1. 09 10月, 2012 6 次提交
    • H
      mm: use clear_page_mlock() in page_remove_rmap() · e6c509f8
      Hugh Dickins 提交于
      We had thought that pages could no longer get freed while still marked as
      mlocked; but Johannes Weiner posted this program to demonstrate that
      truncating an mlocked private file mapping containing COWed pages is still
      mishandled:
      
      #include <sys/types.h>
      #include <sys/mman.h>
      #include <sys/stat.h>
      #include <stdlib.h>
      #include <unistd.h>
      #include <fcntl.h>
      #include <stdio.h>
      
      int main(void)
      {
      	char *map;
      	int fd;
      
      	system("grep mlockfreed /proc/vmstat");
      	fd = open("chigurh", O_CREAT|O_EXCL|O_RDWR);
      	unlink("chigurh");
      	ftruncate(fd, 4096);
      	map = mmap(NULL, 4096, PROT_WRITE, MAP_PRIVATE, fd, 0);
      	map[0] = 11;
      	mlock(map, sizeof(fd));
      	ftruncate(fd, 0);
      	close(fd);
      	munlock(map, sizeof(fd));
      	munmap(map, 4096);
      	system("grep mlockfreed /proc/vmstat");
      	return 0;
      }
      
      The anon COWed pages are not caught by truncation's clear_page_mlock() of
      the pagecache pages; but unmap_mapping_range() unmaps them, so we ought to
      look out for them there in page_remove_rmap().  Indeed, why should
      truncation or invalidation be doing the clear_page_mlock() when removing
      from pagecache?  mlock is a property of mapping in userspace, not a
      property of pagecache: an mlocked unmapped page is nonsensical.
      Reported-by: NJohannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: Ying Han <yinghan@google.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e6c509f8
    • M
      mm: replace vma prio_tree with an interval tree · 6b2dbba8
      Michel Lespinasse 提交于
      Implement an interval tree as a replacement for the VMA prio_tree.  The
      algorithms are similar to lib/interval_tree.c; however that code can't be
      directly reused as the interval endpoints are not explicitly stored in the
      VMA.  So instead, the common algorithm is moved into a template and the
      details (node type, how to get interval endpoints from the node, etc) are
      filled in using the C preprocessor.
      
      Once the interval tree functions are available, using them as a
      replacement to the VMA prio tree is a relatively simple, mechanical job.
      Signed-off-by: NMichel Lespinasse <walken@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Hillf Danton <dhillf@gmail.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6b2dbba8
    • K
      mm: kill vma flag VM_RESERVED and mm->reserved_vm counter · 314e51b9
      Konstantin Khlebnikov 提交于
      A long time ago, in v2.4, VM_RESERVED kept swapout process off VMA,
      currently it lost original meaning but still has some effects:
      
       | effect                 | alternative flags
      -+------------------------+---------------------------------------------
      1| account as reserved_vm | VM_IO
      2| skip in core dump      | VM_IO, VM_DONTDUMP
      3| do not merge or expand | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP
      4| do not mlock           | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP
      
      This patch removes reserved_vm counter from mm_struct.  Seems like nobody
      cares about it, it does not exported into userspace directly, it only
      reduces total_vm showed in proc.
      
      Thus VM_RESERVED can be replaced with VM_IO or pair VM_DONTEXPAND | VM_DONTDUMP.
      
      remap_pfn_range() and io_remap_pfn_range() set VM_IO|VM_DONTEXPAND|VM_DONTDUMP.
      remap_vmalloc_range() set VM_DONTEXPAND | VM_DONTDUMP.
      
      [akpm@linux-foundation.org: drivers/vfio/pci/vfio_pci.c fixup]
      Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Carsten Otte <cotte@de.ibm.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Cyrill Gorcunov <gorcunov@openvz.org>
      Cc: Eric Paris <eparis@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: James Morris <james.l.morris@oracle.com>
      Cc: Jason Baron <jbaron@redhat.com>
      Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
      Cc: Matt Helsley <matthltc@us.ibm.com>
      Cc: Nick Piggin <npiggin@kernel.dk>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Robert Richter <robert.richter@amd.com>
      Cc: Suresh Siddha <suresh.b.siddha@intel.com>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: Venkatesh Pallipadi <venki@google.com>
      Acked-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      314e51b9
    • K
      mm: kill vma flag VM_INSERTPAGE · 4b6e1e37
      Konstantin Khlebnikov 提交于
      Merge VM_INSERTPAGE into VM_MIXEDMAP.  VM_MIXEDMAP VMA can mix pure-pfn
      ptes, special ptes and normal ptes.
      
      Now copy_page_range() always copies VM_MIXEDMAP VMA on fork like
      VM_PFNMAP.  If driver populates whole VMA at mmap() it probably not
      expects page-faults.
      
      This patch removes special check from vma_wants_writenotify() which
      disables pages write tracking for VMA populated via vm_instert_page().
      BDI below mapped file should not use dirty-accounting, moreover
      do_wp_page() can handle this.
      
      vm_insert_page() still marks vma after first usage.  Usually it is called
      from f_op->mmap() handler under mm->mmap_sem write-lock, so it able to
      change vma->vm_flags.  Caller must set VM_MIXEDMAP at mmap time if it
      wants to call this function from other places, for example from page-fault
      handler.
      Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Carsten Otte <cotte@de.ibm.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Cyrill Gorcunov <gorcunov@openvz.org>
      Cc: Eric Paris <eparis@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: James Morris <james.l.morris@oracle.com>
      Cc: Jason Baron <jbaron@redhat.com>
      Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
      Cc: Matt Helsley <matthltc@us.ibm.com>
      Cc: Nick Piggin <npiggin@kernel.dk>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Robert Richter <robert.richter@amd.com>
      Cc: Suresh Siddha <suresh.b.siddha@intel.com>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: Venkatesh Pallipadi <venki@google.com>
      Acked-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4b6e1e37
    • K
      mm, x86, pat: rework linear pfn-mmap tracking · b3b9c293
      Konstantin Khlebnikov 提交于
      Replace the generic vma-flag VM_PFN_AT_MMAP with x86-only VM_PAT.
      
