- 27 11月, 2013 1 次提交
-
-
由 Dario Faggioli 提交于
Add a new function to the scheduling class interface. It is called at the end of a context switch, if the prev task is in TASK_DEAD state. It will be useful for the scheduling classes that want to be notified when one of their tasks dies, e.g. to perform some cleanup actions, such as SCHED_DEADLINE. Signed-off-by: NDario Faggioli <raistlin@linux.it> Reviewed-by: NPaul Turner <pjt@google.com> Signed-off-by: NJuri Lelli <juri.lelli@gmail.com> Cc: bruce.ashfield@windriver.com Cc: claudio@evidence.eu.com Cc: darren@dvhart.com Cc: dhaval.giani@gmail.com Cc: fchecconi@gmail.com Cc: fweisbec@gmail.com Cc: harald.gustafsson@ericsson.com Cc: hgu1972@gmail.com Cc: insop.song@gmail.com Cc: jkacur@redhat.com Cc: johan.eker@ericsson.com Cc: liming.wang@windriver.com Cc: luca.abeni@unitn.it Cc: michael@amarulasolutions.com Cc: nicola.manica@disi.unitn.it Cc: oleg@redhat.com Cc: paulmck@linux.vnet.ibm.com Cc: p.faure@akatech.ch Cc: rostedt@goodmis.org Cc: tommaso.cucinotta@sssup.it Cc: vincent.guittot@linaro.org Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-2-git-send-email-juri.lelli@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 11月, 2013 1 次提交
-
-
由 Preeti U Murthy 提交于
nr_busy_cpus parameter is used by nohz_kick_needed() to find out the number of busy cpus in a sched domain which has SD_SHARE_PKG_RESOURCES flag set. Therefore instead of updating nr_busy_cpus at every level of sched domain, since it is irrelevant, we can update this parameter only at the parent domain of the sd which has this flag set. Introduce a per-cpu parameter sd_busy which represents this parent domain. In nohz_kick_needed() we directly query the nr_busy_cpus parameter associated with the groups of sd_busy. By associating sd_busy with the highest domain which has SD_SHARE_PKG_RESOURCES flag set, we cover all lower level domains which could have this flag set and trigger nohz_idle_balancing if any of the levels have more than one busy cpu. sd_busy is irrelevant for asymmetric load balancing. However sd_asym has been introduced to represent the highest sched domain which has SD_ASYM_PACKING flag set so that it can be queried directly when required. While we are at it, we might as well change the nohz_idle parameter to be updated at the sd_busy domain level alone and not the base domain level of a CPU. This will unify the concept of busy cpus at just one level of sched domain where it is currently used. Signed-off-by: Preeti U Murthy<preeti@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: svaidy@linux.vnet.ibm.com Cc: vincent.guittot@linaro.org Cc: bitbucket@online.de Cc: benh@kernel.crashing.org Cc: anton@samba.org Cc: Morten.Rasmussen@arm.com Cc: pjt@google.com Cc: peterz@infradead.org Cc: mikey@neuling.org Link: http://lkml.kernel.org/r/20131030031252.23426.4417.stgit@preeti.in.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 29 10月, 2013 1 次提交
-
-
由 Ben Segall 提交于
When we transition cfs_bandwidth_used to false, any currently throttled groups will incorrectly return false from cfs_rq_throttled. While tg_set_cfs_bandwidth will unthrottle them eventually, currently running code (including at least dequeue_task_fair and distribute_cfs_runtime) will cause errors. Fix this by turning off cfs_bandwidth_used only after unthrottling all cfs_rqs. Tested: toggle bandwidth back and forth on a loaded cgroup. Caused crashes in minutes without the patch, hasn't crashed with it. Signed-off-by: NBen Segall <bsegall@google.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 10月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
There is a subtle race in migrate_swap, when task P, on CPU A, decides to swap places with task T, on CPU B. Task P: - call migrate_swap Task T: - go to sleep, removing itself from the runqueue Task P: - double lock the runqueues on CPU A & B Task T: - get woken up, place itself on the runqueue of CPU C Task P: - see that task T is on a runqueue, and pretend to remove it from the runqueue on CPU B Now CPUs B & C both have corrupted scheduler data structures. This patch fixes it, by holding the pi_lock for both of the tasks involved in the migrate swap. This prevents task T from waking up, and placing itself onto another runqueue, until after migrate_swap has released all locks. This means that, when migrate_swap checks, task T will be either on the runqueue where it was originally seen, or not on any runqueue at all. Migrate_swap deals correctly with of those cases. Tested-by: NJoe Mario <jmario@redhat.com> Acked-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: hannes@cmpxchg.org Cc: aarcange@redhat.com Cc: srikar@linux.vnet.ibm.com Cc: tglx@linutronix.de Cc: hpa@zytor.com Link: http://lkml.kernel.org/r/20131010181722.GO13848@laptop.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 10月, 2013 7 次提交
