- 20 4月, 2019 1 次提交
-
-
由 Daniel Borkmann 提交于
[ Upstream commit 1da6c4d9140cb7c13e87667dc4e1488d6c8fc10f ] syzkaller was able to generate the following UAF in bpf: BUG: KASAN: use-after-free in lookup_last fs/namei.c:2269 [inline] BUG: KASAN: use-after-free in path_lookupat.isra.43+0x9f8/0xc00 fs/namei.c:2318 Read of size 1 at addr ffff8801c4865c47 by task syz-executor2/9423 CPU: 0 PID: 9423 Comm: syz-executor2 Not tainted 4.20.0-rc1-next-20181109+ #110 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x244/0x39d lib/dump_stack.c:113 print_address_description.cold.7+0x9/0x1ff mm/kasan/report.c:256 kasan_report_error mm/kasan/report.c:354 [inline] kasan_report.cold.8+0x242/0x309 mm/kasan/report.c:412 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:430 lookup_last fs/namei.c:2269 [inline] path_lookupat.isra.43+0x9f8/0xc00 fs/namei.c:2318 filename_lookup+0x26a/0x520 fs/namei.c:2348 user_path_at_empty+0x40/0x50 fs/namei.c:2608 user_path include/linux/namei.h:62 [inline] do_mount+0x180/0x1ff0 fs/namespace.c:2980 ksys_mount+0x12d/0x140 fs/namespace.c:3258 __do_sys_mount fs/namespace.c:3272 [inline] __se_sys_mount fs/namespace.c:3269 [inline] __x64_sys_mount+0xbe/0x150 fs/namespace.c:3269 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x457569 Code: fd b3 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 cb b3 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fde6ed96c78 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 0000000000457569 RDX: 0000000020000040 RSI: 0000000020000000 RDI: 0000000000000000 RBP: 000000000072bf00 R08: 0000000020000340 R09: 0000000000000000 R10: 0000000000200000 R11: 0000000000000246 R12: 00007fde6ed976d4 R13: 00000000004c2c24 R14: 00000000004d4990 R15: 00000000ffffffff Allocated by task 9424: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] kasan_kmalloc+0xc7/0xe0 mm/kasan/kasan.c:553 __do_kmalloc mm/slab.c:3722 [inline] __kmalloc_track_caller+0x157/0x760 mm/slab.c:3737 kstrdup+0x39/0x70 mm/util.c:49 bpf_symlink+0x26/0x140 kernel/bpf/inode.c:356 vfs_symlink+0x37a/0x5d0 fs/namei.c:4127 do_symlinkat+0x242/0x2d0 fs/namei.c:4154 __do_sys_symlink fs/namei.c:4173 [inline] __se_sys_symlink fs/namei.c:4171 [inline] __x64_sys_symlink+0x59/0x80 fs/namei.c:4171 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 9425: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/kasan.c:521 kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528 __cache_free mm/slab.c:3498 [inline] kfree+0xcf/0x230 mm/slab.c:3817 bpf_evict_inode+0x11f/0x150 kernel/bpf/inode.c:565 evict+0x4b9/0x980 fs/inode.c:558 iput_final fs/inode.c:1550 [inline] iput+0x674/0xa90 fs/inode.c:1576 do_unlinkat+0x733/0xa30 fs/namei.c:4069 __do_sys_unlink fs/namei.c:4110 [inline] __se_sys_unlink fs/namei.c:4108 [inline] __x64_sys_unlink+0x42/0x50 fs/namei.c:4108 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe In this scenario path lookup under RCU is racing with the final unlink in case of symlinks. As Linus puts it in his analysis: [...] We actually RCU-delay the inode freeing itself, but when we do the final iput(), the "evict()" function is called synchronously. Now, the simple fix would seem to just RCU-delay the kfree() of the symlink data in bpf_evict_inode(). Maybe that's the right thing to do. [...] Al suggested to piggy-back on the ->destroy_inode() callback in order to implement RCU deferral there which can then kfree() the inode->i_link eventually right before putting inode back into inode cache. By reusing free_inode_nonrcu() from there we can avoid the need for our own inode cache and just reuse generic one as we currently do. And in-fact on top of all this we should just get rid of the bpf_evict_inode() entirely. This means truncate_inode_pages_final() and clear_inode() will then simply be called by the fs core via evict(). Dropping the reference should really only be done when inode is unhashed and nothing reachable anymore, so it's better also moved into the final ->destroy_inode() callback. Fixes: 0f98621b ("bpf, inode: add support for symlinks and fix mtime/ctime") Reported-by: syzbot+fb731ca573367b7f6564@syzkaller.appspotmail.com Reported-by: syzbot+a13e5ead792d6df37818@syzkaller.appspotmail.com Reported-by: syzbot+7a8ba368b47fdefca61e@syzkaller.appspotmail.com Suggested-by: NAl Viro <viro@zeniv.linux.org.uk> Analyzed-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NAl Viro <viro@zeniv.linux.org.uk> Link: https://lore.kernel.org/lkml/0000000000006946d2057bbd0eef@google.com/T/Signed-off-by: NSasha Levin (Microsoft) <sashal@kernel.org>
-
- 03 4月, 2019 1 次提交
-
-
由 Xu Yu 提交于
commit 0803278b0b4d8eeb2b461fb698785df65a725d9e upstream. Syzkaller hit 'KASAN: use-after-free Write in sanitize_ptr_alu' bug. Call trace: dump_stack+0xbf/0x12e print_address_description+0x6a/0x280 kasan_report+0x237/0x360 sanitize_ptr_alu+0x85a/0x8d0 adjust_ptr_min_max_vals+0x8f2/0x1ca0 adjust_reg_min_max_vals+0x8ed/0x22e0 do_check+0x1ca6/0x5d00 bpf_check+0x9ca/0x2570 bpf_prog_load+0xc91/0x1030 __se_sys_bpf+0x61e/0x1f00 do_syscall_64+0xc8/0x550 entry_SYSCALL_64_after_hwframe+0x49/0xbe Fault injection trace: kfree+0xea/0x290 free_func_state+0x4a/0x60 free_verifier_state+0x61/0xe0 push_stack+0x216/0x2f0 <- inject failslab sanitize_ptr_alu+0x2b1/0x8d0 adjust_ptr_min_max_vals+0x8f2/0x1ca0 adjust_reg_min_max_vals+0x8ed/0x22e0 do_check+0x1ca6/0x5d00 bpf_check+0x9ca/0x2570 bpf_prog_load+0xc91/0x1030 __se_sys_bpf+0x61e/0x1f00 do_syscall_64+0xc8/0x550 entry_SYSCALL_64_after_hwframe+0x49/0xbe When kzalloc() fails in push_stack(), free_verifier_state() will free current verifier state. As push_stack() returns, dst_reg was restored if ptr_is_dst_reg is false. However, as member of the cur_state, dst_reg is also freed, and error occurs when dereferencing dst_reg. Simply fix it by testing ret of push_stack() before restoring dst_reg. Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") Signed-off-by: NXu Yu <xuyu@linux.alibaba.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 24 3月, 2019 2 次提交
-
-
由 Alban Crequy 提交于
[ Upstream commit 7c0cdf0b3940f63d9777c3fcf250a2f83859ca54 ] trie_delete_elem() was deleting an entry even though it was not matching if the prefixlen was correct. This patch adds a check on matchlen. Reproducer: $ sudo bpftool map create /sys/fs/bpf/mylpm type lpm_trie key 8 value 1 entries 128 name mylpm flags 1 $ sudo bpftool map update pinned /sys/fs/bpf/mylpm key hex 10 00 00 00 aa bb cc dd value hex 01 $ sudo bpftool map dump pinned /sys/fs/bpf/mylpm key: 10 00 00 00 aa bb cc dd value: 01 Found 1 element $ sudo bpftool map delete pinned /sys/fs/bpf/mylpm key hex 10 00 00 00 ff ff ff ff $ echo $? 0 $ sudo bpftool map dump pinned /sys/fs/bpf/mylpm Found 0 elements A similar reproducer is added in the selftests. Without the patch: $ sudo ./tools/testing/selftests/bpf/test_lpm_map test_lpm_map: test_lpm_map.c:485: test_lpm_delete: Assertion `bpf_map_delete_elem(map_fd, key) == -1 && errno == ENOENT' failed. Aborted With the patch: test_lpm_map runs without errors. Fixes: e454cf59 ("bpf: Implement map_delete_elem for BPF_MAP_TYPE_LPM_TRIE") Cc: Craig Gallek <kraig@google.com> Signed-off-by: NAlban Crequy <alban@kinvolk.io> Acked-by: NCraig Gallek <kraig@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Alexei Starovoitov 提交于
