1. 11 9月, 2017 1 次提交
  2. 09 9月, 2017 1 次提交
  3. 31 8月, 2017 1 次提交
  4. 29 8月, 2017 4 次提交
  5. 23 6月, 2017 5 次提交
  6. 05 6月, 2017 2 次提交
  7. 15 4月, 2017 1 次提交
    • N
      x86/apic/timer: Set ->min_delta_ticks and ->max_delta_ticks · 747d04b3
      Nicolai Stange 提交于
      In preparation for making the clockevents core NTP correction aware,
      all clockevent device drivers must set ->min_delta_ticks and
      ->max_delta_ticks rather than ->min_delta_ns and ->max_delta_ns: a
      clockevent device's rate is going to change dynamically and thus, the
      ratio of ns to ticks ceases to stay invariant.
      
      Make the x86 arch's apic clockevent driver initialize these fields
      properly.
      
      This patch alone doesn't introduce any change in functionality as the
      clockevents core still looks exclusively at the (untouched) ->min_delta_ns
      and ->max_delta_ns. As soon as this has changed, a followup patch will
      purge the initialization of ->min_delta_ns and ->max_delta_ns from this
      driver.
      
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Stephen Boyd <sboyd@codeaurora.org>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: x86@kernel.org
      CC: Dou Liyang <douly.fnst@cn.fujitsu.com>
      Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
      Signed-off-by: NNicolai Stange <nicstange@gmail.com>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      747d04b3
  8. 14 3月, 2017 2 次提交
  9. 11 3月, 2017 1 次提交
    • D
      x86/acpi: Restore the order of CPU IDs · 2b85b3d2
      Dou Liyang 提交于
      The following commits:
      
        f7c28833 ("x86/acpi: Enable acpi to register all possible cpus at
      boot time") and 8f54969d ("x86/acpi: Introduce persistent storage
      for cpuid <-> apicid mapping")
      
      ... registered all the possible CPUs at boot time via ACPI tables to
      make the mapping of cpuid <-> apicid fixed. Both enabled and disabled
      CPUs could have a logical CPU ID after boot time.
      
      But, ACPI tables are unreliable. the number amd order of Local APIC
      entries which depends on the firmware is often inconsistent with the
      physical devices. Even if they are consistent, The disabled CPUs which
      take up some logical CPU IDs will also make the order discontinuous.
      
      Revert the part of disabled CPUs registration, keep the allocation
      logic of logical CPU IDs and also keep some code location changes.
      Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com>
      Tested-by: NXiaolong Ye <xiaolong.ye@intel.com>
      Cc: rjw@rjwysocki.net
      Cc: linux-acpi@vger.kernel.org
      Cc: guzheng1@huawei.com
      Cc: izumi.taku@jp.fujitsu.com
      Cc: lenb@kernel.org
      Link: http://lkml.kernel.org/r/1488528147-2279-4-git-send-email-douly.fnst@cn.fujitsu.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      2b85b3d2
  10. 01 3月, 2017 2 次提交
  11. 07 2月, 2017 1 次提交
  12. 29 1月, 2017 1 次提交
    • I
      x86/boot/e820: Rename e820_reserve_resources*() to e820__reserve_resources*() · 1506c8dc
      Ingo Molnar 提交于
      Also do some minor cleanups.
      
      No change in functionality.
      
      Cc: Alex Thorlton <athorlton@sgi.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Huang, Ying <ying.huang@intel.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Paul Jackson <pj@sgi.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rafael J. Wysocki <rjw@sisk.pl>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      1506c8dc
  13. 09 1月, 2017 1 次提交
  14. 06 1月, 2017 1 次提交
  15. 05 1月, 2017 1 次提交
    • D
      x86/irq, trace: Add __irq_entry annotation to x86's platform IRQ handlers · c4158ff5
      Daniel Bristot de Oliveira 提交于
      This patch adds the __irq_entry annotation to the default x86
      platform IRQ handlers. ftrace's function_graph tracer uses the
      __irq_entry annotation to notify the entry and return of IRQ
      handlers.
      