-
-
由 Peter Zijlstra 提交于
This patch classifies scheduler domains and runqueues into types depending the number of tasks that are about their NUMA placement and the number that are currently running on their preferred node. The types are regular: There are tasks running that do not care about their NUMA placement. remote: There are tasks running that care about their placement but are currently running on a node remote to their ideal placement all: No distinction To implement this the patch tracks the number of tasks that are optimally NUMA placed (rq->nr_preferred_running) and the number of tasks running that care about their placement (nr_numa_running). The load balancer uses this information to avoid migrating idea placed NUMA tasks as long as better options for load balancing exists. For example, it will not consider balancing between a group whose tasks are all perfectly placed and a group with remote tasks. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-56-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Rik van Riel 提交于
It is possible for a task in a numa group to call exec, and have the new (unrelated) executable inherit the numa group association from its former self. This has the potential to break numa grouping, and is trivial to fix. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-51-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
While parallel applications tend to align their data on the cache boundary, they tend not to align on the page or THP boundary. Consequently tasks that partition their data can still "false-share" pages presenting a problem for optimal NUMA placement. This patch uses NUMA hinting faults to chain tasks together into numa_groups. As well as storing the NID a task was running on when accessing a page a truncated representation of the faulting PID is stored. If subsequent faults are from different PIDs it is reasonable to assume that those two tasks share a page and are candidates for being grouped together. Note that this patch makes no scheduling decisions based on the grouping information. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch implements a system-wide search for swap/migration candidates based on total NUMA hinting faults. It has a balance limit, however it doesn't properly consider total node balance. In the old scheme a task selected a preferred node based on the highest number of private faults recorded on the node. In this scheme, the preferred node is based on the total number of faults. If the preferred node for a task changes then task_numa_migrate will search the whole system looking for tasks to swap with that would improve both the overall compute balance and minimise the expected number of remote NUMA hinting faults. Not there is no guarantee that the node the source task is placed on by task_numa_migrate() has any relationship to the newly selected task->numa_preferred_nid due to compute overloading. Signed-off-by: NMel Gorman <mgorman@suse.de> [ Do not swap with tasks that cannot run on source cpu] Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> [ Fixed compiler warning on UP. ] Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-40-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Use the new stop_two_cpus() to implement migrate_swap(), a function that flips two tasks between their respective cpus. I'm fairly sure there's a less crude way than employing the stop_two_cpus() method, but everything I tried either got horribly fragile and/or complex. So keep it simple for now. The notable detail is how we 'migrate' tasks that aren't runnable anymore. We'll make it appear like we migrated them before they went to sleep. The sole difference is the previous cpu in the wakeup path, so we override this. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
A preferred node is selected based on the node the most NUMA hinting faults was incurred on. There is no guarantee that the task is running on that node at the time so this patch rescheules the task to run on the most idle CPU of the selected node when selected. This avoids waiting for the balancer to make a decision. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-25-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch tracks what nodes numa hinting faults were incurred on. This information is later used to schedule a task on the node storing the pages most frequently faulted by the task. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-20-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 20 9月, 2013 1 次提交