[ Upstream commit 3defaf2f15b2bfd86c6664181ac009e91985f8ac ] Lockdep warns about false positive: [ 11.211460] ------------[ cut here ]------------ [ 11.211936] DEBUG_LOCKS_WARN_ON(depth <= 0) [ 11.211985] WARNING: CPU: 0 PID: 141 at ../kernel/locking/lockdep.c:3592 lock_release+0x1ad/0x280 [ 11.213134] Modules linked in: [ 11.214954] RIP: 0010:lock_release+0x1ad/0x280 [ 11.223508] Call Trace: [ 11.223705] <IRQ> [ 11.223874] ? __local_bh_enable+0x7a/0x80 [ 11.224199] up_read+0x1c/0xa0 [ 11.224446] do_up_read+0x12/0x20 [ 11.224713] irq_work_run_list+0x43/0x70 [ 11.225030] irq_work_run+0x26/0x50 [ 11.225310] smp_irq_work_interrupt+0x57/0x1f0 [ 11.225662] irq_work_interrupt+0xf/0x20 since rw_semaphore is released in a different task vs task that locked the sema. It is expected behavior. Fix the warning with up_read_non_owner() and rwsem_release() annotation. Fixes: bae77c5e ("bpf: enable stackmap with build_id in nmi context") Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 14 3月, 2019 2 次提交
-
-
由 Martin KaFai Lau 提交于
[ Upstream commit 7c4cd051add3d00bbff008a133c936c515eaa8fe ] The map_lookup_elem used to not acquiring spinlock in order to optimize the reader. It was true until commit 557c0c6e ("bpf: convert stackmap to pre-allocation") The syscall's map_lookup_elem(stackmap) calls bpf_stackmap_copy(). bpf_stackmap_copy() may find the elem no longer needed after the copy is done. If that is the case, pcpu_freelist_push() saves this elem for reuse later. This push requires a spinlock. If a tracing bpf_prog got run in the middle of the syscall's map_lookup_elem(stackmap) and this tracing bpf_prog is calling bpf_get_stackid(stackmap) which also requires the same pcpu_freelist's spinlock, it may end up with a dead lock situation as reported by Eric Dumazet in https://patchwork.ozlabs.org/patch/1030266/ The situation is the same as the syscall's map_update_elem() which needs to acquire the pcpu_freelist's spinlock and could race with tracing bpf_prog. Hence, this patch fixes it by protecting bpf_stackmap_copy() with this_cpu_inc(bpf_prog_active) to prevent tracing bpf_prog from running. A later syscall's map_lookup_elem commit f1a2e44a3aec ("bpf: add queue and stack maps") also acquires a spinlock and races with tracing bpf_prog similarly. Hence, this patch is forward looking and protects the majority of the map lookups. bpf_map_offload_lookup_elem() is the exception since it is for network bpf_prog only (i.e. never called by tracing bpf_prog). Fixes: 557c0c6e ("bpf: convert stackmap to pre-allocation") Reported-by: NEric Dumazet <eric.dumazet@gmail.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Alexei Starovoitov 提交于
[ Upstream commit a89fac57b5d080771efd4d71feaae19877cf68f0 ] Lockdep warns about false positive: [ 12.492084] 00000000e6b28347 (&head->lock){+...}, at: pcpu_freelist_push+0x2a/0x40 [ 12.492696] but this lock was taken by another, HARDIRQ-safe lock in the past: [ 12.493275] (&rq->lock){-.-.} [ 12.493276] [ 12.493276] [ 12.493276] and interrupts could create inverse lock ordering between them. [ 12.493276] [ 12.494435] [ 12.494435] other info that might help us debug this: [ 12.494979] Possible interrupt unsafe locking scenario: [ 12.494979] [ 12.495518] CPU0 CPU1 [ 12.495879] ---- ---- [ 12.496243] lock(&head->lock); [ 12.496502] local_irq_disable(); [ 12.496969] lock(&rq->lock); [ 12.497431] lock(&head->lock); [ 12.497890] <Interrupt> [ 12.498104] lock(&rq->lock); [ 12.498368] [ 12.498368] *** DEADLOCK *** [ 12.498368] [ 12.498837] 1 lock held by dd/276: [ 12.499110] #0: 00000000c58cb2ee (rcu_read_lock){....}, at: trace_call_bpf+0x5e/0x240 [ 12.499747] [ 12.499747] the shortest dependencies between 2nd lock and 1st lock: [ 12.500389] -> (&rq->lock){-.-.} { [ 12.500669] IN-HARDIRQ-W at: [ 12.500934] _raw_spin_lock+0x2f/0x40 [ 12.501373] scheduler_tick+0x4c/0xf0 [ 12.501812] update_process_times+0x40/0x50 [ 12.502294] tick_periodic+0x27/0xb0 [ 12.502723] tick_handle_periodic+0x1f/0x60 [ 12.503203] timer_interrupt+0x11/0x20 [ 12.503651] __handle_irq_event_percpu+0x43/0x2c0 [ 12.504167] handle_irq_event_percpu+0x20/0x50 [ 12.504674] handle_irq_event+0x37/0x60 [ 12.505139] handle_level_irq+0xa7/0x120 [ 12.505601] handle_irq+0xa1/0x150 [ 12.506018] do_IRQ+0x77/0x140 [ 12.506411] ret_from_intr+0x0/0x1d [ 12.506834] _raw_spin_unlock_irqrestore+0x53/0x60 [ 12.507362] __setup_irq+0x481/0x730 [ 12.507789] setup_irq+0x49/0x80 [ 12.508195] hpet_time_init+0x21/0x32 [ 12.508644] x86_late_time_init+0xb/0x16 [ 12.509106] start_kernel+0x390/0x42a [ 12.509554] secondary_startup_64+0xa4/0xb0 [ 12.510034] IN-SOFTIRQ-W at: [ 12.510305] _raw_spin_lock+0x2f/0x40 [ 12.510772] try_to_wake_up+0x1c7/0x4e0 [ 12.511220] swake_up_locked+0x20/0x40 [ 12.511657] swake_up_one+0x1a/0x30 [ 12.512070] rcu_process_callbacks+0xc5/0x650 [ 12.512553] __do_softirq+0xe6/0x47b [ 12.512978] irq_exit+0xc3/0xd0 [ 12.513372] smp_apic_timer_interrupt+0xa9/0x250 [ 12.513876] apic_timer_interrupt+0xf/0x20 [ 12.514343] default_idle+0x1c/0x170 [ 12.514765] do_idle+0x199/0x240 [ 12.515159] cpu_startup_entry+0x19/0x20 [ 12.515614] start_kernel+0x422/0x42a [ 12.516045] secondary_startup_64+0xa4/0xb0 [ 12.516521] INITIAL USE at: [ 12.516774] _raw_spin_lock_irqsave+0x38/0x50 [ 12.517258] rq_attach_root+0x16/0xd0 [ 12.517685] sched_init+0x2f2/0x3eb [ 12.518096] start_kernel+0x1fb/0x42a [ 12.518525] secondary_startup_64+0xa4/0xb0 [ 12.518986] } [ 12.519132] ... key at: [<ffffffff82b7bc28>] __key.71384+0x0/0x8 [ 12.519649] ... acquired at: [ 12.519892] pcpu_freelist_pop+0x7b/0xd0 [ 12.520221] bpf_get_stackid+0x1d2/0x4d0 [ 12.520563] ___bpf_prog_run+0x8b4/0x11a0 [ 12.520887] [ 12.521008] -> (&head->lock){+...} { [ 12.521292] HARDIRQ-ON-W at: [ 12.521539] _raw_spin_lock+0x2f/0x40 [ 12.521950] pcpu_freelist_push+0x2a/0x40 [ 12.522396] bpf_get_stackid+0x494/0x4d0 [ 12.522828] ___bpf_prog_run+0x8b4/0x11a0 [ 12.523296] INITIAL USE at: [ 12.523537] _raw_spin_lock+0x2f/0x40 [ 12.523944] pcpu_freelist_populate+0xc0/0x120 [ 12.524417] htab_map_alloc+0x405/0x500 [ 12.524835] __do_sys_bpf+0x1a3/0x1a90 [ 12.525253] do_syscall_64+0x4a/0x180 [ 12.525659] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 12.526167] } [ 12.526311] ... key at: [<ffffffff838f7668>] __key.13130+0x0/0x8 [ 12.526812] ... acquired at: [ 12.527047] __lock_acquire+0x521/0x1350 [ 12.527371] lock_acquire+0x98/0x190 [ 12.527680] _raw_spin_lock+0x2f/0x40 [ 12.527994] pcpu_freelist_push+0x2a/0x40 [ 12.528325] bpf_get_stackid+0x494/0x4d0 [ 12.528645] ___bpf_prog_run+0x8b4/0x11a0 [ 12.528970] [ 12.529092] [ 12.529092] stack backtrace: [ 12.529444] CPU: 0 PID: 276 Comm: dd Not tainted 5.0.0-rc3-00018-g2fa53f892422 #475 [ 12.530043] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 [ 12.530750] Call Trace: [ 12.530948] dump_stack+0x5f/0x8b [ 12.531248] check_usage_backwards+0x10c/0x120 [ 12.531598] ? ___bpf_prog_run+0x8b4/0x11a0 [ 12.531935] ? mark_lock+0x382/0x560 [ 12.532229] mark_lock+0x382/0x560 [ 12.532496] ? print_shortest_lock_dependencies+0x180/0x180 [ 12.532928] __lock_acquire+0x521/0x1350 [ 12.533271] ? find_get_entry+0x17f/0x2e0 [ 12.533586] ? find_get_entry+0x19c/0x2e0 [ 12.533902] ? lock_acquire+0x98/0x190 [ 12.534196] lock_acquire+0x98/0x190 [ 12.534482] ? pcpu_freelist_push+0x2a/0x40 [ 12.534810] _raw_spin_lock+0x2f/0x40 [ 