1. 18 12月, 2012 4 次提交
  2. 08 11月, 2012 1 次提交
    • D
      xfs: fix buffer shudown reference count mismatch · 137fff09
      Dave Chinner 提交于
      When we shut down the filesystem, we have to unpin and free all the
      buffers currently active in the CIL. To do this we unpin and remove
      them in one operation as a result of a failed iclogbuf write. For
      buffers, we do this removal via a simultated IO completion of after
      marking the buffer stale.
      
      At the time we do this, we have two references to the buffer - the
      active LRU reference and the buf log item.  The LRU reference is
      removed by marking the buffer stale, and the active CIL reference is
      by the xfs_buf_iodone() callback that is run by
      xfs_buf_do_callbacks() during ioend processing (via the bp->b_iodone
      callback).
      
      However, ioend processing requires one more reference - that of the
      IO that it is completing. We don't have this reference, so we free
      the buffer prematurely and use it after it is freed. For buffers
      marked with XBF_ASYNC, this leads to assert failures in
      xfs_buf_rele() on debug kernels because the b_hold count is zero.
      
      Fix this by making sure we take the necessary IO reference before
      starting IO completion processing on the stale buffer, and set the
      XBF_ASYNC flag to ensure that IO completion processing removes all
      the active references from the buffer to ensure it is fully torn
      down.
      
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      137fff09
  3. 14 7月, 2012 2 次提交
  4. 02 7月, 2012 2 次提交
    • D
      xfs: support discontiguous buffers in the xfs_buf_log_item · 372cc85e
      Dave Chinner 提交于
      discontigous buffer in separate buffer format structures. This means log
      recovery will recover all the changes on a per segment basis without
      requiring any knowledge of the fact that it was logged from a
      compound buffer.
      
      To do this, we need to be able to determine what buffer segment any
      given offset into the compound buffer sits over. This enables us to
      translate the dirty bitmap in the number of separate buffer format
      structures required.
      
      We also need to be able to determine the number of bitmap elements
      that a given buffer segment has, as this determines the size of the
      buffer format structure. Hence we need to be able to determine the
      both the start offset into the buffer and the length of a given
      segment to be able to calculate this.
      
      With this information, we can preallocate, build and format the
      correct log vector array for each segment in a compound buffer to
      appear exactly the same as individually logged buffers in the log.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      372cc85e
    • D
      xfs: struct xfs_buf_log_format isn't variable sized. · 77c1a08f
      Dave Chinner 提交于
      The struct xfs_buf_log_format wants to think the dirty bitmap is
      variable sized.  In fact, it is variable size on disk simply due to
      the way we map it from the in-memory structure, but we still just
      use a fixed size memory allocation for the in-memory structure.
      
      Hence it makes no sense to set the function up as a variable sized
      structure when we already know it's maximum size, and we always
      allocate it as such. Simplify the structure by making the dirty
      bitmap a fixed sized array and just using the size of the structure
      for the allocation size.
      
      This will make it much simpler to allocate and manipulate an array
      of format structures for discontiguous buffer support.
      
      The previous struct xfs_buf_log_item size according to
      /proc/slabinfo was 224 bytes. pahole doesn't give the same size
      because of the variable size definition. With this modification,
      pahole reports the same as /proc/slabinfo:
      
      	/* size: 224, cachelines: 4, members: 6 */
      
      Because the xfs_buf_log_item size is now determined by the maximum
      supported block size we introduce a dependency on xfs_alloc_btree.h.
      Avoid this dependency by moving the idefines for the maximum block
      sizes supported to xfs_types.h with all the other max/min type
      defines to avoid any new dependencies.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      77c1a08f
  5. 15 5月, 2012 5 次提交
    • D
      xfs: move xfsagino_t to xfs_types.h · 60a34607
      Dave Chinner 提交于
      Untangle the header file includes a bit by moving the definition of
      xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on
      xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include
      xfs_ag.h.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      60a34607
    • D
      xfs: use blocks for storing the desired IO size · aa0e8833
      Dave Chinner 提交于
      Now that we pass block counts everywhere, and index buffers by block
      number and length in units of blocks, convert the desired IO size
      into block counts rather than bytes. Convert the code to use block
      counts, and those that need byte counts get converted at the time of
      use.
      
      Rename the b_desired_count variable to something closer to it's
      purpose - b_io_length - as it is only used to specify the length of
      an IO for a subset of the buffer.  The only time this is used is for
      log IO - both writing iclogs and during log recovery. In all other
      cases, the b_io_length matches b_length, and hence a lot of code
      confuses the two. e.g. the buf item code uses the io count
      exclusively when it should be using the buffer length. Fix these
      apprpriately as they are found.
      
