- 05 9月, 2016 1 次提交
-
-
由 Jeffrey Hugo 提交于
efi_get_memory_map() allocates a buffer to store the memory map that it retrieves. This buffer may need to be reused by the client after ExitBootServices() is called, at which point allocations are not longer permitted. To support this usecase, provide the allocated buffer size back to the client, and allocate some additional headroom to account for any reasonable growth in the map that is likely to happen between the call to efi_get_memory_map() and the client reusing the buffer. Signed-off-by: NJeffrey Hugo <jhugo@codeaurora.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk>
-
- 29 4月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
Currently, our KASLR implementation randomizes the placement of the core kernel at 2 MB granularity. This is based on the arm64 kernel boot protocol, which mandates that the kernel is loaded TEXT_OFFSET bytes above a 2 MB aligned base address. This requirement is a result of the fact that the block size used by the early mapping code may be 2 MB at the most (for a 4 KB granule kernel) But we can do better than that: since a KASLR kernel needs to be relocated in any case, we can tolerate a physical misalignment as long as the virtual misalignment relative to this 2 MB block size is equal in size, and code to deal with this is already in place. Since we align the kernel segments to 64 KB, let's randomize the physical offset at 64 KB granularity as well (unless CONFIG_DEBUG_ALIGN_RODATA is enabled). This way, the page table and TLB footprint is not affected. The higher granularity allows for 5 bits of additional entropy to be used. Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 28 4月, 2016 6 次提交
-
-
由 Ard Biesheuvel 提交于
This adds the code to the ARM and arm64 versions of the UEFI stub to populate struct screen_info based on the information received from the firmware via the GOP protocol. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: David Herrmann <dh.herrmann@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-23-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
In order to hand over the framebuffer described by the GOP protocol and discovered by the UEFI stub, make struct screen_info accessible by the stub. This involves allocating a loader data buffer and passing it to the kernel proper via a UEFI Configuration Table, since the UEFI stub executes in the context of the decompressor, and cannot access the kernel's copy of struct screen_info directly. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: David Herrmann <dh.herrmann@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-22-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
The Graphics Output Protocol code executes in the stub, so create a generic version based on the x86 version in libstub so that we can move other archs to it in subsequent patches. The new source file gop.c is added to the libstub build for all architectures, but only wired up for x86. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: David Herrmann <dh.herrmann@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-18-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Matt Fleming 提交于
Most of the users of for_each_efi_memory_desc() are equally happy iterating over the EFI memory map in efi.memmap instead of 'memmap', since the former is usually a pointer to the latter. For those users that want to specify an EFI memory map other than efi.memmap, that can be done using for_each_efi_memory_desc_in_map(). One such example is in the libstub code where the firmware is queried directly for the memory map, it gets iterated over, and then freed. This change goes part of the way toward deleting the global 'memmap' variable, which is not universally available on all architectures (notably IA64) and is rather poorly named. Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Mark Salter <msalter@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-7-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Linn Crosetto 提交于
According to the UEFI specification (version 2.5 Errata A, page 87): The platform firmware is operating in secure boot mode if the value of the SetupMode variable is 0 and the SecureBoot variable is set to 1. A platform cannot operate in secure boot mode if the SetupMode variable is set to 1. Check the value of the SetupMode variable when determining the state of Secure Boot. Plus also do minor cleanup, change sizeof() use to match kernel style guidelines. Signed-off-by: NLinn Crosetto <linn@hpe.com> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roy Franz <roy.franz@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-6-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Linn Crosetto 提交于
Certain code in the boot path may require the ability to determine whether UEFI Secure Boot is definitely enabled, for example printing status to the console. Other code may need to know when UEFI Secure Boot is definitely disabled, for example restricting use of kernel parameters. If an unexpected error is returned from GetVariable() when querying the status of UEFI Secure Boot, return an error to the caller. This allows the caller to determine the definite state, and to take appropriate action if an expected error is returned. Signed-off-by: NLinn Crosetto <linn@hpe.com> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roy Franz <roy.franz@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-5-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 4月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
