- 24 6月, 2005 17 次提交
-
-
由 Christoph Lameter 提交于
asm-generic/topology.h must also be included if CONFIG_NUMA is set in order to provide the fall back pcibus_to_node function. Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Hirokazu Takata 提交于
Use asm-generic/topology.h to fix yet another pcibus_to_node() build error. Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Venkatesh Pallipadi 提交于
Issue: Current tsc based delay_calibration can result in significant errors in loops_per_jiffy count when the platform events like SMIs (System Management Interrupts that are non-maskable) are present. This could lead to potential kernel panic(). This issue is becoming more visible with 2.6 kernel (as default HZ is 1000) and on platforms with higher SMI handling latencies. During the boot time, SMIs are mostly used by BIOS (for things like legacy keyboard emulation). Description: The psuedocode for current delay calibration with tsc based delay looks like (0) Estimate a value for loops_per_jiffy (1) While (loops_per_jiffy estimate is accurate enough) (2) wait for jiffy transition (jiffy1) (3) Note down current tsc (tsc1) (4) loop until tsc becomes tsc1 + loops_per_jiffy (5) check whether jiffy changed since jiffy1 or not and refine loops_per_jiffy estimate Consider the following cases Case 1: If SMIs happen between (2) and (3) above, we can end up with a loops_per_jiffy value that is too low. This results in shorted delays and kernel can panic () during boot (Mostly at IOAPIC timer initialization timer_irq_works() as we don't have enough timer interrupts in a specified interval). Case 2: If SMIs happen between (3) and (4) above, then we can end up with a loops_per_jiffy value that is too high. And with current i386 code, too high lpj value (greater than 17M) can result in a overflow in delay.c:__const_udelay() again resulting in shorter delay and panic(). Solution: The patch below makes the calibration routine aware of asynchronous events like SMIs. We increase the delay calibration time and also identify any significant errors (greater than 12.5%) in the calibration and notify it to user. Patch below changes both i386 and x86-64 architectures to use this new and improved calibrate_delay_direct() routine. Signed-off-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: NAdrian Bunk <bunk@stusta.de> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Matt Tolentino 提交于
This patch adds in the necessary support for sparsemem such that x86-64 kernels may use sparsemem as an alternative to discontigmem for NUMA kernels. Note that this does no preclude one from continuing to build NUMA kernels using discontigmem, but merely allows the option to build NUMA kernels with sparsemem. Interestingly, the use of sparsemem in lieu of discontigmem in NUMA kernels results in reduced text size for otherwise equivalent kernels as shown in the example builds below: text data bss dec hex filename 2371036 765884 1237108 4374028 42be0c vmlinux.discontig 2366549 776484 1302772 4445805 43d66d vmlinux.sparse Signed-off-by: NMatt Tolentino <matthew.e.tolentino@intel.com> Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Matt Tolentino 提交于
In order to use the alternative sparsemem implmentation for NUMA kernels, we need to reorganize the config options. This patch effectively abstracts out the CONFIG_DISCONTIGMEM options to CONFIG_NUMA in most cases. Thus, the discontigmem implementation may be employed as always, but the sparsemem implementation may be used alternatively. Signed-off-by: NMatt Tolentino <matthew.e.tolentino@intel.com> Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andy Whitcroft 提交于
Provide the architecture specific implementation for SPARSEMEM for PPC64 systems. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: Mike Kravetz <kravetz@us.ibm.com> (in part) Signed-off-by: NMartin Bligh <mbligh@aracnet.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andy Whitcroft 提交于
Provide an implementation of early_pfn_to_nid for PPC64. This is used by memory models to determine the node from which to take allocations before the memory allocators are fully initialised. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NMartin Bligh <mbligh@aracnet.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andy Whitcroft 提交于
Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NJack Steiner <steiner@sgi.com> Signed-off-by: NBob Picco <bob.picco@hp.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andy Whitcroft 提交于
The part of the sparsemem patch which modifies memmap_init_zone() has recently become a problem. It changes behavior so that there is a call to pfn_to_page() for each individual page inside of a node's range: node_start_pfn through node_end_pfn. It used to simply do this once, at the beginning of the node, but having sparsemem's non-contiguous mem_map[]s inside of a node made it necessary to change. Mike Kravetz recently wrote a patch which made the NUMA code accept some new kinds of layouts. The system's memory was laid out like this, with node 0's memory in two pieces: one before and one after node 1's memory: Node 0: +++++ +++++ Node 1: +++++ Previous behavior before Mike's patch was to assign nodes like this: Node 0: 00000 XXXXX Node 1: 11111 Where the 'X' areas were simply thrown away. The new behavior was to make the pg_data_t span node 0 across all of its areas, including areas that are really node 1's: Node 0: 000000000000000 Node 1: 11111 This wastes a little bit of mem_map space, but ends up being OK, and more fully utilizes the system's