- 31 5月, 2019 1 次提交
-
-
由 Roman Gushchin 提交于
[ Upstream commit 4dcabece4c3a9f9522127be12cc12cc120399b2f ] The number of descendant cgroups and the number of dying descendant cgroups are currently synchronized using the cgroup_mutex. The number of descendant cgroups will be required by the cgroup v2 freezer, which will use it to determine if a cgroup is frozen (depending on total number of descendants and number of frozen descendants). It's not always acceptable to grab the cgroup_mutex, especially from quite hot paths (e.g. exit()). To avoid this, let's additionally synchronize these counters using the css_set_lock. So, it's safe to read these counters with either cgroup_mutex or css_set_lock locked, and for changing both locks should be acquired. Signed-off-by: NRoman Gushchin <guro@fb.com> Signed-off-by: NTejun Heo <tj@kernel.org> Cc: kernel-team@fb.com Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 06 4月, 2019 2 次提交
-
-
由 Oleg Nesterov 提交于
[ Upstream commit 51bee5abeab2058ea5813c5615d6197a23dbf041 ] The only user of cgroup_subsys->free() callback is pids_cgrp_subsys which needs pids_free() to uncharge the pid. However, ->free() is called from __put_task_struct()->cgroup_free() and this is too late. Even the trivial program which does for (;;) { int pid = fork(); assert(pid >= 0); if (pid) wait(NULL); else exit(0); } can run out of limits because release_task()->call_rcu(delayed_put_task_struct) implies an RCU gp after the task/pid goes away and before the final put(). Test-case: mkdir -p /tmp/CG mount -t cgroup2 none /tmp/CG echo '+pids' > /tmp/CG/cgroup.subtree_control mkdir /tmp/CG/PID echo 2 > /tmp/CG/PID/pids.max perl -e 'while ($p = fork) { wait; } $p // die "fork failed: $!\n"' & echo $! > /tmp/CG/PID/cgroup.procs Without this patch the forking process fails soon after migration. Rename cgroup_subsys->free() to cgroup_subsys->release() and move the callsite into the new helper, cgroup_release(), called by release_task() which actually frees the pid(s). Reported-by: NHerton R. Krzesinski <hkrzesin@redhat.com> Reported-by: NJan Stancek <jstancek@redhat.com> Signed-off-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Tejun Heo 提交于
[ Upstream commit b4ff1b44bcd384d22fcbac6ebaf9cc0d33debe50 ] cgroup_rstat_cpu_pop_updated() is used to traverse the updated cgroups on flush. While it was only visiting updated ones in the subtree, it was visiting @root unconditionally. We can easily check whether @root is updated or not by looking at its ->updated_next just as with the cgroups in the subtree. * Remove the unnecessary cgroup_parent() test. The system root cgroup is never updated and thus its ->updated_next is always NULL. No need to test whether cgroup_parent() exists in addition to ->updated_next. * Terminate traverse if ->updated_next is NULL. This can only happen for subtree @root and there's no reason to visit it if it's not marked updated. This reduces cpu consumption when reading a lot of rstat backed files. In a micro benchmark reading stat from ~1600 cgroups, the sys time was lowered by >40%. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 24 3月, 2019 1 次提交
-
-
由 Al Viro 提交于
commit 399504e21a10be16dd1408ba0147367d9d82a10c upstream. same story as with last May fixes in sysfs (7b745a4e "unfuck sysfs_mount()"); new_sb is left uninitialized in case of early errors in kernfs_mount_ns() and papering over it by treating any error from kernfs_mount_ns() as equivalent to !new_ns ends up conflating the cases when objects had never been transferred to a superblock with ones when that has happened and resulting new superblock had been dropped. Easily fixed (same way as in sysfs case). Additionally, there's a superblock leak on kernfs_node_dentry() failure *and* a dentry leak inside kernfs_node_dentry() itself - the latter on probably impossible errors, but the former not impossible to trigger (as the matter of fact, injecting allocation failures at that point *does* trigger it). Cc: stable@kernel.org Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 13 2月, 2019 1 次提交
