcb3d0063e3866d ] Jean-Louis Dupond reported poor iscsi TCP receive performance that we tracked to backlog drops. Apparently we fail to send window updates reflecting the fact that we are under stress. Note that we might lack a proper window increase when backlog is fully processed, since __release_sock() clears sk->sk_backlog.len _after_ all skbs have been processed. This should not matter in practice. If we had a significant load through socket backlog, we are in a dangerous situation. Reported-by: NJean-Louis Dupond <jean-louis@dupond.be> Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Tested-by: Jean-Louis Dupond<jean-louis@dupond.be> Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 28 7月, 2019 2 次提交
-
-
由 Eric Dumazet 提交于
[ Upstream commit 8d650cdedaabb33e85e9b7c517c0c71fcecc1de9 ] Neal reported incorrect use of ns_capable() from bpf hook. bpf_setsockopt(...TCP_CONGESTION...) -> tcp_set_congestion_control() -> ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) -> ns_capable_common() -> current_cred() -> rcu_dereference_protected(current->cred, 1) Accessing 'current' in bpf context makes no sense, since packets are processed from softirq context. As Neal stated : The capability check in tcp_set_congestion_control() was written assuming a system call context, and then was reused from a BPF call site. The fix is to add a new parameter to tcp_set_congestion_control(), so that the ns_capable() call is only performed under the right context. Fixes: 91b5b21c ("bpf: Add support for changing congestion control") Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Lawrence Brakmo <brakmo@fb.com> Reported-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NLawrence Brakmo <brakmo@fb.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Eric Dumazet 提交于
[ Upstream commit b617158dc096709d8600c53b6052144d12b89fab ] Some applications set tiny SO_SNDBUF values and expect TCP to just work. Recent patches to address CVE-2019-11478 broke them in case of losses, since retransmits might be prevented. We should allow these flows to make progress. This patch allows the first and last skb in retransmit queue to be split even if memory limits are hit. It also adds the some room due to the fact that tcp_sendmsg() and tcp_sendpage() might overshoot sk_wmem_queued by about one full TSO skb (64KB size). Note this allowance was already present in stable backports for kernels < 4.15 Note for < 4.15 backports : tcp_rtx_queue_tail() will probably look like : static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) { struct sk_buff *skb = tcp_send_head(sk); return skb ? tcp_write_queue_prev(sk, skb) : tcp_write_queue_tail(sk); } Fixes: f070ef2ac667 ("tcp: tcp_fragment() should apply sane memory limits") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NAndrew Prout <aprout@ll.mit.edu> Tested-by: NAndrew Prout <aprout@ll.mit.edu> Tested-by: NJonathan Lemon <jonathan.lemon@gmail.com> Tested-by: NMichal Kubecek <mkubecek@suse.cz> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Acked-by: NChristoph Paasch <cpaasch@apple.com> Cc: Jonathan Looney <jtl@netflix.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 18 6月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
commit 3b4929f65b0d8249f19a50245cd88ed1a2f78cff upstream. Jonathan Looney reported that TCP can trigger the following crash in tcp_shifted_skb() : BUG_ON(tcp_skb_pcount(skb) < pcount); This can happen if the remote peer has advertized the smallest MSS that linux TCP accepts : 48 An skb can hold 17 fragments, and each fragment can hold 32KB on x86, or 64KB on PowerPC. This means that the 16bit witdh of TCP_SKB_CB(skb)->tcp_gso_segs can overflow. Note that tcp_sendmsg() builds skbs with less than 64KB of payload, so this problem needs SACK to be enabled. SACK blocks allow TCP to coalesce multiple skbs in the retransmit queue, thus filling the 17 fragments to maximal capacity. CVE-2019-11477 -- u16 overflow of TCP_SKB_CB(skb)->tcp_gso_segs Fixes: 832d11c5 ("tcp: Try to restore large SKBs while SACK processing") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NJonathan Looney <jtl@netflix.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Reviewed-by: NTyler Hicks <tyhicks@canonical.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Bruce Curtis <brucec@netflix.com> Cc: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 8月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
