- 14 8月, 2011 16 次提交
-
-
由 Paul Turner 提交于
Account bandwidth usage on the cfs_rq level versus the task_groups to which they belong. Whether we are tracking bandwidth on a given cfs_rq is maintained under cfs_rq->runtime_enabled. cfs_rq's which belong to a bandwidth constrained task_group have their runtime accounted via the update_curr() path, which withdraws bandwidth from the global pool as desired. Updates involving the global pool are currently protected under cfs_bandwidth->lock, local runtime is protected by rq->lock. This patch only assigns and tracks quota, no action is taken in the case that cfs_rq->runtime_used exceeds cfs_rq->runtime_assigned. Signed-off-by: NPaul Turner <pjt@google.com> Signed-off-by: NNikhil Rao <ncrao@google.com> Signed-off-by: NBharata B Rao <bharata@linux.vnet.ibm.com> Reviewed-by: NHidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.179386821@google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Paul Turner 提交于
Add constraints validation for CFS bandwidth hierarchies. Validate that: max(child bandwidth) <= parent_bandwidth In a quota limited hierarchy, an unconstrained entity (e.g. bandwidth==RUNTIME_INF) inherits the bandwidth of its parent. This constraint is chosen over sum(child_bandwidth) as notion of over-commit is valuable within SCHED_OTHER. Some basic code from the RT case is re-factored for reuse. Signed-off-by: NPaul Turner <pjt@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.083774572@google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Paul Turner 提交于
In this patch we introduce the notion of CFS bandwidth, partitioned into globally unassigned bandwidth, and locally claimed bandwidth. - The global bandwidth is per task_group, it represents a pool of unclaimed bandwidth that cfs_rqs can allocate from. - The local bandwidth is tracked per-cfs_rq, this represents allotments from the global pool bandwidth assigned to a specific cpu. Bandwidth is managed via cgroupfs, adding two new interfaces to the cpu subsystem: - cpu.cfs_period_us : the bandwidth period in usecs - cpu.cfs_quota_us : the cpu bandwidth (in usecs) that this tg will be allowed to consume over period above. Signed-off-by: NPaul Turner <pjt@google.com> Signed-off-by: NNikhil Rao <ncrao@google.com> Signed-off-by: NBharata B Rao <bharata@linux.vnet.ibm.com> Reviewed-by: NHidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184756.972636699@google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Paul Turner 提交于
Introduce hierarchical task accounting for the group scheduling case in CFS, as well as promoting the responsibility for maintaining rq->nr_running to the scheduling classes. The primary motivation for this is that with scheduling classes supporting bandwidth throttling it is possible for entities participating in throttled sub-trees to not have root visible changes in rq->nr_running across activate and de-activate operations. This in turn leads to incorrect idle and weight-per-task load balance decisions. This also allows us to make a small fixlet to the fastpath in pick_next_task() under group scheduling. Note: this issue also exists with the existing sched_rt throttling mechanism. This patch does not address that. Signed-off-by: NPaul Turner <pjt@google.com> Reviewed-by: NHidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184756.878333391@google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Yong Zhang 提交于
Since [sched/cpupri: Remove the vec->lock], member pri_active of struct cpupri is not needed any more, just remove it. Also clean stuff related to it. Signed-off-by: NYong Zhang <yong.zhang0@gmail.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110806001004.GA2207@zhySigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Steven Rostedt 提交于
[ This patch actually compiles. Thanks to Mike Galbraith for pointing that out. I compiled and booted this patch with no issues. ] Re-examining the cpupri patch, I see there's a possible race because the update of the two priorities vec->counts are not protected by a memory barrier. When a RT runqueue is overloaded and wants to push an RT task to another runqueue, it scans the RT priority vectors in a loop from lowest priority to highest. When we queue or dequeue an RT task that changes a runqueue's highest priority task, we update the vectors to show that a runqueue is rated at a different priority. To do this, we first set the new priority mask, and increment the vec->count, and then set the old priority mask by decrementing the vec->count. If we are lowering the runqueue's RT priority rating, it will trigger a RT pull, and we do not care if we miss pushing to this runqueue or