-
-
由 Ondrej Mosnacek 提交于
[ Upstream commit e250d91d65750a0c0c62483ac4f9f357e7317617 ] This fixes the case where all mount options specified are consumed by an LSM and all that's left is an empty string. In this case cgroupfs should accept the string and not fail. How to reproduce (with SELinux enabled): # umount /sys/fs/cgroup/unified # mount -o context=system_u:object_r:cgroup_t:s0 -t cgroup2 cgroup2 /sys/fs/cgroup/unified mount: /sys/fs/cgroup/unified: wrong fs type, bad option, bad superblock on cgroup2, missing codepage or helper program, or other error. # dmesg | tail -n 1 [ 31.575952] cgroup: cgroup2: unknown option "" Fixes: 67e9c74b ("cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type") [NOTE: should apply on top of commit 5136f636 ("cgroup: implement "nsdelegate" mount option"), older versions need manual rebase] Suggested-by: NStephen Smalley <sds@tycho.nsa.gov> Signed-off-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 10 1月, 2019 1 次提交
-
-
由 Tejun Heo 提交于
commit e9d81a1bc2c48ea9782e3e8b53875f419766ef47 upstream. CSS_TASK_ITER_PROCS implements process-only iteration by making css_task_iter_advance() skip tasks which aren't threadgroup leaders; however, when an iteration is started css_task_iter_start() calls the inner helper function css_task_iter_advance_css_set() instead of css_task_iter_advance(). As the helper doesn't have the skip logic, when the first task to visit is a non-leader thread, it doesn't get skipped correctly as shown in the following example. # ps -L 2030 PID LWP TTY STAT TIME COMMAND 2030 2030 pts/0 Sl+ 0:00 ./test-thread 2030 2031 pts/0 Sl+ 0:00 ./test-thread # mkdir -p /sys/fs/cgroup/x/a/b # echo threaded > /sys/fs/cgroup/x/a/cgroup.type # echo threaded > /sys/fs/cgroup/x/a/b/cgroup.type # echo 2030 > /sys/fs/cgroup/x/a/cgroup.procs # cat /sys/fs/cgroup/x/a/cgroup.threads 2030 2031 # cat /sys/fs/cgroup/x/cgroup.procs 2030 # echo 2030 > /sys/fs/cgroup/x/a/b/cgroup.threads # cat /sys/fs/cgroup/x/cgroup.procs 2031 2030 The last read of cgroup.procs is incorrectly showing non-leader 2031 in cgroup.procs output. This can be fixed by updating css_task_iter_advance() to handle the first advance and css_task_iters_tart() to call css_task_iter_advance() instead of the inner helper. After the fix, the same commands result in the following (correct) result: # ps -L 2062 PID LWP TTY STAT TIME COMMAND 2062 2062 pts/0 Sl+ 0:00 ./test-thread 2062 2063 pts/0 Sl+ 0:00 ./test-thread # mkdir -p /sys/fs/cgroup/x/a/b # echo threaded > /sys/fs/cgroup/x/a/cgroup.type # echo threaded > /sys/fs/cgroup/x/a/b/cgroup.type # echo 2062 > /sys/fs/cgroup/x/a/cgroup.procs # cat /sys/fs/cgroup/x/a/cgroup.threads 2062 2063 # cat /sys/fs/cgroup/x/cgroup.procs 2062 # echo 2062 > /sys/fs/cgroup/x/a/b/cgroup.threads # cat /sys/fs/cgroup/x/cgroup.procs 2062 Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: N"Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com> Fixes: 8cfd8147 ("cgroup: implement cgroup v2 thread support") Cc: stable@vger.kernel.org # v4.14+ Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 05 10月, 2018 1 次提交
-
-
由 Tejun Heo 提交于
A cgroup which is already a threaded domain may be converted into a threaded cgroup if the prerequisite conditions are met. When this happens, all threaded descendant should also have their ->dom_cgrp updated to the new threaded domain cgroup. Unfortunately, this propagation was missing leading to the following failure. # cd /sys/fs/cgroup/unified # cat cgroup.subtree_control # show that no controllers are enabled # mkdir -p mycgrp/a/b/c # echo threaded > mycgrp/a/b/cgroup.type At this point, the hierarchy looks as follows: mycgrp [d] a [dt] b [t] c [inv] Now let's make node "a" threaded (and thus "mycgrp" s made "domain threaded"): # echo threaded > mycgrp/a/cgroup.type By this point, we now have a hierarchy that looks as follows: mycgrp [dt] a [t] b [t] c [inv] But, when we try to convert the node "c" from "domain invalid" to "threaded", we get ENOTSUP on the write(): # echo threaded > mycgrp/a/b/c/cgroup.type sh: echo: write error: Operation not supported This patch fixes the problem by * Moving the opencoded ->dom_cgrp save and restoration in cgroup_enable_threaded() into cgroup_{save|restore}_control() so that mulitple cgroups can be handled. * Updating all threaded descendants' ->dom_cgrp to point to the new dom_cgrp when enabling threaded mode. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-and-tested-by: N"Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com> Reported-by: NAmin Jamali <ajamali@pivotal.io> Reported-by: NJoao De Almeida Pereira <jpereira@pivotal.io> Link: https://lore.kernel.org/r/CAKgNAkhHYCMn74TCNiMJ=ccLd7DcmXSbvw3CbZ1YREeG7iJM5g@mail.gmail.com Fixes: 454000ad ("cgroup: introduce cgroup->dom_cgrp and threaded css_set handling") Cc: stable@vger.kernel.org # v4.14+
-
- 21 7月, 2018 1 次提交
-
-
由 Dmitry Torokhov 提交于
This change allows creating kernfs files and directories with arbitrary uid/gid instead of always using GLOBAL_ROOT_UID/GID by extending kernfs_create_dir_ns() and kernfs_create_file_ns() with uid/gid arguments. The "simple" kernfs_create_file() and kernfs_create_dir() are left alone and always create objects belonging to the global root. When creating symlinks ownership (uid/gid) is taken from the target kernfs object. Co-Developed-by: NTyler Hicks <tyhicks@canonical.com> Signed-off-by: NDmitry Torokhov <dmitry.torokhov@gmail.com> Signed-off-by: NTyler Hicks <tyhicks@canonical.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 7月, 2018 1 次提交
-
-
由 Steven Rostedt (VMware) 提交于
It is unwise to take spin locks from the handlers of trace events. Mainly, because they can introduce lockups, because it introduces locks in places that are normally not tested. Worse yet, because trace events are tucked away in the include/trace/events/ directory, locks that are taken there are forgotten about. As a general rule, I tell people never to take any locks in a trace event handler. Several cgroup trace event handlers call cgroup_path() which eventually takes the kernfs_rename_lock spinlock. This injects the spinlock in the code without people realizing it. It also can cause issues for the PREEMPT_RT patch, as the spinlock becomes a mutex, and the trace event handlers are called with preemption disabled. By moving the calculation of the cgroup_path() out of the trace event handlers and into a macro (surrounded by a trace_cgroup_##type##_enabled()), then we could place the cgroup_path into a string, and pass that to the trace event. Not only does this remove the taking of the spinlock out of the trace event handler, but it also means that the cgroup_path() only needs to be called once (it is currently called twice, once to get the length to reserver the buffer for, and once again to get the path itself. Now it only needs to be done once. Reported-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 16 6月, 2018 1 次提交
-
-
由 Mauro Carvalho Chehab 提交于
As we move stuff around, some doc references are broken. Fix some of them via this script: ./scripts/documentation-file-ref-check --fix Manually checked if the produced result is valid, removing a few false-positives. Acked-by: NTakashi Iwai <tiwai@suse.de> Acked-by: NMasami Hiramatsu <mhiramat@kernel.org> Acked-by: NStephen Boyd <sboyd@kernel.org> Acked-by: NCharles Keepax <ckeepax@opensource.wolfsonmicro.com> Acked-by: NMathieu Poirier <mathieu.poirier@linaro.org> Reviewed-by: NColy Li <colyli@suse.de> Signed-off-by: NMauro Carvalho Chehab <mchehab+samsung@kernel.org> Acked-by: NJonathan Corbet <corbet@lwn.net>
-
- 13 6月, 2018 2 次提交
-
-
由 Kees Cook 提交于