There are two problems with the UEFI stub DT memory node removal routine: - it deletes nodes as it traverses the tree, which happens to work but is not supported, as deletion invalidates the node iterator; - deleting memory nodes entirely may discard annotations in the form of additional properties on the nodes. Since the discovery of DT memory nodes occurs strictly before the UEFI init sequence, we can simply clear the memblock memory table before parsing the UEFI memory map. This way, it is no longer necessary to remove the nodes, so we can remove that logic from the stub as well. Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Acked-by: NSteve Capper <steve.capper@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NDavid Daney <david.daney@cavium.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 23 3月, 2016 1 次提交
-
-
由 Dmitry Vyukov 提交于
kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: NDmitry Vyukov <dvyukov@google.com> Reviewed-by: NKees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 2月, 2016 1 次提交
-
-
由 Josh Poimboeuf 提交于
Code which runs outside the kernel's normal mode of operation often does unusual things which can cause a static analysis tool like objtool to emit false positive warnings: - boot image - vdso image - relocation - realmode - efi - head - purgatory - modpost Set OBJECT_FILES_NON_STANDARD for their related files and directories, which will tell objtool to skip checking them. It's ok to skip them because they don't affect runtime stack traces. Also skip the following code which does the right thing with respect to frame pointers, but is too "special" to be validated by a tool: - entry - mcount Also skip the test_nx module because it modifies its exception handling table at runtime, which objtool can't understand. Fortunately it's just a test module so it doesn't matter much. Currently objtool is the only user of OBJECT_FILES_NON_STANDARD, but it might eventually be useful for other tools. Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/366c080e3844e8a5b6a0327dc7e8c2b90ca3baeb.1456719558.git.jpoimboe@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 24 2月, 2016 4 次提交
-
-
由 Ard Biesheuvel 提交于
Since arm64 does not use a decompressor that supplies an execution environment where it is feasible to some extent to provide a source of randomness, the arm64 KASLR kernel depends on the bootloader to supply some random bits in the /chosen/kaslr-seed DT property upon kernel entry. On UEFI systems, we can use the EFI_RNG_PROTOCOL, if supplied, to obtain some random bits. At the same time, use it to randomize the offset of the kernel Image in physical memory. Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Before we can move the command line processing before the allocation of the kernel, which is required for detecting the 'nokaslr' option which controls that allocation, move the converted command line higher up in memory, to prevent it from interfering with the kernel itself. Since x86 needs the address to fit in 32 bits, use UINT_MAX as the upper bound there. Otherwise, use ULONG_MAX (i.e., no limit) Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This implements efi_random_alloc(), which allocates a chunk of memory of a certain size at a certain alignment, and uses the random_seed argument it receives to randomize the address of the allocation. This is implemented by iterating over the UEFI memory map, counting the number of suitable slots (aligned offsets) within each region, and picking a random number between 0 and 'number of slots - 1' to select the slot, This should guarantee that each possible offset is chosen equally likely. Suggested-by: NKees Cook <keescook@chromium.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NKees Cook <keescook@chromium.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This exposes the firmware's implementation of EFI_RNG_PROTOCOL via a new function efi_get_random_bytes(). Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 22 2月, 2016 5 次提交
-
-
由 Ard Biesheuvel 提交于
Before proceeding with relocating the kernel and parsing the command line, insert a call to check_platform_features() to allow an arch specific check to be performed whether the current kernel can execute on the current hardware. Tested-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NJeremy Linton <jeremy.linton@arm.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1455712566-16727-11-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
A kernel built with support for a page size that is not supported by the hardware it runs on cannot boot to a state where it can inform the user about the failure. If we happen to be booting via UEFI, we can fail gracefully so check if the currently configured page size is supported by the hardware before entering the kernel proper. Note that UEFI mandates support for 4 KB pages, so in that case, no check is needed. Tested-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NJeremy Linton <jeremy.linton@arm.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1455712566-16727-10-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