12.535099] ? pcpu_freelist_push+0x2a/0x40 [ 12.535432] pcpu_freelist_push+0x2a/0x40 [ 12.535750] bpf_get_stackid+0x494/0x4d0 [ 12.536062] ___bpf_prog_run+0x8b4/0x11a0 It has been explained that is a false positive here: https://lkml.org/lkml/2018/7/25/756 Recap: - stackmap uses pcpu_freelist - The lock in pcpu_freelist is a percpu lock - stackmap is only used by tracing bpf_prog - A tracing bpf_prog cannot be run if another bpf_prog has already been running (ensured by the percpu bpf_prog_active counter). Eric pointed out that this lockdep splats stops other legit lockdep splats in selftests/bpf/test_progs.c. Fix this by calling local_irq_save/restore for stackmap. Another false positive had also been worked around by calling local_irq_save in commit 89ad2fa3 ("bpf: fix lockdep splat"). That commit added unnecessary irq_save/restore to fast path of bpf hash map. irqs are already disabled at that point, since htab is holding per bucket spin_lock with irqsave. Let's reduce overhead for htab by introducing __pcpu_freelist_push/pop function w/o irqsave and convert pcpu_freelist_push/pop to irqsave to be used elsewhere (right now only in stackmap). It stops lockdep false positive in stackmap with a bit of acceptable overhead. Fixes: 557c0c6e ("bpf: convert stackmap to pre-allocation") Reported-by: NNaresh Kamboju <naresh.kamboju@linaro.org> Reported-by: NEric Dumazet <eric.dumazet@gmail.com> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 10 3月, 2019 1 次提交
-
-
由 Daniel Borkmann 提交于
commit 3612af783cf52c74a031a2f11b82247b2599d3cd upstream. Marek reported that he saw an issue with the below snippet in that timing measurements where off when loaded as unpriv while results were reasonable when loaded as privileged: [...] uint64_t a = bpf_ktime_get_ns(); uint64_t b = bpf_ktime_get_ns(); uint64_t delta = b - a; if ((int64_t)delta > 0) { [...] Turns out there is a bug where a corner case is missing in the fix d3bd7413e0ca ("bpf: fix sanitation of alu op with pointer / scalar type from different paths"), namely fixup_bpf_calls() only checks whether aux has a non-zero alu_state, but it also needs to test for the case of BPF_ALU_NON_POINTER since in both occasions we need to skip the masking rewrite (as there is nothing to mask). Fixes: d3bd7413e0ca ("bpf: fix sanitation of alu op with pointer / scalar type from different paths") Reported-by: NMarek Majkowski <marek@cloudflare.com> Reported-by: NArthur Fabre <afabre@cloudflare.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/netdev/CAJPywTJqP34cK20iLM5YmUMz9KXQOdu1-+BZrGMAGgLuBWz7fg@mail.gmail.com/T/Acked-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 27 2月, 2019 3 次提交
-
-
由 Stanislav Fomichev 提交于
[ Upstream commit 4af396ae4836c4ecab61e975b8e61270c551894d ] When returning BPF_STACK_BUILD_ID_IP from stack_map_get_build_id_offset, make sure that build_id field is empty. Since we are using percpu free list, there is a possibility that we might reuse some previous bpf_stack_build_id with non-zero build_id. Fixes: 615755a7 ("bpf: extend stackmap to save binary_build_id+offset instead of address") Acked-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NStanislav Fomichev <sdf@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Stanislav Fomichev 提交于
[ Upstream commit 0b698005a9d11c0e91141ec11a2c4918a129f703 ] Build-id length is not fixed to 20, it can be (`man ld` /--build-id): * 128-bit (uuid) * 160-bit (sha1) * any length specified in ld --build-id=0xhexstring To fix the issue of missing BPF_STACK_BUILD_ID_VALID for shorter build-ids, assume that build-id is somewhere in the range of 1 .. 20. Set the remaining bytes to zero. v2: * don't introduce new "len = min(BPF_BUILD_ID_SIZE, nhdr->n_descsz)", we already know that nhdr->n_descsz <= BPF_BUILD_ID_SIZE if we enter this 'if' condition Fixes: 615755a7 ("bpf: extend stackmap to save binary_build_id+offset instead of address") Acked-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NStanislav Fomichev <sdf@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Song Liu 提交于
[ Upstream commit beaf3d1901f4ea46fbd5c9d857227d99751de469 ] As Naresh reported, test_stacktrace_build_id() causes panic on i386 and arm32 systems. This is caused by page_address() returns NULL in certain cases. This patch fixes this error by using kmap_atomic/kunmap_atomic instead of page_address. Fixes: 615755a7 (" bpf: extend stackmap to save binary_build_id+offset instead of address") Reported-by: NNaresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 31 1月, 2019 12 次提交
-
-
由 Daniel Borkmann 提交于
[ commit 9d5564ddcf2a0f5ba3fa1c3a1f8a1b59ad309553 upstream ] During review I noticed that inner meta map setup for map in map is buggy in that it does not propagate all needed data from the reference map which the verifier is later accessing. In particular one such case is index masking to prevent out of bounds access under speculative execution due to missing the map's unpriv_array/index_mask field propagation. Fix this such that the verifier is generating the correct code for inlined lookups in case of unpriviledged use. Before patch (test_verifier's 'map in map access' dump): # bpftool prog dump xla id 3 0: (62) *(u32 *)(r10 -4) = 0 1: (bf) r2 = r10 2: (07) r2 += -4 3: (18) r1 = map[id:4] 5: (07) r1 += 272 | 6: (61) r0 = *(u32 *)(r2 +0) | 7: (35) if r0 >= 0x1 goto pc+6 | Inlined map in map lookup 8: (54) (u32) r0 &= (u32) 0 | with index masking for 9: (67) r0 <<= 3 | map->unpriv_array. 10: (0f) r0 += r1 | 11: (79) r0 = *(u64 *)(r0 +0) | 12: (15) if r0 == 0x0 goto pc+1 | 13: (05) goto pc+1 | 14: (b7) r0 = 0 | 15: (15) if r0 == 0x0 goto pc+11 16: (62) *(u32 *)(r10 -4) = 0 17: (bf) r2 = r10 18: (07) r2 += -4 19: (bf) r1 = r0 20: (07) r1 += 272 | 21: (61) r0 = *(u32 *)(r2 +0) | Index masking missing (!) 22: (35) if r0 >= 0x1 goto pc+3 | for inner map despite 23: (67) r0 <<= 3 | map->unpriv_array set. 24: (0f) r0 += r1 | 25: (05) goto pc+1 | 26: (b7) r0 = 0 | 27: (b7) r0 = 0 28: (95) exit After patch: # bpftool prog dump xla id 1 0: (62) *(u32 *)(r10 -4) = 0 1: (bf) r2 = r10 2: (07) r2 += -4 3: (18) r1 = map[id:2] 5: (07) r1 += 272 | 6: (61) r0 = *(u32 *)(r2 +0) | 7: (35) if r0 >= 0x1 goto pc+6 | Same inlined map in map lookup 8: (54) (u32) r0 &= (u32) 0 | with index masking due to 9: (67) r0 <<= 3 | map->unpriv_array. 10: (0f) r0 += r1 | 11: (79) r0 = *(u64 *)(r0 +0) | 12: (15) if r0 == 0x0 goto pc+1 | 13: (05) goto pc+1 | 14: (b7) r0 = 0 | 15: (15) if r0 == 0x0 goto pc+12 16: (62) *(u32 *)(r10 -4) = 0 17: (bf) r2 = r10 18: (07) r2 += -4 19: (bf) r1 = r0 20: (07) r1 += 272 | 21: (61) r0 = *(u32 *)(r2 +0) | 22: (35) if r0 >= 0x1 goto pc+4 | Now fixed inlined inner map 23: (54) (u32) r0 &= (u32) 0 | lookup with proper index masking 24: (67) r0 <<= 3 | for map->unpriv_array. 25: (0f) r0 += r1 | 26: (05) goto pc+1 | 27: (b7) r0 = 0 | 28: (b7) r0 = 0 29: (95) exit Fixes: b2157399 ("bpf: prevent out-of-bounds speculation") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Daniel Borkmann 提交于
