- 11 12月, 2017 16 次提交
-
-
由 Will Deacon 提交于
Allow explicit disabling of the entry trampoline on the kernel command line (kpti=off) by adding a fake CPU feature (ARM64_UNMAP_KERNEL_AT_EL0) that can be used to toggle the alternative sequences in our entry code and avoid use of the trampoline altogether if desired. This also allows us to make use of a static key in arm64_kernel_unmapped_at_el0(). Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
When unmapping the kernel at EL0, we use tpidrro_el0 as a scratch register during exception entry from native tasks and subsequently zero it in the kernel_ventry macro. We can therefore avoid zeroing tpidrro_el0 in the context-switch path for native tasks using the entry trampoline. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
We rely on an atomic swizzling of TTBR1 when transitioning from the entry trampoline to the kernel proper on an exception. We can't rely on this atomicity in the face of Falkor erratum #E1003, so on affected cores we can issue a TLB invalidation to invalidate the walk cache prior to jumping into the kernel. There is still the possibility of a TLB conflict here due to conflicting walk cache entries prior to the invalidation, but this doesn't appear to be the case on these CPUs in practice. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
Hook up the entry trampoline to our exception vectors so that all exceptions from and returns to EL0 go via the trampoline, which swizzles the vector base register accordingly. Transitioning to and from the kernel clobbers x30, so we use tpidrro_el0 and far_el1 as scratch registers for native tasks. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
We will need to treat exceptions from EL0 differently in kernel_ventry, so rework the macro to take the exception level as an argument and construct the branch target using that. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
The exception entry trampoline needs to be mapped at the same virtual address in both the trampoline page table (which maps nothing else) and also the kernel page table, so that we can swizzle TTBR1_EL1 on exceptions from and return to EL0. This patch maps the trampoline at a fixed virtual address in the fixmap area of the kernel virtual address space, which allows the kernel proper to be randomized with respect to the trampoline when KASLR is enabled. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
To allow unmapping of the kernel whilst running at EL0, we need to point the exception vectors at an entry trampoline that can map/unmap the kernel on entry/exit respectively. This patch adds the trampoline page, although it is not yet plugged into the vector table and is therefore unused. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
Since an mm has both a kernel and a user ASID, we need to ensure that broadcast TLB maintenance targets both address spaces so that things like CoW continue to work with the uaccess primitives in the kernel. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
In order for code such as TLB invalidation to operate efficiently when the decision to map the kernel at EL0 is determined at runtime, this patch introduces a helper function, arm64_kernel_unmapped_at_el0, to determine whether or not the kernel is mapped whilst running in userspace. Currently, this just reports the value of CONFIG_UNMAP_KERNEL_AT_EL0, but will later be hooked up to a fake CPU capability using a static key. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
In preparation for separate kernel/user ASIDs, allocate them in pairs for each mm_struct. The bottom bit distinguishes the two: if it is set, then the ASID will map only userspace. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
With the ASID now installed in TTBR1, we can re-enable ARM64_SW_TTBR0_PAN by ensuring that we switch to a reserved ASID of zero when disabling user access and restore the active user ASID on the uaccess enable path. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
The post_ttbr0_update_workaround hook applies to any change to TTBRx_EL1. Since we're using TTBR1 for the ASID, rename the hook to make it clearer as to what it's doing. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
The pre_ttbr0_update_workaround hook is called prior to context-switching TTBR0 because Falkor erratum E1003 can cause TLB allocation with the wrong ASID if both the ASID and the base address of the TTBR are updated at the same time. With the ASID sitting safely in TTBR1, we no longer update things atomically, so we can remove the pre_ttbr0_update_workaround macro as it's no longer required. The erratum infrastructure and documentation is left around for #E1003, as it will be required by the entry trampoline code in a future patch. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
In preparation for mapping kernelspace and userspace with different ASIDs, move the ASID to TTBR1 and update switch_mm to context-switch TTBR0 via an invalid mapping (the zero page). Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
We're about to rework the way ASIDs are allocated, switch_mm is implemented and low-level kernel entry/exit is handled, so keep the ARM64_SW_TTBR0_PAN code out of the way whilst we do the heavy lifting. It will be re-enabled in a subsequent patch. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