not. But if we raise the priority, but the priority is still lower than an RT task that is looking to be pushed, we must make sure that this runqueue is still seen by the push algorithm (the loop). Because the loop reads from lowest to highest, and the new priority is set before the old one is cleared, we will either see the new or old priority set and the vector will be checked. But! Since there's no memory barrier between the updates of the two, the old count may be decremented first before the new count is incremented. This means the loop may see the old count of zero and skip it, and also the new count of zero before it was updated. A possible runqueue that the RT task could move to could be missed. A conditional memory barrier is placed between the vec->count updates and is only called when both updates are done. The smp_wmb() has also been changed to smp_mb__before_atomic_inc/dec(), as they are not needed by archs that already synchronize atomic_inc/dec(). The smp_rmb() has been moved to be called at every iteration of the loop so that the race between seeing the two updates is visible by each iteration of the loop, as an arch is free to optimize the reading of memory of the counters in the loop. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1312547269.18583.194.camel@gandalf.stny.rr.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Steven Rostedt 提交于
sched/cpupri: Remove the vec->lock The cpupri vec->lock has been showing up as a top contention lately. This is because of the RT push/pull logic takes an agressive approach for migrating RT tasks. The cpupri logic is in place to improve the performance of the push/pull when dealing with large number CPU machines. The problem though is a vec->lock is required, where a vec is a global per RT priority structure. That is, if there are lots of RT tasks at the same priority, every time they are added or removed from the RT queue, this global vec->lock is taken. Now that more kernel threads are becoming RT (RCU boost and threaded interrupts) this is becoming much more of an issue. There are two variables that are being synced by the vec->lock. The cpupri bitmask, and the vec->counter. The cpupri bitmask is one bit per priority. If a RT priority vec has a process queued, then the vec->count is > 0 and the cpupri bitmask is set for that RT priority. If the cpupri bitmask gets out of sync with the vec->counter, we could end up pushing a low proirity RT task to a high priority queue. That RT task that could have run immediately could be queued on a run queue with a higher priority task indefinitely. The solution is not to use the cpupri bitmask and just look at the vec->count directly when doing a pull. The cpupri bitmask is just a fast way to scan the RT priorities when a pull is made. Instead of using the bitmask, and just examine all RT priorities, and look at the vec->counts, we could eliminate the vec->lock. The scan of RT tasks is to find a run queue that we can push an RT task to, and we do not push to a high priority queue, thus the scan only needs to go from 1 to RT task->prio, and not all 100 RT priorities. The push algorithm, which does the scan of RT priorities (and scan of the bitmask) only happens when we have an overloaded RT run queue (more than one RT task queued). The grabbing of the vec->lock happens every time any RT task is queued or dequeued on the run queue for that priority. The slowing down of the scan by not using a bitmask is negligible by the speed up of removing the vec->lock contention, and replacing it with an atomic counter and memory barrier. To prove this, I wrote a patch that times both the loop and the code that grabs the vec->locks. I passed the patches to various people (and companies) to test and show the results. I let everyone choose their own load to test, giving different loads on the system, for various different setups. Here's some of the results: (snipping to a few CPUs to not make this change log huge, but the results were consistent across the entire system). System 1 (24 CPUs) Before patch: CPU: Name Count Max Min Average Total ---- ---- ----- --- --- ------- ----- [...] cpu 20: loop 3057 1.766 0.061 0.642 1963.170 vec 6782949 90.469 0.089 0.414 2811760.503 cpu 21: loop 2617 1.723 0.062 0.641 1679.074 vec 6782810 90.499 0.089 0.291 1978499.900 cpu 22: loop 2212 1.863 0.063 0.699 1547.160 vec 6767244 85.685 0.089 0.435 2949676.898 cpu 23: loop 2320 2.013 0.062 0.594 1380.265 vec 6781694 87.923 0.088 0.431 2928538.224 After patch: cpu 20: loop 2078 1.579 0.061 0.533 1108.006 vec 6164555 5.704 0.060 0.143 885185.809 cpu 21: loop 2268 1.712 0.065 0.575 1305.248 vec 6153376 5.558 0.060 