- 01 8月, 2016 20 次提交
-
-
由 Michael Ellerman 提交于
Add a comment to the generated assembler for jump labels. This makes it easier to identify them in asm listings (generated with $ make foo.s). Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
This allows us to catch incorrect usage of cpu_has_feature() and mmu_has_feature() prior to jump labels being initialised. mpe: Use printk() and dump_stack() rather than WARN_ON(), because WARN_ON() may not work this early in boot. Rename the Kconfig. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Kevin Hao 提交于
As we just did for CPU features. Signed-off-by: NKevin Hao <haokexin@gmail.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Kevin Hao 提交于
We do binary patching of asm code using CPU features, which is a one-time operation, done during early boot. However checks of CPU features in C code are currently done at run time, even though the set of CPU features can never change after boot. We can optimise this by using jump labels to implement cpu_has_feature(), meaning checks in C code are binary patched into a single nop or branch. For a C sequence along the lines of: if (cpu_has_feature(FOO)) return 2; The generated code before is roughly: ld r9,-27640(r2) ld r9,0(r9) lwz r9,32(r9) cmpwi cr7,r9,0 bge cr7, 1f li r3,2 blr 1: ... After (true): nop li r3,2 blr After (false): b 1f li r3,2 blr 1: ... mpe: Rename MAX_CPU_FEATURES as we already have a #define with that name, and define it simply as a constant, rather than doing tricks with sizeof and NULL pointers. Rename the array to cpu_feature_keys. Use the kconfig we added to guard it. Add BUILD_BUG_ON() if the feature is not a compile time constant. Rewrite the change log. Signed-off-by: NKevin Hao <haokexin@gmail.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Add a kconfig option to control whether we use jump label for the cpu/mmu_has_feature() checks. Currently this does nothing, but we will enabled it in the subsequent patches. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Kevin Hao 提交于
We plan to use jump label for cpu_has_feature(). In order to implement this we need to include the linux/jump_label.h in asm/cputable.h. Unfortunately if we do that it leads to an include loop. The root of the problem seems to be that reg.h needs cputable.h (for CPU_FTRs), and then cputable.h via jump_label.h eventually pulls in hw_irq.h which needs reg.h (for MSR_EE). So move cpu_has_feature() to a separate file on its own. Signed-off-by: NKevin Hao <haokexin@gmail.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [mpe: Rename to cpu_has_feature.h and flesh out change log] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Kevin Hao 提交于
This function is only used by get_vtb(). They are almost the same except the reading from the real register. Move the mfspr() to get_vtb() and kill the function mfvtb(). With this, we can eliminate the use of cpu_has_feature() in very core header file like reg.h. This is a preparation for the use of jump label for cpu_has_feature(). Signed-off-by: NKevin Hao <haokexin@gmail.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
Call jump_label_init() early so that we can use static keys for CPU and MMU feature checks. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
This switches early feature checks to use the non static key variant of the function. In later patches we will be switching cpu_has_feature() and mmu_has_feature() to use static keys and we can use them only after static key/jump label is initialized. Any check for feature before jump label init should be done using this new helper. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
In later patches, we will be switching CPU and MMU feature checks to use static keys. For checks in early boot before jump label is initialized we need a variant of [cpu|mmu]_has_feature() that doesn't use jump labels. So create those called, unimaginatively, early_[cpu|mmu]_has_feature(). Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Currently we have radix_enabled() three times, twice in asm/book3s/64/mmu.h and then a fallback in asm/mmu.h. Consolidate them in asm/mmu.h. While we're at it convert them to be static inlines, and change the fallback case to returning a bool, like mmu_has_feature(). Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
The intention is that the result is only used as a boolean, so enforce that by changing the return type to bool. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
The intention is that the result is only used as a boolean, so enforce that by changing the return type to bool. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