      For example, before the patch:
        354549.667252 |   3)  d..1              |  default_idle_call() {
        354549.667252 |   3)  d..1              |    arch_cpu_idle() {
        354549.667253 |   3)  d..1              |      default_idle() {
        354549.696886 |   3)  d..1              |        smp_trace_reschedule_interrupt() {
        354549.696886 |   3)  d..1              |          irq_enter() {
        354549.696886 |   3)  d..1              |            rcu_irq_enter() {
      
      After the patch:
        366416.254476 |   3)  d..1              |    arch_cpu_idle() {
        366416.254476 |   3)  d..1              |      default_idle() {
        366416.261566 |   3)  d..1  ==========> |
        366416.261566 |   3)  d..1              |        smp_trace_reschedule_interrupt() {
        366416.261566 |   3)  d..1              |          irq_enter() {
        366416.261566 |   3)  d..1              |            rcu_irq_enter() {
      
      KASAN also uses this annotation. The smp_apic_timer_interrupt()
      was already annotated.
      Signed-off-by: NDaniel Bristot de Oliveira <bristot@redhat.com>
      Acked-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      Cc: Aaron Lu <aaron.lu@intel.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Claudio Fontana <claudio.fontana@huawei.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
      Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
      Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Nicolai Stange <nicstange@gmail.com>
      Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Wanpeng Li <wanpeng.li@hotmail.com>
      Cc: linux-edac@vger.kernel.org
      Link: http://lkml.kernel.org/r/059fdf437c2f0c09b13c18c8fe4e69999d3ffe69.1483528431.git.bristot@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      c4158ff5
  16. 13 12月, 2016 1 次提交
    • T
      x86/smpboot: Make logical package management more robust · 9d85eb91
      Thomas Gleixner 提交于
      The logical package management has several issues:
      
       - The APIC ids provided by ACPI are not required to be the same as the
         initial APIC id which can be retrieved by CPUID. The APIC ids provided
         by ACPI are those which are written by the BIOS into the APIC. The
         initial id is set by hardware and can not be changed. The hardware
         provided ids contain the real hardware package information.
      
         Especially AMD sets the effective APIC id different from the hardware id
         as they need to reserve space for the IOAPIC ids starting at id 0.
      
         As a consequence those machines trigger the currently active firmware
         bug printouts in dmesg, These are obviously wrong.
      
       - Virtual machines have their own interesting of enumerating APICs and
         packages which are not reliably covered by the current implementation.
      
      The sizing of the mapping array has been tweaked to be generously large to
      handle systems which provide a wrong core count when HT is disabled so the
      whole magic which checks for space in the physical hotplug case is not
      needed anymore.
      
      Simplify the whole machinery and do the mapping when the CPU starts and the
      CPUID derived physical package information is available. This solves the
      observed problems on AMD machines and works for the virtualization issues
      as well.
      
      Remove the extra call from XEN cpu bringup code as it is not longer
      required.
      
      Fixes: d49597fd ("x86/cpu: Deal with broken firmware (VMWare/XEN)")
      Reported-and-tested-by: NBorislav Petkov <bp@suse.de>
      Tested-by: NBoris Ostrovsky <boris.ostrovsky@oracle.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: M. Vefa Bicakci <m.v.b@runbox.com>
      Cc: xen-devel <xen-devel@lists.xen.org>
      Cc: Charles (Chas) Williams <ciwillia@brocade.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Alok Kataria <akataria@vmware.com>
      Cc: stable@vger.kernel.org
      Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1612121102260.3429@nanosSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      9d85eb91
  17. 10 12月, 2016 2 次提交
  18. 10 11月, 2016 1 次提交
    • W
      x86/apic: Prevent tracing on apic_msr_write_eoi() · 8ca22552
      Wanpeng Li 提交于
      The following RCU lockdep warning led to adding irq_enter()/irq_exit() into
      smp_reschedule_interrupt():
      
       RCU used illegally from idle CPU!
       rcu_scheduler_active = 1, debug_locks = 0
       RCU used illegally from extended quiescent state!
       no locks held by swapper/1/0.
       
        do_trace_write_msr
        native_write_msr
        native_apic_msr_eoi_write
        smp_reschedule_interrupt
        reschedule_interrupt
      
      As Peterz pointed out:
      
      | So now we're making a very frequent interrupt slower because of debug 
      | code.
      |
      | The thing is, many many smp_reschedule_interrupt() invocations don't
      | actually execute anything much at all and are only sent to tickle the
      | return to user path (which does the actual preemption).
      | 
      | Having to do the whole irq_enter/irq_exit dance just for this unlikely
      | debug case totally blows.
      
