1. 01 7月, 2015 1 次提交
  2. 16 4月, 2015 1 次提交
  3. 12 4月, 2015 1 次提交
  4. 26 3月, 2015 1 次提交
  5. 23 2月, 2015 1 次提交
    • D
      VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry) · e36cb0b8
      David Howells 提交于
      Convert the following where appropriate:
      
       (1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry).
      
       (2) S_ISREG(dentry->d_inode) to d_is_reg(dentry).
      
       (3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry).  This is actually more
           complicated than it appears as some calls should be converted to
           d_can_lookup() instead.  The difference is whether the directory in
           question is a real dir with a ->lookup op or whether it's a fake dir with
           a ->d_automount op.
      
      In some circumstances, we can subsume checks for dentry->d_inode not being
      NULL into this, provided we the code isn't in a filesystem that expects
      d_inode to be NULL if the dirent really *is* negative (ie. if we're going to
      use d_inode() rather than d_backing_inode() to get the inode pointer).
      
      Note that the dentry type field may be set to something other than
      DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS
      manages the fall-through from a negative dentry to a lower layer.  In such a
      case, the dentry type of the negative union dentry is set to the same as the
      type of the lower dentry.
      
      However, if you know d_inode is not NULL at the call site, then you can use
      the d_is_xxx() functions even in a filesystem.
      
      There is one further complication: a 0,0 chardev dentry may be labelled
      DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE.  Strictly, this was
      intended for special directory entry types that don't have attached inodes.
      
      The following perl+coccinelle script was used:
      
      use strict;
      
      my @callers;
      open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') ||
          die "Can't grep for S_ISDIR and co. callers";
      @callers = <$fd>;
      close($fd);
      unless (@callers) {
          print "No matches\n";
          exit(0);
      }
      
      my @cocci = (
          '@@',
          'expression E;',
          '@@',
          '',
          '- S_ISLNK(E->d_inode->i_mode)',
          '+ d_is_symlink(E)',
          '',
          '@@',
          'expression E;',
          '@@',
          '',
          '- S_ISDIR(E->d_inode->i_mode)',
          '+ d_is_dir(E)',
          '',
          '@@',
          'expression E;',
          '@@',
          '',
          '- S_ISREG(E->d_inode->i_mode)',
          '+ d_is_reg(E)' );
      
      my $coccifile = "tmp.sp.cocci";
      open($fd, ">$coccifile") || die $coccifile;
      print($fd "$_\n") || die $coccifile foreach (@cocci);
      close($fd);
      
      foreach my $file (@callers) {
          chomp $file;
          print "Processing ", $file, "\n";
          system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 ||
      	die "spatch failed";
      }
      
      [AV: overlayfs parts skipped]
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      e36cb0b8
  6. 20 2月, 2015 1 次提交
  7. 10 2月, 2015 1 次提交
    • M
      s390/hypfs: Add diagnose 0c support · 34c0dad7
      Michael Holzheu 提交于
      With this feature, you can read the CPU performance metrics provided by the
      z/VM diagnose 0C. This then allows to get the management time for each
      online CPU of the guest where the diagnose is executed.
      
      The new debugfs file /sys/kernel/debug/s390_hypfs/diag_0c exports the
      diag0C binary data to user space via an open/read/close interface.
      
      The binary data consists out of a header structure followed by an
      array that contains the diagnose 0c data for each online CPU.
      Signed-off-by: NMichael Holzheu <holzheu@linux.vnet.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      34c0dad7
  8. 24 1月, 2014 1 次提交
  9. 04 9月, 2013 3 次提交
  10. 08 5月, 2013 1 次提交
  11. 04 3月, 2013 1 次提交
    • E
      fs: Limit sys_mount to only request filesystem modules. · 7f78e035
      Eric W. Biederman 提交于
      Modify the request_module to prefix the file system type with "fs-"
      and add aliases to all of the filesystems that can be built as modules
      to match.
      
      A common practice is to build all of the kernel code and leave code
      that is not commonly needed as modules, with the result that many
      users are exposed to any bug anywhere in the kernel.
      
      Looking for filesystems with a fs- prefix limits the pool of possible
      modules that can be loaded by mount to just filesystems trivially
      making things safer with no real cost.
      