A kernel built with support for LPAE cannot boot to a state where it can inform the user about if it has to fail due to missing LPAE support in the hardware. If we happen to be booting via UEFI, we can fail gracefully so check for LPAE support in the hardware on CONFIG_ARM_LPAE builds before entering the kernel proper. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NJeremy Linton <jeremy.linton@arm.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1455712566-16727-9-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
__init annotations should not be used in the EFI stub, since the code is either included in the decompressor (x86, ARM) where they have no effect, or the whole stub is __init annotated at the section level (arm64), by renaming the sections. In the second case the __init annotations will be redundant, and will result in section names like .init.init.text, and our linker script does not expect that. So un-#define __init so that its inadvertent use will force a build error. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1455712566-16727-7-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
After moving arm64-stub.c to libstub/, all of its sections are emitted as .init.xxx sections automatically, and the __init annotation of handle_kernel_image() causes it to end up in .init.init.text, which is not recognized as an __init section by the linker scripts. So drop the annotation. Tested-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Acked-by: NWill Deacon <will.deacon@arm.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1455712566-16727-5-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 21 1月, 2016 1 次提交
-
-
由 Andrey Ryabinin 提交于
UBSAN uses compile-time instrumentation to catch undefined behavior (UB). Compiler inserts code that perform certain kinds of checks before operations that could cause UB. If check fails (i.e. UB detected) __ubsan_handle_* function called to print error message. So the most of the work is done by compiler. This patch just implements ubsan handlers printing errors. GCC has this capability since 4.9.x [1] (see -fsanitize=undefined option and its suboptions). However GCC 5.x has more checkers implemented [2]. Article [3] has a bit more details about UBSAN in the GCC. [1] - https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Debugging-Options.html [2] - https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html [3] - http://developerblog.redhat.com/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan/ Issues which UBSAN has found thus far are: Found bugs: * out-of-bounds access - 97840cb6 ("netfilter: nfnetlink: fix insufficient validation in nfnetlink_bind") undefined shifts: * d48458d4 ("jbd2: use a better hash function for the revoke table") * 10632008 ("clockevents: Prevent shift out of bounds") * 'x << -1' shift in ext4 - http://lkml.kernel.org/r/<5444EF21.8020501@samsung.com> * undefined rol32(0) - http://lkml.kernel.org/r/<1449198241-20654-1-git-send-email-sasha.levin@oracle.com> * undefined dirty_ratelimit calculation - http://lkml.kernel.org/r/<566594E2.3050306@odin.com> * undefined roundown_pow_of_two(0) - http://lkml.kernel.org/r/<1449156616-11474-1-git-send-email-sasha.levin@oracle.com> * [WONTFIX] undefined shift in __bpf_prog_run - http://lkml.kernel.org/r/<CACT4Y+ZxoR3UjLgcNdUm4fECLMx2VdtfrENMtRRCdgHB2n0bJA@mail.gmail.com> WONTFIX here because it should be fixed in bpf program, not in kernel. signed overflows: * 32a8df4e ("sched: Fix odd values in effective_load() calculations") * mul overflow in ntp - http://lkml.kernel.org/r/<1449175608-1146-1-git-send-email-sasha.levin@oracle.com> * incorrect conversion into rtc_time in rtc_time64_to_tm() - http://lkml.kernel.org/r/<1449187944-11730-1-git-send-email-sasha.levin@oracle.com> * unvalidated timespec in io_getevents() - http://lkml.kernel.org/r/<CACT4Y+bBxVYLQ6LtOKrKtnLthqLHcw-BMp3aqP3mjdAvr9FULQ@mail.gmail.com> * [NOTABUG] signed overflow in ktime_add_safe() - http://lkml.kernel.org/r/<CACT4Y+aJ4muRnWxsUe1CMnA6P8nooO33kwG-c8YZg=0Xc8rJqw@mail.gmail.com> [akpm@linux-foundation.org: fix unused local warning] [akpm@linux-foundation.org: fix __int128 build woes] Signed-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Marek <mmarek@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yury Gribov <y.gribov@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 1月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
This moves the DISABLE_BRANCH_PROFILING define from the x86 specific to the general CFLAGS definition for the stub. This fixes build errors when building for arm64 with CONFIG_PROFILE_ALL_BRANCHES_ENABLED. Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Reported-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 14 12月, 2015 1 次提交
-
-
由 Roy Franz 提交于
This patch adds EFI stub support for the ARM Linux kernel. The EFI stub operates similarly to the x86 and arm64 stubs: it is a shim between the EFI firmware and the normal zImage entry point, and sets up the environment that the zImage is expecting. This includes optionally loading the initrd and device tree from the system partition based on the kernel command line. Signed-off-by: NRoy Franz <roy.franz@linaro.org> Tested-by: NRyan Harkin <ryan.harkin@linaro.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