memory. memmap_init_zone() initializes all of the "struct page"s for node 0, even for the "hole", but those never get used, because there is no pfn_to_page() that resolves to those pages. However, only calling pfn_to_page() once, memmap_init_zone() always uses the pages that were allocated for node0->node_mem_map because: struct page *start = pfn_to_page(start_pfn); // effectively start = &node->node_mem_map[0] for (page = start; page < (start + size); page++) { init_page_here();... page++; } Slow, and wasteful, but generally harmless. But, modify that to call pfn_to_page() for each loop iteration (like sparsemem does): for (pfn = start_pfn; pfn < < (start_pfn + size); pfn++++) { page = pfn_to_page(pfn); } And you end up trying to initialize node 1's pages too early, along with bogus data from node 0. This patch checks for those weird layouts and declines to touch the pages, making the more frequent pfn_to_page() calls OK to do. Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andy Whitcroft 提交于
Provide the architecture specific implementation for SPARSEMEM for i386 SMP and NUMA systems. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NMartin Bligh <mbligh@aracnet.com> Signed-off-by: NAdrian Bunk <bunk@stusta.de> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andy Whitcroft 提交于
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NMartin Bligh <mbligh@aracnet.com> Signed-off-by: NAdrian Bunk <bunk@stusta.de> Signed-off-by: NYasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: NBob Picco <bob.picco@hp.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andy Whitcroft 提交于
Provide a default implementation for early_pfn_to_nid returning node 0. Allow architectures to override this with their own implementation out of asm/mmzone.h. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NMartin Bligh <mbligh@aracnet.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Dave Hansen 提交于
There is some confusion that arose when working on SPARSEMEM patch between what is needed for DISCONTIG vs. NUMA. Multiple pg_data_t's are needed for DISCONTIGMEM or NUMA, independently. All of the current NUMA implementations require an implementation of DISCONTIG. Because of this, quite a lot of code which is really needed for NUMA is actually under DISCONTIG #ifdefs. For SPARSEMEM, we changed some of these #ifdefs to CONFIG_NUMA, but that broke the DISCONTIG=y and NUMA=n case. Introducing this new NEED_MULTIPLE_NODES config option allows code that is needed for both NUMA or DISCONTIG to be separated out from code that is specific to DISCONTIG. One great advantage of this approach is that it doesn't require every architecture to be converted over. All of the current implementations should "just work", only the ones implementing SPARSEMEM will have to be fixed up. The change to free_area_init() makes it work inside, or out of the new config option. Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Dave Hansen 提交于
discontig.c has some assumptions that mem_map[]s inside of a node are contiguous. Teach it to make sure that each region that it's bringing online is actually made up of valid ranges of ram. Written-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Dave Hansen 提交于
Generify the value fields in the page_flags. The aim is to allow the location and size of these fields to be varied. Additionally we want to move away from fixed allocations per field whilst still enforcing the overall bit utilisation limits. We rely on the compiler to spot and optimise the accessor functions. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Dave Hansen 提交于
Introduce a simple allocator for the NUMA remap space. This space is very scarce, used for structures which are best allocated node local. This mechanism is also used on non-NUMA ia64 systems with a vmem_map to keep the pgdat->node_mem_map initialized in a consistent place for all architectures. Issues: o alloc_remap takes a node_id where we might expect a pgdat which was intended to allow us to allocate the pgdat's using this mechanism; which we do not yet do. Could have alloc_remap_node() and alloc_remap_nid() for this purpose. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Dave Hansen 提交于
This patch effectively eliminates direct use of pgdat->node_mem_map outside of the DISCONTIG code. On a flat memory system, these fields aren't currently used, neither are they on a sparsemem system. There was also a node_mem_map(nid) macro on many architectures. Its use along with the use of ->node_mem_map itself was not consistent. It has been removed in favor of two new, more explicit, arch-independent macros: pgdat_page_nr(pgdat, pagenr) nid_page_nr(nid, pagenr) I called them "pgdat" and "nid" because we overload the term "node" to mean "NUMA node", "DISCONTIG node" or "pg_data_t" in very confusing ways. I believe the newer names are much clearer. These macros can be overridden in the sparsemem case with a theoretically slower operation using node_start_pfn and pfn_to_page(), instead. We could make this the only behavior if people want, but I don't want to change too much at once. One thing at a time. This patch removes more code than it adds. Compile tested on alpha, alpha discontig, arm, arm-discontig, i386, i386 generic, NUMAQ, Summit, ppc64, ppc64 discontig, and x86_64. Full list here: http://sr71.net/patches/2.6.12/2.6.12-rc1-mhp2/configs/ Boot tested on NUMAQ, x86 SMP and ppc64 power4/5 LPARs. Signed-off-by: NDave Hansen <haveblue@us.ibm.com> Signed-off-by: NMartin J. Bligh <mbligh@aracnet.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 23 6月, 2005 23 次提交