      We can toss mapping address from remap_pfn_range() into
      track_pfn_vma_new(), and collect all PAT-related logic together in
      arch/x86/.
      
      This patch also restores orignal frustration-free is_cow_mapping() check
      in remap_pfn_range(), as it was before commit v2.6.28-rc8-88-g3c8bb73a
      ("x86: PAT: store vm_pgoff for all linear_over_vma_region mappings - v3")
      
      is_linear_pfn_mapping() checks can be removed from mm/huge_memory.c,
      because it already handled by VM_PFNMAP in VM_NO_THP bit-mask.
      
      [suresh.b.siddha@intel.com: Reset the VM_PAT flag as part of untrack_pfn_vma()]
      Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org>
      Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com>
      Cc: Venkatesh Pallipadi <venki@google.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Nick Piggin <npiggin@kernel.dk>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Carsten Otte <cotte@de.ibm.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Cyrill Gorcunov <gorcunov@openvz.org>
      Cc: Eric Paris <eparis@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: James Morris <james.l.morris@oracle.com>
      Cc: Jason Baron <jbaron@redhat.com>
      Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
      Cc: Matt Helsley <matthltc@us.ibm.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Robert Richter <robert.richter@amd.com>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: Venkatesh Pallipadi <venki@google.com>
      Acked-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b3b9c293
    • S
      x86, pat: separate the pfn attribute tracking for remap_pfn_range and vm_insert_pfn · 5180da41
      Suresh Siddha 提交于
      With PAT enabled, vm_insert_pfn() looks up the existing pfn memory
      attribute and uses it.  Expectation is that the driver reserves the
      memory attributes for the pfn before calling vm_insert_pfn().
      
      remap_pfn_range() (when called for the whole vma) will setup a new
      attribute (based on the prot argument) for the specified pfn range.
      This addresses the legacy usage which typically calls remap_pfn_range()
      with a desired memory attribute.  For ranges smaller than the vma size
      (which is typically not the case), remap_pfn_range() will use the
      existing memory attribute for the pfn range.
      
      Expose two different API's for these different behaviors.
      track_pfn_insert() for tracking the pfn attribute set by vm_insert_pfn()
      and track_pfn_remap() for the remap_pfn_range().
      
      This cleanup also prepares the ground for the track/untrack pfn vma
      routines to take over the ownership of setting PAT specific vm_flag in
      the 'vma'.
      
      [khlebnikov@openvz.org: Clear checks in track_pfn_remap()]
      [akpm@linux-foundation.org: tweak a few comments]
      Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com>
      Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org>
      Cc: Venkatesh Pallipadi <venki@google.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Nick Piggin <npiggin@kernel.dk>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Carsten Otte <cotte@de.ibm.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Cyrill Gorcunov <gorcunov@openvz.org>
      Cc: Eric Paris <eparis@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: James Morris <james.l.morris@oracle.com>
      Cc: Jason Baron <jbaron@redhat.com>
      Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
      Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
      Cc: Matt Helsley <matthltc@us.ibm.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Robert Richter <robert.richter@amd.com>
      Cc: Suresh Siddha <suresh.b.siddha@intel.com>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Acked-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5180da41
  2. 01 8月, 2012 3 次提交
    • M
      mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables · d833352a
      Mel Gorman 提交于
      If a process creates a large hugetlbfs mapping that is eligible for page
      table sharing and forks heavily with children some of whom fault and
      others which destroy the mapping then it is possible for page tables to
      get corrupted.  Some teardowns of the mapping encounter a "bad pmd" and
      output a message to the kernel log.  The final teardown will trigger a
      BUG_ON in mm/filemap.c.
      
      This was reproduced in 3.4 but is known to have existed for a long time
      and goes back at least as far as 2.6.37.  It was probably was introduced
      in 2.6.20 by [39dde65c: shared page table for hugetlb page].  The messages
      look like this;
      
      [  ..........] Lots of bad pmd messages followed by this
      [  127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
      [  127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
      [  127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
      [  127.186778] ------------[ cut here ]------------
      [  127.186781] kernel BUG at mm/filemap.c:134!
      [  127.186782] invalid opcode: 0000 [#1] SMP
      [  127.186783] CPU 7
      [  127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
      [  127.186801]
      [  127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
      [  127.186804] RIP: 0010:[<ffffffff810ed6ce>]  [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
      [  127.186809] RSP: 0000:ffff8804144b5c08  EFLAGS: 00010002
      [  127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
      [  127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
      [  127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
      [  127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
      [  127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
      [  127.186815] FS:  00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
      [  127.186816] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
      [  127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
      [  127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
      [  127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
      [  127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
      [  127.186821] Stack:
      [  127.186822]  ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
      [  127.186824]  ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
      [  127.186825]  ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
      [  127.186827] Call Trace:
      [  127.186829]  [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
      [  127.186832]  [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
      [  127.186834]  [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
      [  127.186837]  [<ffffffff811655c7>] evict+0xa7/0x1b0
      [  127.186839]  [<ffffffff811657a3>] iput_final+0xd3/0x1f0
      [  127.186840]  [<ffffffff811658f9>] iput+0x39/0x50
      [  127.186842]  [<ffffffff81162708>] d_kill+0xf8/0x130
      [  127.186843]  [<ffffffff81162812>] dput+0xd2/0x1a0
      [  127.186845]  [<ffffffff8114e2d0>] __fput+0x170/0x230
      [  127.186848]  [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
      [  127.186849]  [<ffffffff8114e3ad>] fput+0x1d/0x30
      [  127.186851]  [<ffffffff81117db7>] remove_vma+0x37/0x80
      [  127.186853]  [<ffffffff81119182>] do_munmap+0x2d2/0x360
      [  127.186855]  [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
      [  127.186857]  [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
      [  127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
      [  127.186868] RIP  [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
      [  127.186870]  RSP <ffff8804144b5c08>
      [  127.186871] ---[ end trace 7cbac5d1db69f426 ]---
      