In preparation for unmapping the kernel whilst running in userspace, make the kernel mappings non-global so we can avoid expensive TLB invalidation on kernel exit to userspace. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Tested-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 09 12月, 2017 1 次提交
-
-
由 Neil Armstrong 提交于
The clock-names for pclk was wrongly set to "core", but the bindings specifies "pclk". This was not cathed until the legacy non-documented bindings were removed. Reported-by: NAndreas Färber <afaerber@suse.de> Fixes: f72d6f60 ("ARM64: dts: meson-gx: use stable UART bindings with correct gate clock") Signed-off-by: NNeil Armstrong <narmstrong@baylibre.com> Signed-off-by: NKevin Hilman <khilman@baylibre.com>
-
- 07 12月, 2017 5 次提交
-
-
由 Dave Martin 提交于
When deciding whether to invalidate FPSIMD state cached in the cpu, the backend function sve_flush_cpu_state() attempts to dereference __this_cpu_read(fpsimd_last_state). However, this is not safe: there is no guarantee that this task_struct pointer is still valid, because the task could have exited in the meantime. This means that we need another means to get the appropriate value of TIF_SVE for the associated task. This patch solves this issue by adding a cached copy of the TIF_SVE flag in fpsimd_last_state, which we can check without dereferencing the task pointer. In particular, although this patch is not a KVM fix per se, this means that this check is now done safely in the KVM world switch path (which is currently the only user of this code). Signed-off-by: NDave Martin <Dave.Martin@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
enter_lazy_tlb is called when a kernel thread rides on the back of another mm, due to a context switch or an explicit call to unuse_mm where a call to switch_mm is elided. In these cases, it's important to keep the saved ttbr value up to date with the active mm, otherwise we can end up with a stale value which points to a potentially freed page table. This patch implements enter_lazy_tlb for arm64, so that the saved ttbr0 is kept up-to-date with the active mm for kernel threads. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: <stable@vger.kernel.org> Fixes: 39bc88e5 ("arm64: Disable TTBR0_EL1 during normal kernel execution") Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Reported-by: NVinayak Menon <vinmenon@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Will Deacon 提交于
update_saved_ttbr0 mandates that mm->pgd is not swapper, since swapper contains kernel mappings and should never be installed into ttbr0. However, this means that callers must avoid passing the init_mm to update_saved_ttbr0 which in turn can cause the saved ttbr0 value to be out-of-date in the context of the idle thread. For example, EFI runtime services may leave the saved ttbr0 pointing at the EFI page table, and kernel threads may end up with stale references to freed page tables. This patch changes update_saved_ttbr0 so that the init_mm points the saved ttbr0 value to the empty zero page, which always exists and never contains valid translations. EFI and switch can then call into update_saved_ttbr0 unconditionally. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: <stable@vger.kernel.org> Fixes: 39bc88e5 ("arm64: Disable TTBR0_EL1 during normal kernel execution") Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Reported-by: NVinayak Menon <vinmenon@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Dave Martin 提交于
There is currently some duplicate logic to associate current's FPSIMD context with the cpu when loading FPSIMD state into the cpu regs. Subsequent patches will update that logic, so in order to ensure it only needs to be done in one place, this patch factors the relevant code out into a new function fpsimd_bind_to_cpu(). Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Dave Martin 提交于
Currently, loading of a task's fpsimd state into the CPU registers is skipped if that task's state is already present in the registers of that CPU. However, the code relies on the struct fpsimd_state * (and by extension struct task_struct *) to unambiguously identify a task. There is a particular case in which this doesn't work reliably: when a task exits, its task_struct may be recycled to describe a new task. Consider the following scenario: 1) Task P loads its fpsimd state onto cpu C. per_cpu(fpsimd_last_state, C) := P; P->thread.fpsimd_state.cpu := C; 2) Task X is scheduled onto C and loads its fpsimd state on C. per_cpu(fpsimd_last_state, C) := X; X->thread.fpsimd_state.cpu := C; 3) X exits, causing X's task_struct to be freed. 4) P forks a new child T, which obtains X's recycled task_struct. T == X. T->thread.fpsimd_state.cpu == C (inherited from P). 5) T is scheduled on C. T's fpsimd state is not loaded, because per_cpu(fpsimd_last_state, C) == T (== X) && T->thread.fpsimd_state.cpu == C. (This is the check performed by fpsimd_thread_switch().) So, T gets X's registers because the last registers loaded onto C were those of X, in (2). This patch fixes the problem by ensuring that the sched-in check fails in (5): fpsimd_flush_task_state(T) is called when T is forked, so that T->thread.fpsimd_state.cpu == C cannot be true. This relies on the fact that T is not schedulable until after copy_thread() completes. Once T's fpsimd state has been loaded on some CPU C there may still be other cpus D for which per_cpu(fpsimd_last_state, D) == &X->thread.fpsimd_state. But D is necessarily != C in this case, and the check in (5) must fail. An alternative fix would be to do refcounting on task_struct. This would result in each CPU holding a reference to the last task whose fpsimd state was loaded there. It's not clear whether this is preferable, and it involves higher overhead than the fix proposed in this patch. It would also move all the task_struct freeing work into the context switch critical section, or otherwise some deferred cleanup mechanism would need to be introduced, neither of which seems obviously justified. Cc: <stable@vger.kernel.org> Fixes: 005f78cd ("arm64: defer reloading a task's FPSIMD state to userland resume") Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [will: word-smithed the comment so it makes more sense] Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 05 12月, 2017 1 次提交