Lets not turn the TCP ULP lookup into an arbitrary module loader as we only intend to load ULP modules through this mechanism, not other unrelated kernel modules: [root@bar]# cat foo.c #include <sys/types.h> #include <sys/socket.h> #include <linux/tcp.h> #include <linux/in.h> int main(void) { int sock = socket(PF_INET, SOCK_STREAM, 0); setsockopt(sock, IPPROTO_TCP, TCP_ULP, "sctp", sizeof("sctp")); return 0; } [root@bar]# gcc foo.c -O2 -Wall [root@bar]# lsmod | grep sctp [root@bar]# ./a.out [root@bar]# lsmod | grep sctp sctp 1077248 4 libcrc32c 16384 3 nf_conntrack,nf_nat,sctp [root@bar]# Fix it by adding module alias to TCP ULP modules, so probing module via request_module() will be limited to tcp-ulp-[name]. The existing modules like kTLS will load fine given tcp-ulp-tls alias, but others will fail to load: [root@bar]# lsmod | grep sctp [root@bar]# ./a.out [root@bar]# lsmod | grep sctp [root@bar]# Sockmap is not affected from this since it's either built-in or not. Fixes: 734942cc ("tcp: ULP infrastructure") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 11 8月, 2018 1 次提交
-
-
由 Martin KaFai Lau 提交于
Although the actual cookie check "__cookie_v[46]_check()" does not involve sk specific info, it checks whether the sk has recent synq overflow event in "tcp_synq_no_recent_overflow()". The tcp_sk(sk)->rx_opt.ts_recent_stamp is updated every second when it has sent out a syncookie (through "tcp_synq_overflow()"). The above per sk "recent synq overflow event timestamp" works well for non SO_REUSEPORT use case. However, it may cause random connection request reject/discard when SO_REUSEPORT is used with syncookie because it fails the "tcp_synq_no_recent_overflow()" test. When SO_REUSEPORT is used, it usually has multiple listening socks serving TCP connection requests destinated to the same local IP:PORT. There are cases that the TCP-ACK-COOKIE may not be received by the same sk that sent out the syncookie. For example, if reuse->socks[] began with {sk0, sk1}, 1) sk1 sent out syncookies and tcp_sk(sk1)->rx_opt.ts_recent_stamp was updated. 2) the reuse->socks[] became {sk1, sk2} later. e.g. sk0 was first closed and then sk2 was added. Here, sk2 does not have ts_recent_stamp set. There are other ordering that will trigger the similar situation below but the idea is the same. 3) When the TCP-ACK-COOKIE comes back, sk2 was selected. "tcp_synq_no_recent_overflow(sk2)" returns true. In this case, all syncookies sent by sk1 will be handled (and rejected) by sk2 while sk1 is still alive. The userspace may create and remove listening SO_REUSEPORT sockets as it sees fit. E.g. Adding new thread (and SO_REUSEPORT sock) to handle incoming requests, old process stopping and new process starting...etc. With or without SO_ATTACH_REUSEPORT_[CB]BPF, the sockets leaving and joining a reuseport group makes picking the same sk to check the syncookie very difficult (if not impossible). The later patches will allow bpf prog more flexibility in deciding where a sk should be located in a bpf map and selecting a particular SO_REUSEPORT sock as it sees fit. e.g. Without closing any sock, replace the whole bpf reuseport_array in one map_update() by using map-in-map. Getting the syncookie check working smoothly across socks in the same "reuse->socks[]" is important. A partial solution is to set the newly added sk's ts_recent_stamp to the max ts_recent_stamp of a reuseport group but that will require to iterate through reuse->socks[] OR pessimistically set it to "now - TCP_SYNCOOKIE_VALID" when a sk is joining a reuseport group. However, neither of them will solve the existing sk getting moved around the reuse->socks[] and that sk may not have ts_recent_stamp updated, unlikely under continuous synflood but not impossible. This patch opts to treat the reuseport group as a whole when considering the last synq overflow timestamp since they are serving the same IP:PORT from the userspace (and BPF program) perspective. "synq_overflow_ts" is added to "struct sock_reuseport". The tcp_synq_overflow() and tcp_synq_no_recent_overflow() will update/check reuse->synq_overflow_ts if the sk is in a reuseport group. Similar to the reuseport decision in __inet_lookup_listener(), both sk->sk_reuseport and sk->sk_reuseport_cb are tested for SO_REUSEPORT usage. Update on "synq_overflow_ts" happens at roughly once every second. A synflood test was done with a 16 rx-queues and 16 reuseport sockets. No meaningful performance change is observed. Before and after the change is ~9Mpps in IPv4. Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 22 7月, 2018 1 次提交