      The bug is a race and not always easy to reproduce.  To reproduce it I was
      doing the following on a single socket I7-based machine with 16G of RAM.
      
      $ hugeadm --pool-pages-max DEFAULT:13G
      $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
      $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
      $ for i in `seq 1 9000`; do ./hugetlbfs-test; done
      
      On my particular machine, it usually triggers within 10 minutes but
      enabling debug options can change the timing such that it never hits.
      Once the bug is triggered, the machine is in trouble and needs to be
      rebooted.  The machine will respond but processes accessing proc like "ps
      aux" will hang due to the BUG_ON.  shutdown will also hang and needs a
      hard reset or a sysrq-b.
      
      The basic problem is a race between page table sharing and teardown.  For
      the most part page table sharing depends on i_mmap_mutex.  In some cases,
      it is also taking the mm->page_table_lock for the PTE updates but with
      shared page tables, it is the i_mmap_mutex that is more important.
      
      Unfortunately it appears to be also insufficient. Consider the following
      situation
      
      Process A					Process B
      ---------					---------
      hugetlb_fault					shmdt
        						LockWrite(mmap_sem)
          						  do_munmap
      						    unmap_region
      						      unmap_vmas
      						        unmap_single_vma
      						          unmap_hugepage_range
            						            Lock(i_mmap_mutex)
      							    Lock(mm->page_table_lock)
      							    huge_pmd_unshare/unmap tables <--- (1)
      							    Unlock(mm->page_table_lock)
            						            Unlock(i_mmap_mutex)
        huge_pte_alloc				      ...
          Lock(i_mmap_mutex)				      ...
          vma_prio_walk, find svma, spte		      ...
          Lock(mm->page_table_lock)			      ...
          share spte					      ...
          Unlock(mm->page_table_lock)			      ...
          Unlock(i_mmap_mutex)			      ...
        hugetlb_no_page									  <--- (2)
      						      free_pgtables
      						        unlink_file_vma
      							hugetlb_free_pgd_range
      						    remove_vma_list
      
      In this scenario, it is possible for Process A to share page tables with
      Process B that is trying to tear them down.  The i_mmap_mutex on its own
      does not prevent Process A walking Process B's page tables.  At (1) above,
      the page tables are not shared yet so it unmaps the PMDs.  Process A sets
      up page table sharing and at (2) faults a new entry.  Process B then trips
      up on it in free_pgtables.
      
      This patch fixes the problem by adding a new function
      __unmap_hugepage_range_final that is only called when the VMA is about to
      be destroyed.  This function clears VM_MAYSHARE during
      unmap_hugepage_range() under the i_mmap_mutex.  This makes the VMA
      ineligible for sharing and avoids the race.  Superficially this looks like
      it would then be vunerable to truncate and madvise issues but hugetlbfs
      has its own truncate handlers so does not use unmap_mapping_range() and
      does not support madvise(DONTNEED).
      
      This should be treated as a -stable candidate if it is merged.
      
      Test program is as follows. The test case was mostly written by Michal
      Hocko with a few minor changes to reproduce this bug.
      
      ==== CUT HERE ====
      
      static size_t huge_page_size = (2UL << 20);
      static size_t nr_huge_page_A = 512;
      static size_t nr_huge_page_B = 5632;
      
      unsigned int get_random(unsigned int max)
      {
      	struct timeval tv;
      
      	gettimeofday(&tv, NULL);
      	srandom(tv.tv_usec);
      	return random() % max;
      }
      
      static void play(void *addr, size_t size)
      {
      	unsigned char *start = addr,
      		      *end = start + size,
      		      *a;
      	start += get_random(size/2);
      
      	/* we could itterate on huge pages but let's give it more time. */
      	for (a = start; a < end; a += 4096)
      		*a = 0;
      }
      
      int main(int argc, char **argv)
      {
      	key_t key = IPC_PRIVATE;
      	size_t sizeA = nr_huge_page_A * huge_page_size;
      	size_t sizeB = nr_huge_page_B * huge_page_size;
      	int shmidA, shmidB;
      	void *addrA = NULL, *addrB = NULL;
      	int nr_children = 300, n = 0;
      
      	if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
      		perror("shmget:");
      		return 1;
      	}
      
      	if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
      		perror("shmat");
      		return 1;
      	}
      	if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
      		perror("shmget:");
      		return 1;
      	}
      
      	if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
      		perror("shmat");
      		return 1;
      	}
      
      fork_child:
      	switch(fork()) {
      		case 0:
      			switch (n%3) {
      			case 0:
      				play(addrA, sizeA);
      				break;
      			case 1:
      				play(addrB, sizeB);
      				break;
      			case 2:
      				break;
      			}
      			break;
      		case -1:
      			perror("fork:");
      			break;
      		default:
      			if (++n < nr_children)
      				goto fork_child;
      			play(addrA, sizeA);
      			break;
      	}
      	shmdt(addrA);
      	shmdt(addrB);
      	do {
      		wait(NULL);
      	} while (--n > 0);
      	shmctl(shmidA, IPC_RMID, NULL);
      	shmctl(shmidB, IPC_RMID, NULL);
      	return 0;
      }
      
