- 15 11月, 2013 1 次提交
-
-
由 Kirill A. Shutemov 提交于
With split page table lock for PMD level we can't hold mm->page_table_lock while updating nr_ptes. Let's convert it to atomic_long_t to avoid races. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: NAlex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 11月, 2013 1 次提交
-
-
由 Naoya Horiguchi 提交于
The callers of free_pgd_range() and hugetlb_free_pgd_range() don't hold page table locks. The comments seems to be obsolete, so let's remove them. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 10月, 2013 1 次提交
-
-
由 Mel Gorman 提交于
There are three callers of task_numa_fault(): - do_huge_pmd_numa_page(): Accounts against the current node, not the node where the page resides, unless we migrated, in which case it accounts against the node we migrated to. - do_numa_page(): Accounts against the current node, not the node where the page resides, unless we migrated, in which case it accounts against the node we migrated to. - do_pmd_numa_page(): Accounts not at all when the page isn't migrated, otherwise accounts against the node we migrated towards. This seems wrong to me; all three sites should have the same sementaics, furthermore we should accounts against where the page really is, we already know where the task is. So modify all three sites to always account; we did after all receive the fault; and always account to where the page is after migration, regardless of success. They all still differ on when they clear the PTE/PMD; ideally that would get sorted too. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: <stable@kernel.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-8-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 10月, 2013 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 17 10月, 2013 2 次提交
-
-
由 Johannes Weiner 提交于
Commit 3812c8c8 ("mm: memcg: do not trap chargers with full callstack on OOM") assumed that only a few places that can trigger a memcg OOM situation do not return VM_FAULT_OOM, like optional page cache readahead. But there are many more and it's impractical to annotate them all. First of all, we don't want to invoke the OOM killer when the failed allocation is gracefully handled, so defer the actual kill to the end of the fault handling as well. This simplifies the code quite a bit for added bonus. Second, since a failed allocation might not be the abrupt end of the fault, the memcg OOM handler needs to be re-entrant until the fault finishes for subsequent allocation attempts. If an allocation is attempted after the task already OOMed, allow it to bypass the limit so that it can quickly finish the fault and invoke the OOM killer. Reported-by: NazurIt <azurit@pobox.sk> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: <stable@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Cyrill Gorcunov 提交于
If page migration is turned on in config and the page is migrating, we may lose the soft dirty bit. If fork and mprotect are called on migrating pages (once migration is complete) pages do not obtain the soft dirty bit in the correspond pte entries. Fix it adding an appropriate test on swap entries. Signed-off-by: NCyrill Gorcunov <gorcunov@openvz.org> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Matt Mackall <mpm@selenic.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 10月, 2013 11 次提交
-
-
由 Rik van Riel 提交于
Adjust numa_scan_period in task_numa_placement, depending on how much useful work the numa code can do. The more local faults there are in a given scan window the longer the period (and hence the slower the scan rate) during the next window. If there are excessive shared faults then the scan period will decrease with the amount of scaling depending on whether the ratio of shared/private faults. If the preferred node changes then the scan rate is reset to recheck if the task is properly placed. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-59-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Rik van Riel 提交于
Due to the way the pid is truncated, and tasks are moved between CPUs by the scheduler, it is possible for the current task_numa_fault to group together tasks that do not actually share memory together. This patch adds a few easy sanity checks to task_numa_fault, joining tasks together if they share the same tsk->mm, or if the fault was on a page with an elevated mapcount, in a shared VMA. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-57-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
With the THP migration races closed it is still possible to occasionally see corruption. The problem is related to handling PMD pages in batch. When a page fault is handled it can be assumed that the page being faulted will also be flushed from the TLB. The same flushing does not happen when handling PMD pages in batch. Fixing is straight forward but there are a number of reasons not to 1. Multiple TLB flushes may have to be sent depending on what pages get migrated 2. The handling of PMDs in batch means that faults get accounted to the task that is handling the fault. While care is taken to only mark PMDs where the last CPU and PID match it can still have problems due to PID truncation when matching PIDs. 3. Batching on the PMD level may reduce faults but setting pmd_numa requires taking a heavy lock that can contend with THP migration and handling the fault requires the release/acquisition of the PTL for every page migrated. It's still pretty heavy. PMD batch handling is not something that people ever have been happy with. This patch removes it and later patches will deal with the additional fault overhead using more installigent migrate rate adaption. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-48-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