-
-
由 Jason Low 提交于
In this patch, we keep track of the max cost we spend doing idle load balancing for each sched domain. If the avg time the CPU remains idle is less then the time we have already spent on idle balancing + the max cost of idle balancing in the sched domain, then we don't continue to attempt the balance. We also keep a per rq variable, max_idle_balance_cost, which keeps track of the max time spent on newidle load balances throughout all its domains so that we can determine the avg_idle's max value. By using the max, we avoid overrunning the average. This further reduces the chance we attempt balancing when the CPU is not idle for longer than the cost to balance. Signed-off-by: NJason Low <jason.low2@hp.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379096813-3032-3-git-send-email-jason.low2@hp.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 9月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
Change the group_imb detection from the old 'load-spike' detector to an actual imbalance detector. We set it from the lower domain balance pass when it fails to create a balance in the presence of task affinities. The advantage is that this should no longer generate the false positive group_imb conditions generated by transient load spikes from the normal balancing/bulk-wakeup etc. behaviour. While I haven't actually observed those they could happen. I'm not entirely happy with this patch; it somehow feels a little fragile. Nor does it solve the biggest issue I have with the group_imb code; it it still a fragile construct in that once we 'fixed' the imbalance we'll not detect the group_imb again and could end up re-creating it. That said, this patch does seem to preserve behaviour for the described degenerate case. In particular on my 2*6*2 wsm-ep: taskset -c 3-11 bash -c 'for ((i=0;i<9;i++)) do while :; do :; done & done' ends up with 9 spinners, each on their own CPU; whereas if you disable the group_imb code that typically doesn't happen (you'll get one pair sharing a CPU most of the time). Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-36fpbgl39dv4u51b6yz2ypz5@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 8月, 2013 1 次提交
-
-
由 Tejun Heo 提交于
The names of the two struct cgroup_subsys_state accessors - cgroup_subsys_state() and task_subsys_state() - are somewhat awkward. The former clashes with the type name and the latter doesn't even indicate it's somehow related to cgroup. We're about to revamp large portion of cgroup API, so, let's rename them so that they're less awkward. Most per-controller usages of the accessors are localized in accessor wrappers and given the amount of scheduled changes, this isn't gonna add any noticeable headache. Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state() to task_css(). This patch is pure rename. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com>
-
- 23 7月, 2013 2 次提交
-
-
由 Peter Zijlstra 提交于
Smart wake-affine is using node-size as the factor currently, but the overhead of the mask operation is high. Thus, this patch introduce the 'sd_llc_size' percpu variable, which will record the highest cache-share domain size, and make it to be the new factor, in order to reduce the overhead and make it more reasonable. Tested-by: NDavidlohr Bueso <davidlohr.bueso@hp.com> Tested-by: NMichael Wang <wangyun@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Acked-by: NMichael Wang <wangyun@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Link: http://lkml.kernel.org/r/51D5008E.6030102@linux.vnet.ibm.com [ Tidied up the changelog. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Vladimir Davydov 提交于
The bad thing about update_h_load(), which computes hierarchical load factor for task groups, is that it is called for each task group in the system before every load balancer run, and since rebalance can be triggered very often, this function can eat really a lot of cpu time if there are many cpu cgroups in the system. Although the situation was improved significantly by commit a35b6466 ('sched, cgroup: Reduce rq->lock hold times for large cgroup hierarchies'), the problem still can arise under some kinds of loads, e.g. when cpus are switching from idle to busy and back very frequently. For instance, when I start 1000 of processes that wake up every millisecond on my 8 cpus host, 'top' and 'perf top' show: Cpu(s): 17.8%us, 24.3%sy, 0.0%ni, 57.9%id, 0.0%wa, 0.0%hi, 0.0%si Events: 243K cycles 7.57% [kernel] [k] __schedule 7.08% [kernel] [k] timerqueue_add 6.13% libc-2.12.so [.] usleep Then if I create 10000 *idle* cpu cgroups (no processes in them), cpu usage increases significantly although the 'wakers' are still executing in the root cpu cgroup: Cpu(s): 19.1%us, 48.7%sy, 0.0%ni, 31.6%id, 0.0%wa, 0.0%hi, 0.7%si Events: 230K cycles 24.56% [kernel] [k] tg_load_down 5.76% [kernel] [k] __schedule This happens because this particular kind of load triggers 'new idle' rebalance very frequently, which requires calling update_h_load(), which, in turn, calls tg_load_down() for every *idle* cpu cgroup even though it is absolutely useless, because idle cpu cgroups have no tasks to pull. This patch tries to improve the situation by making h_load calculation proceed only when h_load is really necessary. To achieve this, it substitutes update_h_load() with update_cfs_rq_h_load(), which computes h_load only for a given cfs_rq and all its ascendants, and makes the load balancer call this function whenever it considers if a task should be pulled, i.e. it moves h_load calculations directly to task_h_load(). For h_load of the same cfs_rq not to be updated multiple times (in case several tasks in the same cgroup are considered during the same balance run), the patch keeps the time of the last h_load update for each cfs_rq and breaks calculation when it finds h_load to be uptodate. The benefit of it is that h_load is computed only for those cfs_rq's, which really need it, in particular all idle task groups are skipped. Although this, in fact, moves h_load calculation under rq lock, it should not affect latency much, because the amount of work done under rq lock while trying to pull tasks is limited by sched_nr_migrate. After the patch applied with the setup described above (1000 wakers in the root cgroup and 10000 idle cgroups), I get: Cpu(s): 16.9%us, 24.8%sy, 0.0%ni, 58.4%id, 0.0%wa, 0.0%hi, 0.0%si Events: 242K cycles 7.57% [kernel] [k] __schedule 6.70% [kernel] [k] timerqueue_add 5.93% libc-2.12.so [.] usleep Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1373896159-1278-1-git-send-email-vdavydov@parallels.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 27 6月, 2013 7 次提交
-
-
由 Alex Shi 提交于
Since no one use it. Signed-off-by: NAlex Shi <alex.shi@intel.com> Reviewed-by: NPaul Turner <pjt@google.com> Tested-by: NVincent Guittot <vincent.guittot@linaro.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1371694737-29336-13-git-send-email-alex.shi@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Alex Shi 提交于
Similar to runnable_load_avg, blocked_load_avg variable, long type is enough for removed_load in 64 bit or 32 bit machine. Then we avoid the expensive atomic64 operations on 32 bit machine. Signed-off-by: NAlex Shi <alex.shi@intel.com> Reviewed-by: NPaul Turner <pjt@google.com> Tested-by: NVincent Guittot <vincent.guittot@linaro.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1371694737-29336-12-git-send-email-alex.shi@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Alex Shi 提交于
Since tg->load_avg is smaller than tg->load_weight, we don't need a atomic64_t variable for load_avg in 32 bit machine. The same reason for cfs_rq->tg_load_contrib. The atomic_long_t/unsigned long variable type are more efficient and convenience for them. Signed-off-by: NAlex Shi <alex.shi@intel.com> Tested-by: NVincent Guittot <vincent.guittot@linaro.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1371694737-29336-11-git-send-email-alex.shi@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Alex Shi 提交于
Since the 'u64 runnable_load_avg, blocked_load_avg' in cfs_rq struct are smaller than 'unsigned long' cfs_rq->load.weight. We don't need u64 vaiables to describe them. unsigned long is more efficient and convenience. Signed-off-by: NAlex Shi <alex.shi@intel.com> Reviewed-by: NPaul Turner <pjt@google.com> Tested-by: NVincent Guittot <vincent.guittot@linaro.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1371694737-29336-10-git-send-email-alex.shi@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Alex Shi 提交于