[ commit d3bd7413e0ca40b60cf60d4003246d067cafdeda upstream ] While 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") took care of rejecting alu op on pointer when e.g. pointer came from two different map values with different map properties such as value size, Jann reported that a case was not covered yet when a given alu op is used in both "ptr_reg += reg" and "numeric_reg += reg" from different branches where we would incorrectly try to sanitize based on the pointer's limit. Catch this corner case and reject the program instead. Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") Reported-by: NJann Horn <jannh@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Daniel Borkmann 提交于
[ commit 979d63d50c0c0f7bc537bf821e056cc9fe5abd38 upstream ] Jann reported that the original commit back in b2157399 ("bpf: prevent out-of-bounds speculation") was not sufficient to stop CPU from speculating out of bounds memory access: While b2157399 only focussed on masking array map access for unprivileged users for tail calls and data access such that the user provided index gets sanitized from BPF program and syscall side, there is still a more generic form affected from BPF programs that applies to most maps that hold user data in relation to dynamic map access when dealing with unknown scalars or "slow" known scalars as access offset, for example: - Load a map value pointer into R6 - Load an index into R7 - Do a slow computation (e.g. with a memory dependency) that loads a limit into R8 (e.g. load the limit from a map for high latency, then mask it to make the verifier happy) - Exit if R7 >= R8 (mispredicted branch) - Load R0 = R6[R7] - Load R0 = R6[R0] For unknown scalars there are two options in the BPF verifier where we could derive knowledge from in order to guarantee safe access to the memory: i) While </>/<=/>= variants won't allow to derive any lower or upper bounds from the unknown scalar where it would be safe to add it to the map value pointer, it is possible through ==/!= test however. ii) another option is to transform the unknown scalar into a known scalar, for example, through ALU ops combination such as R &= <imm> followed by R |= <imm> or any similar combination where the original information from the unknown scalar would be destroyed entirely leaving R with a constant. The initial slow load still precedes the latter ALU ops on that register, so the CPU executes speculatively from that point. Once we have the known scalar, any compare operation would work then. A third option only involving registers with known scalars could be crafted as described in [0] where a CPU port (e.g. Slow Int unit) would be filled with many dependent computations such that the subsequent condition depending on its outcome has to wait for evaluation on its execution port and thereby executing speculatively if the speculated code can be scheduled on a different execution port, or any other form of mistraining as described in [1], for example. Given this is not limited to only unknown scalars, not only map but also stack access is affected since both is accessible for unprivileged users and could potentially be used for out of bounds access under speculation. In order to prevent any of these cases, the verifier is now sanitizing pointer arithmetic on the offset such that any out of bounds speculation would be masked in a way where the pointer arithmetic result in the destination register will stay unchanged, meaning offset masked into zero similar as in array_index_nospec() case. With regards to implementation, there are three options that were considered: i) new insn for sanitation, ii) push/pop insn and sanitation as inlined BPF, iii) reuse of ax register and sanitation as inlined BPF. Option i) has the downside that we end up using from reserved bits in the opcode space, but also that we would require each JIT to emit masking as native arch opcodes meaning mitigation would have slow adoption till everyone implements it eventually which is counter-productive. Option ii) and iii) have both in common that a temporary register is needed in order to implement the sanitation as inlined BPF since we are not allowed to modify the source register. While a push / pop insn in ii) would be useful to have in any case, it requires once again that every JIT needs to implement it first. While possible, amount of changes needed would also be unsuitable for a -stable patch. Therefore, the path which has fewer changes, less BPF instructions for the mitigation and does not require anything to be changed in the JITs is option iii) which this work is pursuing. The ax register is already mapped to a register in all JITs (modulo arm32 where it's mapped to stack as various other BPF registers there) and used in constant blinding for JITs-only so far. It can be reused for verifier rewrites under certain constraints. The interpreter's tmp "register" has therefore been remapped into extending the register set with hidden ax register and reusing that for a number of instructions that needed the prior temporary variable internally (e.g. div, mod). This allows for zero increase in stack space usage in the interpreter, and enables (restricted) generic use in rewrites otherwise as long as such a patchlet does not make use of these instructions. The sanitation mask is dynamic and relative to the offset the map value or stack pointer currently holds. There are various cases that need to be taken under consideration for the masking, e.g. such operation could look as follows: ptr += val or val += ptr or ptr -= val. Thus, the value to be sanitized could reside either in source or in destination register, and the limit is different depending on whether the ALU op is addition or subtraction and depending on the current known and bounded offset. The limit is derived as follows: limit := max_value_size - (smin_value + off). For subtraction: limit := umax_value + off. This holds because we do not allow any pointer arithmetic that would temporarily go out of bounds or would have an unknown value with mixed signed bounds where it is unclear at verification time whether the actual runtime value would be either negative or positive. For example, we have a derived map pointer value with constant offset and bounded one, so limit based on smin_value works because the verifier requires that statically analyzed arithmetic on the pointer must be in bounds, and thus it checks if resulting smin_value + off and umax_value + off is still within map value bounds at time of arithmetic in addition to time of access. Similarly, for the case of stack access we derive the limit as follows: MAX_BPF_STACK + off for subtraction and -off for the case of addition where off := ptr_reg->off + ptr_reg->var_off.value. Subtraction is a special case for the masking which can be in form of ptr += -val, ptr -= -val, or ptr -= val. In the first two cases where we know that the value is negative, we need to temporarily negate the value in order to do the sanitation on a positive value where we later swap the ALU op, and restore original source register if the value was in source. The sanitation of pointer arithmetic alone is still not fully sufficient as is, since a scenario like the following could happen ... PTR += 0x1000 (e.g. K-based imm) PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON PTR += 0x1000 PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON [...] ... which under speculation could end up as ... PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] [...] ... and therefore still access out of bounds. To prevent such