And here's a little something to make sure not the whole world ends up in a single group. As while we don't migrate shared executable pages, we do scan/fault on them. And since everybody links to libc, everybody ends up in the same group. Suggested-by: NRik van Riel <riel@redhat.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-47-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
While parallel applications tend to align their data on the cache boundary, they tend not to align on the page or THP boundary. Consequently tasks that partition their data can still "false-share" pages presenting a problem for optimal NUMA placement. This patch uses NUMA hinting faults to chain tasks together into numa_groups. As well as storing the NID a task was running on when accessing a page a truncated representation of the faulting PID is stored. If subsequent faults are from different PIDs it is reasonable to assume that those two tasks share a page and are candidates for being grouped together. Note that this patch makes no scheduling decisions based on the grouping information. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Change the per page last fault tracking to use cpu,pid instead of nid,pid. This will allow us to try and lookup the alternate task more easily. Note that even though it is the cpu that is store in the page flags that the mpol_misplaced decision is still based on the node. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-43-git-send-email-mgorman@suse.de [ Fixed build failure on 32-bit systems. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
Ideally it would be possible to distinguish between NUMA hinting faults that are private to a task and those that are shared. If treated identically there is a risk that shared pages bounce between nodes depending on the order they are referenced by tasks. Ultimately what is desirable is that task private pages remain local to the task while shared pages are interleaved between sharing tasks running on different nodes to give good average performance. This is further complicated by THP as even applications that partition their data may not be partitioning on a huge page boundary. To start with, this patch assumes that multi-threaded or multi-process applications partition their data and that in general the private accesses are more important for cpu->memory locality in the general case. Also, no new infrastructure is required to treat private pages properly but interleaving for shared pages requires additional infrastructure. To detect private accesses the pid of the last accessing task is required but the storage requirements are a high. This patch borrows heavily from Ingo Molnar's patch "numa, mm, sched: Implement last-CPU+PID hash tracking" to encode some bits from the last accessing task in the page flags as well as the node information. Collisions will occur but it is better than just depending on the node information. Node information is then used to determine if a page needs to migrate. The PID information is used to detect private/shared accesses. The preferred NUMA node is selected based on where the maximum number of approximately private faults were measured. Shared faults are not taken into consideration for a few reasons. First, if there are many tasks sharing the page then they'll all move towards the same node. The node will be compute overloaded and then scheduled away later only to bounce back again. Alternatively the shared tasks would just bounce around nodes because the fault information is effectively noise. Either way accounting for shared faults the same as private faults can result in lower performance overall. The second reason is based on a hypothetical workload that has a small number of very important, heavily accessed private pages but a large shared array. The shared array would dominate the number of faults and be selected as a preferred node even though it's the wrong decision. The third reason is that multiple threads in a process will race each other to fault the shared page making the fault information unreliable. Signed-off-by: NMel Gorman <mgorman@suse.de> [ Fix complication error when !NUMA_BALANCING. ] Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-30-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
Currently automatic NUMA balancing is unable to distinguish between false shared versus private pages except by ignoring pages with an elevated page_mapcount entirely. This avoids shared pages bouncing between the nodes whose task is using them but that is ignored quite a lot of data. This patch kicks away the training wheels in preparation for adding support for identifying shared/private pages is now in place. The ordering is so that the impact of the shared/private detection can be easily measured. Note that the patch does not migrate shared, file-backed within vmas marked VM_EXEC as these are generally shared library pages. Migrating such pages is not beneficial as there is an expectation they are read-shared between caches and iTLB and iCache pressure is generally low. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-28-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