0.187 1154960.469 cpu 22: loop 1542 1.639 0.095 0.533 823.249 vec 6156510 5.720 0.060 0.190 1172727.232 cpu 23: loop 1650 1.733 0.068 0.545 900.781 vec 6170784 5.533 0.060 0.167 1034287.953 All times are in microseconds. The 'loop' is the amount of time spent doing the loop across the priorities (before patch uses bitmask). the 'vec' is the amount of time in the code that requires grabbing the vec->lock. The second patch just does not have the vec lock, but encompasses the same code. Amazingly the loop code even went down on average. The vec code went from .5 down to .18, that's more than half the time spent! Note, more than one test was run, but they all had the same results. System 2 (64 CPUs) Before patch: CPU: Name Count Max Min Average Total ---- ---- ----- --- --- ------- ----- cpu 60: loop 0 0 0 0 0 vec 5410840 277.954 0.084 0.782 4232895.727 cpu 61: loop 0 0 0 0 0 vec 4915648 188.399 0.084 0.570 2803220.301 cpu 62: loop 0 0 0 0 0 vec 5356076 276.417 0.085 0.786 4214544.548 cpu 63: loop 0 0 0 0 0 vec 4891837 170.531 0.085 0.799 3910948.833 After patch: cpu 60: loop 0 0 0 0 0 vec 5365118 5.080 0.021 0.063 340490.267 cpu 61: loop 0 0 0 0 0 vec 4898590 1.757 0.019 0.071 347903.615 cpu 62: loop 0 0 0 0 0 vec 5737130 3.067 0.021 0.119 687108.734 cpu 63: loop 0 0 0 0 0 vec 4903228 1.822 0.021 0.071 348506.477 The test run during the measurement did not have any (very few, from other CPUs) RT tasks pushing. But this shows that it helped out tremendously with the contention, as the contention happens because the vec->lock is taken only on queuing at an RT priority, and different CPUs that queue tasks at the same priority will have contention. I tested on my own 4 CPU machine with the following results: Before patch: CPU: Name Count Max Min Average Total ---- ---- ----- --- --- ------- ----- cpu 0: loop 2377 1.489 0.158 0.588 1398.395 vec 4484 770.146 2.301 4.396 19711.755 cpu 1: loop 2169 1.962 0.160 0.576 1250.110 vec 4425 152.769 2.297 4.030 17834.228 cpu 2: loop 2324 1.749 0.155 0.559 1299.799 vec 4368 779.632 2.325 4.665 20379.268 cpu 3: loop 2325 1.629 0.157 0.561 1306.113 vec 4650 408.782 2.394 4.348 20222.577 After patch: CPU: Name Count Max Min Average Total ---- ---- ----- --- --- ------- ----- cpu 0: loop 2121 1.616 0.113 0.636 1349.189 vec 4303 1.151 0.225 0.421 1811.966 cpu 1: loop 2130 1.638 0.178 0.644 1372.927 vec 4627 1.379 0.235 0.428 1983.648 cpu 2: loop 2056 1.464 0.165 0.637 1310.141 vec 4471 1.311 0.217 0.433 1937.927 cpu 3: loop 2154 1.481 0.162 0.601 1295.083 vec 4236 1.253 0.230 0.425 1803.008 This was running my migrate.c code that can be found at: http://lwn.net/Articles/425763/ The migrate code does stress the RT tasks a bit. This shows that the loop did increase a little after the patch, but not by much. The vec code dropped dramatically. From 4.3us down to .42us. That's a 10x improvement! Tested-by: NMike Galbraith <mgalbraith@suse.de> Tested-by: NLuis Claudio R. Gonçalves <lgoncalv@redhat.com> Tested-by: Matthew Hank Sabins<msabins@linux.vnet.ibm.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Reviewed-by: NGregory Haskins <gregory.haskins@gmail.com> Acked-by: NHillf Danton <dhillf@gmail.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Chris Mason <chris.mason@oracle.com> Link: http://lkml.kernel.org/r/1312317372.18583.101.camel@gandalf.stny.rr.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Steven Rostedt 提交于
Hillf Danton proposed a patch (see link) that cleaned up the sched_rt code that calculates the priority of the next highest priority task to be used in finding run queues to pull from. His patch removed the calculating of the next prio to just use the current prio when deteriming if we should examine a run queue to pull from. The problem with his patch was that it caused more false checks. Because we check a run queue for pushable tasks if the current priority of that run queue is higher in priority than the task about to run on our run queue. But after grabbing the locks and doing the real check, we find that there may not be a task that has a higher prio task to pull. Thus the locks were taken with nothing to do. I added some trace_printks() to record when and how many times the run queue locks were taken to check for pullable tasks, compared to how many times we pulled a task. With the current method, it was: 3806 locks taken vs 2812 pulled tasks With Hillf's patch: 6728 locks taken vs 2804 pulled tasks The number of times locks were taken to pull a task went up almost double with no more success rate. But his patch did get me thinking. When we look at the priority of the highest task to consider taking the locks to do a