- 31 1月, 2019 2 次提交
-
-
由 KarimAllah Ahmed 提交于
commit 22a7cdcae6a4a3c8974899e62851d270956f58ce upstream. The spec only requires the posted interrupt descriptor address to be 64-bytes aligned (i.e. bits[0:5] == 0). Using page_address_valid also forces the address to be page aligned. Only validate that the address does not cross the maximum physical address without enforcing a page alignment. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: x86@kernel.org Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Fixes: 6de84e58 ("nVMX x86: check posted-interrupt descriptor addresss on vmentry of L2") Signed-off-by: NKarimAllah Ahmed <karahmed@amazon.de> Reviewed-by: NJim Mattson <jmattson@google.com> Reviewed-by: NKrish Sadhuhan <krish.sadhukhan@oracle.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com> From: Mark Mielke <mark.mielke@gmail.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tom Roeder 提交于
commit 3a33d030daaa7c507e1c12d5adcf828248429593 upstream. This changes the allocation of cached_vmcs12 to use kzalloc instead of kmalloc. This removes the information leak found by Syzkaller (see Reported-by) in this case and prevents similar leaks from happening based on cached_vmcs12. It also changes vmx_get_nested_state to copy out the full 4k VMCS12_SIZE in copy_to_user rather than only the size of the struct. Tested: rebuilt against head, booted, and ran the syszkaller repro https://syzkaller.appspot.com/text?tag=ReproC&x=174efca3400000 without observing any problems. Reported-by: syzbot+ded1696f6b50b615b630@syzkaller.appspotmail.com Fixes: 8fcc4b59 Cc: stable@vger.kernel.org Signed-off-by: NTom Roeder <tmroeder@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 10 1月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit 1b3ab5ad1b8ad99bae76ec583809c5f5a31c707c upstream. Fixes: 34a1cd60 ("kvm: x86: vmx: move some vmx setting from vmx_init() to hardware_setup()") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 29 12月, 2018 1 次提交
-
-
由 Cfir Cohen 提交于
commit c2dd5146e9fe1f22c77c1b011adf84eea0245806 upstream. nested_get_vmcs12_pages() processes the posted_intr address in vmcs12. It caches the kmap()ed page object and pointer, however, it doesn't handle errors correctly: it's possible to cache a valid pointer, then release the page and later dereference the dangling pointer. I was able to reproduce with the following steps: 1. Call vmlaunch with valid posted_intr_desc_addr but an invalid MSR_EFER. This causes nested_get_vmcs12_pages() to cache the kmap()ed pi_desc_page and pi_desc. Later the invalid EFER value fails check_vmentry_postreqs() which fails the first vmlaunch. 2. Call vmlanuch with a valid EFER but an invalid posted_intr_desc_addr (I set it to 2G - 0x80). The second time we call nested_get_vmcs12_pages pi_desc_page is unmapped and released and pi_desc_page is set to NULL (the "shouldn't happen" clause). Due to the invalid posted_intr_desc_addr, kvm_vcpu_gpa_to_page() fails and nested_get_vmcs12_pages() returns. It doesn't return an error value so vmlaunch proceeds. Note that at this time we have a dangling pointer in vmx->nested.pi_desc and POSTED_INTR_DESC_ADDR in L0's vmcs. 3. Issue an IPI in L2 guest code. This triggers a call to vmx_complete_nested_posted_interrupt() and pi_test_and_clear_on() which dereferences the dangling pointer. Vulnerable code requires nested and enable_apicv variables to be set to true. The host CPU must also support posted interrupts. Fixes: 5e2f30b7 "KVM: nVMX: get rid of nested_get_page()" Cc: stable@vger.kernel.org Reviewed-by: NAndy Honig <ahonig@google.com> Signed-off-by: NCfir Cohen <cfir@google.com> Reviewed-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 12月, 2018 2 次提交
-
-
由 Yi Wang 提交于
[ Upstream commit 1e4329ee2c52692ea42cc677fb2133519718b34a ] The inline keyword which is not at the beginning of the function declaration may trigger the following build warnings, so let's fix it: arch/x86/kvm/vmx.c:1309:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] arch/x86/kvm/vmx.c:5947:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] arch/x86/kvm/vmx.c:5985:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] arch/x86/kvm/vmx.c:6023:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] Signed-off-by: NYi Wang <wang.yi59@zte.com.cn> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Liran Alon 提交于