case, the verifier is also analyzing safety for potential out of bounds access under speculative execution. Meaning, it is also simulating pointer access under truncation. We therefore "branch off" and push the current verification state after the ALU operation with known 0 to the verification stack for later analysis. Given the current path analysis succeeded it is likely that the one under speculation can be pruned. In any case, it is also subject to existing complexity limits and therefore anything beyond this point will be rejected. In terms of pruning, it needs to be ensured that the verification state from speculative execution simulation must never prune a non-speculative execution path, therefore, we mark verifier state accordingly at the time of push_stack(). If verifier detects out of bounds access under speculative execution from one of the possible paths that includes a truncation, it will reject such program. Given we mask every reg-based pointer arithmetic for unprivileged programs, we've been looking into how it could affect real-world programs in terms of size increase. As the majority of programs are targeted for privileged-only use case, we've unconditionally enabled masking (with its alu restrictions on top of it) for privileged programs for the sake of testing in order to check i) whether they get rejected in its current form, and ii) by how much the number of instructions and size will increase. We've tested this by using Katran, Cilium and test_l4lb from the kernel selftests. For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb we've used test_l4lb.o as well as test_l4lb_noinline.o. We found that none of the programs got rejected by the verifier with this change, and that impact is rather minimal to none. balancer_kern.o had 13,904 bytes (1,738 insns) xlated and 7,797 bytes JITed before and after the change. Most complex program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated and 18,538 bytes JITed before and after and none of the other tail call programs in bpf_lxc.o had any changes either. For the older bpf_lxc_opt_-DUNKNOWN.o object we found a small increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed after the change. Other programs from that object file had similar small increase. Both test_l4lb.o had no change and remained at 6,544 bytes (817 insns) xlated and 3,401 bytes JITed and for test_l4lb_noinline.o constant at 5,080 bytes (634 insns) xlated and 3,313 bytes JITed. This can be explained in that LLVM typically optimizes stack based pointer arithmetic by using K-based operations and that use of dynamic map access is not overly frequent. However, in future we may decide to optimize the algorithm further under known guarantees from branch and value speculation. Latter seems also unclear in terms of prediction heuristics that today's CPUs apply as well as whether there could be collisions in e.g. the predictor's Value History/Pattern Table for triggering out of bounds access, thus masking is performed unconditionally at this point but could be subject to relaxation later on. We were generally also brainstorming various other approaches for mitigation, but the blocker was always lack of available registers at runtime and/or overhead for runtime tracking of limits belonging to a specific pointer. Thus, we found this to be minimally intrusive under given constraints. With that in place, a simple example with sanitized access on unprivileged load at post-verification time looks as follows: # bpftool prog dump xlated id 282 [...] 28: (79) r1 = *(u64 *)(r7 +0) 29: (79) r2 = *(u64 *)(r7 +8) 30: (57) r1 &= 15 31: (79) r3 = *(u64 *)(r0 +4608) 32: (57) r3 &= 1 33: (47) r3 |= 1 34: (2d) if r2 > r3 goto pc+19 35: (b4) (u32) r11 = (u32) 20479 | 36: (1f) r11 -= r2 | Dynamic sanitation for pointer 37: (4f) r11 |= r2 | arithmetic with registers 38: (87) r11 = -r11 | containing bounded or known 39: (c7) r11 s>>= 63 | scalars in order to prevent 40: (5f) r11 &= r2 | out of bounds speculation. 41: (0f) r4 += r11 | 42: (71) r4 = *(u8 *)(r4 +0) 43: (6f) r4 <<= r1 [...] For the case where the scalar sits in the destination register as opposed to the source register, the following code is emitted for the above example: [...] 16: (b4) (u32) r11 = (u32) 20479 17: (1f) r11 -= r2 18: (4f) r11 |= r2 19: (87) r11 = -r11 20: (c7) r11 s>>= 63 21: (5f) r2 &= r11 22: (0f) r2 += r0 23: (61) r0 = *(u32 *)(r2 +0) [...] JIT blinding example with non-conflicting use of r10: [...] d5: je 0x0000000000000106 _ d7: mov 0x0(%rax),%edi | da: mov $0xf153246,%r10d | Index load from map value and e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f. e7: and %r10,%rdi |_ ea: mov $0x2f,%r10d | f0: sub %rdi,%r10 | Sanitized addition. Both use r10 f3: or %rdi,%r10 | but do not interfere with each f6: neg %r10 | other. (Neither do these instructions f9: sar $0x3f,%r10 | interfere with the use of ax as temp fd: and %r10,%rdi | in interpreter.) 100: add %rax,%rdi |_ 103: mov 0x0(%rdi),%eax [...] Tested that it fixes Jann's reproducer, and also checked that test_verifier and test_progs suite with interpreter, JIT and JIT with hardening enabled on x86-64 and arm64 runs successfully. [0] Speculose: Analyzing the Security Implications of Speculative Execution in CPUs, Giorgi Maisuradze and Christian Rossow, https://arxiv.org/pdf/1801.04084.pdf [1] A Systematic Evaluation of Transient Execution Attacks and Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss, https://arxiv.org/pdf/1811.05441.pdf Fixes: b2157399 ("bpf: prevent out-of-bounds speculation") Reported-by: NJann Horn <jannh@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Daniel Borkmann 提交于
[ commit b7137c4eab85c1cf3d46acdde90ce1163b28c873 upstream ] In check_map_access() we probe actual bounds through __check_map_access() with offset of reg->smin_value + off for lower bound and offset of reg->umax_value + off for the upper bound. However, even though the reg->smin_value could have a negative value, the final result of the sum with off could be positive when pointer arithmetic with known and unknown scalars is combined. In this case we reject the program with an error such as "R<x> min value is negative, either use unsigned index or do a if (index >=0) check." even though the access itself would be fine. Therefore extend the check to probe whether the actual resulting reg->smin_value + off is less than zero. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Daniel Borkmann 提交于
[ commit 9d7eceede769f90b66cfa06ad5b357140d5141ed upstream ] For unknown scalars of mixed signed bounds, meaning their smin_value is negative and their smax_value is positive, we need to reject arithmetic with pointer to map value. For unprivileged the goal is to mask every map pointer arithmetic and this cannot reliably be done when it is unknown at verification time whether the scalar value is negative or positive. Given this is a corner case, the likelihood of breaking should be very small. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Daniel Borkmann 提交于