-
-
由 David Ahern 提交于
Example setup: host: ip -6 addr add dev eth1 2001:db8:104::4 where eth1 is enslaved to a VRF switch: ip -6 ro add 2001:db8:104::4/128 dev br1 where br1 only has an LLA ping6 2001:db8:104::4 ssh 2001:db8:104::4 (NOTE: UDP works fine if the PKTINFO has the address set to the global address and ifindex is set to the index of eth1 with a destination an LLA). For ICMP, icmp6_iif needs to be updated to check if skb->dev is an L3 master. If it is then return the ifindex from rt6i_idev similar to what is done for loopback. For TCP, restore the original tcp_v6_iif definition which is needed in most places and add a new tcp_v6_iif_l3_slave that considers the l3_slave variability. This latter check is only needed for socket lookups. Fixes: 9ff74384 ("net: vrf: Handle ipv6 multicast and link-local addresses") Signed-off-by: NDavid Ahern <dsahern@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 7月, 2018 2 次提交
-
-
由 Yuchung Cheng 提交于
Per DCTCP RFC8257 (Section 3.2) the ACK reflecting the CE status change has to be sent immediately so the sender can respond quickly: """ When receiving packets, the CE codepoint MUST be processed as follows: 1. If the CE codepoint is set and DCTCP.CE is false, set DCTCP.CE to true and send an immediate ACK. 2. If the CE codepoint is not set and DCTCP.CE is true, set DCTCP.CE to false and send an immediate ACK. """ Previously DCTCP implementation may continue to delay the ACK. This patch fixes that to implement the RFC by forcing an immediate ACK. Tested with this packetdrill script provided by Larry Brakmo 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 0.000 setsockopt(3, SOL_TCP, TCP_CONGESTION, "dctcp", 5) = 0 0.000 bind(3, ..., ...) = 0 0.000 listen(3, 1) = 0 0.100 < [ect0] SEW 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> 0.100 > SE. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8> 0.110 < [ect0] . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_SOCKET, SO_DEBUG, [1], 4) = 0 0.200 < [ect0] . 1:1001(1000) ack 1 win 257 0.200 > [ect01] . 1:1(0) ack 1001 0.200 write(4, ..., 1) = 1 0.200 > [ect01] P. 1:2(1) ack 1001 0.200 < [ect0] . 1001:2001(1000) ack 2 win 257 +0.005 < [ce] . 2001:3001(1000) ack 2 win 257 +0.000 > [ect01] . 2:2(0) ack 2001 // Previously the ACK below would be delayed by 40ms +0.000 > [ect01] E. 2:2(0) ack 3001 +0.500 < F. 9501:9501(0) ack 4 win 257 Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Currently when a DCTCP receiver delays an ACK and receive a data packet with a different CE mark from the previous one's, it sends two immediate ACKs acking previous and latest sequences respectly (for ECN accounting). Previously sending the first ACK may mark off the delayed ACK timer (tcp_event_ack_sent). This may subsequently prevent sending the second ACK to acknowledge the latest sequence (tcp_ack_snd_check). The culprit is that tcp_send_ack() assumes it always acknowleges the latest sequence, which is not true for the first special ACK. The fix is to not make the assumption in tcp_send_ack and check the actual ack sequence before cancelling the delayed ACK. Further it's safer to pass the ack sequence number as a local variable into tcp_send_ack routine, instead of intercepting tp->rcv_nxt to avoid future bugs like this. Reported-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 7月, 2018 1 次提交
-
-
由 Yuchung Cheng 提交于
After fixing the way DCTCP tracking delayed ACKs, the delayed-ACK related callbacks are no longer needed Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NLawrence Brakmo <brakmo@fb.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 7月, 2018 1 次提交
-
-
由 Arnd Bergmann 提交于