[ Upstream commit f48b4711dd6e1cf282f9dfd159c14a305909c97c ] When guest transitions from/to long-mode by modifying MSR_EFER.LMA, the list of shared MSRs to be saved/restored on guest<->host transitions is updated (See vmx_set_efer() call to setup_msrs()). On every entry to guest, vcpu_enter_guest() calls vmx_prepare_switch_to_guest(). This function should also take care of setting the shared MSRs to be saved/restored. However, the function does nothing in case we are already running with loaded guest state (vmx->loaded_cpu_state != NULL). This means that even when guest modifies MSR_EFER.LMA which results in updating the list of shared MSRs, it isn't being taken into account by vmx_prepare_switch_to_guest() because it happens while we are running with loaded guest state. To fix above mentioned issue, add a flag to mark that the list of shared MSRs has been updated and modify vmx_prepare_switch_to_guest() to set shared MSRs when running with host state *OR* list of shared MSRs has been updated. Note that this issue was mistakenly introduced by commit 678e315e ("KVM: vmx: add dedicated utility to access guest's kernel_gs_base") because previously vmx_set_efer() always called vmx_load_host_state() which resulted in vmx_prepare_switch_to_guest() to set shared MSRs. Fixes: 678e315e ("KVM: vmx: add dedicated utility to access guest's kernel_gs_base") Reported-by: NEyal Moscovici <eyal.moscovici@oracle.com> Reviewed-by: NMihai Carabas <mihai.carabas@oracle.com> Reviewed-by: NLiam Merwick <liam.merwick@oracle.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 06 12月, 2018 2 次提交
-
-
由 Luiz Capitulino 提交于
commit a87c99e61236ba8ca962ce97a19fab5ebd588d35 upstream. Apparently, the ple_gap parameter was accidentally removed by commit c8e88717. Add it back. Signed-off-by: NLuiz Capitulino <lcapitulino@redhat.com> Cc: stable@vger.kernel.org Fixes: c8e88717Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Leonid Shatz 提交于
commit 326e742533bf0a23f0127d8ea62fb558ba665f08 upstream. Since commit e79f245d ("X86/KVM: Properly update 'tsc_offset' to represent the running guest"), vcpu->arch.tsc_offset meaning was changed to always reflect the tsc_offset value set on active VMCS. Regardless if vCPU is currently running L1 or L2. However, above mentioned commit failed to also change kvm_vcpu_write_tsc_offset() to set vcpu->arch.tsc_offset correctly. This is because vmx_write_tsc_offset() could set the tsc_offset value in active VMCS to given offset parameter *plus vmcs12->tsc_offset*. However, kvm_vcpu_write_tsc_offset() just sets vcpu->arch.tsc_offset to given offset parameter. Without taking into account the possible addition of vmcs12->tsc_offset. (Same is true for SVM case). Fix this issue by changing kvm_x86_ops->write_tsc_offset() to return actually set tsc_offset in active VMCS and modify kvm_vcpu_write_tsc_offset() to set returned value in vcpu->arch.tsc_offset. In addition, rename write_tsc_offset() callback to write_l1_tsc_offset() to make it clear that it is meant to set L1 TSC offset. Fixes: e79f245d ("X86/KVM: Properly update 'tsc_offset' to represent the running guest") Reviewed-by: NLiran Alon <liran.alon@oracle.com> Reviewed-by: NMihai Carabas <mihai.carabas@oracle.com> Reviewed-by: NKrish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: NLeonid Shatz <leonid.shatz@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 14 11月, 2018 2 次提交
-
-
由 Jim Mattson 提交于
[ Upstream commit cfb634fe3052aefc4e1360fa322018c9a0b49755 ] According to volume 3 of the SDM, bits 63:15 and 12:4 of the exit qualification field for debug exceptions are reserved (cleared to 0). However, the SDM is incorrect about bit 16 (corresponding to DR6.RTM). This bit should be set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional regions was enabled. Note that this is the opposite of DR6.RTM, which "indicates (when clear) that a debug exception (#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional regions was enabled." There is still an issue with stale DR6 bits potentially being misreported for the current debug exception. DR6 should not have been modified before vectoring the #DB exception, and the "new DR6 bits" should be available somewhere, but it was and they aren't. Fixes: b96fb439 ("KVM: nVMX: fixes to nested virt interrupt injection") Signed-off-by: NJim Mattson <jmattson@google.com> Reviewed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Vitaly Kuznetsov 提交于