MMU feature bits are defined such that we use the lower half to present MMU family features. Remove the strict split of half and also move Radix to a mmu family feature. Radix introduce a new MMU model and strictly speaking it is a new MMU family. This also free up bits which can be used for individual features later. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Early in boot we binary patch some sections of code based on the CPU and MMU feature bits. But it is a one-time patching, there is no facility for repatching the code later if the set of features change. It is a major bug if the set of features changes after we've done the code patching - so add a check for it. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Up until now we needed to do the MMU init before feature patching, because part of the MMU init was scanning the device tree and setting and/or clearing some MMU feature bits. Now that we have split that MMU feature modification out into routines called from early_init_devtree() (called earlier) we can now do feature patching before calling MMU init. The advantage of this is it means the remainder of the MMU init runs with the final set of features which will apply for the rest of the life of the system. This means we don't have to special case anything called from MMU init to deal with a changing set of feature bits. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Like we just did for hash, split the device tree scanning parts out and call them from mmu_early_init_devtree(). Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Currently MMU initialisation (early_init_mmu()) consists of a mixture of scanning the device tree, setting MMU feature bits, and then also doing actual initialisation of MMU data structures. We'd like to decouple the setting of the MMU features from the actual setup. So split out the device tree scanning, and associated code, and call it from mmu_init_early_devtree(). Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Move the handling of the disable_radix command line argument into the newly created mmu_early_init_devtree(). It's an MMU option so it's preferable to have it in an mm related file, and it also means platforms that don't support radix don't have to carry the code. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Michael Ellerman 提交于
Empty for now, but we'll add to it in the next patch. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 30 7月, 2016 1 次提交
-
-
由 Nitin Gupta 提交于
For PMD aligned (8M) hugepages, we currently allocate all four page table levels which is wasteful. We now allocate till PMD level only which saves memory usage from page tables. Also, when freeing page table for 8M hugepage backed region, make sure we don't try to access non-existent PTE level. Orabug: 22630259 Signed-off-by: NNitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 7月, 2016 10 次提交
-
-
由 Josh Poimboeuf 提交于
In kernel bug 150021, a kernel panic was reported when restoring a hibernate image. Only a picture of the oops was reported, so I can't paste the whole thing here. But here are the most interesting parts: kernel tried to execute NX-protected page - exploit attempt? (uid: 0) BUG: unable to handle kernel paging request at ffff8804615cfd78 ... RIP: ffff8804615cfd78 RSP: ffff8804615f0000 RBP: ffff8804615cfdc0 ... Call Trace: do_signal+0x23 exit_to_usermode_loop+0x64 ... The RIP is on the same page as RBP, so it apparently started executing on the stack. The bug was bisected to commit ef0f3ed5 (x86/asm/power: Create stack frames in hibernate_asm_64.S), which in retrospect seems quite dangerous, since that code saves and restores the stack pointer from a global variable ('saved_context'). There are a lot of moving parts in the hibernate save and restore paths, so I don't know exactly what caused the panic. Presumably, a FRAME_END was executed without the corresponding FRAME_BEGIN, or vice versa. That would corrupt the return address on the stack and would be consistent with the details of the above panic. [ rjw: One major problem is that by the time the FRAME_BEGIN in restore_registers() is executed, the stack pointer value may not be valid any more. Namely, the stack area pointed to by it previously may have been overwritten by some image memory contents and that page frame may now be used for whatever different purpose it had been allocated for before hibernation. In that case, the FRAME_BEGIN will corrupt that memory. ] Instead of doing the frame pointer save/restore around the bounds of the affected functions, just do it around the call to swsusp_save(). That has the same effect of ensuring that if swsusp_save() sleeps, the frame pointers will be correct. It's also a much more obviously safe way to do it than the original patch. And objtool still doesn't report any warnings. Fixes: ef0f3ed5 (x86/asm/power: Create stack frames in hibernate_asm_64.S) Link: https://bugzilla.kernel.org/show_bug.cgi?id=150021 Cc: 4.6+ <stable@vger.kernel.org> # 4.6+ Reported-by: NAndre Reinke <andre.reinke@mailbox.org> Tested-by: NAndre Reinke <andre.reinke@mailbox.org> Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com> Acked-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Dan Carpenter 提交于
The pio_dev[] array has MAX_NR_PIO_DEVICES elements so the > should be >=. Fixes: 5f97f7f9 ('[PATCH] avr32 architecture') Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com>
-
This patch swaps the mix of tabs and space for alignment of comment after code to use spaces only. Also document why recvmmsg was defined twice in the syscall_table.S table, but only once in unistd.h. In short, wired in the table by generic arch patch, but forgotten in unistd.h (review slip).