Ideally it would be possible to distinguish between NUMA hinting faults that are private to a task and those that are shared. This patch prepares infrastructure for separately accounting shared and private faults by allocating the necessary buffers and passing in relevant information. For now, all faults are treated as private and detection will be introduced later. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-26-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
The zero page is not replicated between nodes and is often shared between processes. The data is read-only and likely to be cached in local CPUs if heavily accessed meaning that the remote memory access cost is less of a concern. This patch prevents trapping faults on the zero pages. For tasks using the zero page this will reduce the number of PTE updates, TLB flushes and hinting faults. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> [ Correct use of is_huge_zero_page] Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-13-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
There are three callers of task_numa_fault(): - do_huge_pmd_numa_page(): Accounts against the current node, not the node where the page resides, unless we migrated, in which case it accounts against the node we migrated to. - do_numa_page(): Accounts against the current node, not the node where the page resides, unless we migrated, in which case it accounts against the node we migrated to. - do_pmd_numa_page(): Accounts not at all when the page isn't migrated, otherwise accounts against the node we migrated towards. This seems wrong to me; all three sites should have the same sementaics, furthermore we should accounts against where the page really is, we already know where the task is. So modify all three sites to always account; we did after all receive the fault; and always account to where the page is after migration, regardless of success. They all still differ on when they clear the PTE/PMD; ideally that would get sorted too. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-8-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 9月, 2013 3 次提交
-
-
由 Kirill A. Shutemov 提交于
do_huge_pmd_anonymous_page() has copy-pasted piece of handle_mm_fault() to handle fallback path. Let's consolidate code back by introducing VM_FAULT_FALLBACK return code. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NHillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Hugh Dickins <hughd@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The memcg OOM handling is incredibly fragile and can deadlock. When a task fails to charge memory, it invokes the OOM killer and loops right there in the charge code until it succeeds. Comparably, any other task that enters the charge path at this point will go to a waitqueue right then and there and sleep until the OOM situation is resolved. The problem is that these tasks may hold filesystem locks and the mmap_sem; locks that the selected OOM victim may need to exit. For example, in one reported case, the task invoking the OOM killer was about to charge a page cache page during a write(), which holds the i_mutex. The OOM killer selected a task that was just entering truncate() and trying to acquire the i_mutex: OOM invoking task: mem_cgroup_handle_oom+0x241/0x3b0 mem_cgroup_cache_charge+0xbe/0xe0 add_to_page_cache_locked+0x4c/0x140 add_to_page_cache_lru+0x22/0x50 grab_cache_page_write_begin+0x8b/0xe0 ext3_write_begin+0x88/0x270 generic_file_buffered_write+0x116/0x290 __generic_file_aio_write+0x27c/0x480 generic_file_aio_write+0x76/0xf0 # takes ->i_mutex do_sync_write+0xea/0x130 vfs_write+0xf3/0x1f0 sys_write+0x51/0x90 system_call_fastpath+0x18/0x1d OOM kill victim: do_truncate+0x58/0xa0 # takes i_mutex do_last+0x250/0xa30 path_openat+0xd7/0x440 do_filp_open+0x49/0xa0 do_sys_open+0x106/0x240 sys_open+0x20/0x30 system_call_fastpath+0x18/0x1d The OOM handling task will retry the charge indefinitely while the OOM killed task is not releasing any resources. A similar scenario can happen when the kernel OOM killer for a memcg is disabled and a userspace task is in charge of resolving OOM situations. In this case, ALL tasks that enter the OOM path will be made to sleep on the OOM waitqueue and wait for userspace to free resources or increase the group's limit. But a userspace OOM handler is prone to deadlock itself on the locks held by the waiting tasks. For example one of the sleeping tasks may be stuck in a brk() call with the mmap_sem held for writing but the userspace handler, in order to pick an optimal victim, may need to read files from /proc/<pid>, which tries to acquire the same mmap_sem for reading and deadlocks. This patch changes the way tasks behave after detecting a memcg OOM and makes sure nobody loops or sleeps with locks held: 1. When OOMing in a user fault, invoke the OOM killer and restart the fault instead of looping on the charge attempt. This way, the OOM victim can not get stuck on locks the looping task may hold. 2. When OOMing in a user fault but somebody else is handling it (either the kernel OOM killer or a userspace handler), don't go to sleep in the charge context. Instead, remember the OOMing memcg in the task struct and then fully unwind the page fault stack with -ENOMEM. pagefault_out_of_memory() will then call back into the memcg code to check if the -ENOMEM came from the memcg, and then either put the task to sleep on the memcg's OOM waitqueue or just restart the fault. The OOM victim can no longer get stuck on any lock a sleeping task may hold. Debugged by Michal Hocko. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NazurIt <azurit@pobox.sk> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