pull, a failure to pull can be one of the following: (in order of most likely) o RT task was pushed off already between the check and taking the lock o Waiting RT task can not be migrated o RT task's CPU affinity does not include the target run queue's CPU o RT task's priority changed between the check and taking the lock And with Hillf's patch, the thing that caused most of the failures, is the RT task to pull was not at the right priority to pull (not greater than the current RT task priority on the target run queue). Most of the above cases we can't help. But the current method does not check if the next highest prio RT task can be migrated or not, and if it can not, we still grab the locks to do the test (we don't find out about this fact until after we have the locks). I thought about this case, and realized that the pushable task plist that is maintained only holds RT tasks that can migrate. If we move the calculating of the next highest prio task from the inc/dec_rt_task() functions into the queuing of the pushable tasks, then we only measure the priorities of those tasks that we push, and we get this basically for free. Not only does this patch make the code a little more efficient, it cleans it up and makes it a little simpler. Thanks to Hillf Danton for inspiring me on this patch. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hillf Danton <dhillf@gmail.com> Cc: Gregory Haskins <ghaskins@novell.com> Link: http://lkml.kernel.org/r/BANLkTimQ67180HxCx5vgMqumqw1EkFh3qg@mail.gmail.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Steven Rostedt 提交于
When a new task is woken, the code to balance the RT task is currently skipped in the select_task_rq() call. But it will be pushed if the rq is currently overloaded with RT tasks anyway. The issue is that we already queued the task, and if it does get pushed, it will have to be dequeued and requeued on the new run queue. The advantage with pushing it first is that we avoid this requeuing as we are pushing it off before the task is ever queued. See commit 318e0893 ("sched: pre-route RT tasks on wakeup") for more details. The return of select_task_rq() when it is not a wake up has also been changed to return task_cpu() instead of smp_processor_id(). This is more of a sanity because the current only other user of select_task_rq() besides wake ups, is an exec, where task_cpu() should also be the same as smp_processor_id(). But if it is used for other purposes, lets keep the task on the same CPU. Why would we mant to migrate it to the current CPU? Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hillf Danton <dhillf@gmail.com> Link: http://lkml.kernel.org/r/20110617015919.832743148@goodmis.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Hillf Danton 提交于
There's no reason to clean the exec_start in put_prev_task_rt() as it is reset when the task gets back to the run queue. This saves us doing a store() in the fast path. Signed-off-by: NHillf Danton <dhillf@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Galbraith <efault@gmx.de> Cc: Yong Zhang <yong.zhang0@gmail.com> Link: http://lkml.kernel.org/r/BANLkTimqWD=q6YnSDi-v9y=LMWecgEzEWg@mail.gmail.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Hillf Danton 提交于
Do not call dequeue_pushable_task() when failing to push an eligible task, as it remains pushable, merely not at this particular moment. Signed-off-by: NHillf Danton <dhillf@gmail.com> Signed-off-by: NMike Galbraith <mgalbraith@gmx.de> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Yong Zhang <yong.zhang0@gmail.com> Link: http://lkml.kernel.org/r/1306895385.4791.26.camel@marge.simson.netSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Hillf Danton 提交于
Checking for the validity of sd is removed, since it is already checked by the for_each_domain macro. Signed-off-by: NHillf Danton <dhillf@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/BANLkTimT+Tut-3TshCDm-NiLLXrOznibNA@mail.gmail.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Hillf Danton 提交于
When computing the next priority for a given run-queue, the check for RT priority of the task determined by the pick_next_highest_task_rt() function could be removed, since only RT tasks are returned by the function. Reviewed-by: NYong Zhang <yong.zhang0@gmail.com> Signed-off-by: NHillf Danton <dhillf@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/BANLkTimxmWiof9s5AvS3v_0X+sMiE=0x5g@mail.gmail.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Mike Galbraith 提交于