We need to initialize the se.avg.{decay_count, load_avg_contrib} for a new forked task. Otherwise random values of above variables cause a mess when a new task is enqueued: enqueue_task_fair enqueue_entity enqueue_entity_load_avg and make fork balancing imbalance due to incorrect load_avg_contrib. Further more, Morten Rasmussen notice some tasks were not launched at once after created. So Paul and Peter suggest giving a start value for new task runnable avg time same as sched_slice(). PeterZ said: > So the 'problem' is that our running avg is a 'floating' average; ie. it > decays with time. Now we have to guess about the future of our newly > spawned task -- something that is nigh impossible seeing these CPU > vendors keep refusing to implement the crystal ball instruction. > > So there's two asymptotic cases we want to deal well with; 1) the case > where the newly spawned program will be 'nearly' idle for its lifetime; > and 2) the case where its cpu-bound. > > Since we have to guess, we'll go for worst case and assume its > cpu-bound; now we don't want to make the avg so heavy adjusting to the > near-idle case takes forever. We want to be able to quickly adjust and > lower our running avg. > > Now we also don't want to make our avg too light, such that it gets > decremented just for the new task not having had a chance to run yet -- > even if when it would run, it would be more cpu-bound than not. > > So what we do is we make the initial avg of the same duration as that we > guess it takes to run each task on the system at least once -- aka > sched_slice(). > > Of course we can defeat this with wakeup/fork bombs, but in the 'normal' > case it should be good enough. Paul also contributed most of the code comments in this commit. Signed-off-by: NAlex Shi <alex.shi@intel.com> Reviewed-by: NGu Zheng <guz.fnst@cn.fujitsu.com> Reviewed-by: NPaul Turner <pjt@google.com> [peterz; added explanation of sched_slice() usage] Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1371694737-29336-4-git-send-email-alex.shi@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Alex Shi 提交于
The following 2 variables are only used under CONFIG_SMP, so its better to move their definiation into CONFIG_SMP too. atomic64_t load_avg; atomic_t runnable_avg; Signed-off-by: NAlex Shi <alex.shi@intel.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1371694737-29336-3-git-send-email-alex.shi@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Alex Shi 提交于
Remove CONFIG_FAIR_GROUP_SCHED that covers the runnable info, then we can use runnable load variables. Also remove 2 CONFIG_FAIR_GROUP_SCHED setting which is not in reverted patch(introduced in 9ee474f5), but also need to revert. Signed-off-by: NAlex Shi <alex.shi@intel.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/51CA76A3.3050207@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 19 6月, 2013 1 次提交
-
-
由 Kirill Tkhai 提交于
[ Peter, this is based off of some of my work, I ran it though a few tests and it passed. I also reviewed it, and added my SOB as I am somewhat a co-author to it. ] Based on the patch by Steven Rostedt from previous year: https://lkml.org/lkml/2012/4/18/517 1)Simplify pull_rt_task() logic: search in pushable tasks of dest runqueue. The only pullable tasks are the tasks which are pushable in their local rq, and no others. 2)Remove .leaf_rt_rq_list member of struct rt_rq and functions connected with it: nobody uses it since now. Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/287571370557898@web7d.yandex.ruSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 5月, 2013 2 次提交
-
-
由 Frederic Weisbecker 提交于
Read the runqueue clock through an accessor. This prepares for adding a debugging infrastructure to detect missing or redundant calls to update_rq_clock() between a scheduler's entry and exit point. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Turner <pjt@google.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1365724262-20142-6-git-send-email-fweisbec@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Neil Zhang 提交于
migration_call() will do all the things that update_runtime() does. So let's remove it. Furthermore, there is potential risk that the current code will catch BUG_ON at line 689 of rt.c when do cpu hotplug while there are realtime threads running because of enabling runtime twice while the rt_runtime may already changed. Signed-off-by: NNeil Zhang <zhangwm@marvell.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1365685499-26515-1-git-send-email-zhangwm@marvell.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 5月, 2013 2 次提交
-
-
由 Paul Gortmaker 提交于
These inlines are only used by kernel/sched/fair.c so they do not need to be present in the main kernel/sched/sched.h file. Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1366398650-31599-3-git-send-email-paul.gortmaker@windriver.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Paul Gortmaker 提交于
This large chunk of load calculation code can be easily divorced from the main core.c scheduler file, with only a couple prototypes and externs added to a kernel/sched header. Some recent commits expanded the code and the documentation of it, making it large enough to warrant separation. For example, see: 556061b0, "sched/nohz: Fix rq->cpu_load[] calculations" 5aaa0b7a, "sched/nohz: Fix rq->cpu_load calculations some more" 5167e8d5, "sched/nohz: Rewrite and fix load-avg computation -- again" More importantly, it helps reduce the size of the main sched/core.c by yet another significant amount (~600 lines). Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1366398650-31599-2-git-send-email-paul.gortmaker@windriver.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 5月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