      Use the wrmsr_notrace() variant in native_apic_msr_write_eoi, annotate the
      kvm variant with notrace and add a native_apic_eoi callback to the apic
      structure so KVM guests are covered as well.
      
      This allows to revert the irq_enter/irq_exit dance in
      smp_reschedule_interrupt().
      Suggested-by: NPeter Zijlstra <peterz@infradead.org>
      Suggested-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NWanpeng Li <wanpeng.li@hotmail.com>
      Acked-by: NPaolo Bonzini <pbonzini@redhat.com>
      Cc: kvm@vger.kernel.org
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Borislav Petkov <bp@alien8.de>
      Link: http://lkml.kernel.org/r/1478488420-5982-3-git-send-email-wanpeng.li@hotmail.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      8ca22552
  19. 08 10月, 2016 1 次提交
    • T
      x86/apic: Prevent pointless warning messages · df610d67
      Thomas Gleixner 提交于
      Markus reported that he sees new warnings:
      
        APIC: NR_CPUS/possible_cpus limit of 4 reached.  Processor 4/0x84 ignored.
        APIC: NR_CPUS/possible_cpus limit of 4 reached.  Processor 5/0x85 ignored.
      
      This comes from the recent persistant cpuid - nodeid changes. The code
      which emits the warning has been called prior to these changes only for
      enabled processors. Now it's called for disabled processors as well to get
      the possible cpu accounting correct. So if the kernel is compiled for the
      number of actual available/enabled CPUs and the BIOS reports disabled CPUs
      as well then the above warnings are printed.
      
      That's a pointless exercise as it only makes sense if there are more CPUs
      enabled than the kernel supports.
      
      Nake the warning conditional on enabled processors so we are back to the
      state before these changes.
      
      Fixes: 8f54969d ("x86/acpi: Introduce persistent storage for cpuid <-> apicid mapping") 
      Reported-and-tested-by: NMarkus Trippelsdorf <markus@trippelsdorf.de>
      Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
      Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
      Cc: linux-acpi@vger.kernel.org
      Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
      Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1610071549330.19804@nanosSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      df610d67
  20. 27 9月, 2016 1 次提交
  21. 22 9月, 2016 2 次提交
    • G
      x86/acpi: Introduce persistent storage for cpuid <-> apicid mapping · 8f54969d
      Gu Zheng 提交于
      The whole patch-set aims at making cpuid <-> nodeid mapping persistent. So that,
      when node online/offline happens, cache based on cpuid <-> nodeid mapping such as
      wq_numa_possible_cpumask will not cause any problem.
      It contains 4 steps:
      1. Enable apic registeration flow to handle both enabled and disabled cpus.
      2. Introduce a new array storing all possible cpuid <-> apicid mapping.
      3. Enable _MAT and MADT relative apis to return non-present or disabled cpus' apicid.
      4. Establish all possible cpuid <-> nodeid mapping.
      
      This patch finishes step 2.
      
      In this patch, we introduce a new static array named cpuid_to_apicid[],
      which is large enough to store info for all possible cpus.
      
      And then, we modify the cpuid calculation. In generic_processor_info(),
      it simply finds the next unused cpuid. And it is also why the cpuid <-> nodeid
      mapping changes with node hotplug.
      
      After this patch, we find the next unused cpuid, map it to an apicid,
      and store the mapping in cpuid_to_apicid[], so that cpuid <-> apicid
      mapping will be persistent.
      
      And finally we will use this array to make cpuid <-> nodeid persistent.
      
      cpuid <-> apicid mapping is established at local apic registeration time.
      But non-present or disabled cpus are ignored.
      