Setting child->prio = current->normal_prio _after_ SCHED_RESET_ON_FORK has been handled for an RT parent gives birth to a deranged mutant child with non-RT policy, but RT prio and sched_class. Move PI leakage protection up, always set priorities and weight, and if the child is leaving RT class, reset rt_priority to the proper value. Signed-off-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1311779695.8691.2.camel@marge.simson.netSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Yong Zhang 提交于
Remove the WAKEUP_PREEMPT feature, disabling it doesn't make any sense and its outlived its use by a long long while. Signed-off-by: NYong Zhang <yong.zhang0@gmail.com> Acked-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110729082033.GB12106@zhySigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Jan H. Schönherr 提交于
Since commit a2d47777 ("sched: fix stale value in average load per task") the variable rq->avg_load_per_task is no longer required. Remove it. Signed-off-by: NJan H. Schönherr <schnhrr@cs.tu-berlin.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1312189408-17172-1-git-send-email-schnhrr@cs.tu-berlin.deSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 12 8月, 2011 1 次提交
-
-
由 Vasiliy Kulikov 提交于
The patch http://lkml.org/lkml/2003/7/13/226 introduced an RLIMIT_NPROC check in set_user() to check for NPROC exceeding via setuid() and similar functions. Before the check there was a possibility to greatly exceed the allowed number of processes by an unprivileged user if the program relied on rlimit only. But the check created new security threat: many poorly written programs simply don't check setuid() return code and believe it cannot fail if executed with root privileges. So, the check is removed in this patch because of too often privilege escalations related to buggy programs. The NPROC can still be enforced in the common code flow of daemons spawning user processes. Most of daemons do fork()+setuid()+execve(). The check introduced in execve() (1) enforces the same limit as in setuid() and (2) doesn't create similar security issues. Neil Brown suggested to track what specific process has exceeded the limit by setting PF_NPROC_EXCEEDED process flag. With the change only this process would fail on execve(), and other processes' execve() behaviour is not changed. Solar Designer suggested to re-check whether NPROC limit is still exceeded at the moment of execve(). If the process was sleeping for days between set*uid() and execve(), and the NPROC counter step down under the limit, the defered execve() failure because NPROC limit was exceeded days ago would be unexpected. If the limit is not exceeded anymore, we clear the flag on successful calls to execve() and fork(). The flag is also cleared on successful calls to set_user() as the limit was exceeded for the previous user, not the current one. Similar check was introduced in -ow patches (without the process flag). v3 - clear PF_NPROC_EXCEEDED on successful calls to set_user(). Reviewed-by: NJames Morris <jmorris@namei.org> Signed-off-by: NVasiliy Kulikov <segoon@openwall.com> Acked-by: NNeilBrown <neilb@suse.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 8月, 2011 1 次提交
-
-
由 Jonathan Nieder 提交于
syslog-ng versions before 3.3.0beta1 (2011-05-12) assume that CAP_SYS_ADMIN is sufficient to access syslog, so ever since CAP_SYSLOG was introduced (2010-11-25) they have triggered a warning. Commit ee24aebf ("cap_syslog: accept CAP_SYS_ADMIN for now") improved matters a little by making syslog-ng work again, just keeping the WARN_ONCE(). But still, this is a warning that writes a stack trace we don't care about to syslog, sets a taint flag, and alarms sysadmins when nothing worse has happened than use of an old userspace with a recent kernel. Convert the WARN_ONCE to a printk_once to avoid that while continuing to give userspace developers a hint that this is an unwanted backward-compatibility feature and won't be around forever. Reported-by: NRalf Hildebrandt <ralf.hildebrandt@charite.de> Reported-by: NNiels <zorglub_olsen@hotmail.com> Reported-by: NPaweł Sikora <pluto@agmk.net> Signed-off-by: NJonathan Nieder <jrnieder@gmail.com> Liked-by: NGergely Nagy <algernon@madhouse-project.org> Acked-by: NSerge Hallyn <serge@hallyn.com> Acked-by: NJames Morris <jmorris@namei.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 8月, 2011 1 次提交
-
-
由 Jason Baron 提交于