-
This patch wires up the new preadv2 and pwritev2 syscall on AVR32. On AVR32, all parameters beyond the 5th are passed on the stack. System calls don't use the stack -- they borrow a callee-saved register instead. This means that syscalls that take 6 parameters must be called through a stub that pushes the last parameter on the stack. Signed-off-by: NHans-Christian Noren Egtvedt <egtvedt@samfundet.no>
-
由 Mike Kravetz 提交于
do_sparc64_fault() calculates both the base and huge page RSS sizes and uses this information in calls to tsb_grow(). The calculation for base page TSB size is not correct if the task uses hugetlb pages. hugetlb pages are not accounted for in RSS, therefore the call to get_mm_rss(mm) does not include hugetlb pages. However, the number of pages based on huge_pte_count (which does include hugetlb pages) is subtracted from this value. This will result in an artificially small and often negative RSS calculation. The base TSB size is then often set to max_tsb_size as the passed RSS is unsigned, so a negative value looks really big. THP pages are also accounted for in huge_pte_count, and THP pages are accounted for in RSS so the calculation in do_sparc64_fault() is correct if a task only uses THP pages. A single huge_pte_count is not sufficient for TSB sizing if both hugetlb and THP pages can be used. Instead of a single counter, use two: one for hugetlb and one for THP. Signed-off-by: NMike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Dennis Chen 提交于
When booting an ACPI enabled kernel with 'mem=x', there is the possibility that ACPI data regions from the firmware will lie above the memory limit. Ordinarily these will be removed by memblock_enforce_memory_limit(.). Unfortunately, this means that these regions will then be mapped by acpi_os_ioremap(.) as device memory (instead of normal) thus unaligned accessess will then provoke alignment faults. In this patch we adopt memblock_mem_limit_remove_map instead, and this preserves these ACPI data regions (marked NOMAP) thus ensuring that these regions are not mapped as device memory. For example, below is an alignment exception observed on ARM platform when booting the kernel with 'acpi=on mem=8G': ... Unable to handle kernel paging request at virtual address ffff0000080521e7 pgd = ffff000008aa0000 [ffff0000080521e7] *pgd=000000801fffe003, *pud=000000801fffd003, *pmd=000000801fffc003, *pte=00e80083ff1c1707 Internal error: Oops: 96000021 [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 1 Comm: swapper/0 Not tainted 4.7.0-rc3-next-20160616+ #172 Hardware name: AMD Overdrive/Supercharger/Default string, BIOS ROD1001A 02/09/2016 task: ffff800001ef0000 ti: ffff800001ef8000 task.ti: ffff800001ef8000 PC is at acpi_ns_lookup+0x520/0x734 LR is at acpi_ns_lookup+0x4a4/0x734 pc : [<ffff0000083b8b10>] lr : [<ffff0000083b8a94>] pstate: 60000045 sp : ffff800001efb8b0 x29: ffff800001efb8c0 x28: 000000000000001b x27: 0000000000000001 x26: 0000000000000000 x25: ffff800001efb9e8 x24: ffff000008a10000 x23: 0000000000000001 x22: 0000000000000001 x21: ffff000008724000 x20: 000000000000001b x19: ffff0000080521e7 x18: 000000000000000d x17: 00000000000038ff x16: 0000000000000002 x15: 0000000000000007 x14: 0000000000007fff x13: ffffff0000000000 x12: 0000000000000018 x11: 000000001fffd200 x10: 00000000ffffff76 x9 : 000000000000005f x8 : ffff000008725fa8 x7 : ffff000008a8df70 x6 : ffff000008a8df70 x5 : ffff000008a8d000 x4 : 0000000000000010 x3 : 0000000000000010 x2 : 000000000000000c x1 : 0000000000000006 x0 : 0000000000000000 ... acpi_ns_lookup+0x520/0x734 acpi_ds_load1_begin_op+0x174/0x4fc acpi_ps_build_named_op+0xf8/0x220 acpi_ps_create_op+0x208/0x33c acpi_ps_parse_loop+0x204/0x838 