      In this patch, we establish all possible cpuid <-> apicid mapping when
      registering local apic.
      Signed-off-by: NGu Zheng <guz.fnst@cn.fujitsu.com>
      Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com>
      Signed-off-by: NZhu Guihua <zhugh.fnst@cn.fujitsu.com>
      Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      Cc: mika.j.penttila@gmail.com
      Cc: len.brown@intel.com
      Cc: rafael@kernel.org
      Cc: rjw@rjwysocki.net
      Cc: yasu.isimatu@gmail.com
      Cc: linux-mm@kvack.org
      Cc: linux-acpi@vger.kernel.org
      Cc: isimatu.yasuaki@jp.fujitsu.com
      Cc: gongzhaogang@inspur.com
      Cc: tj@kernel.org
      Cc: izumi.taku@jp.fujitsu.com
      Cc: cl@linux.com
      Cc: chen.tang@easystack.cn
      Cc: akpm@linux-foundation.org
      Cc: kamezawa.hiroyu@jp.fujitsu.com
      Cc: lenb@kernel.org
      Link: http://lkml.kernel.org/r/1472114120-3281-4-git-send-email-douly.fnst@cn.fujitsu.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      8f54969d
    • G
      x86/acpi: Enable acpi to register all possible cpus at boot time · f7c28833
      Gu Zheng 提交于
      cpuid <-> nodeid mapping is firstly established at boot time. And workqueue caches
      the mapping in wq_numa_possible_cpumask in wq_numa_init() at boot time.
      
      When doing node online/offline, cpuid <-> nodeid mapping is established/destroyed,
      which means, cpuid <-> nodeid mapping will change if node hotplug happens. But
      workqueue does not update wq_numa_possible_cpumask.
      
      So here is the problem:
      
      Assume we have the following cpuid <-> nodeid in the beginning:
      
        Node | CPU
      
      ------------------------
      node 0 |  0-14, 60-74
      node 1 | 15-29, 75-89
      node 2 | 30-44, 90-104
      node 3 | 45-59, 105-119
      
      and we hot-remove node2 and node3, it becomes:
      
        Node | CPU
      ------------------------
      node 0 |  0-14, 60-74
      node 1 | 15-29, 75-89
      
      and we hot-add node4 and node5, it becomes:
      
        Node | CPU
      ------------------------
      node 0 |  0-14, 60-74
      node 1 | 15-29, 75-89
      node 4 | 30-59
      node 5 | 90-119
      
      But in wq_numa_possible_cpumask, cpu30 is still mapped to node2, and the like.
      
      When a pool workqueue is initialized, if its cpumask belongs to a node, its
      pool->node will be mapped to that node. And memory used by this workqueue will
      also be allocated on that node.
      
      static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs){
      ...
              /* if cpumask is contained inside a NUMA node, we belong to that node */
              if (wq_numa_enabled) {
                      for_each_node(node) {
                              if (cpumask_subset(pool->attrs->cpumask,
                                                 wq_numa_possible_cpumask[node])) {
                                      pool->node = node;
                                      break;
                              }
                      }
              }
      
      Since wq_numa_possible_cpumask is not updated, it could be mapped to an offline node,
      which will lead to memory allocation failure:
      
       SLUB: Unable to allocate memory on node 2 (gfp=0x80d0)
        cache: kmalloc-192, object size: 192, buffer size: 192, default order: 1, min order: 0
        node 0: slabs: 6172, objs: 259224, free: 245741
        node 1: slabs: 3261, objs: 136962, free: 127656
      
      It happens here:
      
      create_worker(struct worker_pool *pool)
       |--> worker = alloc_worker(pool->node);
      
      static struct worker *alloc_worker(int node)
      {
              struct worker *worker;
      
              worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); --> Here, useing the wrong node.
      
              ......
      
              return worker;
      }
      
      [Solution]
      
      There are four mappings in the kernel:
      1. nodeid (logical node id)   <->   pxm
      2. apicid (physical cpu id)   <->   nodeid
      3. cpuid (logical cpu id)     <->   apicid
      4. cpuid (logical cpu id)     <->   nodeid
      
      1. pxm (proximity domain) is provided by ACPI firmware in SRAT, and nodeid <-> pxm
         mapping is setup at boot time. This mapping is persistent, won't change.
      
      2. apicid <-> nodeid mapping is setup using info in 1. The mapping is setup at boot
         time and CPU hotadd time, and cleared at CPU hotremove time. This mapping is also
         persistent.
      