      Using aliases means user space can control the policy of which
      filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf
      with blacklist and alias directives.  Allowing simple, safe,
      well understood work-arounds to known problematic software.
      
      This also addresses a rare but unfortunate problem where the filesystem
      name is not the same as it's module name and module auto-loading
      would not work.  While writing this patch I saw a handful of such
      cases.  The most significant being autofs that lives in the module
      autofs4.
      
      This is relevant to user namespaces because we can reach the request
      module in get_fs_type() without having any special permissions, and
      people get uncomfortable when a user specified string (in this case
      the filesystem type) goes all of the way to request_module.
      
      After having looked at this issue I don't think there is any
      particular reason to perform any filtering or permission checks beyond
      making it clear in the module request that we want a filesystem
      module.  The common pattern in the kernel is to call request_module()
      without regards to the users permissions.  In general all a filesystem
      module does once loaded is call register_filesystem() and go to sleep.
      Which means there is not much attack surface exposed by loading a
      filesytem module unless the filesystem is mounted.  In a user
      namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT,
      which most filesystems do not set today.
      Acked-by: NSerge Hallyn <serge.hallyn@canonical.com>
      Acked-by: NKees Cook <keescook@chromium.org>
      Reported-by: NKees Cook <keescook@google.com>
      Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      7f78e035
  12. 28 2月, 2013 1 次提交
  13. 23 2月, 2013 1 次提交
  14. 27 9月, 2012 1 次提交
  15. 21 9月, 2012 1 次提交
  16. 20 7月, 2012 1 次提交
    • H
      s390/comments: unify copyright messages and remove file names · a53c8fab
      Heiko Carstens 提交于
      Remove the file name from the comment at top of many files. In most
      cases the file name was wrong anyway, so it's rather pointless.
      
      Also unify the IBM copyright statement. We did have a lot of sightly
      different statements and wanted to change them one after another
      whenever a file gets touched. However that never happened. Instead
      people start to take the old/"wrong" statements to use as a template
      for new files.
      So unify all of them in one go.
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      a53c8fab
  17. 16 7月, 2012 1 次提交
  18. 06 5月, 2012 1 次提交
  19. 21 3月, 2012 1 次提交
  20. 07 1月, 2012 1 次提交
  21. 04 1月, 2012 1 次提交
  22. 02 11月, 2011 3 次提交
  23. 05 1月, 2011 1 次提交
  24. 29 10月, 2010 1 次提交
  25. 15 10月, 2010 1 次提交
    • A
      llseek: automatically add .llseek fop · 6038f373
      Arnd Bergmann 提交于
      All file_operations should get a .llseek operation so we can make
      nonseekable_open the default for future file operations without a
      .llseek pointer.
      
      The three cases that we can automatically detect are no_llseek, seq_lseek
      and default_llseek. For cases where we can we can automatically prove that
      the file offset is always ignored, we use noop_llseek, which maintains
      the current behavior of not returning an error from a seek.
      
      New drivers should normally not use noop_llseek but instead use no_llseek
      and call nonseekable_open at open time.  Existing drivers can be converted
      to do the same when the maintainer knows for certain that no user code
      relies on calling seek on the device file.
      
      The generated code is often incorrectly indented and right now contains
      comments that clarify for each added line why a specific variant was
      chosen. In the version that gets submitted upstream, the comments will
      be gone and I will manually fix the indentation, because there does not
      seem to be a way to do that using coccinelle.
      
      Some amount of new code is currently sitting in linux-next that should get
      the same modifications, which I will do at the end of the merge window.
      
      Many thanks to Julia Lawall for helping me learn to write a semantic
      patch that does all this.
      
      ===== begin semantic patch =====
      // This adds an llseek= method to all file operations,
      // as a preparation for making no_llseek the default.
      //
      // The rules are
      // - use no_llseek explicitly if we do nonseekable_open
      // - use seq_lseek for sequential files
      // - use default_llseek if we know we access f_pos
      // - use noop_llseek if we know we don't access f_pos,
      //   but we still want to allow users to call lseek
      //
      @ open1 exists @
      identifier nested_open;
      @@
      nested_open(...)
      {
      <+...
      nonseekable_open(...)
      ...+>
      }
      