commit a1b0c1c64dfef0cff8555bb708bfc5d7c66c6ca4 upstream. It is perfectly valid for a guest to do VMXON and not do VMPTRLD. This state needs to be preserved on migration. Cc: stable@vger.kernel.org Fixes: 8fcc4b59Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 13 10月, 2018 1 次提交
-
-
由 Vitaly Kuznetsov 提交于
I'm observing random crashes in multi-vCPU L2 guests running on KVM on Hyper-V. I bisected the issue to the commit 877ad952 ("KVM: vmx: Add tlb_remote_flush callback support"). Hyper-V TLFS states: "AddressSpace specifies an address space ID (an EPT PML4 table pointer)" So apparently, Hyper-V doesn't expect us to pass naked EPTP, only PML4 pointer should be used. Strip off EPT configuration information before calling into vmx_hv_remote_flush_tlb(). Fixes: 877ad952 ("KVM: vmx: Add tlb_remote_flush callback support") Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 04 10月, 2018 3 次提交
-
-
由 Paolo Bonzini 提交于
Commit b5861e5c introduced a check on the interrupt-window and NMI-window CPU execution controls in order to inject an external interrupt vmexit before the first guest instruction executes. However, when APIC virtualization is enabled the host does not need a vmexit in order to inject an interrupt at the next interrupt window; instead, it just places the interrupt vector in RVI and the processor will inject it as soon as possible. Therefore, on machines with APICv it is not enough to check the CPU execution controls: the same scenario can also happen if RVI>vPPR. Fixes: b5861e5cReviewed-by: NNikita Leshchenko <nikita.leshchenko@oracle.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Liran Alon <liran.alon@oracle.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
As of commit 8d860bbe ("kvm: vmx: Basic APIC virtualization controls have three settings"), KVM will disable VIRTUALIZE_APIC_ACCESSES when a nested guest writes APIC_BASE MSR and kvm-intel.flexpriority=0, whereas previously KVM would allow a nested guest to enable VIRTUALIZE_APIC_ACCESSES so long as it's supported in hardware. That is, KVM now advertises VIRTUALIZE_APIC_ACCESSES to a guest but doesn't (always) allow setting it when kvm-intel.flexpriority=0, and may even initially allow the control and then clear it when the nested guest writes APIC_BASE MSR, which is decidedly odd even if it doesn't cause functional issues. Hide the control completely when the module parameter is cleared. reported-by: NSean Christopherson <sean.j.christopherson@intel.com> Fixes: 8d860bbe ("kvm: vmx: Basic APIC virtualization controls have three settings") Cc: Jim Mattson <jmattson@google.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Return early from vmx_set_virtual_apic_mode() if the processor doesn't support VIRTUALIZE_APIC_ACCESSES or VIRTUALIZE_X2APIC_MODE, both of which reside in SECONDARY_VM_EXEC_CONTROL. This eliminates warnings due to VMWRITEs to SECONDARY_VM_EXEC_CONTROL (VMCS field 401e) failing on processors without secondary exec controls. Remove the similar check for TPR shadowing as it is incorporated in the flexpriority_enabled check and the APIC-related code in vmx_update_msr_bitmap() is further gated by VIRTUALIZE_X2APIC_MODE. Reported-by: NGerhard Wiesinger <redhat@wiesinger.com> Fixes: 8d860bbe ("kvm: vmx: Basic APIC virtualization controls have three settings") Cc: Jim Mattson <jmattson@google.com> Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 01 10月, 2018 3 次提交
-
-
由 Liran Alon 提交于
L2 IA32_BNDCFGS should be updated with vmcs12->guest_bndcfgs only when VM_ENTRY_LOAD_BNDCFGS is specified in vmcs12->vm_entry_controls. Otherwise, L2 IA32_BNDCFGS should be set to vmcs01->guest_bndcfgs which is L1 IA32_BNDCFGS. Reviewed-by: NNikita Leshchenko <nikita.leshchenko@oracle.com> Reviewed-by: NDarren Kenny <darren.kenny@oracle.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Liran Alon 提交于
Commit a87036ad ("KVM: x86: disable MPX if host did not enable MPX XSAVE features") introduced kvm_mpx_supported() to return true iff MPX is enabled in the host. However, that commit seems to have missed replacing some calls to kvm_x86_ops->mpx_supported() to kvm_mpx_supported(). Complete original commit by replacing remaining calls to kvm_mpx_supported(). Fixes: a87036ad ("KVM: x86: disable MPX if host did not enable MPX XSAVE features") Suggested-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Liran Alon 提交于