      3. cpuid <-> apicid mapping is setup at boot time and CPU hotadd time. cpuid is
         allocated, lower ids first, and released at CPU hotremove time, reused for other
         hotadded CPUs. So this mapping is not persistent.
      
      4. cpuid <-> nodeid mapping is also setup at boot time and CPU hotadd time, and
         cleared at CPU hotremove time. As a result of 3, this mapping is not persistent.
      
      To fix this problem, we establish cpuid <-> nodeid mapping for all the possible
      cpus at boot time, and make it persistent. And according to init_cpu_to_node(),
      cpuid <-> nodeid mapping is based on apicid <-> nodeid mapping and cpuid <-> apicid
      mapping. So the key point is obtaining all cpus' apicid.
      
      apicid can be obtained by _MAT (Multiple APIC Table Entry) method or found in
      MADT (Multiple APIC Description Table). So we finish the job in the following steps:
      
      1. Enable apic registeration flow to handle both enabled and disabled cpus.
         This is done by introducing an extra parameter to generic_processor_info to let the
         caller control if disabled cpus are ignored.
      
      2. Introduce a new array storing all possible cpuid <-> apicid mapping. And also modify
         the way cpuid is calculated. Establish all possible cpuid <-> apicid mapping when
         registering local apic. Store the mapping in this array.
      
      3. Enable _MAT and MADT relative apis to return non-present or disabled cpus' apicid.
         This is also done by introducing an extra parameter to these apis to let the caller
         control if disabled cpus are ignored.
      
      4. Establish all possible cpuid <-> nodeid mapping.
         This is done via an additional acpi namespace walk for processors.
      
      This patch finished step 1.
      Signed-off-by: NGu Zheng <guz.fnst@cn.fujitsu.com>
      Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com>
      Signed-off-by: NZhu Guihua <zhugh.fnst@cn.fujitsu.com>
      Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      Cc: mika.j.penttila@gmail.com
      Cc: len.brown@intel.com
      Cc: rafael@kernel.org
      Cc: rjw@rjwysocki.net
      Cc: yasu.isimatu@gmail.com
      Cc: linux-mm@kvack.org
      Cc: linux-acpi@vger.kernel.org
      Cc: isimatu.yasuaki@jp.fujitsu.com
      Cc: gongzhaogang@inspur.com
      Cc: tj@kernel.org
      Cc: izumi.taku@jp.fujitsu.com
      Cc: cl@linux.com
      Cc: chen.tang@easystack.cn
      Cc: akpm@linux-foundation.org
      Cc: kamezawa.hiroyu@jp.fujitsu.com
      Cc: lenb@kernel.org
      Link: http://lkml.kernel.org/r/1472114120-3281-3-git-send-email-douly.fnst@cn.fujitsu.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      f7c28833
  22. 20 9月, 2016 1 次提交
  23. 08 9月, 2016 1 次提交
  24. 24 8月, 2016 2 次提交
  25. 15 8月, 2016 1 次提交
    • B
      x86/apic, ACPI: Remove the repeated lapic address override entry parsing · 6de42119
      Baoquan He 提交于
      The ACPI MADT has a 32-bit field providing lapic address at which
      each processor can access its lapic information. MADT also contains
      an optional entry to provide a 64-bit address to override the 32-bit
      one. However the current code does the lapic address override entry
      parsing twice. One is in early_acpi_boot_init() because AMD NUMA need
      get boot_cpu_id earlier. The other is in acpi_boot_init() which parses
      all MADT entries.
      
      So in this patch we remove the repeated code in the 2nd part.
      
      Meanwhile print lapic override entry information like other MADT entry,
      this will be added to boot log.
      
      This patch is not supposed to change any runtime behavior, other than
      improving kernel messages.
      Signed-off-by: NBaoquan He <bhe@redhat.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: linux-acpi@vger.kernel.org
      Cc: rjw@rjwysocki.net
      Link: http://lkml.kernel.org/r/1470985033-22493-2-git-send-email-bhe@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      6de42119
  26. 10 8月, 2016 2 次提交
    • N
      x86/timers/apic: Inform TSC deadline clockevent device about recalibration · 6731b0d6
      Nicolai Stange 提交于
      This patch eliminates a source of imprecise APIC timer interrupts,
      which imprecision may result in double interrupts or even late
      interrupts.
      