Using get_seconds() for timestamps is deprecated since it can lead to overflows on 32-bit systems. While the interface generally doesn't overflow until year 2106, the specific implementation of the TCP PAWS algorithm breaks in 2038 when the intermediate signed 32-bit timestamps overflow. A related problem is that the local timestamps in CLOCK_REALTIME form lead to unexpected behavior when settimeofday is called to set the system clock backwards or forwards by more than 24 days. While the first problem could be solved by using an overflow-safe method of comparing the timestamps, a nicer solution is to use a monotonic clocksource with ktime_get_seconds() that simply doesn't overflow (at least not until 136 years after boot) and that doesn't change during settimeofday(). To make 32-bit and 64-bit architectures behave the same way here, and also save a few bytes in the tcp_options_received structure, I'm changing the type to a 32-bit integer, which is now safe on all architectures. Finally, the ts_recent_stamp field also (confusingly) gets used to store a jiffies value in tcp_synq_overflow()/tcp_synq_no_recent_overflow(). This is currently safe, but changing the type to 32-bit requires some small changes there to keep it working. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 7月, 2018 1 次提交
-
-
由 Deepti Raghavan 提交于
Congestion control algorithms, which access the rate sample through the tcp_cong_control function, only have access to the maximum of the send and receive interval, for cases where the acknowledgment rate may be inaccurate due to ACK compression or decimation. Algorithms may want to use send rates and receive rates as separate signals. Signed-off-by: NDeepti Raghavan <deeptir@mit.edu> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 7月, 2018 1 次提交
-
-
由 John Fastabend 提交于
In commit 'bpf: bpf_compute_data uses incorrect cb structure' (8108a775) we added the routine bpf_compute_data_end_sk_skb() to compute the correct data_end values, but this has since been lost. In kernel v4.14 this was correct and the above patch was applied in it entirety. Then when v4.14 was merged into v4.15-rc1 net-next tree we lost the piece that renamed bpf_compute_data_pointers to the new function bpf_compute_data_end_sk_skb. This was done here, e1ea2f98 ("Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net") When it conflicted with the following rename patch, 6aaae2b6 ("bpf: rename bpf_compute_data_end into bpf_compute_data_pointers") Finally, after a refactor I thought even the function bpf_compute_data_end_sk_skb() was no longer needed and it was erroneously removed. However, we never reverted the sk_skb_convert_ctx_access() usage of tcp_skb_cb which had been committed and survived the merge conflict. Here we fix this by adding back the helper and *_data_end_sk_skb() usage. Using the bpf_skc_data_end mapping is not correct because it expects a qdisc_skb_cb object but at the sock layer this is not the case. Even though it happens to work here because we don't overwrite any data in-use at the socket layer and the cb structure is cleared later this has potential to create some subtle issues. But, even more concretely the filter.c access check uses tcp_skb_cb. And by some act of chance though, struct bpf_skb_data_end { struct qdisc_skb_cb qdisc_cb; /* 0 28 */ /* XXX 4 bytes hole, try to pack */ void * data_meta; /* 32 8 */ void * data_end; /* 40 8 */ /* size: 48, cachelines: 1, members: 3 */ /* sum members: 44, holes: 1, sum holes: 4 */ /* last cacheline: 48 bytes */ }; and then tcp_skb_cb, struct tcp_skb_cb { [...] struct { __u32 flags; /* 24 4 */ struct sock * sk_redir; /* 32 8 */ void * data_end; /* 40 8 */ } bpf; /* 24 */ }; So when we use offset_of() to track down the byte offset we get 40 in either case and everything continues to work. Fix this mess and use correct structures its unclear how long this might actually work for until someone moves the structs around. Reported-by: NMartin KaFai Lau <kafai@fb.com> Fixes: e1ea2f98 ("Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net") Fixes: 6aaae2b6 ("bpf: rename bpf_compute_data_end into bpf_compute_data_pointers") Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 29 6月, 2018 1 次提交
-
-
由 Linus Torvalds 提交于
The poll() changes were not well thought out, and completely unexplained. They also caused a huge performance regression, because "->poll()" was no longer a trivial file operation that just called down to the underlying file operations, but instead did at least two indirect calls. Indirect calls are sadly slow now with the Spectre mitigation, but the performance problem could at least be largely mitigated by changing the "->get_poll_head()" operation to just have a per-file-descriptor pointer to the poll head instead. That gets rid of one of the new indirections. But that doesn't fix the new complexity that is completely unwarranted for the regular case. The (undocumented) reason for the poll() changes was some alleged AIO poll race fixing, but we don't make the common case slower and more complex for some uncommon special case, so this all really needs way more explanations and most likely a fundamental redesign. [ This revert is a revert of about 30 different commits, not reverted individually because that would just be unnecessarily messy - Linus ] Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 6月, 2018 1 次提交