In the course of testing jump labels for use with the CFS bandwidth controller, Paul Turner, discovered that using jump labels reduced the branch count and the instruction count, but did not reduce the cycle count or wall time. I noticed that having the jump_label.o included in the kernel but not used in any way still caused this increase in cycle count and wall time. Thus, I moved jump_label.o in the kernel/Makefile, thus changing the link order, and presumably moving it out of hot icache areas. This brought down the cycle count/time as expected. In addition to Paul's testing, I've tested the patch using a single 'static_branch()' in the getppid() path, and basically running tight loops of calls to getppid(). Here are my results for the branch disabled case: With jump labels turned on (CONFIG_JUMP_LABEL), branch disabled: Performance counter stats for 'bash -c /tmp/getppid;true' (50 runs): 3,969,510,217 instructions # 0.864 IPC ( +-0.000% ) 4,592,334,954 cycles ( +- 0.046% ) 751,634,470 branches ( +- 0.000% ) 1.722635797 seconds time elapsed ( +- 0.046% ) Jump labels turned off (CONFIG_JUMP_LABEL not set), branch disabled: Performance counter stats for 'bash -c /tmp/getppid;true' (50 runs): 4,009,611,846 instructions # 0.867 IPC ( +-0.000% ) 4,622,210,580 cycles ( +- 0.012% ) 771,662,904 branches ( +- 0.000% ) 1.734341454 seconds time elapsed ( +- 0.022% ) Signed-off-by: NJason Baron <jbaron@redhat.com> Cc: rth@redhat.com Cc: a.p.zijlstra@chello.nl Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/20110805204040.GG2522@redhat.comSigned-off-by: NIngo Molnar <mingo@elte.hu> Tested-by: NPaul Turner <pjt@google.com>
-
- 04 8月, 2011 6 次提交
-
-
由 Tejun Heo 提交于
lockdep_init_map() only initializes parts of lockdep_map and triggers kmemcheck warning when it is copied as a whole. There isn't anything to be gained by clearing selectively. memset() the whole structure and remove loop for ->class_cache[] clearing. Addresses https://bugzilla.kernel.org/show_bug.cgi?id=35532Signed-off-by: NTejun Heo <tj@kernel.org> Reported-and-tested-by: NChristian Casteyde <casteyde.christian@free.fr> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=35532Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110714131909.GJ3455@htj.dyndns.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
On Sun, 2011-07-24 at 21:06 -0400, Arnaud Lacombe wrote: > /src/linux/linux/kernel/lockdep.c: In function 'mark_held_locks': > /src/linux/linux/kernel/lockdep.c:2471:31: warning: comparison of > distinct pointer types lacks a cast The warning is harmless in this case, but the below makes it go away. Reported-by: NArnaud Lacombe <lacombar@gmail.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1311588599.2617.56.camel@laptopSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Commit dd4e5d3a ("lockdep: Fix trace_[soft,hard]irqs_[on,off]() recursion") made a bit of a mess of the various checks and error conditions. In particular it moved the check for !irqs_disabled() before the spurious enable test, resulting in some warnings. Reported-by: NArnaud Lacombe <lacombar@gmail.com> Reported-by: NDave Jones <davej@redhat.com> Reported-and-tested-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1311679697.24752.28.camel@twinsSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Linus Torvalds 提交于
The core device layer sends tons of uevent notifications for each device it finds, and if the kernel has been built with a non-empty CONFIG_UEVENT_HELPER_PATH that will make us try to execute the usermode helper binary for all these events very early in the boot. Not only won't the root filesystem even be mounted at that point, we literally won't have necessarily even initialized all the process handling data structures at that point, which causes no end of silly problems even when the usermode helper doesn't actually succeed in executing. So just use our existing infrastructure to disable the usermodehelpers to make the kernel start out with them disabled. We enable them when we've at least initialized stuff a bit. Problems related to an uninitialized init_ipc_ns.ids[IPC_SHM_IDS].rw_mutex reported by various people. Reported-by: NManuel Lauss <manuel.lauss@googlemail.com> Reported-by: NRichard Weinberger <richard@nod.at> Reported-by: NMarc Zyngier <maz@misterjones.org> Acked-by: NKay Sievers <kay.sievers@vrfy.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vasiliy Kulikov <segoon@openwall.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
When send_cpu_listeners() finds the orphaned listener it marks it as !valid and drops listeners->sem. Before it takes this sem for writing, s->pid can be reused and add_del_listener() can wrongly try to re-use this entry. Change add_del_listener() to check ->valid = T. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Reviewed-by: NVasiliy Kulikov <segoon@openwall.com> Acked-by: NBalbir Singh <bsingharora@gmail.com> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