-
-
由 Hendrik Brueckner 提交于
Correct the broken uapi for the BPF_PROG_TYPE_PERF_EVENT program type by exporting the user_pt_regs structure instead of the pt_regs structure that is in-kernel only. Signed-off-by: NHendrik Brueckner <brueckner@linux.vnet.ibm.com> Reviewed-by: NThomas Richter <tmricht@linux.vnet.ibm.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 03 12月, 2017 1 次提交
-
-
由 Masahiro Yamada 提交于
The list is almost sorted. Move "lg" up to complete it. Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: NOlof Johansson <olof@lixom.net>
-
- 01 12月, 2017 7 次提交
-
-
由 Will Deacon 提交于
The comments in the ASID allocator incorrectly hint at an MP-style idiom using the asid_generation and the active_asids array. In fact, the synchronisation is achieved using a combination of an xchg operation and a spinlock, so update the comments and remove the pointless smp_wmb(). Cc: James Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Yury Norov 提交于
Building the kernel with an LTO-enabled GCC spits out the following "const" warning for the cpu_ops code: mm/percpu.c:2168:20: error: pcpu_fc_names causes a section type conflict with dt_supported_cpu_ops const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { ^ arch/arm64/kernel/cpu_ops.c:34:37: note: ‘dt_supported_cpu_ops’ was declared here static const struct cpu_operations *dt_supported_cpu_ops[] __initconst = { Fix it by adding missed const qualifiers. Signed-off-by: NYury Norov <ynorov@caviumnetworks.com> Reviewed-by: NNick Desaulniers <ndesaulniers@google.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Xu YiPing 提交于
bus access read/write events are not supported in A73, based on the Cortex-A73 TRM r0p2, section 11.9 Events (pages 11-457 to 11-460). Fixes: 5561b6c5 "arm64: perf: add support for Cortex-A73" Acked-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NXu YiPing <xuyiping@hisilicon.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Dave Martin 提交于
The fpsimd_update_current_state() function is responsible for loading the FPSIMD state from the user signal frame into the current task during sigreturn. When implementing support for SVE, conditional code was added to this function in order to handle the case where SVE state need to be loaded for the task and merged with the FPSIMD data from the signal frame; however, the FPSIMD-only case was unintentionally dropped. As a result of this, sigreturn does not currently restore the FPSIMD state of the task, except in the case where the system supports SVE and the signal frame contains SVE state in addition to FPSIMD state. This patch fixes this bug by making the copy-in of the FPSIMD data from the signal frame to thread_struct unconditional. This remains a performance regression from v4.14, since the FPSIMD state is now copied into thread_struct and then loaded back, instead of _only_ being loaded into the CPU FPSIMD registers. However, it is essential to call task_fpsimd_load() here anyway in order to ensure that the SVE enable bit in CPACR_EL1 is set correctly before returning to userspace. This could use some refactoring, but since sigreturn is not a fast path I have kept this patch as a pure fix and left the refactoring for later. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Fixes: 8cd969d2 ("arm64/sve: Signal handling support") Reported-by: NAlex Bennée <alex.bennee@linaro.org> Tested-by: NAlex Bennée <alex.bennee@linaro.org> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Signed-off-by: NDave Martin <Dave.Martin@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Jinbum Park 提交于
pgd_cache is setup once while init stage and never changed after that, so it is good candidate for __ro_after_init Signed-off-by: NJinbum Park <jinb.park7@gmail.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
When building the arm64 kernel with both CONFIG_ARM64_MODULE_PLTS and CONFIG_DYNAMIC_FTRACE enabled, the ftrace-mod.o object file is built with the kernel and contains a trampoline that is linked into each module, so that modules can be loaded far away from the kernel and still reach the ftrace entry point in the core kernel with an ordinary relative branch, as is emitted by the compiler instrumentation code dynamic ftrace relies on. In order to be able to build out of tree modules, this object file needs to be included into the linux-headers or linux-devel packages, which is undesirable, as it makes arm64 a special case (although a precedent does exist for 32-bit PPC). Given that the trampoline essentially consists of a PLT entry, let's not bother with a source or object file for it, and simply patch it in whenever the trampoline is being populated, using the existing PLT support routines. Cc: <stable@vger.kernel.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