-
-
由 David Miller 提交于
Manage pending per-NAPI GRO packets via list_head. Return an SKB pointer from the GRO receive handlers. When GRO receive handlers return non-NULL, it means that this SKB needs to be completed at this time and removed from the NAPI queue. Several operations are greatly simplified by this transformation, especially timing out the oldest SKB in the list when gro_count exceeds MAX_GRO_SKBS, and napi_gro_flush() which walks the queue in reverse order. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 6月, 2018 1 次提交
-
-
由 Eric Dumazet 提交于
This commit makes BBR use only the MSS (without any headers) to calculate pacing rates when internal TCP-layer pacing is used. This is necessary to achieve the correct pacing behavior in this case, since tcp_internal_pacing() uses only the payload length to calculate pacing delays. Signed-off-by: NKevin Yang <yyd@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 6月, 2018 1 次提交
-
-
由 Yafang Shao 提交于
This is additional to the commit ea1627c2 ("tcp: minor optimizations around tcp_hdr() usage"). At this point, skb->data is same with tcp_hdr() as tcp header has not been pulled yet. So use the less expensive one to get the tcp header. Remove the third parameter of tcp_rcv_established() and put it into the function body. Furthermore, the local variables are listed as a reverse christmas tree :) Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: NYafang Shao <laoar.shao@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 5月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de>
-
- 18 5月, 2018 6 次提交
-
-
由 Eric Dumazet 提交于
When TCP receives an out-of-order packet, it immediately sends a SACK packet, generating network load but also forcing the receiver to send 1-MSS pathological packets, increasing its RTX queue length/depth, and thus processing time. Wifi networks suffer from this aggressive behavior, but generally speaking, all these SACK packets add fuel to the fire when networks are under congestion. This patch adds a high resolution timer and tp->compressed_ack counter. Instead of sending a SACK, we program this timer with a small delay, based on RTT and capped to 1 ms : delay = min ( 5 % of RTT, 1 ms) If subsequent SACKs need to be sent while the timer has not yet expired, we simply increment tp->compressed_ack. When timer expires, a SACK is sent with the latest information. Whenever an ACK is sent (if data is sent, or if in-order data is received) timer is canceled. Note that tcp_sack_new_ofo_skb() is able to force a SACK to be sent if the sack blocks need to be shuffled, even if the timer has not expired. A new SNMP counter is added in the following patch. Two other patches add sysctls to allow changing the 1,000,000 and 44 values that this commit hard-coded. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Acked-by: NToke Høiland-Jørgensen <toke@toke.dk> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Socket can not disappear under us. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Create and export a new helper tcp_rack_skb_timeout and move tcp_is_rack to prepare the final RTO change. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NSoheil Hassas Yeganeh <soheil@google.com> Reviewed-by: NPriyaranjan Jha <priyarjha@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
The previous approach for the lost and retransmit bits was to wipe the slate clean: zero all the lost and retransmit bits, correspondingly zero the lost_out and retrans_out counters, and then add back the lost bits (and correspondingly increment lost_out). The new approach is to treat this very much like marking packets lost in fast recovery. We don’t wipe the slate clean. We just say that for all packets that were not yet marked sacked or lost, we now mark them as lost in exactly the same way we do for fast recovery. This fixes the lost retransmit accounting at RTO time and greatly simplifies the RTO code by sharing much of the logic with Fast Recovery. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NSoheil Hassas Yeganeh <soheil@google.com> Reviewed-by: NPriyaranjan Jha <priyarjha@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