      [akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d833352a
    • J
      mm/memory.c:print_vma_addr(): call up_read(&mm->mmap_sem) directly · 51a07e50
      Jeff Liu 提交于
      Call up_read(&mm->mmap_sem) directly since we have already got mm via
      current->mm at the beginning of print_vma_addr().
      Signed-off-by: NJie Liu <jeff.liu@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      51a07e50
    • A
      hugetlb: use mmu_gather instead of a temporary linked list for accumulating pages · 24669e58
      Aneesh Kumar K.V 提交于
      Use a mmu_gather instead of a temporary linked list for accumulating pages
      when we unmap a hugepage range
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Hillf Danton <dhillf@gmail.com>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      24669e58
  3. 31 7月, 2012 1 次提交
  4. 28 6月, 2012 1 次提交
  5. 21 6月, 2012 2 次提交
  6. 30 5月, 2012 2 次提交
  7. 07 5月, 2012 2 次提交
  8. 14 4月, 2012 1 次提交
    • S
      uprobes/core: Decrement uprobe count before the pages are unmapped · cbc91f71
      Srikar Dronamraju 提交于
      Uprobes has a callback (uprobe_munmap()) in the unmap path to
      maintain the uprobes count.
      
      In the exit path this callback gets called in unlink_file_vma().
      However by the time unlink_file_vma() is called, the pages would
      have been unmapped (in unmap_vmas()) and the task->rss_stat counts
      accounted (in zap_pte_range()).
      
      If the exiting process has probepoints, uprobe_munmap() checks if
      the breakpoint instruction was around before decrementing the probe
      count.
      
      This results in a file backed page being reread by uprobe_munmap()
      and hence it does not find the breakpoint.
      
      This patch fixes this problem by moving the callback to
      unmap_single_vma(). Since unmap_single_vma() may not unmap the
      complete vma, add start and end parameters to uprobe_munmap().
      
      This bug became apparent courtesy of commit c3f0327f
      ("mm: add rss counters consistency check").
      Signed-off-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
      Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
      Cc: Linux-mm <linux-mm@kvack.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Christoph Hellwig <hch@infradead.org>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
      Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
      Cc: Anton Arapov <anton@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Link: http://lkml.kernel.org/r/20120411103527.23245.9835.sendpatchset@srdronam.in.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      cbc91f71
  9. 24 3月, 2012 1 次提交
    • J
      coredump: remove VM_ALWAYSDUMP flag · 909af768
      Jason Baron 提交于
      The motivation for this patchset was that I was looking at a way for a
      qemu-kvm process, to exclude the guest memory from its core dump, which
      can be quite large.  There are already a number of filter flags in
      /proc/<pid>/coredump_filter, however, these allow one to specify 'types'
      of kernel memory, not specific address ranges (which is needed in this
      case).
      
      Since there are no more vma flags available, the first patch eliminates
      the need for the 'VM_ALWAYSDUMP' flag.  The flag is used internally by
      the kernel to mark vdso and vsyscall pages.  However, it is simple
      enough to check if a vma covers a vdso or vsyscall page without the need
      for this flag.
      
      The second patch then replaces the 'VM_ALWAYSDUMP' flag with a new
      'VM_NODUMP' flag, which can be set by userspace using new madvise flags:
      'MADV_DONTDUMP', and unset via 'MADV_DODUMP'.  The core dump filters
      continue to work the same as before unless 'MADV_DONTDUMP' is set on the
      region.
      
      The qemu code which implements this features is at:
      
        http://people.redhat.com/~jbaron/qemu-dump/qemu-dump.patch
      
      In my testing the qemu core dump shrunk from 383MB -> 13MB with this
      patch.
      
      I also believe that the 'MADV_DONTDUMP' flag might be useful for
      security sensitive apps, which might want to select which areas are
      dumped.
      
      This patch:
      
      The VM_ALWAYSDUMP flag is currently used by the coredump code to
      indicate that a vma is part of a vsyscall or vdso section.  However, we
      can determine if a vma is in one these sections by checking it against
      the gate_vma and checking for a non-NULL return value from
      arch_vma_name().  Thus, freeing a valuable vma bit.
      Signed-off-by: NJason Baron <jbaron@redhat.com>
      Acked-by: NRoland McGrath <roland@hack.frob.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Avi Kivity <avi@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      909af768
  10. 22 3月, 2012 4 次提交
    • D
      mm, counters: fold __sync_task_rss_stat() into sync_mm_rss() · ea48cf78
      David Rientjes 提交于
      There's no difference between sync_mm_rss() and __sync_task_rss_stat(),
      so fold the latter into the former.
      Signed-off-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ea48cf78
    • D
      mm, counters: remove task argument to sync_mm_rss() and __sync_task_rss_stat() · 05af2e10
      David Rientjes 提交于
      sync_mm_rss() can only be used for current to avoid race conditions in
      iterating and clearing its per-task counters.  Remove the task argument
      for it and its helper function, __sync_task_rss_stat(), to avoid thinking
      it can be used safely for anything other than current.
      Signed-off-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      05af2e10
    • K
      mm: make get_mm_counter static-inline · 69c97823
      Konstantin Khlebnikov 提交于
      Make get_mm_counter() always static inline, it is simple enough for that.
      And remove unused set_mm_counter()
      