The vmalloc() function has no 2-factor argument form, so multiplication factors need to be wrapped in array_size(). This patch replaces cases of: vmalloc(a * b) with: vmalloc(array_size(a, b)) as well as handling cases of: vmalloc(a * b * c) with: vmalloc(array3_size(a, b, c)) This does, however, attempt to ignore constant size factors like: vmalloc(4 * 1024) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( vmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | vmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( vmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(u8) * COUNT + COUNT , ...) | vmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | vmalloc( - sizeof(char) * COUNT + COUNT , ...) | vmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( vmalloc( - sizeof(TYPE) * (COUNT_ID) + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT_ID + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT_CONST + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vmalloc( - sizeof(THING) * (COUNT_ID) + array_size(COUNT_ID, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT_ID + array_size(COUNT_ID, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT_CONST + array_size(COUNT_CONST, sizeof(THING)) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ vmalloc( - SIZE * COUNT + array_size(COUNT, SIZE) , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( vmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( vmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | vmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( vmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( vmalloc(C1 * C2 * C3, ...) | vmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants. @@ expression E1, E2; constant C1, C2; @@ ( vmalloc(C1 * C2, ...) | vmalloc( - E1 * E2 + array_size(E1, E2) , ...) ) Signed-off-by: NKees Cook <keescook@chromium.org>
-
由 Kees Cook 提交于
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: NKees Cook <keescook@chromium.org>
-
- 07 6月, 2018 1 次提交
-
-
由 Kees Cook 提交于
One of the more common cases of allocation size calculations is finding the size of a structure that has a zero-sized array at the end, along with memory for some number of elements for that array. For example: struct foo { int stuff; void *entry[]; }; instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL); Instead of leaving these open-coded and prone to type mistakes, we can now use the new struct_size() helper: instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL); This patch makes the changes for kmalloc()-family (and kvmalloc()-family) uses. It was done via automatic conversion with manual review for the "CHECKME" non-standard cases noted below, using the following Coccinelle script: // pkey_cache = kmalloc(sizeof *pkey_cache + tprops->pkey_tbl_len * // sizeof *pkey_cache->table, GFP_KERNEL); @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; identifier VAR, ELEMENT; expression COUNT; @@ - alloc(sizeof(*VAR) + COUNT * sizeof(*VAR->ELEMENT), GFP) + alloc(struct_size(VAR, ELEMENT, COUNT), GFP) // mr = kzalloc(sizeof(*mr) + m * sizeof(mr->map[0]), GFP_KERNEL); @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; identifier VAR, ELEMENT; expression COUNT; @@ - alloc(sizeof(*VAR) + COUNT * sizeof(VAR->ELEMENT[0]), GFP) + alloc(struct_size(VAR, ELEMENT, COUNT), GFP) // Same pattern, but can't trivially locate the trailing element name, // or variable name. @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; expression SOMETHING, COUNT, ELEMENT; @@ - alloc(sizeof(SOMETHING) + COUNT * sizeof(ELEMENT), GFP) + alloc(CHECKME_struct_size(&SOMETHING, ELEMENT, COUNT), GFP) Signed-off-by: NKees Cook <keescook@chromium.org>
-
- 24 5月, 2018 1 次提交
-
-
由 Tejun Heo 提交于
cgroup_enable_task_cg_lists() incorrectly nests non-irq-safe tasklist_lock inside irq-safe css_set_lock triggering the following lockdep warning. WARNING: possible irq lock inversion dependency detected 4.17.0-rc1-00027-gb37d049 #6 Not tainted -------------------------------------------------------- systemd/1 just changed the state of lock: 00000000fe57773b (css_set_lock){..-.}, at: cgroup_free+0xf2/0x12a but this lock took another, SOFTIRQ-unsafe lock in the past: (tasklist_lock){.+.+} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(tasklist_lock); local_irq_disable(); lock(css_set_lock); lock(tasklist_lock); <Interrupt> lock(css_set_lock); *** DEADLOCK *** The condition is highly unlikely to actually happen especially given that the path is executed only once per boot. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NBoqun Feng <boqun.feng@gmail.com>