This is a rewrite of NewReno loss recovery implementation that is simpler and standalone for readability and better performance by using less states. Note that NewReno refers to RFC6582 as a modification to the fast recovery algorithm. It is used only if the connection does not support SACK in Linux. It should not to be confused with the Reno (AIMD) congestion control. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NSoheil Hassas Yeganeh <soheil@google.com> Reviewed-by: NPriyaranjan Jha <priyarjha@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
This patch adds support for the classic DUPACK threshold rule (#DupThresh) in RACK. When the number of packets SACKed is greater or equal to the threshold, RACK sets the reordering window to zero which would immediately mark all the unsacked packets below the highest SACKed sequence lost. Since this approach is known to not work well with reordering, RACK only uses it if no reordering has been observed. The DUPACK threshold rule is a particularly useful extension to the fast recoveries triggered by RACK reordering timer. For example data-center transfers where the RTT is much smaller than a timer tick, or high RTT path where the default RTT/4 may take too long. Note that this patch differs slightly from RFC6675. RFC6675 considers a packet lost when at least #DupThresh higher-sequence packets are SACKed. With RACK, for connections that have seen reordering, RACK continues to use a dynamically-adaptive time-based reordering window to detect losses. But for connections on which we have not yet seen reordering, this patch considers a packet lost when at least one higher sequence packet is SACKed and the total number of SACKed packets is at least DupThresh. For example, suppose a connection has not seen reordering, and sends 10 packets, and packets 3, 5, 7 are SACKed. RFC6675 considers packets 1 and 2 lost. RACK considers packets 1, 2, 4, 6 lost. There is some small risk of spurious retransmits here due to reordering. However, this is mostly limited to the first flight of a connection on which the sender receives SACKs from reordering. And RFC 6675 and FACK loss detection have a similar risk on the first flight with reordering (it's just that the risk of spurious retransmits from reordering was slightly narrower for those older algorithms due to the margin of 3*MSS). Also the minimum reordering window is reduced from 1 msec to 0 to recover quicker on short RTT transfers. Therefore RACK is more aggressive in marking packets lost during recovery to reduce the reordering window timeouts. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NSoheil Hassas Yeganeh <soheil@google.com> Reviewed-by: NPriyaranjan Jha <priyarjha@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 5月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
Avoid most of the afinfo indirections and just call the proc helpers directly. Signed-off-by: NChristoph Hellwig <hch@lst.de>
-
- 15 5月, 2018 1 次提交
-
-
由 John Fastabend 提交于
This patch only refactors the existing sockmap code. This will allow much of the psock initialization code path and bpf helper codes to work for both sockmap bpf map types that are backed by an array, the currently supported type, and the new hash backed bpf map type sockhash. Most the fallout comes from three changes, - Pushing bpf programs into an independent structure so we can use it from the htab struct in the next patch. - Generalizing helpers to use void *key instead of the hardcoded u32. - Instead of passing map/key through the metadata we now do the lookup inline. This avoids storing the key in the metadata which will be useful when keys can be longer than 4 bytes. We rename the sk pointers to sk_redir at this point as well to avoid any confusion between the current sk pointer and the redirect pointer sk_redir. Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 12 5月, 2018 1 次提交
-
-
由 Eric Dumazet 提交于
linux-4.16 got support for softirq based hrtimers. TCP can switch its pacing hrtimer to this variant, since this avoids going through a tasklet and some atomic operations. pacing timer logic looks like other (jiffies based) tcp timers. v2: use hrtimer_try_to_cancel() in tcp_clear_xmit_timers() to correctly release reference on socket if needed. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 5月, 2018 1 次提交
-
-
由 Ilya Lesokhin 提交于