-
- 08 12月, 2015 1 次提交
-
-
由 Masanari Iida 提交于
This patch fix multiple spelling typos found in various part of kernel. Signed-off-by: NMasanari Iida <standby24x7@gmail.com> Acked-by: NRandy Dunlap <rdunlap@infradead.org> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 02 11月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
Now that we strictly forbid absolute relocations in libstub code, make sure that we don't emit any when CONFIG_MODVERSIONS is enabled, by stripping the kcrctab sections from the object file. This fixes a build problem under CONFIG_MODVERSIONS=y. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 31 10月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
Now that we added special handling to the C files in libstub, move the one remaining arm64 specific EFI stub C file to libstub as well, so that it gets the same treatment. This should prevent future changes from resulting in binaries that may execute incorrectly in UEFI context. With efi-entry.S the only remaining EFI stub source file under arch/arm64, we can also simplify the Makefile logic somewhat. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Tested-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 12 10月, 2015 2 次提交
-
-
由 Ard Biesheuvel 提交于
Since arm64 does not use a builtin decompressor, the EFI stub is built into the kernel proper. So far, this has been working fine, but actually, since the stub is in fact a PE/COFF relocatable binary that is executed at an unknown offset in the 1:1 mapping provided by the UEFI firmware, we should not be seamlessly sharing code with the kernel proper, which is a position dependent executable linked at a high virtual offset. So instead, separate the contents of libstub and its dependencies, by putting them into their own namespace by prefixing all of its symbols with __efistub. This way, we have tight control over what parts of the kernel proper are referenced by the stub. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMatt Fleming <matt.fleming@intel.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
With the stub to kernel interface being promoted to a proper interface so that other agents than the stub can boot the kernel proper in EFI mode, we can remove the linux,uefi-stub-kern-ver field, considering that its original purpose was to prevent this from happening in the first place. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMatt Fleming <matt.fleming@intel.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 01 10月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
The new Properties Table feature introduced in UEFIv2.5 may split memory regions that cover PE/COFF memory images into separate code and data regions. Since these regions only differ in the type (runtime code vs runtime data) and the permission bits, but not in the memory type attributes (UC/WC/WT/WB), the spec does not require them to be aligned to 64 KB. Since the relative offset of PE/COFF .text and .data segments cannot be changed on the fly, this means that we can no longer pad out those regions to be mappable using 64 KB pages. Unfortunately, there is no annotation in the UEFI memory map that identifies data regions that were split off from a code region, so we must apply this logic to all adjacent runtime regions whose attributes only differ in the permission bits. So instead of rounding each memory region to 64 KB alignment at both ends, only round down regions that are not directly preceded by another runtime region with the same type attributes. Since the UEFI spec does not mandate that the memory map be sorted, this means we also need to sort it first. Note that this change will result in all EFI_MEMORY_RUNTIME regions whose start addresses are not aligned to the OS page size to be mapped with executable permissions (i.e., on kernels compiled with 64 KB pages). However, since these mappings are only active during the time that UEFI Runtime Services are being invoked, the window for abuse is rather small. Tested-by: NMark Salter <msalter@redhat.com> Tested-by: Mark Rutland <mark.rutland@arm.com> [UEFI 2.4 only] Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com> Reviewed-by: NMark Salter <msalter@redhat.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Cc: <stable@vger.kernel.org> # v4.0+ Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1443218539-7610-3-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 23 9月, 2015 1 次提交
-
-
由 Andrey Ryabinin 提交于
In not-instrumented code KASAN replaces instrumented memset/memcpy/memmove with not-instrumented analogues __memset/__memcpy/__memove. However, on x86 the EFI stub is not linked with the kernel. It uses not-instrumented mem*() functions from arch/x86/boot/compressed/string.c So we don't replace them with __mem*() variants in EFI stub. On ARM64 the EFI stub is linked with the kernel, so we should replace mem*() functions with __mem*(), because the EFI stub runs before KASAN sets up early shadow. So let's move these #undef mem* into arch's asm/efi.h which is also included by the EFI stub. Also, this will fix the warning in 32-bit build reported by kbuild test robot: efi-stub-helper.c:599:2: warning: implicit declaration of function 'memcpy' [akpm@linux-foundation.org: use 80 cols in comment] Signed-off-by: NAndrey Ryabinin <ryabinin.a.a@gmail.com> Reported-by: NFengguang Wu <fengguang.wu@gmail.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Matt Fleming <matt.fleming@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 6月, 2015 1 次提交