1. Commit 26c4caea "don't allow duplicate entries in listener mode" changed add_del_listener(REGISTER) so that "next_cpu:" can reuse the listener allocated for the previous cpu, this doesn't look exactly right even if minor. Change the code to kfree() in the already-registered case, this case is unlikely anyway so the extra kmalloc_node() shouldn't hurt but looke more correct and clean. 2. use the plain list_for_each_entry() instead of _safe() to scan listeners->list. 3. Remove the unneeded INIT_LIST_HEAD(&s->list), we are going to list_add(&s->list). Signed-off-by: NOleg Nesterov <oleg@redhat.com> Reviewed-by: NVasiliy Kulikov <segoon@openwall.com> Cc: Balbir Singh <bsingharora@gmail.com> Reviewed-by: NJerome Marchand <jmarchan@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 8月, 2011 4 次提交
-
-
由 Jason Wessel 提交于
The first packet that gdb sends when the kernel is in kdb mode seems to change with every release of gdb. Instead of continuing to add many different gdb packets, change kdb to automatically look for any thing that looks like a gdb packet. Example 1 cold start test: echo g > /proc/sysrq-trigger $D#44+ Example 2 cold start test: echo g > /proc/sysrq-trigger $3#33 The second one should re-enter kdb's shell right away and is purely a test. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
The DOING_KGDB2 was originally a state variable for one of the two ways to automatically transition from kdb to kgdb. Purge all these variables and just use one single state for the transition. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
When switching from kdb mode to kgdb mode packets were getting lost depending on the size of the fifo queue of the serial chip. When gdb initially connects if it is in kdb mode it should entirely send any character buffer over to the gdbstub when switching connections. Previously kdb was zero'ing out the character buffer and this could lead to gdb failing to connect at all, or a lengthy pause could occur on the initial connect. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
The BTARGS and BTSYMARG variables do not have any function in the mainline version of kdb. Reported-by: NTim Bird <tim.bird@am.sony.com> Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 31 7月, 2011 1 次提交
-
-
由 Geert Uytterhoeven 提交于
Add a function to find an existing resource by a resource start address. This allows to implement simple allocators (with a malloc/free-alike API) on top of the resource system. Signed-off-by: NGeert Uytterhoeven <geert@linux-m68k.org>
-
- 28 7月, 2011 4 次提交
-
-
由 Grant Likely 提交于
irq_domain_generate_simple() is an easy way to generate an irq translation domain for simple irq controllers. It assumes a flat 1:1 mapping from hardware irq number to an offset of the first linux irq number assigned to the controller Signed-off-by: NGrant Likely <grant.likely@secretlab.ca>
-
由 Grant Likely 提交于
This patch adds irq_domain infrastructure for translating from hardware irq numbers to linux irqs. This is particularly important for architectures adding device tree support because the current implementation (excluding PowerPC and SPARC) cannot handle translation for more than a single interrupt controller. irq_domain supports device tree translation for any number of interrupt controllers. This patch converts x86, Microblaze, ARM and MIPS to use irq_domain for device tree irq translation. x86 is untested beyond compiling it, irq_domain is enabled for MIPS and Microblaze, but the old behaviour is preserved until the core code is modified to actually register an irq_domain yet. On ARM it works and is required for much of the new ARM device tree board support. PowerPC has /not/ been converted to use this new infrastructure. It is still missing some features before it can replace the virq infrastructure already in powerpc (see documentation on irq_domain_map/unmap for details). Followup patches will add the missing pieces and migrate PowerPC to use irq_domain. SPARC has its own method of managing interrupts from the device tree and is unaffected by this change. Acked-by: NRalf Baechle <ralf@linux-mips.org> Signed-off-by: NGrant Likely <grant.likely@secretlab.ca>
-
由 Hans Verkuil 提交于
Signed-off-by: NHans Verkuil <hans.verkuil@cisco.com> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Oleg Nesterov 提交于
sys_ssetmask(), sys_rt_sigsuspend() and compat_sys_rt_sigsuspend() change ->blocked directly. This is not correct, see the changelog in e6fa16ab "signal: sigprocmask() should do retarget_shared_pending()" Change them to use set_current_blocked(). Another change is that now we are doing ->saved_sigmask = ->blocked lockless, it doesn't make any sense to do this under ->siglock. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Reviewed-by: NMatt Fleming <matt.fleming@linux.intel.com> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 7月, 2011 6 次提交