[ commit e4298d25830a866cc0f427d4bccb858e76715859 upstream ] Restrict stack pointer arithmetic for unprivileged users in that arithmetic itself must not go out of bounds as opposed to the actual access later on. Therefore after each adjust_ptr_min_max_vals() with a stack pointer as a destination we simulate a check_stack_access() of 1 byte on the destination and once that fails the program is rejected for unprivileged program loads. This is analog to map value pointer arithmetic and needed for masking later on. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Daniel Borkmann 提交于
[ commit 0d6303db7970e6f56ae700fa07e11eb510cda125 upstream ] Restrict map value pointer arithmetic for unprivileged users in that arithmetic itself must not go out of bounds as opposed to the actual access later on. Therefore after each adjust_ptr_min_max_vals() with a map value pointer as a destination it will simulate a check_map_access() of 1 byte on the destination and once that fails the program is rejected for unprivileged program loads. We use this later on for masking any pointer arithmetic with the remainder of the map value space. The likelihood of breaking any existing real-world unprivileged eBPF program is very small for this corner case. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Daniel Borkmann 提交于
[ commit 9b73bfdd08e73231d6a90ae6db4b46b3fbf56c30 upstream ] Right now we are using BPF ax register in JIT for constant blinding as well as in interpreter as temporary variable. Verifier will not be able to use it simply because its use will get overridden from the former in bpf_jit_blind_insn(). However, it can be made to work in that blinding will be skipped if there is prior use in either source or destination register on the instruction. Taking constraints of ax into account, the verifier is then open to use it in rewrites under some constraints. Note, ax register already has mappings in every eBPF JIT. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Daniel Borkmann 提交于
[ commit 144cd91c4c2bced6eb8a7e25e590f6618a11e854 upstream ] This change moves the on-stack 64 bit tmp variable in ___bpf_prog_run() into the hidden ax register. The latter is currently only used in JITs for constant blinding as a temporary scratch register, meaning the BPF interpreter will never see the use of ax. Therefore it is safe to use it for the cases where tmp has been used earlier. This is needed to later on allow restricted hidden use of ax in both interpreter and JITs. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Daniel Borkmann 提交于
[ commit c08435ec7f2bc8f4109401f696fd55159b4b40cb upstream ] Move prev_insn_idx and insn_idx from the do_check() function into the verifier environment, so they can be read inside the various helper functions for handling the instructions. It's easier to put this into the environment rather than changing all call-sites only to pass it along. insn_idx is useful in particular since this later on allows to hold state in env->insn_aux_data[env->insn_idx]. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Alexei Starovoitov 提交于
[ commit ceefbc96fa5c5b975d87bf8e89ba8416f6b764d9 upstream ] malicious bpf program may try to force the verifier to remember a lot of distinct verifier states. Put a limit to number of per-insn 'struct bpf_verifier_state'. Note that hitting the limit doesn't reject the program. It potentially makes the verifier do more steps to analyze the program. It means that malicious programs will hit BPF_COMPLEXITY_LIMIT_INSNS sooner instead of spending cpu time walking long link list. The limit of BPF_COMPLEXITY_LIMIT_STATES==64 affects cilium progs with slight increase in number of "steps" it takes to successfully verify the programs: before after bpf_lb-DLB_L3.o 1940 1940 bpf_lb-DLB_L4.o 3089 3089 bpf_lb-DUNKNOWN.o 1065 1065 bpf_lxc-DDROP_ALL.o 28052 | 28162 bpf_lxc-DUNKNOWN.o 35487 | 35541 bpf_netdev.o 10864 10864 bpf_overlay.o 6643 6643 bpf_lcx_jit.o 38437 38437 But it also makes malicious program to be rejected in 0.4 seconds vs 6.5 Hence apply this limit to unprivileged programs only. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NEdward Cree <ecree@solarflare.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Alexei Starovoitov 提交于
[ commit 4f7b3e82589e0de723780198ec7983e427144c0a upstream ] pathological bpf programs may try to force verifier to explode in the number of branch states: 20: (d5) if r1 s<= 0x24000028 goto pc+0 21: (b5) if r0 <= 0xe1fa20 goto pc+2 22: (d5) if r1 s<= 0x7e goto pc+0 23: (b5) if r0 <= 0xe880e000 goto pc+0 24: (c5) if r0 s< 0x2100ecf4 goto pc+0 25: (d5) if r1 s<= 0xe880e000 goto pc+1 26: (c5) if r0 s< 0xf4041810 goto pc+0 27: (d5) if r1 s<= 0x1e007e goto pc+0 28: (b5) if r0 <= 0xe86be000 goto pc+0 29: (07) r0 += 16614 30: (c5) if r0 s< 0x6d0020da goto pc+0 31: (35) if r0 >= 0x2100ecf4 goto pc+0 Teach verifier to recognize always taken and always not taken branches. This analysis is already done for == and != comparison. Expand it to all other branches. It also helps real bpf programs to be verified faster: before after bpf_lb-DLB_L3.o 2003 1940 bpf_lb-DLB_L4.o 3173 3089 bpf_lb-DUNKNOWN.o 1080 1065 bpf_lxc-DDROP_ALL.o 29584 28052 bpf_lxc-DUNKNOWN.o 36916 35487 bpf_netdev.o 11188 10864 bpf_overlay.o 6679 6643 bpf_lcx_jit.o 39555 38437 Reported-by: NAnatoly Trosinenko <anatoly.trosinenko@gmail.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NEdward Cree <ecree@solarflare.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 26 1月, 2019 2 次提交
-
-
由 Jiong Wang 提交于
[ Upstream commit e434b8cdf788568ba65a0a0fd9f3cb41f3ca1803 ] Currently, the destination register is marked as unknown for 32-bit sub-register move (BPF_MOV | BPF_ALU) whenever the source register type is SCALAR_VALUE. This is too conservative that some valid cases will be rejected. Especially, this may turn a constant scalar value into unknown value that could break some assumptions of verifier. For example, test_l4lb_noinline.c has the following C code: struct real_definition *dst 1: if (!get_packet_dst(&dst, &pckt, vip_info, is_ipv6)) 2: return TC_ACT_SHOT; 3: 4: if (dst->flags & F_IPV6) { get_packet_dst is responsible for initializing "dst" into valid pointer and return true (1), otherwise return false (0). The compiled instruction sequence using alu32 will be: 412: (54) (u32) r7 &= (u32) 1 413: (bc) (u32) r0 = (u32) r7 414: (95) exit insn 413, a BPF_MOV | BPF_ALU, however will turn r0 into unknown value even r7 contains SCALAR_VALUE 1. This causes trouble when verifier is walking the code path that hasn't initialized "dst" inside get_packet_dst, for which case 0 is returned and we would then expect verifier concluding line 1 in the above C code pass the "if" check, therefore would skip fall through path starting at line 4. Now, because r0 returned from callee has became unknown value, so verifier won't skip analyzing path starting at line 4 and "dst->flags" requires dereferencing the pointer "dst" which actually hasn't be initialized for this path. This patch relaxed the code marking sub-register move destination. For a SCALAR_VALUE, it is safe to just copy the value from source then truncate it into 32-bit. A unit test also included to demonstrate this issue. This test will fail before this patch. This relaxation could let verifier skipping more paths for conditional comparison against immediate. It also let verifier recording a more accurate/strict value for one register at one state, if this state end up with going through exit without rejection and it is used