Called when a TCP segment is acknowledged. Could be used by application protocols who hold additional metadata associated with the stream data. This is required by TLS device offload to release metadata associated with acknowledged TLS records. Signed-off-by: NIlya Lesokhin <ilyal@mellanox.com> Signed-off-by: NBoris Pismenny <borisp@mellanox.com> Signed-off-by: NAviad Yehezkel <aviadye@mellanox.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 4月, 2018 3 次提交
-
-
由 Eric Dumazet 提交于
Some networks can make sure TCP payload can exactly fit 4KB pages, with well chosen MSS/MTU and architectures. Implement mmap() system call so that applications can avoid copying data without complex splice() games. Note that a successful mmap( X bytes) on TCP socket is consuming bytes, as if recvmsg() has been done. (tp->copied += X) Only PROT_READ mappings are accepted, as skb page frags are fundamentally shared and read only. If tcp_mmap() finds data that is not a full page, or a patch of urgent data, -EINVAL is returned, no bytes are consumed. Application must fallback to recvmsg() to read the problematic sequence. mmap() wont block, regardless of socket being in blocking or non-blocking mode. If not enough bytes are in receive queue, mmap() would return -EAGAIN, or -EIO if socket is in a state where no other bytes can be added into receive queue. An application might use SO_RCVLOWAT, poll() and/or ioctl( FIONREAD) to efficiently use mmap() On the sender side, MSG_EOR might help to clearly separate unaligned headers and 4K-aligned chunks if necessary. Tested: mlx4 (cx-3) 40Gbit NIC, with tcp_mmap program provided in following patch. MTU set to 4168 (4096 TCP payload, 40 bytes IPv6 header, 32 bytes TCP header) Without mmap() (tcp_mmap -s) received 32768 MB (0 % mmap'ed) in 8.13342 s, 33.7961 Gbit, cpu usage user:0.034 sys:3.778, 116.333 usec per MB, 63062 c-switches received 32768 MB (0 % mmap'ed) in 8.14501 s, 33.748 Gbit, cpu usage user:0.029 sys:3.997, 122.864 usec per MB, 61903 c-switches received 32768 MB (0 % mmap'ed) in 8.11723 s, 33.8635 Gbit, cpu usage user:0.048 sys:3.964, 122.437 usec per MB, 62983 c-switches received 32768 MB (0 % mmap'ed) in 8.39189 s, 32.7552 Gbit, cpu usage user:0.038 sys:4.181, 128.754 usec per MB, 55834 c-switches With mmap() on receiver (tcp_mmap -s -z) received 32768 MB (100 % mmap'ed) in 8.03083 s, 34.2278 Gbit, cpu usage user:0.024 sys:1.466, 45.4712 usec per MB, 65479 c-switches received 32768 MB (100 % mmap'ed) in 7.98805 s, 34.4111 Gbit, cpu usage user:0.026 sys:1.401, 43.5486 usec per MB, 65447 c-switches received 32768 MB (100 % mmap'ed) in 7.98377 s, 34.4296 Gbit, cpu usage user:0.028 sys:1.452, 45.166 usec per MB, 65496 c-switches received 32768 MB (99.9969 % mmap'ed) in 8.01838 s, 34.281 Gbit, cpu usage user:0.02 sys:1.446, 44.7388 usec per MB, 65505 c-switches Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
SO_RCVLOWAT is properly handled in tcp_poll(), so that POLLIN is only generated when enough bytes are available in receive queue, after David change (commit c7004482 "tcp: Respect SO_RCVLOWAT in tcp_poll().") But TCP still calls sk->sk_data_ready() for each chunk added in receive queue, meaning thread is awaken, and goes back to sleep shortly after. Tested: tcp_mmap test program, receiving 32768 MB of data with SO_RCVLOWAT set to 512KB -> Should get ~2 wakeups (c-switches) per MB, regardless of how many (tiny or big) packets were received. High speed (mostly full size GRO packets) received 32768 MB (100 % mmap'ed) in 8.03112 s, 34.2266 Gbit, cpu usage user:0.037 sys:1.404, 43.9758 usec per MB, 65497 c-switches received 32768 MB (99.9954 % mmap'ed) in 7.98453 s, 34.4263 Gbit, cpu usage user:0.03 sys:1.422, 44.3115 usec per MB, 65485 c-switches Low speed (sender is ratelimited and sends 1-MSS at a time, so GRO is not helping) received 22474.5 MB (100 % mmap'ed) in 6015.35 s, 0.0313414 Gbit, cpu usage user:0.05 sys:1.586, 72.7952 usec per MB, 44950 c-switches Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Applications might use SO_RCVLOWAT on TCP socket hoping to receive one [E]POLLIN event only when a given amount of bytes are ready in socket receive queue. Problem is that receive autotuning is not aware of this constraint, meaning sk_rcvbuf might be too small to allow all bytes to be stored. Add a new (struct proto_ops)->set_rcvlowat method so that a protocol can override the default setsockopt(SO_RCVLOWAT) behavior. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 3月, 2018 1 次提交