acpi_ps_parse_aml+0x1bc/0x42c acpi_ns_one_complete_parse+0x1e8/0x22c acpi_ns_parse_table+0x8c/0x128 acpi_ns_load_table+0xc0/0x1e8 acpi_tb_load_namespace+0xf8/0x2e8 acpi_load_tables+0x7c/0x110 acpi_init+0x90/0x2c0 do_one_initcall+0x38/0x12c kernel_init_freeable+0x148/0x1ec kernel_init+0x10/0xec ret_from_fork+0x10/0x40 Code: b9009fbc 2a00037b 36380057 3219037b (b9400260) ---[ end trace 03381e5eb0a24de4 ]--- Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b With 'efi=debug', we can see those ACPI regions loaded by firmware on that board as: efi: 0x0083ff185000-0x0083ff1b4fff [Reserved | | | | | | | | |WB|WT|WC|UC]* efi: 0x0083ff1b5000-0x0083ff1c2fff [ACPI Reclaim Memory| | | | | | | | |WB|WT|WC|UC]* efi: 0x0083ff223000-0x0083ff224fff [ACPI Memory NVS | | | | | | | | |WB|WT|WC|UC]* Link: http://lkml.kernel.org/r/1468475036-5852-3-git-send-email-dennis.chen@arm.comAcked-by: NSteve Capper <steve.capper@arm.com> Signed-off-by: NDennis Chen <dennis.chen@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Rafael J. Wysocki <rafael@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Kaly Xin <kaly.xin@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
There are now a number of accounting oddities such as mapped file pages being accounted for on the node while the total number of file pages are accounted on the zone. This can be coped with to some extent but it's confusing so this patch moves the relevant file-based accounted. Due to throttling logic in the page allocator for reliable OOM detection, it is still necessary to track dirty and writeback pages on a per-zone basis. [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting] Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Reclaim makes decisions based on the number of pages that are mapped but it's mixing node and zone information. Account NR_FILE_MAPPED and NR_ANON_PAGES pages on the node. Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vineet Gupta 提交于
LTP madvise05 was generating mm splat | [ARCLinux]# /sd/ltp/testcases/bin/madvise05 | BUG: Bad page map in process madvise05 pte:80e08211 pmd:9f7d4000 | page:9fdcfc90 count:1 mapcount:-1 mapping: (null) index:0x0 flags: 0x404(referenced|reserved) | page dumped because: bad pte | addr:200b8000 vm_flags:00000070 anon_vma: (null) mapping: (null) index:1005c | file: (null) fault: (null) mmap: (null) readpage: (null) | CPU: 2 PID: 6707 Comm: madvise05 And for newer kernels, the system was rendered unusable afterwards. The problem was mprotect->pte_modify() clearing PTE_SPECIAL (which is set to identify the special zero page wired to the pte). When pte was finally unmapped, special casing for zero page was not done, and instead it was treated as a "normal" page, tripping on the map counts etc. This fixes ARC STAR 9001053308 Cc: <stable@vger.kernel.org> Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
-
- 28 7月, 2016 4 次提交
-
-
由 Dan Carpenter 提交于
Smatch complains that these tests are off by one, which is true but not life threatening. arch/sparc/kernel/irq_32.c:169 irq_link() error: buffer overflow 'irq_map' 384 <= 384 Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Stephen Rothwell 提交于
Currently IS_ENABLED() produces an expression surrounded by parentheses, which allows this code to compile, generating eg: else if (1 || 0) hpte_init_native(); However a change to the macro in the kbuild tree will break this in future by removing the parentheses. Fixes: 7353644f ("powerpc/mm: Fix build break when PPC_NATIVE=n") Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 David S. Miller 提交于