for state comparison later, then it is possible an inaccurate/permissive value is better. So the real impact on verifier processed insn number is complex. But in all, without this fix, valid program could be rejected. >From real benchmarking on kernel selftests and Cilium bpf tests, there is no impact on processed instruction number when tests ares compiled with default compilation options. There is slightly improvements when they are compiled with -mattr=+alu32 after this patch. Also, test_xdp_noinline/-mattr=+alu32 now passed verification. It is rejected before this fix. Insn processed before/after this patch: default -mattr=+alu32 Kernel selftest === test_xdp.o 371/371 369/369 test_l4lb.o 6345/6345 5623/5623 test_xdp_noinline.o 2971/2971 rejected/2727 test_tcp_estates.o 429/429 430/430 Cilium bpf === bpf_lb-DLB_L3.o: 2085/2085 1685/1687 bpf_lb-DLB_L4.o: 2287/2287 1986/1982 bpf_lb-DUNKNOWN.o: 690/690 622/622 bpf_lxc.o: 95033/95033 N/A bpf_netdev.o: 7245/7245 N/A bpf_overlay.o: 2898/2898 3085/2947 NOTE: - bpf_lxc.o and bpf_netdev.o compiled by -mattr=+alu32 are rejected by verifier due to another issue inside verifier on supporting alu32 binary. - Each cilium bpf program could generate several processed insn number, above number is sum of them. v1->v2: - Restrict the change on SCALAR_VALUE. - Update benchmark numbers on Cilium bpf tests. Signed-off-by: NJiong Wang <jiong.wang@netronome.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Andrey Ignatov 提交于
[ Upstream commit 46f53a65d2de3e1591636c22b626b09d8684fd71 ] Currently BPF verifier allows narrow loads for a context field only with offset zero. E.g. if there is a __u32 field then only the following loads are permitted: * off=0, size=1 (narrow); * off=0, size=2 (narrow); * off=0, size=4 (full). On the other hand LLVM can generate a load with offset different than zero that make sense from program logic point of view, but verifier doesn't accept it. E.g. tools/testing/selftests/bpf/sendmsg4_prog.c has code: #define DST_IP4 0xC0A801FEU /* 192.168.1.254 */ ... if ((ctx->user_ip4 >> 24) == (bpf_htonl(DST_IP4) >> 24) && where ctx is struct bpf_sock_addr. Some versions of LLVM can produce the following byte code for it: 8: 71 12 07 00 00 00 00 00 r2 = *(u8 *)(r1 + 7) 9: 67 02 00 00 18 00 00 00 r2 <<= 24 10: 18 03 00 00 00 00 00 fe 00 00 00 00 00 00 00 00 r3 = 4261412864 ll 12: 5d 32 07 00 00 00 00 00 if r2 != r3 goto +7 <LBB0_6> where `*(u8 *)(r1 + 7)` means narrow load for ctx->user_ip4 with size=1 and offset=3 (7 - sizeof(ctx->user_family) = 3). This load is currently rejected by verifier. Verifier code that rejects such loads is in bpf_ctx_narrow_access_ok() what means any is_valid_access implementation, that uses the function, works this way, e.g. bpf_skb_is_valid_access() for __sk_buff or sock_addr_is_valid_access() for bpf_sock_addr. The patch makes such loads supported. Offset can be in [0; size_default) but has to be multiple of load size. E.g. for __u32 field the following loads are supported now: * off=0, size=1 (narrow); * off=1, size=1 (narrow); * off=2, size=1 (narrow); * off=3, size=1 (narrow); * off=0, size=2 (narrow); * off=2, size=2 (narrow); * off=0, size=4 (full). Reported-by: NYonghong Song <yhs@fb.com> Signed-off-by: NAndrey Ignatov <rdna@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 21 12月, 2018 1 次提交
-
-
由 Alexei Starovoitov 提交于
[ Upstream commit c3494801 ] Malicious user space may try to force the verifier to use as much cpu time and memory as possible. Hence check for pending signals while verifying the program. Note that suspend of sys_bpf(PROG_LOAD) syscall will lead to EAGAIN, since the kernel has to release the resources used for program verification. Reported-by: NAnatoly Trosinenko <anatoly.trosinenko@gmail.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NEdward Cree <ecree@solarflare.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 17 12月, 2018 2 次提交
-
-
由 Edward Cree 提交于
commit afd59424 upstream. When patching in a new sequence for the first insn of a subprog, the start of that subprog does not change (it's the first insn of the sequence), so adjust_subprog_starts should check start <= off (rather than < off). Also added a test to test_verifier.c (it's essentially the syz reproducer). Fixes: cc8b0b92 ("bpf: introduce function calls (function boundaries)") Reported-by: syzbot+4fc427c7af994b0948be@syzkaller.appspotmail.com Signed-off-by: NEdward Cree <ecree@solarflare.com> Acked-by: NYonghong Song <yhs@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Roman Gushchin 提交于
[ Upstream commit 569a933b03f3c48b392fe67c0086b3a6b9306b5a ] Naresh reported an issue with the non-atomic memory allocation of cgroup local storage buffers: [ 73.047526] BUG: sleeping function called from invalid context at /srv/oe/build/tmp-rpb-glibc/work-shared/intel-corei7-64/kernel-source/mm/slab.h:421 [ 73.060915] in_atomic(): 1, irqs_disabled(): 0, pid: 3157, name: test_cgroup_sto [ 73.068342] INFO: lockdep is turned off. [ 73.072293] CPU: 2 PID: 3157 Comm: test_cgroup_sto Not tainted 4.20.0-rc2-next-20181113 #1 [ 73.080548] Hardware name: Supermicro SYS-5019S-ML/X11SSH-F, BIOS 2.0b 07/27/2017 [ 73.088018] Call Trace: [ 73.090463] dump_stack+0x70/0xa5 [ 73.093783] ___might_sleep+0x152/0x240 [ 73.097619] __might_sleep+0x4a/0x80 [ 73.101191] __kmalloc_node+0x1cf/0x2f0 [ 73.105031] ? cgroup_storage_update_elem+0x46/0x90 [ 73.109909] cgroup_storage_update_elem+0x46/0x90 cgroup_storage_update_elem() (as well as other update map update callbacks) is called with disabled preemption, so GFP_ATOMIC allocation should be used: e.g. alloc_htab_elem() in hashtab.c. Reported-by: NNaresh Kamboju <naresh.kamboju@linaro.org> Tested-by: NNaresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: NRoman Gushchin <guro@fb.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 27 11月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
[ Upstream commit 28c2fae726bf5003cd209b0d5910a642af98316f ] While dbecd738 ("bpf: get kernel symbol addresses via syscall") zeroed info.nr_jited_ksyms in bpf_prog_get_info_by_fd() for queries from unprivileged users, commit 815581c1 ("bpf: get JITed image lengths of functions via syscall") forgot about doing so and therefore returns the #elems of the user set up buffer which is incorrect. It also needs to indicate a info.nr_jited_func_lens of zero. Fixes: 815581c1 ("bpf: get JITed image lengths of functions via syscall") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Cc: Sandipan Das <sandipan@linux.vnet.ibm.com> Cc: Song Liu <songliubraving@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 14 11月, 2018 3 次提交
-
-
由 Daniel Colascione 提交于
commit 1ae80cf31938c8f77c37a29bbe29e7f1cd492be8 upstream. The map-in-map frequently serves as a mechanism for atomic snapshotting of state that a BPF program might record. The current implementation is dangerous to use in this way, however, since userspace has no way of knowing when all programs that might have retrieved the "old" value of the map may have completed. This change ensures that map update operations on map-in-map map types always wait for all references to the old map to drop before returning to userspace. Signed-off-by: NDaniel Colascione <dancol@google.com> Reviewed-by: NJoel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NChenbo Feng <fengc@google.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Alexei Starovoitov 提交于