Before this commit, KVM exposes MPX VMX controls to L1 guest only based on if KVM and host processor supports MPX virtualization. However, these controls should be exposed to guest only in case guest vCPU supports MPX. Without this change, a L1 guest running with kernel which don't have commit 691bd434 ("kvm: vmx: allow host to access guest MSR_IA32_BNDCFGS") asserts in QEMU on the following: qemu-kvm: error: failed to set MSR 0xd90 to 0x0 qemu-kvm: .../qemu-2.10.0/target/i386/kvm.c:1801 kvm_put_msrs: Assertion 'ret == cpu->kvm_msr_buf->nmsrs failed' This is because L1 KVM kvm_init_msr_list() will see that vmx_mpx_supported() (As it only checks MPX VMX controls support) and therefore KVM_GET_MSR_INDEX_LIST IOCTL will include MSR_IA32_BNDCFGS. However, later when L1 will attempt to set this MSR via KVM_SET_MSRS IOCTL, it will fail because !guest_cpuid_has_mpx(vcpu). Therefore, fix the issue by exposing MPX VMX controls to L1 guest only when vCPU supports MPX. Fixes: 36be0b9d ("KVM: x86: Add nested virtualization support for MPX") Reported-by: NEyal Moscovici <eyal.moscovici@oracle.com> Reviewed-by: NNikita Leshchenko <nikita.leshchenko@oracle.com> Reviewed-by: NDarren Kenny <darren.kenny@oracle.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 25 9月, 2018 1 次提交
-
-
由 Paolo Bonzini 提交于
KVM has an old optimization whereby accesses to the kernel GS base MSR are trapped when the guest is in 32-bit and not when it is in 64-bit mode. The idea is that swapgs is not available in 32-bit mode, thus the guest has no reason to access the MSR unless in 64-bit mode and 32-bit applications need not pay the price of switching the kernel GS base between the host and the guest values. However, this optimization adds complexity to the code for little benefit (these days most guests are going to be 64-bit anyway) and in fact broke after commit 678e315e ("KVM: vmx: add dedicated utility to access guest's kernel_gs_base", 2018-08-06); the guest kernel GS base can be corrupted across SMIs and UEFI Secure Boot is therefore broken (a secure boot Linux guest, for example, fails to reach the login prompt about half the time). This patch just removes the optimization; the kernel GS base MSR is now never trapped by KVM, similarly to the FS and GS base MSRs. Fixes: 678e315eReviewed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 20 9月, 2018 7 次提交
-
-
由 Krish Sadhukhan 提交于
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the following check needs to be enforced on vmentry of L2 guests: If the 'enable VPID' VM-execution control is 1, the value of the of the VPID VM-execution control field must not be 0000H. Signed-off-by: NKrish Sadhukhan <krish.sadhukhan@oracle.com> Reviewed-by: NMark Kanda <mark.kanda@oracle.com> Reviewed-by: NLiran Alon <liran.alon@oracle.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Krish Sadhukhan 提交于
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the following check needs to be enforced on vmentry of L2 guests: - Bits 5:0 of the posted-interrupt descriptor address are all 0. - The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address width. Signed-off-by: NKrish Sadhukhan <krish.sadhukhan@oracle.com> Reviewed-by: NMark Kanda <mark.kanda@oracle.com> Reviewed-by: NLiran Alon <liran.alon@oracle.com> Reviewed-by: NDarren Kenny <darren.kenny@oracle.com> Reviewed-by: NKarl Heubaum <karl.heubaum@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Liran Alon 提交于
In case L1 do not intercept L2 HLT or enter L2 in HLT activity-state, it is possible for a vCPU to be blocked while it is in guest-mode. According to Intel SDM 26.6.