      bloat-o-meter:
      
      add/remove: 0/1 grow/shrink: 4/12 up/down: 99/-341 (-242)
      function                                     old     new   delta
      try_to_unmap_one                             886     952     +66
      sys_remap_file_pages                        1214    1230     +16
      dup_mm                                      1684    1700     +16
      do_exit                                     2277    2278      +1
      zap_page_range                               208     205      -3
      unmap_region                                 304     296      -8
      static.oom_kill_process                      554     546      -8
      try_to_unmap_file                           1716    1700     -16
      getrusage                                    925     909     -16
      flush_old_exec                              1704    1688     -16
      static.dump_header                           416     390     -26
      acct_update_integrals                        218     187     -31
      do_task_stat                                2986    2954     -32
      get_mm_counter                                34       -     -34
      xacct_add_tsk                                371     334     -37
      task_statm                                   172     118     -54
      task_mem                                     383     323     -60
      
      try_to_unmap_one() grows because update_hiwater_rss() now completely inline.
      Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NKirill A. Shutemov <kirill@shutemov.name>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      69c97823
    • A
      mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode · 1a5a9906
      Andrea Arcangeli 提交于
      In some cases it may happen that pmd_none_or_clear_bad() is called with
      the mmap_sem hold in read mode.  In those cases the huge page faults can
      allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
      false positive from pmd_bad() that will not like to see a pmd
      materializing as trans huge.
      
      It's not khugepaged causing the problem, khugepaged holds the mmap_sem
      in write mode (and all those sites must hold the mmap_sem in read mode
      to prevent pagetables to go away from under them, during code review it
      seems vm86 mode on 32bit kernels requires that too unless it's
      restricted to 1 thread per process or UP builds).  The race is only with
      the huge pagefaults that can convert a pmd_none() into a
      pmd_trans_huge().
      
      Effectively all these pmd_none_or_clear_bad() sites running with
      mmap_sem in read mode are somewhat speculative with the page faults, and
      the result is always undefined when they run simultaneously.  This is
      probably why it wasn't common to run into this.  For example if the
      madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
      fault, the hugepage will not be zapped, if the page fault runs first it
      will be zapped.
      
      Altering pmd_bad() not to error out if it finds hugepmds won't be enough
      to fix this, because zap_pmd_range would then proceed to call
      zap_pte_range (which would be incorrect if the pmd become a
      pmd_trans_huge()).
      
      The simplest way to fix this is to read the pmd in the local stack
      (regardless of what we read, no need of actual CPU barriers, only
      compiler barrier needed), and be sure it is not changing under the code
      that computes its value.  Even if the real pmd is changing under the
      value we hold on the stack, we don't care.  If we actually end up in
      zap_pte_range it means the pmd was not none already and it was not huge,
      and it can't become huge from under us (khugepaged locking explained
      above).
      
      All we need is to enforce that there is no way anymore that in a code
      path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
      can run into a hugepmd.  The overhead of a barrier() is just a compiler
      tweak and should not be measurable (I only added it for THP builds).  I
      don't exclude different compiler versions may have prevented the race
      too by caching the value of *pmd on the stack (that hasn't been
      verified, but it wouldn't be impossible considering
      pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
      and there's no external function called in between pmd_trans_huge and
      pmd_none_or_clear_bad).
      
      		if (pmd_trans_huge(*pmd)) {
      			if (next-addr != HPAGE_PMD_SIZE) {
      				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
      				split_huge_page_pmd(vma->vm_mm, pmd);
      			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
      				continue;
      			/* fall through */
      		}
      		if (pmd_none_or_clear_bad(pmd))
      
      Because this race condition could be exercised without special
      privileges this was reported in CVE-2012-1179.
      
      The race was identified and fully explained by Ulrich who debugged it.
      I'm quoting his accurate explanation below, for reference.
      
      ====== start quote =======
            mapcount 0 page_mapcount 1
            kernel BUG at mm/huge_memory.c:1384!
      
          At some point prior to the panic, a "bad pmd ..." message similar to the
          following is logged on the console:
      
            mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
      
          The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
          the page's PMD table entry.
      
              143 void pmd_clear_bad(pmd_t *pmd)
              144 {
          ->  145         pmd_ERROR(*pmd);
              146         pmd_clear(pmd);
              147 }
      
          After the PMD table entry has been cleared, there is an inconsistency
          between the actual number of PMD table entries that are mapping the page
          and the page's map count (_mapcount field in struct page). When the page
          is subsequently reclaimed, __split_huge_page() detects this inconsistency.
      
             1381         if (mapcount != page_mapcount(page))
             1382                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
             1383                        mapcount, page_mapcount(page));
          -> 1384         BUG_ON(mapcount != page_mapcount(page));
      
          The root cause of the problem is a race of two threads in a multithreaded
          process. Thread B incurs a page fault on a virtual address that has never
          been accessed (PMD entry is zero) while Thread A is executing an madvise()
          system call on a virtual address within the same 2 MB (huge page) range.
      
                     virtual address space
                    .---------------------.
                    |                     |
                    |                     |
                  .-|---------------------|
                  | |                     |
                  | |                     |<-- B(fault)
                  | |                     |
            2 MB  | |/////////////////////|-.
            huge <  |/////////////////////|  > A(range)
            page  | |/////////////////////|-'
                  | |                     |
                  | |                     |
                  '-|---------------------|
                    |                     |
                    |                     |
                    '---------------------'
      
          - Thread A is executing an madvise(..., MADV_DONTNEED) system call
            on the virtual address range "A(range)" shown in the picture.
      