-
-
由 Rob Herring 提交于
With the libfdt include fixups to use "" instead of <> in the latest dtc import in commit 47605971 (scripts/dtc: Update to upstream version 9d3649bd3be245c9), it is no longer necessary to add explicit include paths to use libfdt. Remove these across the kernel. Signed-off-by: NRob Herring <robh@kernel.org> Acked-by: NRalf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Acked-by: NMichael Ellerman <mpe@ellerman.id.au> Acked-by: NGrant Likely <grant.likely@linaro.org> Cc: linux-mips@linux-mips.org Cc: linuxppc-dev@lists.ozlabs.org
-
- 01 4月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
When allocating memory for the copy of the FDT that the stub modifies and passes to the kernel, it uses the current size as an estimate of how much memory to allocate, and increases it page by page if it turns out to be too small. However, when loading the FDT from a UEFI configuration table, the estimated size is left at its default value of zero, and the allocation loop runs starting from zero all the way up to the allocation size that finally fits the updated FDT. Instead, retrieve the size of the FDT from the FDT header when loading it from the UEFI config table. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NRoy Franz <roy.franz@linaro.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 25 2月, 2015 1 次提交
-
-
由 Yinghai Lu 提交于
While adding support loading kernel and initrd above 4G to grub2 in legacy mode, I was referring to efi_high_alloc(). That will allocate buffer for kernel and then initrd, and initrd will use kernel buffer start as limit. During testing found two buffers will be overlapped when initrd size is very big like 400M. It turns out efi_high_alloc() boundary checking is not right. end - size will be the new start, and should not compare new start with max, we need to make sure end is smaller than max. [ Basically, with the current efi_high_alloc() code it's possible to allocate memory above 'max', because efi_high_alloc() doesn't check that the tail of the allocation is below 'max'. If you have an EFI memory map with a single entry that looks like so, [0xc0000000-0xc0004000] And want to allocate 0x3000 bytes below 0xc0003000 the current code will allocate [0xc0001000-0xc0004000], not [0xc0000000-0xc0003000] like you would expect. - Matt ] Signed-off-by: NYinghai Lu <yinghai@kernel.org> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NMark Rutland <mark.rutland@arm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 18 2月, 2015 1 次提交
-
-
由 Matt Fleming 提交于
This reverts commit d1a8d66b. Ard reported a boot failure when running UEFI under Qemu and Xen and experimenting with various Tianocore build options, "As it turns out, when allocating room for the UEFI memory map using UEFI's AllocatePool (), it may result in two new memory map entries being created, for instance, when using Tianocore's preallocated region feature. For example, the following region 0x00005ead5000-0x00005ebfffff [Conventional Memory| | | | | |WB|WT|WC|UC] may be split like this 0x00005ead5000-0x00005eae2fff [Conventional Memory| | | | | |WB|WT|WC|UC] 0x00005eae3000-0x00005eae4fff [Loader Data | | | | | |WB|WT|WC|UC] 0x00005eae5000-0x00005ebfffff [Conventional Memory| | | | | |WB|WT|WC|UC] if the preallocated Loader Data region was chosen to be right in the middle of the original free space. After patch d1a8d66b ("efi/libstub: Call get_memory_map() to obtain map and desc sizes"), this is not being dealt with correctly anymore, as the existing logic to allocate room for a single additional entry has become insufficient." Mark requested to reinstate the old loop we had before commit d1a8d66b, which grows the memory map buffer until it's big enough to hold the EFI memory map. Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 14 2月, 2015 2 次提交
-
-
由 Andrey Ryabinin 提交于
Recently instrumentation of builtin functions calls was removed from GCC 5.0. To check the memory accessed by such functions, userspace asan always uses interceptors for them. So now we should do this as well. This patch declares memset/memmove/memcpy as weak symbols. In mm/kasan/kasan.c we have our own implementation of those functions which checks memory before accessing it. Default memset/memmove/memcpy now now always have aliases with '__' prefix. For files that built without kasan instrumentation (e.g. mm/slub.c) original mem* replaced (via #define) with prefixed variants, cause we don't want to check memory accesses there. Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Ryabinin 提交于