The scheduler doesn't yet fully support environments with a single task running without a periodic tick. In order to ensure we still maintain the duties of scheduler_tick(), keep at least 1 tick per second. This makes sure that we keep the progression of various scheduler accounting and background maintainance even with a very low granularity. Examples include cpu load, sched average, CFS entity vruntime, avenrun and events such as load balancing, amongst other details handled in sched_class::task_tick(). This limitation will be removed in the future once we get these individual items to work in full dynticks CPUs. Suggested-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
- 26 4月, 2013 1 次提交
-
-
由 Vincent Guittot 提交于
On my SMP platform which is made of 5 cores in 2 clusters, I have the nr_busy_cpu field of sched_group_power struct that is not null when the platform is fully idle - which makes the scheduler unhappy. The root cause is: During the boot sequence, some CPUs reach the idle loop and set their NOHZ_IDLE flag while waiting for others CPUs to boot. But the nr_busy_cpus field is initialized later with the assumption that all CPUs are in the busy state whereas some CPUs have already set their NOHZ_IDLE flag. More generally, the NOHZ_IDLE flag must be initialized when new sched_domains are created in order to ensure that NOHZ_IDLE and nr_busy_cpus are aligned. This condition can be ensured by adding a synchronize_rcu() between the destruction of old sched_domains and the creation of new ones so the NOHZ_IDLE flag will not be updated with old sched_domain once it has been initialized. But this solution introduces a additionnal latency in the rebuild sequence that is called during cpu hotplug. As suggested by Frederic Weisbecker, another solution is to have the same rcu lifecycle for both NOHZ_IDLE and sched_domain struct. A new nohz_idle field is added to sched_domain so both status and sched_domain will share the same RCU lifecycle and will be always synchronized. In addition, there is no more need to protect nohz_idle against concurrent access as it is only modified by 2 exclusive functions called by local cpu. This solution has been prefered to the creation of a new struct with an extra pointer indirection for sched_domain. The synchronization is done at the cost of : - An additional indirection and a rcu_dereference for accessing nohz_idle. - We use only the nohz_idle field of the top sched_domain. Signed-off-by: NVincent Guittot <vincent.guittot@linaro.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: linaro-kernel@lists.linaro.org Cc: peterz@infradead.org Cc: fweisbec@gmail.com Cc: pjt@google.com Cc: rostedt@goodmis.org Cc: efault@gmx.de Link: http://lkml.kernel.org/r/1366729142-14662-1-git-send-email-vincent.guittot@linaro.org [ Fixed !NO_HZ build bug. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 23 4月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
Kick the tick on full dynticks CPUs when they get more than one task running on their queue. This makes sure that local fairness is maintained by the tick on the destination. This is done regardless of these tasks' class. We should be able to be more clever in the future depending on these. eg: a CPU that runs a SCHED_FIFO task doesn't need to maintain fairness against local pending tasks of the fair class. But keep things simple for now. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
- 21 4月, 2013 1 次提交
-
-
由 Vincent Guittot 提交于
The current update of the rq's load can be erroneous when RT tasks are involved. The update of the load of a rq that becomes idle, is done only if the avg_idle is less than sysctl_sched_migration_cost. If RT tasks and short idle duration alternate, the runnable_avg will not be updated correctly and the time will be accounted as idle time when a CFS task wakes up. A new idle_enter function is called when the next task is the idle function so the elapsed time will be accounted as run time in the load of the rq, whatever the average idle time is. The function update_rq_runnable_avg is removed from idle_balance. When a RT task is scheduled on an idle CPU, the update of the rq's load is not done when the rq exit idle state because CFS's functions are not called. Then, the idle_balance, which is called just before entering the idle function, updates the rq's load and makes the assumption that the elapsed time since the last update, was only running time. As a consequence, the rq's load of a CPU that only runs a periodic RT task, is close to LOAD_AVG_MAX whatever the running duration of the RT task is. A new idle_exit function is called when the prev task is the idle function so the elapsed time will be accounted as idle time in the rq's load. Signed-off-by: NVincent Guittot <vincent.guittot@linaro.