      The TSC deadline clockevent devices' configuration and registration
      happens before the TSC frequency calibration is refined in
      tsc_refine_calibration_work().
      
      This results in the TSC clocksource and the TSC deadline clockevent
      devices being configured with slightly different frequencies: the former
      gets the refined one and the latter are configured with the inaccurate
      frequency detected earlier by means of the "Fast TSC calibration using PIT".
      
      Within the APIC code, introduce the notifier function
      lapic_update_tsc_freq() which reconfigures all per-CPU TSC deadline
      clockevent devices with the current tsc_khz.
      
      Call it from the TSC code after TSC calibration refinement has happened.
      Signed-off-by: NNicolai Stange <nicstange@gmail.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Acked-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Adrian Hunter <adrian.hunter@intel.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Christopher S. Hall <christopher.s.hall@intel.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
      Cc: Len Brown <len.brown@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Viresh Kumar <viresh.kumar@linaro.org>
      Link: http://lkml.kernel.org/r/20160714152255.18295-3-nicstange@gmail.com
      [ Pushed #ifdef CONFIG_X86_LOCAL_APIC into header, improved changelog. ]
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      6731b0d6
    • N
      x86/timers/apic: Fix imprecise timer interrupts by eliminating TSC clockevents... · 1a9e4c56
      Nicolai Stange 提交于
      x86/timers/apic: Fix imprecise timer interrupts by eliminating TSC clockevents frequency roundoff error
      
      I noticed the following bug/misbehavior on certain Intel systems: with a
      single task running on a NOHZ CPU on an Intel Haswell, I recognized
      that I did not only get the one expected local_timer APIC interrupt, but
      two per second at minimum. (!)
      
      Further tracing showed that the first one precedes the programmed deadline
      by up to ~50us and hence, it did nothing except for reprogramming the TSC
      deadline clockevent device to trigger shortly thereafter again.
      
      The reason for this is imprecise calibration, the timeout we program into
      the APIC results in 'too short' timer interrupts. The core (hr)timer code
      notices this (because it has a precise ktime source and sees the short
      interrupt) and fixes it up by programming an additional very short
      interrupt period.
      
      This is obviously suboptimal.
      
      The reason for the imprecise calibration is twofold, and this patch
      fixes the first reason:
      
      In setup_APIC_timer(), the registered clockevent device's frequency
      is calculated by first dividing tsc_khz by TSC_DIVISOR and multiplying
      it with 1000 afterwards:
      
        (tsc_khz / TSC_DIVISOR) * 1000
      
      The multiplication with 1000 is done for converting from kHz to Hz and the
      division by TSC_DIVISOR is carried out in order to make sure that the final
      result fits into an u32.
      
      However, with the order given in this calculation, the roundoff error
      introduced by the division gets magnified by a factor of 1000 by the
      following multiplication.
      
      To fix it, reversing the order of the division and the multiplication a la:
      
        (tsc_khz * 1000) / TSC_DIVISOR
      
      ... reduces the roundoff error already.
      
      Furthermore, if TSC_DIVISOR divides 1000, associativity holds:
      
        (tsc_khz * 1000) / TSC_DIVISOR = tsc_khz * (1000 / TSC_DIVISOR)
      
      and thus, the roundoff error even vanishes and the whole operation can be
      carried out within 32 bits.
      
      The powers of two that divide 1000 are 2, 4 and 8. A value of 8 for
      TSC_DIVISOR still allows for TSC frequencies up to
      2^32 / 10^9ns * 8 = 34.4GHz which is way larger than anything to expect
      in the next years.
      
      Thus we also replace the current TSC_DIVISOR value of 32 by 8. Reverse
      the order of the divison and the multiplication in the calculation of
      the registered clockevent device's frequency.
      Signed-off-by: NNicolai Stange <nicstange@gmail.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com>
      Acked-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Adrian Hunter <adrian.hunter@intel.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Christopher S. Hall <christopher.s.hall@intel.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
      Cc: Len Brown <len.brown@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Viresh Kumar <viresh.kumar@linaro.org>
      Link: http://lkml.kernel.org/r/20160714152255.18295-2-nicstange@gmail.com
      [ Improved changelog. ]
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      1a9e4c56