On pre-Niagara systems, we fetch the fault address on data TLB exceptions from the TLB_TAG_ACCESS register. But this register also contains the context ID assosciated with the fault in the low 13 bits of the register value. This propagates into current_thread_info()->fault_address and can cause trouble later on. So clear the low 13-bits out of the TLB_TAG_ACCESS value in the cases where it matters. Reported-by: NMikulas Patocka <mpatocka@redhat.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Linus Torvalds 提交于
Several build configurations had already disabled this warning because it generates a lot of false positives. But some had not, and it was still enabled for "allmodconfig" builds, for example. Looking at the warnings produced, every single one I looked at was a false positive, and the warnings are frequent enough (and big enough) that they can easily hide real problems that you don't notice in the noise generated by -Wmaybe-uninitialized. The warning is good in theory, but this is a classic case of a warning that causes more problems than the warning can solve. If gcc gets better at avoiding false positives, we may be able to re-enable this warning. But as is, we're better off without it, and I want to be able to see the *real* warnings. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 7月, 2016 5 次提交
-
-
由 Borislav Petkov 提交于
... in order to avoid #ifdeffery in code computing the ASLR randomization offset. Remove that #ifdeffery in the microcode loader. Suggested-by: NKees Cook <keescook@chromium.org> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicolai Stange <nicstange@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Garnier <thgarnie@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160727120939.GA18911@nazgul.tnicSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Catalin Marinas 提交于
Commit 0a8ea52c ("arm64: Add HAVE_REGS_AND_STACK_ACCESS_API feature") inadvertently removed the arch/arm prototype instead of the arm64 one introduced by the original patch. There should not be any bisection issues since this function is not called from anywhere else (it could as well be removed from arch/arm at some point). Fixes: 0a8ea52c ("arm64: Add HAVE_REGS_AND_STACK_ACCESS_API feature") Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Catalin Marinas 提交于
Selecting CONFIG_RANDOMIZE_BASE=y and CONFIG_MODULES=n fails to build the module PLTs support: CC arch/arm64/kernel/module-plts.o /work/Linux/linux-2.6-aarch64/arch/arm64/kernel/module-plts.c: In function ‘module_emit_plt_entry’: /work/Linux/linux-2.6-aarch64/arch/arm64/kernel/module-plts.c:32:49: error: dereferencing pointer to incomplete type ‘struct module’ This patch selects ARM64_MODULE_PLTS conditionally only if MODULES is enabled. Fixes: f80fb3a3 ("arm64: add support for kernel ASLR") Cc: <stable@vger.kernel.org> # 4.6+ Reported-by: NJeff Vander Stoep <jeffv@google.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Kirill A. Shutemov 提交于
We always have vma->vm_mm around. Link: http://lkml.kernel.org/r/1466021202-61880-8-git-send-email-kirill.shutemov@linux.intel.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Page tables can bite a relatively big chunk off system memory and their allocations are easy to trigger from userspace, so they should be accounted to kmemcg. This patch marks page table allocations as __GFP_ACCOUNT for x86. Note we must not charge allocations of kernel page tables, because they can be shared among processes from different cgroups so accounting them to a particular one can pin other cgroups for indefinitely long. So we clear __GFP_ACCOUNT flag if a page table is allocated for the kernel. Link: http://lkml.kernel.org/r/7d5c54f6a2bcbe76f03171689440003d87e6c742.1464079538.git.vdavydov@virtuozzo.comSigned-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-