          sys_madvise
            // Acquire the semaphore in shared mode.
            down_read(&current->mm->mmap_sem)
            ...
            madvise_vma
              switch (behavior)
              case MADV_DONTNEED:
                   madvise_dontneed
                     zap_page_range
                       unmap_vmas
                         unmap_page_range
                           zap_pud_range
                             zap_pmd_range
                               //
                               // Assume that this huge page has never been accessed.
                               // I.e. content of the PMD entry is zero (not mapped).
                               //
                               if (pmd_trans_huge(*pmd)) {
                                   // We don't get here due to the above assumption.
                               }
                               //
                               // Assume that Thread B incurred a page fault and
                   .---------> // sneaks in here as shown below.
                   |           //
                   |           if (pmd_none_or_clear_bad(pmd))
                   |               {
                   |                 if (unlikely(pmd_bad(*pmd)))
                   |                     pmd_clear_bad
                   |                     {
                   |                       pmd_ERROR
                   |                         // Log "bad pmd ..." message here.
                   |                       pmd_clear
                   |                         // Clear the page's PMD entry.
                   |                         // Thread B incremented the map count
                   |                         // in page_add_new_anon_rmap(), but
                   |                         // now the page is no longer mapped
                   |                         // by a PMD entry (-> inconsistency).
                   |                     }
                   |               }
                   |
                   v
          - Thread B is handling a page fault on virtual address "B(fault)" shown
            in the picture.
      
          ...
          do_page_fault
            __do_page_fault
              // Acquire the semaphore in shared mode.
              down_read_trylock(&mm->mmap_sem)
              ...
              handle_mm_fault
                if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
                    // We get here due to the above assumption (PMD entry is zero).
                    do_huge_pmd_anonymous_page
                      alloc_hugepage_vma
                        // Allocate a new transparent huge page here.
                      ...
                      __do_huge_pmd_anonymous_page
                        ...
                        spin_lock(&mm->page_table_lock)
                        ...
                        page_add_new_anon_rmap
                          // Here we increment the page's map count (starts at -1).
                          atomic_set(&page->_mapcount, 0)
                        set_pmd_at
                          // Here we set the page's PMD entry which will be cleared
                          // when Thread A calls pmd_clear_bad().
                        ...
                        spin_unlock(&mm->page_table_lock)
      
          The mmap_sem does not prevent the race because both threads are acquiring
          it in shared mode (down_read).  Thread B holds the page_table_lock while
          the page's map count and PMD table entry are updated.  However, Thread A
          does not synchronize on that lock.
      
      ====== end quote =======
      
      [akpm@linux-foundation.org: checkpatch fixes]
      Reported-by: NUlrich Obergfell <uobergfe@redhat.com>
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Dave Jones <davej@redhat.com>
      Acked-by: NLarry Woodman <lwoodman@redhat.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: <stable@vger.kernel.org>		[2.6.38+]
      Cc: Mark Salter <msalter@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1a5a9906
  11. 21 3月, 2012 5 次提交
  12. 20 3月, 2012 1 次提交
  13. 24 1月, 2012 1 次提交
  14. 13 1月, 2012 1 次提交
    • S
      thp: add tlb_remove_pmd_tlb_entry · f21760b1
      Shaohua Li 提交于
      We have tlb_remove_tlb_entry to indicate a pte tlb flush entry should be
      flushed, but not a corresponding API for pmd entry.  This isn't a
      problem so far because THP is only for x86 currently and tlb_flush()
      under x86 will flush entire TLB.  But this is confusion and could be
      missed if thp is ported to other arch.
      
      Also convert tlb->need_flush = 1 to a VM_BUG_ON(!tlb->need_flush) in
      __tlb_remove_page() as suggested by Andrea Arcangeli.  The
      __tlb_remove_page() function is supposed to be called after
      tlb_remove_xxx_tlb_entry() and we can catch any misuse.
      Signed-off-by: NShaohua Li <shaohua.li@intel.com>
      Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Johannes Weiner <jweiner@redhat.com>
      Cc: Minchan Kim <minchan.kim@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f21760b1
  15. 03 11月, 2011 1 次提交
    • A
      mm: thp: tail page refcounting fix · 70b50f94
      Andrea Arcangeli 提交于
      Michel while working on the working set estimation code, noticed that
      calling get_page_unless_zero() on a random pfn_to_page(random_pfn)
      wasn't safe, if the pfn ended up being a tail page of a transparent
      hugepage under splitting by __split_huge_page_refcount().
      
      He then found the problem could also theoretically materialize with
      page_cache_get_speculative() during the speculative radix tree lookups
      that uses get_page_unless_zero() in SMP if the radix tree page is freed
      and reallocated and get_user_pages is called on it before
      page_cache_get_speculative has a chance to call get_page_unless_zero().
      
      So the best way to fix the problem is to keep page_tail->_count zero at
      all times.  This will guarantee that get_page_unless_zero() can never
      succeed on any tail page.  page_tail->_mapcount is guaranteed zero and
      is unused for all tail pages of a compound page, so we can simply
      account the tail page references there and transfer them to
      tail_page->_count in __split_huge_page_refcount() (in addition to the
      head_page->_mapcount).
      
      While debugging this s/_count/_mapcount/ change I also noticed get_page is
      called by direct-io.c on pages returned by get_user_pages.  That wasn't
      entirely safe because the two atomic_inc in get_page weren't atomic.  As
      opposed to other get_user_page users like secondary-MMU page fault to
      establish the shadow pagetables would never call any superflous get_page
      after get_user_page returns.  It's safer to make get_page universally safe
      for tail pages and to use get_page_foll() within follow_page (inside
      get_user_pages()).  get_page_foll() is safe to do the refcounting for tail
      pages without taking any locks because it is run within PT lock protected
      critical sections (PT lock for pte and page_table_lock for
      pmd_trans_huge).
      