-
-
由 Arun Sharma 提交于
This allows us to move duplicated code in <asm/atomic.h> (atomic_inc_not_zero() for now) to <linux/atomic.h> Signed-off-by: NArun Sharma <asharma@fb.com> Reviewed-by: NEric Dumazet <eric.dumazet@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: NMike Frysinger <vapier@gentoo.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
When a kernel BUG or oops occurs, ChromeOS intends to panic and immediately reboot, with stacktrace and other messages preserved in RAM across reboot. But the longer we delay, the more likely the user is to poweroff and lose the info. panic_timeout (seconds before rebooting) is set by panic= boot option or sysctl or /proc/sys/kernel/panic; but 0 means wait forever, so at present we have to delay at least 1 second. Let a negative number mean reboot immediately (with the small cosmetic benefit of suppressing that newline-less "Rebooting in %d seconds.." message). Signed-off-by: NHugh Dickins <hughd@chromium.org> Signed-off-by: NMandeep Singh Baines <msb@chromium.org> Cc: Huang Ying <ying.huang@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Olaf Hering <olaf@aepfle.de> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Dave Airlie <airlied@gmail.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vitaliy Ivanov 提交于
Selecting GCOV for UML causing configuration mismatch: warning: (GCOV_KERNEL) selects CONSTRUCTORS which has unmet direct dependencies (!UML) Constructors are not needed for UML. Signed-off-by: NVitaliy Ivanov <vitalivanov@gmail.com> Cc: Peter Oberparleiter <oberpar@linux.vnet.ibm.com> Acked-by: NRichard Weinberger <richard@nod.at> Acked-by: NWANG Cong <xiyou.wangcong@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vasiliy Kulikov 提交于
Add support for the shm_rmid_forced sysctl. If set to 1, all shared memory objects in current ipc namespace will be automatically forced to use IPC_RMID. The POSIX way of handling shmem allows one to create shm objects and call shmdt(), leaving shm object associated with no process, thus consuming memory not counted via rlimits. With shm_rmid_forced=1 the shared memory object is counted at least for one process, so OOM killer may effectively kill the fat process holding the shared memory. It obviously breaks POSIX - some programs relying on the feature would stop working. So set shm_rmid_forced=1 only if you're sure nobody uses "orphaned" memory. Use shm_rmid_forced=0 by default for compatability reasons. The feature was previously impemented in -ow as a configure option. [akpm@linux-foundation.org: fix documentation, per Randy] [akpm@linux-foundation.org: fix warning] [akpm@linux-foundation.org: readability/conventionality tweaks] [akpm@linux-foundation.org: fix shm_rmid_forced/shm_forced_rmid confusion, use standard comment layout] Signed-off-by: NVasiliy Kulikov <segoon@openwall.com> Cc: Randy Dunlap <rdunlap@xenotime.net> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "Serge E. Hallyn" <serge.hallyn@canonical.com> Cc: Daniel Lezcano <daniel.lezcano@free.fr> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Solar Designer <solar@openwall.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
Signed-off-by: NDaniel Rebelo de Oliveira <psykon@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
[ This patch has already been accepted as commit 0ac0c0d0 but later reverted (commit 35926ff5) because it itroduced arch specific __node_random which was defined only for x86 code so it broke other archs. This is a followup without any arch specific code. Other than that there are no functional changes.] Some workloads that create a large number of small files tend to assign too many pages to node 0 (multi-node systems). Part of the reason is that the rotor (in cpuset_mem_spread_node()) used to assign nodes starts at node 0 for newly created tasks. This patch changes the rotor to be initialized to a random node number of the cpuset. [akpm@linux-foundation.org: fix layout] [Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration] [mhocko@suse.cz: Make it arch independent] [akpm@linux-foundation.org: fix CONFIG_NUMA=y, MAX_NUMNODES>1 build] Signed-off-by: NJack Steiner <steiner@sgi.com> Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Paul Menage <menage@google.com> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: David Rientjes <rientjes@google.com> Cc: Jack Steiner <steiner@sgi.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Paul Menage <menage@google.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Robin Holt <holt@sgi.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-