      Also, remove the XFS_BUF_{SET_}COUNT() macros that are just wrappers
      around the desired IO length. They only serve to make the code
      shouty loud, don't actually add any real value, and are often used
      incorrectly.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      aa0e8833
    • D
      xfs: pass shutdown method into xfs_trans_ail_delete_bulk · 04913fdd
      Dave Chinner 提交于
      xfs_trans_ail_delete_bulk() can be called from different contexts so
      if the item is not in the AIL we need different shutdown for each
      context.  Pass in the shutdown method needed so the correct action
      can be taken.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      04913fdd
    • C
      xfs: on-stack delayed write buffer lists · 43ff2122
      Christoph Hellwig 提交于
      Queue delwri buffers on a local on-stack list instead of a per-buftarg one,
      and write back the buffers per-process instead of by waking up xfsbufd.
      
      This is now easily doable given that we have very few places left that write
      delwri buffers:
      
       - log recovery:
      	Only done at mount time, and already forcing out the buffers
      	synchronously using xfs_flush_buftarg
      
       - quotacheck:
      	Same story.
      
       - dquot reclaim:
      	Writes out dirty dquots on the LRU under memory pressure.  We might
      	want to look into doing more of this via xfsaild, but it's already
      	more optimal than the synchronous inode reclaim that writes each
      	buffer synchronously.
      
       - xfsaild:
      	This is the main beneficiary of the change.  By keeping a local list
      	of buffers to write we reduce latency of writing out buffers, and
      	more importably we can remove all the delwri list promotions which
      	were hitting the buffer cache hard under sustained metadata loads.
      
      The implementation is very straight forward - xfs_buf_delwri_queue now gets
      a new list_head pointer that it adds the delwri buffers to, and all callers
      need to eventually submit the list using xfs_buf_delwi_submit or
      xfs_buf_delwi_submit_nowait.  Buffers that already are on a delwri list are
      skipped in xfs_buf_delwri_queue, assuming they already are on another delwri
      list.  The biggest change to pass down the buffer list was done to the AIL
      pushing. Now that we operate on buffers the trylock, push and pushbuf log
      item methods are merged into a single push routine, which tries to lock the
      item, and if possible add the buffer that needs writeback to the buffer list.
      This leads to much simpler code than the previous split but requires the
      individual IOP_PUSH instances to unlock and reacquire the AIL around calls
      to blocking routines.
      
      Given that xfsailds now also handle writing out buffers, the conditions for
      log forcing and the sleep times needed some small changes.  The most
      important one is that we consider an AIL busy as long we still have buffers
      to push, and the other one is that we do increment the pushed LSN for
      buffers that are under flushing at this moment, but still count them towards
      the stuck items for restart purposes.  Without this we could hammer on stuck
      items without ever forcing the log and not make progress under heavy random
      delete workloads on fast flash storage devices.
      
      [ Dave Chinner:
      	- rebase on previous patches.
      	- improved comments for XBF_DELWRI_Q handling
      	- fix XBF_ASYNC handling in queue submission (test 106 failure)
      	- rename delwri submit function buffer list parameters for clarity
      	- xfs_efd_item_push() should return XFS_ITEM_PINNED ]
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      43ff2122
    • C
      xfs: do not add buffers to the delwri queue until pushed · 960c60af
      Christoph Hellwig 提交于
      Instead of adding buffers to the delwri list as soon as they are logged,
      even if they can't be written until commited because they are pinned
      defer adding them to the delwri list until xfsaild pushes them.  This
      makes the code more similar to other log items and prepares for writing
      buffers directly from xfsaild.
      
      The complication here is that we need to fail buffers that were added
      but not logged yet in xfs_buf_item_unpin, borrowing code from
      xfs_bioerror.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NMark Tinguely <tinguely@sgi.com>
      Signed-off-by: NBen Myers <bpm@sgi.com>
      960c60af
  6. 09 11月, 2011 1 次提交
  7. 12 10月, 2011 5 次提交
  8. 11 8月, 2011 1 次提交
  9. 26 7月, 2011 8 次提交
  10. 13 7月, 2011 3 次提交
  11. 08 7月, 2011 1 次提交
  12. 31 3月, 2011 1 次提交
  13. 07 3月, 2011 1 次提交
  14. 28 1月, 2011 1 次提交
    • D
      xfs: fix efi item leak on forced shutdown · e34a314c
      Dave Chinner 提交于
      After test 139, kmemleak shows:
      