-
- 16 5月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
Variants of proc_create{,_data} that directly take a seq_file show callback and drastically reduces the boilerplate code in the callers. All trivial callers converted over. Signed-off-by: NChristoph Hellwig <hch@lst.de>
-
- 08 5月, 2018 1 次提交
-
-
由 Andy Shevchenko 提交于
The new helper returns index of the matching string in an array. We are going to use it here. Signed-off-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 27 4月, 2018 11 次提交
-
-
由 Tejun Heo 提交于
cgroup_rstat_updated() ensures that the cgroup's rstat is linked to the parent. If there's no parent, it never gets linked and the function ends up grabbing and releasing the cgroup_rstat_lock each time for no reason which can be expensive. This hasn't been a problem till now because nobody was calling the function for the root cgroup but rstat is gonna be exposed to controllers and use cases, so let's get ready. Make cgroup_rstat_updated() an no-op for the root cgroup. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
cgroup_rstat_updated() has a small race window where an updated signaling can race with flush and could be lost till the next update. This wasn't a problem for the existing usages, but we plan to use rstat to track counters which need to be accurate. This patch plugs the race window by synchronizing cgroup_rstat_updated() and flush path with memory barriers around cgroup_rstat_cpu->updated_next pointer. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
This patch adds cgroup_subsys->css_rstat_flush(). If a subsystem has this callback, its csses are linked on cgrp->css_rstat_list and rstat will call the function whenever the associated cgroup is flushed. Flush is also performed when such csses are released so that residual counts aren't lost. Combined with the rstat API previous patches factored out, this allows controllers to plug into rstat to manage their statistics in a scalable way. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
Currently, rstat flush path is protected with a mutex which is fine as all the existing users are from interface file show path. However, rstat is being generalized for use by controllers and flushing from atomic contexts will be necessary. This patch replaces cgroup_rstat_mutex with a spinlock and adds a irq-safe flush function - cgroup_rstat_flush_irqsafe(). Explicit yield handling is added to the flush path so that other flush functions can yield to other threads and flushers. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
cgroup_rstat is being generalized so that controllers can use it too. This patch factors out and exposes the following interface functions. * cgroup_rstat_updated(): Renamed from cgroup_rstat_cpu_updated() for consistency. * cgroup_rstat_flush_hold/release(): Factored out from base stat implementation. * cgroup_rstat_flush(): Verbatim expose. While at it, drop assert on cgroup_rstat_mutex in cgroup_base_stat_flush() as it crosses layers and make a minor comment update. v2: Added EXPORT_SYMBOL_GPL(cgroup_rstat_updated) to fix a build bug. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
Currently, rstat.c has rstat and base stat implementations intermixed. Collect base stat implementation at the end of the file. Also, reorder the prototypes. This patch doesn't make any functional changes. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
Base resource stat accounts universial (not specific to any controller) resource consumptions on top of rstat. Currently, its implementation is intermixed with rstat implementation making the code confusing to follow. This patch clarifies the distintion by doing the followings. * Encapsulate base resource stat counters, currently only cputime, in struct cgroup_base_stat. * Move prev_cputime into struct cgroup and initialize it with cgroup. * Rename the related functions so that they start with cgroup_base_stat. * Prefix the related variables and field names with b. This patch doesn't make any functional changes. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