System calls and kernel faults (uaccess, gup) can handle an out of memory situation gracefully and just return -ENOMEM. Enable the memcg OOM killer only for user faults, where it's really the only option available. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 9月, 2013 2 次提交
-
-
由 Naoya Horiguchi 提交于
Extend move_pages() to handle vma with VM_HUGETLB set. We will be able to migrate hugepage with move_pages(2) after applying the enablement patch which comes later in this series. We avoid getting refcount on tail pages of hugepage, because unlike thp, hugepage is not split and we need not care about races with splitting. And migration of larger (1GB for x86_64) hugepage are not enabled. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: NAndi Kleen <ak@linux.intel.com> Reviewed-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joonsoo Kim 提交于
pgtable related functions are mostly in pgtable-generic.c. So move remaining functions from memory.c to pgtable-generic.c. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 8月, 2013 1 次提交
-
-
由 Linus Torvalds 提交于
Ben Tebulin reported: "Since v3.7.2 on two independent machines a very specific Git repository fails in 9/10 cases on git-fsck due to an SHA1/memory failures. This only occurs on a very specific repository and can be reproduced stably on two independent laptops. Git mailing list ran out of ideas and for me this looks like some very exotic kernel issue" and bisected the failure to the backport of commit 53a59fc6 ("mm: limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPT"). That commit itself is not actually buggy, but what it does is to make it much more likely to hit the partial TLB invalidation case, since it introduces a new case in tlb_next_batch() that previously only ever happened when running out of memory. The real bug is that the TLB gather virtual memory range setup is subtly buggered. It was introduced in commit 597e1c35 ("mm/mmu_gather: enable tlb flush range in generic mmu_gather"), and the range handling was already fixed at least once in commit e6c495a9 ("mm: fix the TLB range flushed when __tlb_remove_page() runs out of slots"), but that fix was not complete. The problem with the TLB gather virtual address range is that it isn't set up by the initial tlb_gather_mmu() initialization (which didn't get the TLB range information), but it is set up ad-hoc later by the functions that actually flush the TLB. And so any such case that forgot to update the TLB range entries would potentially miss TLB invalidates. Rather than try to figure out exactly which particular ad-hoc range setup was missing (I personally suspect it's the hugetlb case in zap_huge_pmd(), which didn't have the same logic as zap_pte_range() did), this patch just gets rid of the problem at the source: make the TLB range information available to tlb_gather_mmu(), and initialize it when initializing all the other tlb gather fields. This makes the patch larger, but conceptually much simpler. And the end result is much more understandable; even if you want to play games with partial ranges when invalidating the TLB contents in chunks, now the range information is always there, and anybody who doesn't want to bother with it won't introduce subtle bugs. Ben verified that this fixes his problem. Reported-bisected-and-tested-by: NBen Tebulin <tebulin@googlemail.com> Build-testing-by: NStephen Rothwell <sfr@canb.auug.org.au> Build-testing-by: NRichard Weinberger <richard.weinberger@gmail.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 8月, 2013 2 次提交
-
-
由 Cyrill Gorcunov 提交于
Andy reported that if file page get reclaimed we lose the soft-dirty bit if it was there, so save _PAGE_BIT_SOFT_DIRTY bit when page address get encoded into pte entry. Thus when #pf happens on such non-present pte we can restore it back. Reported-by: NAndy Lutomirski <luto@amacapital.net> Signed-off-by: NCyrill Gorcunov <gorcunov@openvz.org> Acked-by: NPavel Emelyanov <xemul@parallels.com> Cc: Matt Mackall <mpm@selenic.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Cyrill Gorcunov 提交于
Andy Lutomirski reported that if a page with _PAGE_SOFT_DIRTY bit set get swapped out, the bit is getting lost and no longer available when pte read back. To resolve this we introduce _PTE_SWP_SOFT_DIRTY bit which is saved in pte entry for the page being swapped out. When such page is to be read back from a swap cache we check for bit presence and if it's there we clear it and restore the former _PAGE_SOFT_DIRTY bit back. One of the problem was to find a place in pte entry where we can save the _PTE_SWP_SOFT_DIRTY bit while page is in swap. The _PAGE_PSE was chosen for that, it doesn't intersect with swap entry format stored in pte. Reported-by: NAndy Lutomirski <luto@amacapital.net> Signed-off-by: NCyrill Gorcunov <gorcunov@openvz.org> Acked-by: NPavel Emelyanov <xemul@parallels.com> Cc: Matt Mackall <mpm@selenic.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: NMinchan Kim <minchan@kernel.org> Reviewed-by: NWanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 8月, 2013 1 次提交