[ Upstream commit a9c676bc8fc58d00eea9836fb14ee43c0346416a ] Edward Cree says: In check_mem_access(), for the PTR_TO_CTX case, after check_ctx_access() has supplied a reg_type, the other members of the register state are set appropriately. Previously reg.range was set to 0, but as it is in a union with reg.map_ptr, which is larger, upper bytes of the latter were left in place. This then caused the memcmp() in regsafe() to fail, preventing some branches from being pruned (and occasionally causing the same program to take a varying number of processed insns on repeated verifier runs). Fix the instability by clearing bpf_reg_state in __mark_reg_[un]known() Fixes: f1174f77 ("bpf/verifier: rework value tracking") Debugged-by: NEdward Cree <ecree@solarflare.com> Acked-by: NEdward Cree <ecree@solarflare.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Daniel Borkmann 提交于
commit 0962590e553331db2cc0aef2dc35c57f6300dbbe upstream. ALU operations on pointers such as scalar_reg += map_value_ptr are handled in adjust_ptr_min_max_vals(). Problem is however that map_ptr and range in the register state share a union, so transferring state through dst_reg->range = ptr_reg->range is just buggy as any new map_ptr in the dst_reg is then truncated (or null) for subsequent checks. Fix this by adding a raw member and use it for copying state over to dst_reg. Fixes: f1174f77 ("bpf/verifier: rework value tracking") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Cc: Edward Cree <ecree@solarflare.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NEdward Cree <ecree@solarflare.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 11 10月, 2018 1 次提交
-
-
由 Björn Töpel 提交于
The XSKMAP update and delete functions called synchronize_net(), which can sleep. It is not allowed to sleep during an RCU read section. Instead we need to make sure that the sock sk_destruct (xsk_destruct) function is asynchronously called after an RCU grace period. Setting the SOCK_RCU_FREE flag for XDP sockets takes care of this. Fixes: fbfc504a ("bpf: introduce new bpf AF_XDP map type BPF_MAP_TYPE_XSKMAP") Reported-by: NEric Dumazet <eric.dumazet@gmail.com> Signed-off-by: NBjörn Töpel <bjorn.topel@intel.com> Acked-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 06 10月, 2018 1 次提交
-
-
由 Jann Horn 提交于
When I wrote commit 468f6eaf ("bpf: fix 32-bit ALU op verification"), I assumed that, in order to emulate 64-bit arithmetic with 32-bit logic, it is sufficient to just truncate the output to 32 bits; and so I just moved the register size coercion that used to be at the start of the function to the end of the function. That assumption is true for almost every op, but not for 32-bit right shifts, because those can propagate information towards the least significant bit. Fix it by always truncating inputs for 32-bit ops to 32 bits. Also get rid of the coerce_reg_to_size() after the ALU op, since that has no effect. Fixes: 468f6eaf ("bpf: fix 32-bit ALU op verification") Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NJann Horn <jannh@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 02 10月, 2018 1 次提交
-
-
由 Roman Gushchin 提交于
Explicitly forbid creating cgroup local storage maps with zero value size, as it makes no sense and might even cause a panic. Reported-by: syzbot+18628320d3b14a5c459c@syzkaller.appspotmail.com Signed-off-by: NRoman Gushchin <guro@fb.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 28 9月, 2018 1 次提交
-
-
由 Roman Gushchin 提交于
cgroup_storage_update_elem() shouldn't accept any flags argument values except BPF_ANY and BPF_EXIST to guarantee the backward compatibility, had a new flag value been added. Fixes: de9cbbaa ("bpf: introduce cgroup storage maps") Signed-off-by: NRoman Gushchin <guro@fb.com> Reported-by: NDaniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 22 9月, 2018 2 次提交
-
-
由 John Fastabend 提交于
It is possible (via shutdown()) for TCP socks to go trough TCP_CLOSE state via tcp_disconnect() without actually calling tcp_close which would then call our bpf_tcp_close() callback. Because of this a user could disconnect a socket then put it in a LISTEN state which would break our assumptions about sockets always being ESTABLISHED state. To resolve this rely on the unhash hook, which is called in the disconnect case, to remove the sock from the sockmap. Reported-by: NEric Dumazet <edumazet@google.com> Fixes: 1aa12bdf ("bpf: sockmap, add sock close() hook to remove socks") Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NYonghong Song <yhs@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 John Fastabend 提交于
After this patch we only allow socks that are in ESTABLISHED state or are being added via a sock_ops event that is transitioning into an ESTABLISHED state. By allowing sock_ops events we allow users to manage sockmaps directly from sock ops programs. The two supported sock_ops ops are BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB and BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB. Similar to TLS ULP this ensures sk_user_data is correct. Reported-by: NEric Dumazet <edumazet@google.com> Fixes: 1aa12bdf ("bpf: sockmap, add sock close() hook to remove socks") Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NYonghong Song <yhs@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 13 9月, 2018 2 次提交
-
-
由 Alexei Starovoitov 提交于
Subtraction of pointers was accidentally allowed for unpriv programs by commit 82abbf8d. Revert that part of commit. Fixes: 82abbf8d ("bpf: do not allow root to mangle valid pointers") Reported-by: NJann Horn <jannh@google.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Martin KaFai Lau 提交于
The end boundary math for type section is incorrect in btf_check_all_metas(). It just happens that hdr->type_off is always 0 for now because there are only two sections (type and string) and string section must be at the end (ensured in btf_parse_str_sec). However, type_off may not be 0 if a new section would be added later. This patch fixes it. Fixes: f80442a4 ("bpf: btf: Change how section is supported in btf_header") Reported-by: NDmitry Vyukov <dvyukov@google.com> Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Acked-by: NYonghong Song <yhs@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 03 9月, 2018 1 次提交
-
-
由 John Fastabend 提交于
Currently we check sk_user_data is non NULL to determine if the sk exists in a map. However, this is not sufficient to ensure the psock or the ULP ops are not in use by another user, such as kcm or TLS. To avoid this when adding a sock to a map also verify it is of the correct ULP type. Additionally, when releasing a psock verify that it is the TCP_ULP_BPF type before releasing the ULP. The error case where we abort an update due to ULP collision can cause this error path. For example, __sock_map_ctx_update_elem() [...] err = tcp_set_ulp_id(sock, TCP_ULP_BPF) <- collides with TLS if (err) <- so err out here goto out_free [...] out_free: smap_release_sock() <- calling tcp_cleanup_ulp releases the TLS ULP incorrectly. Fixes: 2f857d04 ("bpf: sockmap, remove STRPARSER map_flags and add multi-map support") Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-