      @ open exists@
      identifier open_f;
      identifier i, f;
      identifier open1.nested_open;
      @@
      int open_f(struct inode *i, struct file *f)
      {
      <+...
      (
      nonseekable_open(...)
      |
      nested_open(...)
      )
      ...+>
      }
      
      @ read disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      <+...
      (
         *off = E
      |
         *off += E
      |
         func(..., off, ...)
      |
         E = *off
      )
      ...+>
      }
      
      @ read_no_fpos disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ write @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      <+...
      (
        *off = E
      |
        *off += E
      |
        func(..., off, ...)
      |
        E = *off
      )
      ...+>
      }
      
      @ write_no_fpos @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ fops0 @
      identifier fops;
      @@
      struct file_operations fops = {
       ...
      };
      
      @ has_llseek depends on fops0 @
      identifier fops0.fops;
      identifier llseek_f;
      @@
      struct file_operations fops = {
      ...
       .llseek = llseek_f,
      ...
      };
      
      @ has_read depends on fops0 @
      identifier fops0.fops;
      identifier read_f;
      @@
      struct file_operations fops = {
      ...
       .read = read_f,
      ...
      };
      
      @ has_write depends on fops0 @
      identifier fops0.fops;
      identifier write_f;
      @@
      struct file_operations fops = {
      ...
       .write = write_f,
      ...
      };
      
      @ has_open depends on fops0 @
      identifier fops0.fops;
      identifier open_f;
      @@
      struct file_operations fops = {
      ...
       .open = open_f,
      ...
      };
      
      // use no_llseek if we call nonseekable_open
      ////////////////////////////////////////////
      @ nonseekable1 depends on !has_llseek && has_open @
      identifier fops0.fops;
      identifier nso ~= "nonseekable_open";
      @@
      struct file_operations fops = {
      ...  .open = nso, ...
      +.llseek = no_llseek, /* nonseekable */
      };
      
      @ nonseekable2 depends on !has_llseek @
      identifier fops0.fops;
      identifier open.open_f;
      @@
      struct file_operations fops = {
      ...  .open = open_f, ...
      +.llseek = no_llseek, /* open uses nonseekable */
      };
      
      // use seq_lseek for sequential files
      /////////////////////////////////////
      @ seq depends on !has_llseek @
      identifier fops0.fops;
      identifier sr ~= "seq_read";
      @@
      struct file_operations fops = {
      ...  .read = sr, ...
      +.llseek = seq_lseek, /* we have seq_read */
      };
      
      // use default_llseek if there is a readdir
      ///////////////////////////////////////////
      @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier readdir_e;
      @@
      // any other fop is used that changes pos
      struct file_operations fops = {
      ... .readdir = readdir_e, ...
      +.llseek = default_llseek, /* readdir is present */
      };
      
      // use default_llseek if at least one of read/write touches f_pos
      /////////////////////////////////////////////////////////////////
      @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read.read_f;
      @@
      // read fops use offset
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = default_llseek, /* read accesses f_pos */
      };
      
      @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ... .write = write_f, ...
      +	.llseek = default_llseek, /* write accesses f_pos */
      };
      
      // Use noop_llseek if neither read nor write accesses f_pos
      ///////////////////////////////////////////////////////////
      
      @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      identifier write_no_fpos.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ...
       .write = write_f,
       .read = read_f,
      ...
      +.llseek = noop_llseek, /* read and write both use no f_pos */
      };
      
      @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write_no_fpos.write_f;
      @@
      struct file_operations fops = {
      ... .write = write_f, ...
      +.llseek = noop_llseek, /* write uses no f_pos */
      };
      
      @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      @@
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = noop_llseek, /* read uses no f_pos */
      };
      
      @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      @@
      struct file_operations fops = {
      ...
      +.llseek = noop_llseek, /* no read or write fn */
      };
      ===== End semantic patch =====
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Cc: Julia Lawall <julia@diku.dk>
      Cc: Christoph Hellwig <hch@infradead.org>
      6038f373
  26. 10 8月, 2010 1 次提交
  27. 17 5月, 2010 2 次提交
  28. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  29. 04 3月, 2010 1 次提交
  30. 22 9月, 2009 1 次提交
  31. 21 9月, 2009 1 次提交
  32. 11 9月, 2009 2 次提交
  33. 06 1月, 2009 1 次提交
  34. 25 12月, 2008 1 次提交