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery: "These events wake the logical processor if it just entered the HLT state because of a VM entry". Therefore, if L1 enters L2 in HLT activity-state and L2 has a pending deliverable interrupt in vmcs12->guest_intr_status.RVI, then the vCPU should be waken from the HLT state and injected with the interrupt. In addition, if while the vCPU is blocked (while it is in guest-mode), it receives a nested posted-interrupt, then the vCPU should also be waken and injected with the posted interrupt. To handle these cases, this patch enhances kvm_vcpu_has_events() to also check if there is a pending interrupt in L2 virtual APICv provided by L1. That is, it evaluates if there is a pending virtual interrupt for L2 by checking RVI[7:4] > VPPR[7:4] as specified in Intel SDM 29.2.1 Evaluation of Pending Interrupts. Note that this also handles the case of nested posted-interrupt by the fact RVI is updated in vmx_complete_nested_posted_interrupt() which is called from kvm_vcpu_check_block() -> kvm_arch_vcpu_runnable() -> kvm_vcpu_running() -> vmx_check_nested_events() -> vmx_complete_nested_posted_interrupt(). Reviewed-by: NNikita Leshenko <nikita.leshchenko@oracle.com> Reviewed-by: NDarren Kenny <darren.kenny@oracle.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
VMX cannot be enabled under SMM, check it when CR4 is set and when nested virtualization state is restored. This should fix some WARNs reported by syzkaller, mostly around alloc_shadow_vmcs. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
A VMX preemption timer value of '0' is guaranteed to cause a VMExit prior to the CPU executing any instructions in the guest. Use the preemption timer (if it's supported) to trigger immediate VMExit in place of the current method of sending a self-IPI. This ensures that pending VMExit injection to L1 occurs prior to executing any instructions in the guest (regardless of nesting level). When deferring VMExit injection, KVM generates an immediate VMExit from the (possibly nested) guest by sending itself an IPI. Because hardware interrupts are blocked prior to VMEnter and are unblocked (in hardware) after VMEnter, this results in taking a VMExit(INTR) before any guest instruction is executed. But, as this approach relies on the IPI being received before VMEnter executes, it only works as intended when KVM is running as L0. Because there are no architectural guarantees regarding when IPIs are delivered, when running nested the INTR may "arrive" long after L2 is running e.g. L0 KVM doesn't force an immediate switch to L1 to deliver an INTR. For the most part, this unintended delay is not an issue since the events being injected to L1 also do not have architectural guarantees regarding their timing. The notable exception is the VMX preemption timer[1], which is architecturally guaranteed to cause a VMExit prior to executing any instructions in the guest if the timer value is '0' at VMEnter. Specifically, the delay in injecting the VMExit causes the preemption timer KVM unit test to fail when run in a nested guest. Note: this approach is viable even on CPUs with a broken preemption timer, as broken in this context only means the timer counts at the wrong rate. There are no known errata affecting timer value of '0'. [1] I/O SMIs also have guarantees on when they arrive, but I have no idea if/how those are emulated in KVM. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> [Use a hook for SVM instead of leaving the default in x86.c - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Provide a singular location where the VMX preemption timer bit is set/cleared so that future usages of the preemption timer can ensure the VMCS bit is up-to-date without having to modify unrelated code paths. For example, the preemption timer can be used to force an immediate VMExit. Cache the status of the timer to avoid redundant VMREAD and VMWRITE, e.g. if the timer stays armed across multiple VMEnters/VMExits. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
A VMX preemption timer value of '0' at the time of VMEnter is architecturally guaranteed to cause a VMExit prior to the CPU executing any instructions in the guest. This architectural definition is in place to ensure that a previously expired timer is correctly recognized by the CPU as it is possible for the timer to reach zero and not trigger a VMexit due to a higher priority VMExit being signalled instead, e.g. a pending #DB that morphs into a VMExit. Whether by design or coincidence, commit f4124500 ("KVM: nVMX: Fully emulate preemption timer") special cased timer values of '0' and '1' to ensure prompt delivery of the VMExit. Unlike '0', a timer value of '1' has no has no architectural guarantees regarding when it is delivered. Modify the timer emulation to trigger immediate VMExit if and only if the timer value is '0', and document precisely why '0' is special. Do this even if calibration of the virtual TSC failed, i.e. VMExit will occur immediately regardless of the frequency of the timer. Making only '0' a special case gives KVM leeway to be more aggressive in ensuring the VMExit is injected prior to executing instructions in the nested guest, and also eliminates any ambiguity as to why '1' is a special case, e.g. why wasn't the threshold for a "short timeout" set to 10, 100, 1000, etc... Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 08 9月, 2018 1 次提交