      The standard get_page() as invoked by direct-io instead will now take
      the compound_lock but still only for tail pages.  The direct-io paths
      are usually I/O bound and the compound_lock is per THP so very
      finegrined, so there's no risk of scalability issues with it.  A simple
      direct-io benchmarks with all lockdep prove locking and spinlock
      debugging infrastructure enabled shows identical performance and no
      overhead.  So it's worth it.  Ideally direct-io should stop calling
      get_page() on pages returned by get_user_pages().  The spinlock in
      get_page() is already optimized away for no-THP builds but doing
      get_page() on tail pages returned by GUP is generally a rare operation
      and usually only run in I/O paths.
      
      This new refcounting on page_tail->_mapcount in addition to avoiding new
      RCU critical sections will also allow the working set estimation code to
      work without any further complexity associated to the tail page
      refcounting with THP.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Reported-by: NMichel Lespinasse <walken@google.com>
      Reviewed-by: NMichel Lespinasse <walken@google.com>
      Reviewed-by: NMinchan Kim <minchan.kim@gmail.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Johannes Weiner <jweiner@redhat.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Gibson <david@gibson.dropbear.id.au>
      Cc: <stable@kernel.org>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      70b50f94
  16. 31 10月, 2011 1 次提交
  17. 26 7月, 2011 3 次提交
    • B
      mm/futex: fix futex writes on archs with SW tracking of dirty & young · 2efaca92
      Benjamin Herrenschmidt 提交于
      I haven't reproduced it myself but the fail scenario is that on such
      machines (notably ARM and some embedded powerpc), if you manage to hit
      that futex path on a writable page whose dirty bit has gone from the PTE,
      you'll livelock inside the kernel from what I can tell.
      
      It will go in a loop of trying the atomic access, failing, trying gup to
      "fix it up", getting succcess from gup, go back to the atomic access,
      failing again because dirty wasn't fixed etc...
      
      So I think you essentially hang in the kernel.
      
      The scenario is probably rare'ish because affected architecture are
      embedded and tend to not swap much (if at all) so we probably rarely hit
      the case where dirty is missing or young is missing, but I think Shan has
      a piece of SW that can reliably reproduce it using a shared writable
      mapping & fork or something like that.
      
      On archs who use SW tracking of dirty & young, a page without dirty is
      effectively mapped read-only and a page without young unaccessible in the
      PTE.
      
      Additionally, some architectures might lazily flush the TLB when relaxing
      write protection (by doing only a local flush), and expect a fault to
      invalidate the stale entry if it's still present on another processor.
      
      The futex code assumes that if the "in_atomic()" access -EFAULT's, it can
      "fix it up" by causing get_user_pages() which would then be equivalent to
      taking the fault.
      
      However that isn't the case.  get_user_pages() will not call
      handle_mm_fault() in the case where the PTE seems to have the right
      permissions, regardless of the dirty and young state.  It will eventually
      update those bits ...  in the struct page, but not in the PTE.
      
      Additionally, it will not handle the lazy TLB flushing that can be
      required by some architectures in the fault case.
      
      Basically, gup is the wrong interface for the job.  The patch provides a
      more appropriate one which boils down to just calling handle_mm_fault()
      since what we are trying to do is simulate a real page fault.
      
      The futex code currently attempts to write to user memory within a
      pagefault disabled section, and if that fails, tries to fix it up using
      get_user_pages().
      
      This doesn't work on archs where the dirty and young bits are maintained
      by software, since they will gate access permission in the TLB, and will
      not be updated by gup().
      
      In addition, there's an expectation on some archs that a spurious write
      fault triggers a local TLB flush, and that is missing from the picture as
      well.
      
      I decided that adding those "features" to gup() would be too much for this
      already too complex function, and instead added a new simpler
      fixup_user_fault() which is essentially a wrapper around handle_mm_fault()
      which the futex code can call.
      
      [akpm@linux-foundation.org: coding-style fixes]
      [akpm@linux-foundation.org: fix some nits Darren saw, fiddle comment layout]
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Reported-by: NShan Hai <haishan.bai@gmail.com>
      Tested-by: NShan Hai <haishan.bai@gmail.com>
      Cc: David Laight <David.Laight@ACULAB.COM>
      Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Darren Hart <darren.hart@intel.com>
      Cc: <stable@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2efaca92
    • K
      mm: preallocate page before lock_page() at filemap COW · 1d65f86d
      KAMEZAWA Hiroyuki 提交于
      Currently we are keeping faulted page locked throughout whole __do_fault
      call (except for page_mkwrite code path) after calling file system's fault
      code.  If we do early COW, we allocate a new page which has to be charged
      for a memcg (mem_cgroup_newpage_charge).
      
      This function, however, might block for unbounded amount of time if memcg
      oom killer is disabled or fork-bomb is running because the only way out of
      the OOM situation is either an external event or OOM-situation fix.
      
      In the end we are keeping the faulted page locked and blocking other
      processes from faulting it in which is not good at all because we are
      basically punishing potentially an unrelated process for OOM condition in
      a different group (I have seen stuck system because of ld-2.11.1.so being
      locked).
      
      We can do test easily.
      
       % cgcreate -g memory:A
       % cgset -r memory.limit_in_bytes=64M A
       % cgset -r memory.memsw.limit_in_bytes=64M A
       % cd kernel_dir; cgexec -g memory:A make -j
      
      Then, the whole system will live-locked until you kill 'make -j'
      by hands (or push reboot...) This is because some important page in a
      a shared library are locked.
      