      unreferenced object 0xffff880078b405d8 (size 400):
        comm "xfs_io", pid 4904, jiffies 4294909383 (age 1186.728s)
        hex dump (first 32 bytes):
          60 c1 17 79 00 88 ff ff 60 c1 17 79 00 88 ff ff  `..y....`..y....
          00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
        backtrace:
          [<ffffffff81afb04d>] kmemleak_alloc+0x2d/0x60
          [<ffffffff8115c6cf>] kmem_cache_alloc+0x13f/0x2b0
          [<ffffffff814aaa97>] kmem_zone_alloc+0x77/0xf0
          [<ffffffff814aab2e>] kmem_zone_zalloc+0x1e/0x50
          [<ffffffff8147cd6b>] xfs_efi_init+0x4b/0xb0
          [<ffffffff814a4ee8>] xfs_trans_get_efi+0x58/0x90
          [<ffffffff81455fab>] xfs_bmap_finish+0x8b/0x1d0
          [<ffffffff814851b4>] xfs_itruncate_finish+0x2c4/0x5d0
          [<ffffffff814a970f>] xfs_setattr+0x8df/0xa70
          [<ffffffff814b5c7b>] xfs_vn_setattr+0x1b/0x20
          [<ffffffff8117dc00>] notify_change+0x170/0x2e0
          [<ffffffff81163bf6>] do_truncate+0x66/0xa0
          [<ffffffff81163d0b>] sys_ftruncate+0xdb/0xe0
          [<ffffffff8103a002>] system_call_fastpath+0x16/0x1b
          [<ffffffffffffffff>] 0xffffffffffffffff
      
      The cause of the leak is that the "remove" parameter of IOP_UNPIN()
      is never set when a CIL push is aborted. This means that the EFI
      item is never freed if it was in the push being cancelled. The
      problem is specific to delayed logging, but has uncovered a couple
      of problems with the handling of IOP_UNPIN(remove).
      
      Firstly, we cannot safely call xfs_trans_del_item() from IOP_UNPIN()
      in the CIL commit failure path or the iclog write failure path
      because for delayed loging we have no transaction context. Hence we
      must only call xfs_trans_del_item() if the log item being unpinned
      has an active log item descriptor.
      
      Secondly, xfs_trans_uncommit() does not handle log item descriptor
      freeing during the traversal of log items on a transaction. It can
      reference a freed log item descriptor when unpinning an EFI item.
      Hence it needs to use a safe list traversal method to allow items to
      be removed from the transaction during IOP_UNPIN().
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NAlex Elder <aelder@sgi.com>
      e34a314c
  15. 12 1月, 2011 1 次提交
    • C
      xfs: fix error handling for synchronous writes · bfc60177
      Christoph Hellwig 提交于
      If we get an IO error on a synchronous superblock write, we attach an
      error release function to it so that when the last reference goes away
      the release function is called and the buffer is invalidated and
      unlocked. The buffer is left locked until the release function is
      called so that other concurrent users of the buffer will be locked out
      until the buffer error is fully processed.
      
      Unfortunately, for the superblock buffer the filesyetm itself holds a
      reference to the buffer which prevents the reference count from
      dropping to zero and the release function being called. As a result,
      once an IO error occurs on a sync write, the buffer will never be
      unlocked and all future attempts to lock the buffer will hang.
      
      To make matters worse, this problems is not unique to such buffers;
      if there is a concurrent _xfs_buf_find() running, the lookup will grab
      a reference to the buffer and then wait on the buffer lock, preventing
      the reference count from ever falling to zero and hence unlocking the
      buffer.
      
      As such, the whole b_relse function implementation is broken because it
      cannot rely on the buffer reference count falling to zero to unlock the
      errored buffer. The synchronous write error path is the only path that
      uses this callback - it is used to ensure that the synchronous waiter
      gets the buffer error before the error state is cleared from the buffer
      by the release function.
      
      Given that the only sychronous buffer writes now go through xfs_bwrite
      and the error path in question can only occur for a write of a dirty,
      logged buffer, we can move most of the b_relse processing to happen
      inline in xfs_buf_iodone_callbacks, just like a normal I/O completion.
      In addition to that we make sure the error is not cleared in
      xfs_buf_iodone_callbacks, so that xfs_bwrite can reliably check it.
      Given that xfs_bwrite keeps the buffer locked until it has waited for
      it and checked the error this allows to reliably propagate the error
      to the caller, and make sure that the buffer is reliably unlocked.
      
      Given that xfs_buf_iodone_callbacks was the only instance of the
      b_relse callback we can remove it entirely.
      
      Based on earlier patches by Dave Chinner and Ajeet Yadav.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Reported-by: NAjeet Yadav <ajeet.yadav.77@gmail.com>
      Reviewed-by: NDave Chinner <dchinner@redhat.com>
      Signed-off-by: NAlex Elder <aelder@sgi.com>
      bfc60177
  16. 03 12月, 2010 1 次提交
    • D
      xfs: consume iodone callback items on buffers as they are processed · c90821a2
      Dave Chinner 提交于
      To allow buffer iodone callbacks to consume multiple items off the
      callback list, first we need to convert the xfs_buf_do_callbacks()
      to consume items and always pull the next item from the head of the
      list.
      
      The means the item list walk is never dependent on knowing the
      next item on the list and hence allows callbacks to remove items
      from the list as well. This allows callbacks to do bulk operations
      by scanning the list for identical callbacks, consuming them all
      and then processing them in bulk, negating the need for multiple
      callbacks of that type.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      c90821a2
  17. 19 10月, 2010 2 次提交