-
-
由 Liran Alon 提交于
Consider the case L1 had a IRQ/NMI event until it executed VMLAUNCH/VMRESUME which wasn't delivered because it was disallowed (e.g. interrupts disabled). When L1 executes VMLAUNCH/VMRESUME, L0 needs to evaluate if this pending event should cause an exit from L2 to L1 or delivered directly to L2 (e.g. In case L1 don't intercept EXTERNAL_INTERRUPT). Usually this would be handled by L0 requesting a IRQ/NMI window by setting VMCS accordingly. However, this setting was done on VMCS01 and now VMCS02 is active instead. Thus, when L1 executes VMLAUNCH/VMRESUME we force L0 to perform pending event evaluation by requesting a KVM_REQ_EVENT. Note that above scenario exists when L1 KVM is about to enter L2 but requests an "immediate-exit". As in this case, L1 will disable-interrupts and then send a self-IPI before entering L2. Reviewed-by: NNikita Leshchenko <nikita.leshchenko@oracle.com> Co-developed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
- 30 8月, 2018 3 次提交
-
-
由 Sean Christopherson 提交于
Lack of the kvm_ prefix gives the impression that it's a VMX or SVM specific function, and there's no conflict that prevents adding the kvm_ prefix. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Sean Christopherson 提交于
Re-execution after an emulation decode failure is only intended to handle a case where two or vCPUs race to write a shadowed page, i.e. we should never re-execute an instruction as part of MMIO emulation. As handle_ept_misconfig() is only used for MMIO emulation, it should pass EMULTYPE_NO_REEXECUTE when using the emulator to skip an instr in the fast-MMIO case where VM_EXIT_INSTRUCTION_LEN is invalid. And because the cr2 value passed to x86_emulate_instruction() is only destined for use when retrying or reexecuting, we can simply call emulate_instruction(). Fixes: d391f120 ("x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested") Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
由 Vitaly Kuznetsov 提交于
nested_run_pending is set 20 lines above and check_vmentry_prereqs()/ check_vmentry_postreqs() don't seem to be resetting it (the later, however, checks it). Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com> Reviewed-by: NJim Mattson <jmattson@google.com> Reviewed-by: NEduardo Valentin <eduval@amazon.com> Reviewed-by: NKrish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
- 22 8月, 2018 3 次提交
-
-
由 Paolo Bonzini 提交于
Two bug fixes: 1) missing entries in the l1d_param array; this can cause a host crash if an access attempts to reach the missing entry. Future-proof the get function against any overflows as well. However, the two entries VMENTER_L1D_FLUSH_EPT_DISABLED and VMENTER_L1D_FLUSH_NOT_REQUIRED must not be accepted by the parse function, so disable them there. 2) invalid values must be rejected even if the CPU does not have the bug, so test for them before checking boot_cpu_has(X86_BUG_L1TF) ... and a small refactoring, since the .cmd field is redundant with the index in the array. Reported-by: NBandan Das <bsd@redhat.com> Cc: stable@vger.kernel.org Fixes: a7b9020bSigned-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Virtualization of Intel SGX depends on Enclave Page Cache (EPC) management that is not yet available in the kernel, i.e. KVM support for exposing SGX to a guest cannot be added until basic support for SGX is upstreamed, which is a WIP[1]. Until SGX is properly supported in KVM, ensure a guest sees expected behavior for ENCLS, i.e. all ENCLS #UD. Because SGX does not have a true software enable bit, e.g. there is no CR4.SGXE bit, the ENCLS instruction can be executed[1] by the guest if SGX is supported by the system. Intercept all ENCLS leafs (via the ENCLS- exiting control and field) and unconditionally inject #UD. [1] https://www.spinics.net/lists/kvm/msg171333.html or https://lkml.org/lkml/2018/7/3/879 [2] A guest can execute ENCLS in the sense that ENCLS will not take an immediate #UD, but no ENCLS will ever succeed in a guest without explicit support from KVM (map EPC memory into the guest), unless KVM has a *very* egregious bug, e.g. accidentally mapped EPC memory into the guest SPTEs. In other words this patch is needed only to prevent the guest from seeing inconsistent behavior, e.g. #GP (SGX not enabled in Feature Control MSR) or #PF (leaf operand(s) does not point at EPC memory) instead of #UD on ENCLS. Intercepting ENCLS is not required to prevent the guest from truly utilizing SGX. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20180814163334.25724-3-sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Yi Wang 提交于
Substitute spaces with tab. No functional changes. Signed-off-by: NYi Wang <wang.yi59@zte.com.cn> Reviewed-by: NJiang Biao <jiang.biao2@zte.com.cn> Message-Id: <1534398159-48509-1-git-send-email-wang.yi59@zte.com.cn> Cc: stable@vger.kernel.org # L1TF Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 21 8月, 2018 1 次提交
-
-
由 Josh Poimboeuf 提交于
These are already defined higher up in the file. Fixes: 7db92e16 ("x86/kvm: Move l1tf setup function") Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/d7ca03ae210d07173452aeed85ffe344301219a5.1534253536.git.jpoimboe@redhat.com
-
- 07 8月, 2018 1 次提交
-
-
由 Uros Bizjak 提交于
Remove open-coded uses of set instructions to use CC_SET()/CC_OUT() in arch/x86/kvm/vmx.c. Signed-off-by: NUros Bizjak <ubizjak@gmail.com> [Mark error paths as unlikely while touching this. - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 06 8月, 2018 6 次提交
-
-
由 Sean Christopherson 提交于
The host's FS.base and GS.base rarely change, e.g. ~0.1% of host/guest swaps on my system. Cache the last value written to the VMCS and skip the VMWRITE to the associated VMCS fields when loading host state if the value hasn't changed since the last VMWRITE. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
On a 64-bit host, FS.sel and GS.sel are all but guaranteed to be 0, which in turn means they'll rarely change. Skip the VMWRITE for the associated VMCS fields when loading host state if the selector hasn't changed since the last VMWRITE. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
The HOST_{FS,GS}_BASE fields are guaranteed to be written prior to VMENTER, by way of vmx_prepare_switch_to_guest(). Initialize the fields to zero for 64-bit kernels instead of pulling the base values from their respective MSRs. In addition to eliminating two RDMSRs, vmx_prepare_switch_to_guest() can safely assume the initial value of the fields is zero in all cases. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Make host_state a property of a loaded_vmcs so that it can be used as a cache of the VMCS fields, e.g. to lazily VMWRITE the corresponding VMCS field. Treating host_state as a cache does not work if it's not VMCS specific as the cache would become incoherent when switching between vmcs01 and vmcs02. Move vmcs_host_cr3 and vmcs_host_cr4 into host_state. Explicitly zero out host_state when allocating a new VMCS for a loaded_vmcs. Unlike the pre-existing vmcs_host_cr{3,4} usage, the segment information is not guaranteed to be (re)initialized when running a new nested VMCS, e.g. HOST_FS_BASE is not written in vmx_set_constant_host_state(). Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Remove fs_reload_needed and gs_ldt_reload_needed from host_state and instead compute whether we need to reload various state at the time we actually do the reload. The state that is tracked by the *_reload_needed variables is not any more volatile than the trackers themselves. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
prepare_vmcs02() has an odd comment that says certain fields are "not in vmcs02". AFAICT the intent of the comment is to document that various VMCS fields are not handled by prepare_vmcs02(), e.g. HOST_{FS,GS}_{BASE,SELECTOR}. While technically true, the comment is misleading, e.g. it can lead the reader to think that KVM never writes those fields to vmcs02. Remove the comment altogether as the handling of FS and GS is not specific to nested VMX, and GUEST_PML_INDEX has been written by prepare_vmcs02() since commit "4e59516a (kvm: vmx: ensure VMCS is current while enabling PML)" Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-