stat is too generic a name and ends up causing subtle confusions. It'll be made generic so that controllers can plug into it, which will make the problem worse. Let's rename it to something more specific - cgroup_rstat for cgroup recursive stat. This patch does the following renames. No other changes. * cpu_stat -> rstat_cpu * stat -> rstat * ?cstat -> ?rstatc Note that the renames are selective. The unrenamed are the ones which implement basic resource statistics on top of rstat. This will be further cleaned up in the following patches. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
stat is too generic a name and ends up causing subtle confusions. It'll be made generic so that controllers can plug into it, which will make the problem worse. Let's rename it to something more specific - cgroup_rstat for cgroup recursive stat. First, rename kernel/cgroup/stat.c to kernel/cgroup/rstat.c. No content changes. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
".events" files generate file modified event to notify userland of possible new events. Some of the events can be quite bursty (e.g. memory high event) and generating notification each time is costly and pointless. This patch implements a event rate limit mechanism. If a new notification is requested before 10ms has passed since the previous notification, the new notification is delayed till then. As this only delays from the second notification on in a given close cluster of notifications, userland reactions to notifications shouldn't be delayed at all in most cases while avoiding notification storms. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
The "cgroup." core interface files bypass the usual interface removal path and get removed recursively along with the cgroup itself. While this works now, the subtle discrepancy gets in the way of implementing common mechanisms. This patch updates cgroup core interface file handling so that it's consistent with controller interface files. When added, the css is marked CSS_VISIBLE and they're explicitly removed before the cgroup is destroyed. This doesn't cause user-visible behavior changes. Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 20 3月, 2018 1 次提交
-
-
由 Tejun Heo 提交于
Workqueue now has rcu_work. Use it instead of open-coding rcu -> work item bouncing. Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 22 2月, 2018 1 次提交
-
-
由 Tejun Heo 提交于
A domain cgroup isn't allowed to be turned threaded if its subtree is populated or domain controllers are enabled. cgroup_enable_threaded() depended on cgroup_can_be_thread_root() test to enforce this rule. A parent which has populated domain descendants or have domain controllers enabled can't become a thread root, so the above rules are enforced automatically. However, for the root cgroup which can host mixed domain and threaded children, cgroup_can_be_thread_root() doesn't check any of those conditions and thus first level cgroups ends up escaping those rules. This patch fixes the bug by adding explicit checks for those rules in cgroup_enable_threaded(). Reported-by: NMichael Kerrisk (man-pages) <mtk.manpages@gmail.com> Signed-off-by: NTejun Heo <tj@kernel.org> Fixes: 8cfd8147 ("cgroup: implement cgroup v2 thread support") Cc: stable@vger.kernel.org # v4.14+
-
- 07 2月, 2018 1 次提交
-
-
由 Yaowei Bai 提交于
Make current_cpuset_is_being_rebound return bool due to this particular function only using either one or zero as its return value. No functional change. Link: http://lkml.kernel.org/r/1513266622-15860-4-git-send-email-baiyaowei@cmss.chinamobile.comSigned-off-by: NYaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 1月, 2018 1 次提交
-
-
由 Tejun Heo 提交于