-
-
由 Uwe Kleine-König 提交于
In the next commit this function will be used in the uio subsystem Signed-off-by: NUwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 10 7月, 2013 1 次提交
-
-
由 Joe Perches 提交于
These VM_<READfoo> macros aren't used very often and three of them aren't used at all. Expand the ones that are used in-place, and remove all the now unused #define VM_<foo> macros. VM_READHINTMASK, VM_NormalReadHint and VM_ClearReadHint were added just before 2.4 and appears have never been used. Signed-off-by: NJoe Perches <joe@perches.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 7月, 2013 3 次提交
-
-
由 Jiang Liu 提交于
Now all references to num_physpages have been removed, so kill it. Signed-off-by: NJiang Liu <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vineet Gupta 提交于
zap_pte_range loops from @addr to @end. In the middle, if it runs out of batching slots, TLB entries needs to be flushed for @start to @interim, NOT @interim to @end. Since ARC port doesn't use page free batching I can't test it myself but this seems like the right thing to do. Observed this when working on a fix for the issue at thread: http://www.spinics.net/lists/linux-arch/msg21736.htmlSigned-off-by: NVineet Gupta <vgupta@synopsys.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Libin 提交于
(*->vm_end - *->vm_start) >> PAGE_SHIFT operation is implemented as a inline funcion vma_pages() in linux/mm.h, so using it. Signed-off-by: NLibin <huawei.libin@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 6月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
Since the introduction of preemptible mmu_gather TLB fast mode has been broken. TLB fast mode relies on there being absolutely no concurrency; it frees pages first and invalidates TLBs later. However now we can get concurrency and stuff goes *bang*. This patch removes all tlb_fast_mode() code; it was found the better option vs trying to patch the hole by entangling tlb invalidation with the scheduler. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King <linux@arm.linux.org.uk> Cc: Tony Luck <tony.luck@intel.com> Reported-by: NMax Filippov <jcmvbkbc@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 5月, 2013 2 次提交
-
-
由 Michael S. Tsirkin 提交于
This changes might_fault() so that it does not trigger a false positive diagnostic for e.g. the following sequence: spin_lock_irqsave() pagefault_disable() copy_to_user() pagefault_enable() spin_unlock_irqrestore() In particular vhost wants to do this, to call socket ops from under a lock. There are 3 cases to consider: - CONFIG_PROVE_LOCKING - might_fault is non-inline so it's easy to move the in_atomic test to fix up the false positive warning. - CONFIG_DEBUG_ATOMIC_SLEEP - might_fault is currently inline, but we are calling a non-inline __might_sleep anyway, so let's use the non-line version of might_fault that does the right thing. - !CONFIG_DEBUG_ATOMIC_SLEEP && !CONFIG_PROVE_LOCKING __might_sleep is a nop so might_fault is a nop. Make this explicit. Signed-off-by: NMichael S. Tsirkin <mst@redhat.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1369577426-26721-11-git-send-email-mst@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Michael S. Tsirkin 提交于
might_fault() is called from functions like copy_to_user() which most callers expect to be very fast, like a couple of instructions. So functions like memcpy_toiovec() call them many times in a loop. But might_fault() calls might_sleep() and with CONFIG_PREEMPT_VOLUNTARY this results in a function call. Let's not do this - just call __might_sleep() that produces a diagnostic for sleep within atomic, but drop might_preempt(). Here's a test sending traffic between the VM and the host, host is built with CONFIG_PREEMPT_VOLUNTARY: before: incoming: 7122.77 Mb/s outgoing: 8480.37 Mb/s after: incoming: 8619.24 Mb/s outgoing: 9455.42 Mb/s As a side effect, this fixes an issue pointed out by Ingo: might_fault might schedule differently depending on PROVE_LOCKING. Now there's no preemption point in both cases, so it's consistent. Signed-off-by: NMichael S. Tsirkin <mst@redhat.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1369577426-26721-10-git-send-email-mst@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 30 4月, 2013 1 次提交
-
-
由 Minchan Kim 提交于
Currently the memory barrier in __do_huge_pmd_anonymous_page doesn't work. Because lru_cache_add_lru uses pagevec so it could miss spinlock easily so above rule was broken so user might see inconsistent data. I was not first person who pointed out the problem. Mel and Peter pointed out a few months ago and Peter pointed out further that even spin_lock/unlock can't make sure of it: http://marc.info/?t=134333512700004 In particular: *A = a; LOCK UNLOCK *B = b; may occur as: LOCK, STORE *B, STORE *A, UNLOCK At last, Hugh pointed out that even we don't need memory barrier in there because __SetPageUpdate already have done it from Nick's commit 0ed361de ("mm: fix PageUptodate data race") explicitly. So this patch fixes comment on THP and adds same comment for do_anonymous_page, too because everybody except Hugh was missing that. It means we need a comment about that. Signed-off-by: NMinchan Kim <minchan@kernel.org> Acked-by: NAndrea Arcangeli <aarcange@redhat.com> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 4月, 2013 1 次提交