-
-
由 Shaun Pereira 提交于
This patch is a follow up to patch 1 regarding "Selective Sub Address matching with call user data". It allows use of the Fast-Select-Acceptance optional user facility for X.25. This patch just implements fast select with no restriction on response (NRR). What this means (according to ITU-T Recomendation 10/96 section 6.16) is that if in an incoming call packet, the relevant facility bits are set for fast-select-NRR, then the called DTE can issue a direct response to the incoming packet using a call-accepted packet that contains call-user-data. This patch allows such a response. The called DTE can also respond with a clear-request packet that contains call-user-data. However, this feature is currently not implemented by the patch. How is Fast Select Acceptance used? By default, the system does not allow fast select acceptance (as before). To enable a response to fast select acceptance, After a listen socket in created and bound as follows socket(AF_X25, SOCK_SEQPACKET, 0); bind(call_soc, (struct sockaddr *)&locl_addr, sizeof(locl_addr)); but before a listen system call is made, the following ioctl should be used. ioctl(call_soc,SIOCX25CALLACCPTAPPRV); Now the listen system call can be made listen(call_soc, 4); After this, an incoming-call packet will be accepted, but no call-accepted packet will be sent back until the following system call is made on the socket that accepts the call ioctl(vc_soc,SIOCX25SENDCALLACCPT); The network (or cisco xot router used for testing here) will allow the application server's call-user-data in the call-accepted packet, provided the call-request was made with Fast-select NRR. Signed-off-by: NShaun Pereira <spereira@tusc.com.au> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Shaun Pereira 提交于
From: Shaun Pereira <spereira@tusc.com.au> This is the first (independent of the second) patch of two that I am working on with x25 on linux (tested with xot on a cisco router). Details are as follows. Current state of module: A server using the current implementation (2.6.11.7) of the x25 module will accept a call request/ incoming call packet at the listening x.25 address, from all callers to that address, as long as NO call user data is present in the packet header. If the server needs to choose to accept a particular call request/ incoming call packet arriving at its listening x25 address, then the kernel has to allow a match of call user data present in the call request packet with its own. This is required when multiple servers listen at the same x25 address and device interface. The kernel currently matches ALL call user data, if present. Current Changes: This patch is a follow up to the patch submitted previously by Andrew Hendry, and allows the user to selectively control the number of octets of call user data in the call request packet, that the kernel will match. By default no call user data is matched, even if call user data is present. To allow call user data matching, a cudmatchlength > 0 has to be passed into the kernel after which the passed number of octets will be matched. Otherwise the kernel behavior is exactly as the original implementation. This patch also ensures that as is normally the case, no call user data will be present in the Call accepted / call connected packet sent back to the caller Future Changes on next patch: There are cases however when call user data may be present in the call accepted packet. According to the X.25 recommendation (ITU-T 10/96) section 5.2.3.2 call user data may be present in the call accepted packet provided the fast select facility is used. My next patch will include this fast select utility and the ability to send up to 128 octets call user data in the call accepted packet provided the fast select facility is used. I am currently testing this, again with xot on linux and cisco. Signed-off-by: NShaun Pereira <spereira@tusc.com.au> (With a fix from Alexey Dobriyan <adobriyan@gmail.com>) Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jeff Moyer 提交于
This patch provides support for registering multiple netpoll clients to the same network device. Only one of these clients may register an rx_hook, however. In practice, this restriction has not been problematic. It is worth mentioning, though, that the current design can be easily extended to allow for the registration of multiple rx_hooks. The basic idea of the patch is that the rx_np pointer in the netpoll_info structure points to the struct netpoll that has rx_hook filled in. Aside from this one case, there is no need for a pointer from the struct net_device to an individual struct netpoll. A lock is introduced to protect the setting and clearing of the np_rx pointer. The pointer will only be cleared upon netpoll client module removal, and the lock should be uncontested. Signed-off-by: NJeff Moyer <jmoyer@redhat.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jeff Moyer 提交于
This patch introduces a netpoll_info structure, which the struct net_device will now point to instead of pointing to a struct netpoll. The reason for this is two-fold: 1) fields such as the rx_flags, poll_owner, and poll_lock should be maintained per net_device, not per netpoll; and 2) this is a first step in providing support for multiple netpoll clients to register against the same net_device. The struct netpoll is now pointed to by the netpoll_info structure. As such, the previous behaviour of the code is preserved. Signed-off-by: NJeff Moyer <jmoyer@redhat.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jeff Moyer 提交于