e7fd37ba ("cgroup: avoid copying strings longer than the buffers") converted possibly unsafe strncpy() usages in cgroup to strscpy(). However, although the callsites are completely fine with truncated copied, because strscpy() is marked __must_check, it led to the following warnings. kernel/cgroup/cgroup.c: In function ‘cgroup_file_name’: kernel/cgroup/cgroup.c:1400:10: warning: ignoring return value of ‘strscpy’, declared with attribute warn_unused_result [-Wunused-result] strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); ^ To avoid the warnings, 50034ed4 ("cgroup: use strlcpy() instead of strscpy() to avoid spurious warning") switched them to strlcpy(). strlcpy() is worse than strlcpy() because it unconditionally runs strlen() on the source string, and the only reason we switched to strlcpy() here was because it was lacking __must_check, which doesn't reflect any material differences between the two function. It's just that someone added __must_check to strscpy() and not to strlcpy(). These basic string copy operations are used in variety of ways, and one of not-so-uncommon use cases is safely handling truncated copies, where the caller naturally doesn't care about the return value. The __must_check doesn't match the actual use cases and forces users to opt for inferior variants which lack __must_check by happenstance or spread ugly (void) casts. Remove __must_check from strscpy() and restore strscpy() usages in cgroup. Signed-off-by: NTejun Heo <tj@kernel.org> Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Ma Shimiao <mashimiao.fnst@cn.fujitsu.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Chris Metcalf <cmetcalf@ezchip.com>
-
- 11 1月, 2018 1 次提交
-
-
由 Roman Gushchin 提交于
Make cgroup.threads file delegatable. The behavior of cgroup.threads should follow the behavior of cgroup.procs. Signed-off-by: NRoman Gushchin <guro@fb.com> Discovered-by: NMichael Kerrisk <mtk.manpages@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 20 12月, 2017 1 次提交
-
-
由 Tejun Heo 提交于
While teaching css_task_iter to handle skipping over tasks which aren't group leaders, bc2fb7ed ("cgroup: add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCS") introduced a silly bug. CSS_TASK_ITER_PROCS is implemented by repeating css_task_iter_advance() while the advanced cursor is pointing to a non-leader thread. However, the cursor variable, @l, wasn't updated when the iteration has to advance to the next css_set and the following repetition would operate on the terminal @l from the previous iteration which isn't pointing to a valid task leading to oopses like the following or infinite looping. BUG: unable to handle kernel NULL pointer dereference at 0000000000000254 IP: __task_pid_nr_ns+0xc7/0xf0 PGD 0 P4D 0 Oops: 0000 [#1] SMP ... CPU: 2 PID: 1 Comm: systemd Not tainted 4.14.4-200.fc26.x86_64 #1 Hardware name: System manufacturer System Product Name/PRIME B350M-A, BIOS 3203 11/09/2017 task: ffff88c4baee8000 task.stack: ffff96d5c3158000 RIP: 0010:__task_pid_nr_ns+0xc7/0xf0 RSP: 0018:ffff96d5c315bd50 EFLAGS: 00010206 RAX: 0000000000000000 RBX: ffff88c4b68c6000 RCX: 0000000000000250 RDX: ffffffffa5e47960 RSI: 0000000000000000 RDI: ffff88c490f6ab00 RBP: ffff96d5c315bd50 R08: 0000000000001000 R09: 0000000000000005 R10: ffff88c4be006b80 R11: ffff88c42f1b8004 R12: ffff96d5c315bf18 R13: ffff88c42d7dd200 R14: ffff88c490f6a510 R15: ffff88c4b68c6000 FS: 00007f9446f8ea00(0000) GS:ffff88c4be680000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000254 CR3: 00000007f956f000 CR4: 00000000003406e0 Call Trace: cgroup_procs_show+0x19/0x30 cgroup_seqfile_show+0x4c/0xb0 kernfs_seq_show+0x21/0x30 seq_read+0x2ec/0x3f0 kernfs_fop_read+0x134/0x180 __vfs_read+0x37/0x160 ? security_file_permission+0x9b/0xc0 vfs_read+0x8e/0x130 SyS_read+0x55/0xc0 entry_SYSCALL_64_fastpath+0x1a/0xa5 RIP: 0033:0x7f94455f942d RSP: 002b:00007ffe81ba2d00 EFLAGS: 00000293 ORIG_RAX: 0000000000000000 RAX: ffffffffffffffda RBX: 00005574e2233f00 RCX: 00007f94455f942d RDX: 0000000000001000 RSI: 00005574e2321a90 RDI: 000000000000002b RBP: 0000000000000000 R08: 00005574e2321a90 R09: 00005574e231de60 R10: 00007f94458c8b38 R11: 0000000000000293 R12: 00007f94458c8ae0 R13: 00007ffe81ba3800 R14: 0000000000000000 R15: 00005574e2116560 Code: 04 74 0e 89 f6 48 8d 04 76 48 8d 04 c5 f0 05 00 00 48 8b bf