To allow the ftrace trampoline code to reuse the PLT entry routines, factor it out and move it into asm/module.h. Cc: <stable@vger.kernel.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 30 11月, 2017 3 次提交
-
-
由 Dan Williams 提交于
In response to compile breakage introduced by a series that added the pud_write helper to x86, Stephen notes: did you consider using the other paradigm: In arch include files: #define pud_write pud_write static inline int pud_write(pud_t pud) ..... Then in include/asm-generic/pgtable.h: #ifndef pud_write tatic inline int pud_write(pud_t pud) { .... } #endif If you had, then the powerpc code would have worked ... ;-) and many of the other interfaces in include/asm-generic/pgtable.h are protected that way ... Given that some architecture already define pmd_write() as a macro, it's a net reduction to drop the definition of __HAVE_ARCH_PMD_WRITE. Link: http://lkml.kernel.org/r/151129126721.37405.13339850900081557813.stgit@dwillia2-desk3.amr.corp.intel.comSigned-off-by: NDan Williams <dan.j.williams@intel.com> Suggested-by: NStephen Rothwell <sfr@canb.auug.org.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Oliver OHalloran <oliveroh@au1.ibm.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alex Bennée 提交于
There is a fast-path of MMIO emulation inside hyp mode. The handling of single-step is broadly the same as kvm_arm_handle_step_debug() except we just setup ESR/HSR so handle_exit() does the correct thing as we exit. For the case of an emulated illegal access causing an SError we will exit via the ARM_EXCEPTION_EL1_SERROR path in handle_exit(). We behave as we would during a real SError and clear the DBG_SPSR_SS bit for the emulated instruction. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NAlex Bennée <alex.bennee@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Alex Bennée 提交于
When an SError arrives during single-step both the SError and debug exceptions may be pending when the step is completed, and the architecture doesn't define the ordering of the two. This means that we can observe en SError even though we've just completed a step, without receiving a debug exception. In that case the DBG_SPSR_SS bit will have flipped as the instruction executed. After handling the abort in handle_exit() we test to see if the bit is clear and we were single-stepping before deciding if we need to exit to user space. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NAlex Bennée <alex.bennee@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 29 11月, 2017 6 次提交
-
-
由 Alex Bennée 提交于
If we are using guest debug to single-step the guest, we need to ensure that we exit after emulating the instruction. This only affects instructions completely emulated by the kernel. For instructions emulated in userspace, we need to exit and return to complete the emulation. The kvm_arm_handle_step_debug() helper sets up the necessary exit state if needed. Signed-off-by: NAlex Bennée <alex.bennee@linaro.org> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Alex Bennée 提交于
After emulating instructions we may want return to user-space to handle single-step debugging. Introduce a helper function, which, if single-step is enabled, sets the run structure for return and returns true. Signed-off-by: NAlex Bennée <alex.bennee@linaro.org> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Kristina Martsenko 提交于
VTTBR_BADDR_MASK is used to sanity check the size and alignment of the VTTBR address. It seems to currently be off by one, thereby only allowing up to 47-bit addresses (instead of 48-bit) and also insufficiently checking the alignment. This patch fixes it. As an example, with 4k pages, before this patch we have: PHYS_MASK_SHIFT = 48 VTTBR_X = 37 - 24 = 13 VTTBR_BADDR_SHIFT = 13 - 1 = 12 VTTBR_BADDR_MASK = ((1 << 35) - 1) << 12 = 0x00007ffffffff000 Which is wrong, because the mask doesn't allow bit 47 of the VTTBR address to be set, and only requires the address to be 12-bit (4k) aligned, while it actually needs to be 13-bit (8k) aligned because we concatenate two 4k tables. With this patch, the mask becomes 0x0000ffffffffe000, which is what we want. Fixes: 0369f6a3 ("arm64: KVM: EL2 register definitions") Cc: <stable@vger.kernel.org> # 3.11.x Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NKristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Masahiro Yamada 提交于
These were added to make the ARM64 branch self-contained because updates for ARM and ARM64 are supposed to be sent as separate pull requests. Now, they were merged together in Linus' tree and interrupt-parent from the arch/arm/boot/dts/uniphier-support-card.dtsi is visible from ARM64 DT files by the cross-arch reference. Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com>
-
由 Dai Okamura 提交于
Commit ba5b5034 ("arm64: dts: uniphier: route on-board device IRQ to GPIO controller for PXs3") has incorrect update. Fixes: ba5b5034 ("arm64: dts: uniphier: route on-board device IRQ to GPIO controller for PXs3") Signed-off-by: NDai Okamura <okamura.dai@socionext.com> Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com>
-
由 Mark Rutland 提交于
Since commit: 155433cb ("arm64: cache: Remove support for ASID-tagged VIVT I-caches") ... the kernel no longer cares about AIVIVT I-caches, as these were removed from the architecture. This patch removes the stale references to such I-caches. The comment in flush_context() is also updated to clarify when and where the TLB invalidation occurs. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-