This trivial patch moves the assignment of poll_owner to -1 inside of the lock. This fixes a potential SMP race in the code. Signed-off-by: NJeff Moyer <jmoyer@redhat.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Trond Myklebust 提交于
Ensure that lock owner structures are not released prematurely. Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Trond Myklebust 提交于
If the lock blocks, the server may send us a GRANTED message that races with the reply to our LOCK request. Make sure that we catch the GRANTED by queueing up our request on the nlm_blocked list before we send off the first LOCK rpc call. Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Trond Myklebust 提交于
Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Trond Myklebust 提交于
Basically copies the VFS's method for tracking writebacks and applies it to the struct nfs_page. Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Trond Myklebust 提交于
Even if the file is open for writes. Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Trond Myklebust 提交于
Unless we're doing O_APPEND writes, we really don't care about revalidating the file length. Just make sure that we catch any page cache invalidations. Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Trond Myklebust 提交于
Instead of looking at whether or not the file is open for writes before we accept to update the length using the server value, we should rather be looking at whether or not we are currently caching any writes. Failure to do so means in particular that we're not updating the file length correctly after obtaining a POSIX or BSD lock. Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Trond Myklebust 提交于
Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Olivier Galibert 提交于
NFSv3 currently returns the unsigned 64-bit cookie directly to userspace. The following patch causes the kernel to generate loff_t offsets for the benefit of userland. The current server-generated READDIR cookie is cached in the nfs_open_context instead of in filp->f_pos, so we still end up work correctly under directory insertions/deletion. Signed-off-by: NOlivier Galibert <galibert@pobox.com> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Andreas Gruenbacher 提交于
Attach acls to inodes in the icache to avoid unnecessary GETACL RPC round-trips. As long as the client doesn't retrieve any acls itself, only the default acls of exiting directories and the default and access acls of new directories will end up in the cache, which preserves some memory compared to always caching the access and default acl of all files. Signed-off-by: NAndreas Gruenbacher <agruen@suse.de> Acked-by: NOlaf Kirch <okir@suse.de> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Andreas Gruenbacher 提交于
NFSv3 has no concept of a umask on the server side: The client applies the umask locally, and sends the effective permissions to the server. This behavior is wrong when files are created in a directory that has a default ACL. In this case, the umask is supposed to be ignored, and only the default ACL determines the file's effective permissions. Usually its the server's task to conditionally apply the umask. But since the server knows nothing about the umask, we have to do it on the client side. This patch tries to fetch the parent directory's default ACL before creating a new file, computes the appropriate create mode to send to the server, and finally sets the new file's access and default acl appropriately. Many thanks to Buck Huppmann <buchk@pobox.com> for sending the initial version of this patch, as well as for arguing why we need this change. Signed-off-by: NAndreas Gruenbacher <agruen@suse.de> Acked-by: NOlaf Kirch <okir@suse.de> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Andreas Gruenbacher 提交于
This adds acl support fo nfs clients via the NFSACL protocol extension, by implementing the getxattr, listxattr, setxattr, and removexattr iops for the system.posix_acl_access and system.posix_acl_default attributes. This patch implements a dumb version that uses no caching (and thus adds some overhead). (Another patch in this patchset adds caching as well.) Signed-off-by: NAndreas Gruenbacher <agruen@suse.de> Acked-by: NOlaf Kirch <okir@suse.de> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Andreas Gruenbacher 提交于
This adds functions for encoding and decoding POSIX ACLs for the NFSACL protocol extension, and the GETACL and SETACL RPCs. The implementation is compatible with NFSACL in Solaris. Signed-off-by: NAndreas Gruenbacher <agruen@suse.de> Acked-by: NOlaf Kirch <okir@suse.de> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Andreas Gruenbacher 提交于
The NFS and NFSACL programs run on the same RPC transport. This patch adds support for this by converting svc_program into a chained list of programs (server-side). Signed-off-by: NAndreas Gruenbacher <agruen@suse.de> Signed-off-by: NOlaf Kirch <okir@suse.de> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Andreas Gruenbacher 提交于
Signed-off-by: NAndreas Gruenbacher <agruen@suse.de> Acked-by: NOlaf Kirch <okir@suse.de> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Trond Myklebust 提交于
Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Olaf Kirch 提交于
Signed-off-by: NOlaf Kirch <okir@suse.de> Signed-off-by: NAndreas Gruenbacher <agruen@suse.de> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-
由 Andreas Gruenbacher 提交于
Signed-off-by: NAndreas Gruenbacher <agruen@suse.de> Acked-by: NOlaf Kirch <okir@suse.de> Signed-off-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
-