b8 05 00 00 48 01 c7 31 c0 48 8b 0f 48 85 c9 74 18 8b b2 30 08 00 00 <3b> 71 04 77 0d 48 c1 e6 05 48 01 f1 48 3b 51 38 74 09 5d c3 8b RIP: __task_pid_nr_ns+0xc7/0xf0 RSP: ffff96d5c315bd50 Fix it by moving the initialization of the cursor below the repeat label. While at it, rename it to @next for readability. Signed-off-by: NTejun Heo <tj@kernel.org> Fixes: bc2fb7ed ("cgroup: add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCS") Cc: stable@vger.kernel.org # v4.14+ Reported-by: NLaura Abbott <labbott@redhat.com> Reported-by: NBronek Kozicki <brok@incorrekt.com> Reported-by: NGeorge Amanakis <gamanakis@gmail.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 19 12月, 2017 1 次提交
-
-
由 Prateek Sood 提交于
Deadlock during cgroup migration from cpu hotplug path when a task T is being moved from source to destination cgroup. kworker/0:0 cpuset_hotplug_workfn() cpuset_hotplug_update_tasks() hotplug_update_tasks_legacy() remove_tasks_in_empty_cpuset() cgroup_transfer_tasks() // stuck in iterator loop cgroup_migrate() cgroup_migrate_add_task() In cgroup_migrate_add_task() it checks for PF_EXITING flag of task T. Task T will not migrate to destination cgroup. css_task_iter_start() will keep pointing to task T in loop waiting for task T cg_list node to be removed. Task T do_exit() exit_signals() // sets PF_EXITING exit_task_namespaces() switch_task_namespaces() free_nsproxy() put_mnt_ns() drop_collected_mounts() namespace_unlock() synchronize_rcu() _synchronize_rcu_expedited() schedule_work() // on cpu0 low priority worker pool wait_event() // waiting for work item to execute Task T inserted a work item in the worklist of cpu0 low priority worker pool. It is waiting for expedited grace period work item to execute. This work item will only be executed once kworker/0:0 complete execution of cpuset_hotplug_workfn(). kworker/0:0 ==> Task T ==>kworker/0:0 In case of PF_EXITING task being migrated from source to destination cgroup, migrate next available task in source cgroup. Signed-off-by: NPrateek Sood <prsood@codeaurora.org> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 15 12月, 2017 1 次提交
-
-
由 Arnd Bergmann 提交于
As long as cft->name is guaranteed to be NUL-terminated, using strlcpy() would work just as well and avoid that warning, so the change below could be folded into that commit. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 12 12月, 2017 1 次提交
-
-
由 Ma Shimiao 提交于
cgroup root name and file name have max length limit, we should avoid copying longer name than that to the name. tj: minor update to $SUBJ. Signed-off-by: NMa Shimiao <mashimiao.fnst@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 05 12月, 2017 2 次提交
-
-
由 Tejun Heo 提交于
This reverts commit aa24163b. This and the following commit led to another circular locking scenario and the scenario which is fixed by this commit no longer exists after e8b3f8db ("workqueue/hotplug: simplify workqueue_offline_cpu()") which removes work item flushing from hotplug path. Revert it for now. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
This reverts commit 1599a185. This and the previous commit led to another circular locking scenario and the scenario which is fixed by this commit no longer exists after e8b3f8db ("workqueue/hotplug: simplify workqueue_offline_cpu()") which removes work item flushing from hotplug path. Revert it for now. Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 28 11月, 2017 2 次提交
-
-
由 Lucas Stach 提交于
Lockdep complains that the stats update is trying to register a non-static key. This is because u64_stats are using a seqlock on 32bit arches, which needs to be initialized before usage. Fixes: 041cd640 (cgroup: Implement cgroup2 basic CPU usage accounting) Signed-off-by: NLucas Stach <l.stach@pengutronix.de> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Wang Long 提交于
This macro `task_css_set` verifies that the caller is inside proper critical section if the kernel set CONFIG_PROVE_RCU=y. Signed-off-by: NWang Long <wanglong19@meituan.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-