-
-
由 Joe Perches 提交于
Use the new vsprintf extension to avoid any possible message interleaving. Signed-off-by: NJoe Perches <joe@perches.com> Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 17 4月, 2013 1 次提交
-
-
由 Linus Torvalds 提交于
Various drivers end up replicating the code to mmap() their memory buffers into user space, and our core memory remapping function may be very flexible but it is unnecessarily complicated for the common cases to use. Our internal VM uses pfn's ("page frame numbers") which simplifies things for the VM, and allows us to pass physical addresses around in a denser and more efficient format than passing a "phys_addr_t" around, and having to shift it up and down by the page size. But it just means that drivers end up doing that shifting instead at the interface level. It also means that drivers end up mucking around with internal VM things like the vma details (vm_pgoff, vm_start/end) way more than they really need to. So this just exports a function to map a certain physical memory range into user space (using a phys_addr_t based interface that is much more natural for a driver) and hides all the complexity from the driver. Some drivers will still end up tweaking the vm_page_prot details for things like prefetching or cacheability etc, but that's actually relevant to the driver, rather than caring about what the page offset of the mapping is into the particular IO memory region. Acked-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 4月, 2013 1 次提交
-
-
由 Dave Hansen 提交于
This patch attempts to fix: https://bugzilla.kernel.org/show_bug.cgi?id=56461 The symptom is a crash and messages like this: chrome: Corrupted page table at address 34a03000 *pdpt = 0000000000000000 *pde = 0000000000000000 Bad pagetable: 000f [#1] PREEMPT SMP Ingo guesses this got introduced by commit 611ae8e3 ("x86/tlb: enable tlb flush range support for x86") since that code started to free unused pagetables. On x86-32 PAE kernels, that new code has the potential to free an entire PMD page and will clear one of the four page-directory-pointer-table (aka pgd_t entries). The hardware aggressively "caches" these top-level entries and invlpg does not actually affect the CPU's copy. If we clear one we *HAVE* to do a full TLB flush, otherwise we might continue using a freed pmd page. (note, we do this properly on the population side in pud_populate()). This patch tracks whenever we clear one of these entries in the 'struct mmu_gather', and ensures that we follow up with a full tlb flush. BTW, I disassembled and checked that: if (tlb->fullmm == 0) and if (!tlb->fullmm && !tlb->need_flush_all) generate essentially the same code, so there should be zero impact there to the !PAE case. Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Cc: Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Artem S Tashkinov <t.artem@mailcity.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 2月, 2013 3 次提交
-
-
由 Hugh Dickins 提交于
I dislike the way in which "swapcache" gets used in do_swap_page(): there is always a page from swapcache there (even if maybe uncached by the time we lock it), but tests are made according to "swapcache". Rework that with "page != swapcache", as has been done in unuse_pte(). Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
In "ksm: remove old stable nodes more thoroughly" I said that I'd never seen its WARN_ON_ONCE(page_mapped(page)). True at the time of writing, but it soon appeared once I tried fuller tests on the whole series. It turned out to be due to the KSM page migration itself: unmerge_and_ remove_all_rmap_items() failed to locate and replace all the KSM pages, because of that hiatus in page migration when old pte has been replaced by migration entry, but not yet by new pte. follow_page() finds no page at that instant, but a KSM page reappears shortly after, without a fault. Add FOLL_MIGRATION flag, so follow_page() can do migration_entry_wait() for KSM's break_cow(). I'd have preferred to avoid another flag, and do it every time, in case someone else makes the same easy mistake; but did not find another transgressor (the common get_user_pages() is of course safe), and cannot be sure that every follow_page() caller is prepared to sleep - ia64's xencomm_vtop()? Now, THP's wait_split_huge_page() can already sleep there, since anon_vma locking was changed to mutex, but maybe that's somehow excluded. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michel Lespinasse 提交于
This change adds a follow_page_mask function which is equivalent to follow_page, but with an extra page_mask argument. follow_page_mask sets *page_mask to HPAGE_PMD_NR - 1 when it encounters a THP page, and to 0 in other cases. __get_user_pages() makes use of this in order to accelerate populating THP ranges - that is, when both the pages and vmas arrays are NULL, we don't need to iterate HPAGE_PMD_NR times to cover a single THP page (and we also avoid taking mm->page_table_lock that many times). Signed-off-by: NMichel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-