      Considering again, the new page is not necessary to be allocated
      with lock_page() held. And usual page allocation may dive into
      long memory reclaim loop with holding lock_page() and can cause
      very long latency.
      
      There are 3 ways.
        1. do allocation/charge before lock_page()
           Pros. - simple and can handle page allocation in the same manner.
                   This will reduce holding time of lock_page() in general.
           Cons. - we do page allocation even if ->fault() returns error.
      
        2. do charge after unlock_page(). Even if charge fails, it's just OOM.
           Pros. - no impact to non-memcg path.
           Cons. - implemenation requires special cares of LRU and we need to modify
                   page_add_new_anon_rmap()...
      
        3. do unlock->charge->lock again method.
           Pros. - no impact to non-memcg path.
           Cons. - This may kill LOCK_PAGE_RETRY optimization. We need to release
                   lock and get it again...
      
      This patch moves "charge" and memory allocation for COW page
      before lock_page(). Then, we can avoid scanning LRU with holding
      a lock on a page and latency under lock_page() will be reduced.
      
      Then, above livelock disappears.
      
      [akpm@linux-foundation.org: fix code layout]
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Reported-by: NLutz Vieweg <lvml@5t9.de>
      Original-idea-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Ying Han <yinghan@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1d65f86d
    • A
      mm/memory.c: remove ZAP_BLOCK_SIZE · 6ac47520
      Andrew Morton 提交于
      ZAP_BLOCK_SIZE became unused in the preemptible-mmu_gather work ("mm:
      Remove i_mmap_lock lockbreak").  So zap it.
      
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6ac47520
  18. 09 7月, 2011 1 次提交
  19. 28 6月, 2011 1 次提交
  20. 16 6月, 2011 2 次提交
    • S
      mm: fix wrong kunmap_atomic() pointer · 5f1a1907
      Steven Rostedt 提交于
      Running a ktest.pl test, I hit the following bug on x86_32:
      
        ------------[ cut here ]------------
        WARNING: at arch/x86/mm/highmem_32.c:81 __kunmap_atomic+0x64/0xc1()
         Hardware name:
        Modules linked in:
        Pid: 93, comm: sh Not tainted 2.6.39-test+ #1
        Call Trace:
         [<c04450da>] warn_slowpath_common+0x7c/0x91
         [<c042f5df>] ? __kunmap_atomic+0x64/0xc1
         [<c042f5df>] ? __kunmap_atomic+0x64/0xc1^M
         [<c0445111>] warn_slowpath_null+0x22/0x24
         [<c042f5df>] __kunmap_atomic+0x64/0xc1
         [<c04d4a22>] unmap_vmas+0x43a/0x4e0
         [<c04d9065>] exit_mmap+0x91/0xd2
         [<c0443057>] mmput+0x43/0xad
         [<c0448358>] exit_mm+0x111/0x119
         [<c044855f>] do_exit+0x1ff/0x5fa
         [<c0454ea2>] ? set_current_blocked+0x3c/0x40
         [<c0454f24>] ? sigprocmask+0x7e/0x8e
         [<c0448b55>] do_group_exit+0x65/0x88
         [<c0448b90>] sys_exit_group+0x18/0x1c
         [<c0c3915f>] sysenter_do_call+0x12/0x38
        ---[ end trace 8055f74ea3c0eb62 ]---
      
      Running a ktest.pl git bisect, found the culprit: commit e303297e
      ("mm: extended batches for generic mmu_gather")
      
      But although this was the commit triggering the bug, it was not the one
      originally responsible for the bug.  That was commit d16dfc55 ("mm:
      mmu_gather rework").
      
      The code in zap_pte_range() has something that looks like the following:
      
      	pte =  pte_offset_map_lock(mm, pmd, addr, &ptl);
      	do {
      		[...]
      	} while (pte++, addr += PAGE_SIZE, addr != end);
      	pte_unmap_unlock(pte - 1, ptl);
      
      The pte starts off pointing at the first element in the page table
      directory that was returned by the pte_offset_map_lock().  When it's done
      with the page, pte will be pointing to anything between the next entry and
      the first entry of the next page inclusive.  By doing a pte - 1, this puts
      the pte back onto the original page, which is all that pte_unmap_unlock()
      needs.
      
      In most archs (64 bit), this is not an issue as the pte is ignored in the
      pte_unmap_unlock().  But on 32 bit archs, where things may be kmapped, it
      is essential that the pte passed to pte_unmap_unlock() resides on the same
      page that was given by pte_offest_map_lock().
      
      The problem came in d16dfc55 ("mm: mmu_gather rework") where it introduced
      a "break;" from the while loop.  This alone did not seem to easily trigger
      the bug.  But the modifications made by e303297e caused that "break;" to
      be hit on the first iteration, before the pte++.
      
      The pte not being incremented will now cause pte_unmap_unlock(pte - 1) to
      be pointing to the previous page.  This will cause the wrong page to be
      unmapped, and also trigger the warning above.
      
      The simple solution is to just save the pointer given by
      pte_offset_map_lock() and use it in the unlock.
      Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NHugh Dickins <hughd@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5f1a1907
    • R
      mm/memory.c: fix kernel-doc notation · 0164f69d
      Randy Dunlap 提交于
      Fix new kernel-doc warnings in mm/memory.c:
      
        Warning(mm/memory.c:1327): No description found for parameter 'tlb'
        Warning(mm/memory.c:1327): Excess function parameter 'tlbp' description in 'unmap_vmas'
      Signed-off-by: NRandy Dunlap <randy.dunlap@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0164f69d