-
-
由 Eric Dumazet 提交于
This is second part of dealing with suboptimal device gso parameters. In first patch (350c9f48 "tcp_bbr: better deal with suboptimal GSO") we dealt with devices having low gso_max_segs Some devices lower gso_max_size from 64KB to 16 KB (r8152 is an example) In order to probe an optimal cwnd, we want BBR being not sensitive to whatever GSO constraint a device can have. This patch removes tso_segs_goal() CC callback in favor of min_tso_segs() for CC wanting to override sysctl_tcp_min_tso_segs Next patch will remove bbr->tso_segs_goal since it does not have to be persistent. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 2月, 2018 1 次提交
-
-
由 Eric Dumazet 提交于
배석진 reported that in some situations, packets for a given 5-tuple end up being processed by different CPUS. This involves RPS, and fragmentation. 배석진 is seeing packet drops when a SYN_RECV request socket is moved into ESTABLISH state. Other states are protected by socket lock. This is caused by a CPU losing the race, and simply not caring enough. Since this seems to occur frequently, we can do better and perform a second lookup. Note that all needed memory barriers are already in the existing code, thanks to the spin_lock()/spin_unlock() pair in inet_ehash_insert() and reqsk_put(). The second lookup must find the new socket, unless it has already been accepted and closed by another cpu. Note that the fragmentation could be avoided in the first place by use of a correct TCP MSS option in the SYN{ACK} packet, but this does not mean we can not be more robust. Many thanks to 배석진 for a very detailed analysis. Reported-by: N배석진 <soukjin.bae@samsung.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 2月, 2018 2 次提交
-
-
由 John Fastabend 提交于
The selftests test_maps program was leaving dangling BPF sockmap programs around because not all psock elements were removed from the map. The elements in turn hold a reference on the BPF program they are attached to causing BPF programs to stay open even after test_maps has completed. The original intent was that sk_state_change() would be called when TCP socks went through TCP_CLOSE state. However, because socks may be in SOCK_DEAD state or the sock may be a listening socket the event is not always triggered. To resolve this use the ULP infrastructure and register our own proto close() handler. This fixes the above case. Fixes: 174a79ff ("bpf: sockmap with sk redirect support") Reported-by: NPrashant Bhole <bhole_prashant_q7@lab.ntt.co.jp> Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 John Fastabend 提交于
Create a UID field and enum that can be used to assign ULPs to sockets. This saves a set of string comparisons if the ULP id is known. For sockmap, which is added in the next patches, a ULP is used to hook into TCP sockets close state. In this case the ULP being added is done at map insert time and the ULP is known and done on the kernel side. In this case the named lookup is not needed. Because we don't want to expose psock internals to user space socket options a user visible flag is also added. For TLS this is set for BPF it will be cleared. Alos remove pr_notice, user gets an error code back and should check that rather than rely on logs. Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 26 1月, 2018 2 次提交
-
-
由 Lawrence Brakmo 提交于
Adds support for passing up to 4 arguments to sock_ops bpf functions. It reusues the reply union, so the bpf_sock_ops structures are not increased in size. Signed-off-by: NLawrence Brakmo <brakmo@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Lawrence Brakmo 提交于
This patch adds a macro, SOCK_OPS_SET_FIELD, for writing to struct tcp_sock or struct sock fields. This required adding a new field "temp" to struct bpf_sock_ops_kern for temporary storage that is used by sock_ops_convert_ctx_access. It is used to store and recover the contents of a register, so the register can be used to store the address of the sk. Since we cannot overwrite the dst_reg because it contains the pointer to ctx, nor the src_reg since it contains the value we want to store, we need an extra register to contain the address of the sk. Also adds the macro SOCK_OPS_GET_OR_SET_FIELD that calls one of the GET or SET macros depending on the value of the TYPE field. Signed-off-by: NLawrence Brakmo <brakmo@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-