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: linaro-kernel@lists.linaro.org Cc: peterz@infradead.org Cc: pjt@google.com Cc: fweisbec@gmail.com Cc: efault@gmx.de Link: http://lkml.kernel.org/r/1366302867-5055-1-git-send-email-vincent.guittot@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 4月, 2013 1 次提交
-
-
由 Li Zefan 提交于
Add cpuacct.h and let sched.h include it. Signed-off-by: NLi Zefan <lizefan@huawei.com> Acked-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/5155367B.2060506@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 03 4月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
We are planning to convert the dynticks Kconfig options layout into a choice menu. The user must be able to easily pick any of the following implementations: constant periodic tick, idle dynticks, full dynticks. As this implies a mutual exclusion, the two dynticks implementions need to converge on the selection of a common Kconfig option in order to ease the sharing of a common infrastructure. It would thus seem pretty natural to reuse CONFIG_NO_HZ to that end. It already implements all the idle dynticks code and the full dynticks depends on all that code for now. So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ. On the other hand we want to stay backward compatible: if CONFIG_NO_HZ is set in an older config file, we want to enable CONFIG_NO_HZ_IDLE by default. But we can't afford both at the same time or we run into a circular dependency: 1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select CONFIG_NO_HZ 2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE We might be able to support that from Kconfig/Kbuild but it may not be wise to introduce such a confusing behaviour. So to solve this, create a new CONFIG_NO_HZ_COMMON option which gathers the common code between idle and full dynticks (that common code for now is simply the idle dynticks code) and select it from their referring Kconfig. Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ to it for backward compatibility. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
- 11 3月, 2013 1 次提交
-
-
由 Li Zefan 提交于
All warnings: In file included from kernel/sched/core.c:85:0: kernel/sched/sched.h:1036:39: warning: 'struct sched_domain' declared inside parameter list kernel/sched/sched.h:1036:39: warning: its scope is only this definition or declaration, which is probably not what you want It's because struct sched_domain is defined inside #if CONFIG_SMP, while update_group_power() is declared unconditionally. Fix this warning by declaring update_group_power() only if CONFIG_SMP=n. Build tested with CONFIG_SMP enabled and then disabled. Reported-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NLi Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/5137F4BA.2060101@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 3月, 2013 5 次提交
-
-
由 Li Zefan 提交于
It's already declared in include/linux/sched.h Signed-off-by: NLi Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/5135A7D8.7000107@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Li Zefan 提交于
- Make sched_group_{set_,}runtime(), sched_group_{set_,}period() and sched_rt_can_attach() static. - Move sched_{create,destroy,online,offline}_group() to kernel/sched/sched.h. - Remove declaration of sched_group_shares(). Signed-off-by: NLi Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/5135A7C5.3000708@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Li Zefan 提交于
It's used internally only. Signed-off-by: NLi Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/5135A79F.8090502@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Li Zefan 提交于
They are used internally only. Signed-off-by: NLi Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/5135A78E.7040609@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Li Zefan 提交于
Move struct sched_group_power and sched_group and related inline functions to kernel/sched/sched.h, as they are used internally only. Signed-off-by: NLi Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/5135A77F.2010705@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-