Kernel Address sanitizer (KASan) is a dynamic memory error detector. It provides fast and comprehensive solution for finding use-after-free and out-of-bounds bugs. KASAN uses compile-time instrumentation for checking every memory access, therefore GCC > v4.9.2 required. v4.9.2 almost works, but has issues with putting symbol aliases into the wrong section, which breaks kasan instrumentation of globals. This patch only adds infrastructure for kernel address sanitizer. It's not available for use yet. The idea and some code was borrowed from [1]. Basic idea: The main idea of KASAN is to use shadow memory to record whether each byte of memory is safe to access or not, and use compiler's instrumentation to check the shadow memory on each memory access. Address sanitizer uses 1/8 of the memory addressable in kernel for shadow memory and uses direct mapping with a scale and offset to translate a memory address to its corresponding shadow address. Here is function to translate address to corresponding shadow address: unsigned long kasan_mem_to_shadow(unsigned long addr) { return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET; } where KASAN_SHADOW_SCALE_SHIFT = 3. So for every 8 bytes there is one corresponding byte of shadow memory. The following encoding used for each shadow byte: 0 means that all 8 bytes of the corresponding memory region are valid for access; k (1 <= k <= 7) means that the first k bytes are valid for access, and other (8 - k) bytes are not; Any negative value indicates that the entire 8-bytes are inaccessible. Different negative values used to distinguish between different kinds of inaccessible memory (redzones, freed memory) (see mm/kasan/kasan.h). To be able to detect accesses to bad memory we need a special compiler. Such compiler inserts a specific function calls (__asan_load*(addr), __asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16. These functions check whether memory region is valid to access or not by checking corresponding shadow memory. If access is not valid an error printed. Historical background of the address sanitizer from Dmitry Vyukov: "We've developed the set of tools, AddressSanitizer (Asan), ThreadSanitizer and MemorySanitizer, for user space. We actively use them for testing inside of Google (continuous testing, fuzzing, running prod services). To date the tools have found more than 10'000 scary bugs in Chromium, Google internal codebase and various open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and lots of others): [2] [3] [4]. The tools are part of both gcc and clang compilers. We have not yet done massive testing under the Kernel AddressSanitizer (it's kind of chicken and egg problem, you need it to be upstream to start applying it extensively). To date it has found about 50 bugs. Bugs that we've found in upstream kernel are listed in [5]. We've also found ~20 bugs in out internal version of the kernel. Also people from Samsung and Oracle have found some. [...] As others noted, the main feature of AddressSanitizer is its performance due to inline compiler instrumentation and simple linear shadow memory. User-space Asan has ~2x slowdown on computational programs and ~2x memory consumption increase. Taking into account that kernel usually consumes only small fraction of CPU and memory when running real user-space programs, I would expect that kernel Asan will have ~10-30% slowdown and similar memory consumption increase (when we finish all tuning). I agree that Asan can well replace kmemcheck. We have plans to start working on Kernel MemorySanitizer that finds uses of unitialized memory. Asan+Msan will provide feature-parity with kmemcheck. As others noted, Asan will unlikely replace debug slab and pagealloc that can be enabled at runtime. Asan uses compiler instrumentation, so even if it is disabled, it still incurs visible overheads. Asan technology is easily portable to other architectures. Compiler instrumentation is fully portable. Runtime has some arch-dependent parts like shadow mapping and atomic operation interception. They are relatively easy to port." Comparison with other debugging features: ======================================== KMEMCHECK: - KASan can do almost everything that kmemcheck can. KASan uses compile-time instrumentation, which makes it significantly faster than kmemcheck. The only advantage of kmemcheck over KASan is detection of uninitialized memory reads. Some brief performance testing showed that kasan could be x500-x600 times faster than kmemcheck: $ netperf -l 30 MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec no debug: 87380 16384 16384 30.00 41624.72 kasan inline: 87380 16384 16384 30.00 12870.54 kasan outline: 87380 16384 16384 30.00 10586.39 kmemcheck: 87380 16384 16384 30.03 20.23 - Also kmemcheck couldn't work on several CPUs. It always sets number of CPUs to 1. KASan doesn't have such limitation. DEBUG_PAGEALLOC: - KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page granularity level, so it able to find more bugs. SLUB_DEBUG (poisoning, redzones): - SLUB_DEBUG has lower overhead than KASan. - SLUB_DEBUG in most cases are not able to detect bad reads, KASan able to detect both reads and writes. - In some cases (e.g. redzone overwritten) SLUB_DEBUG detect bugs only on allocation/freeing of object. KASan catch bugs right before it will happen, so we always know exact place of first bad read/write. [1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel [2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs [3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs [4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs [5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies Based on work by Andrey Konovalov. Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com> Acked-by: NMichal Marek <mmarek@suse.cz> Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 1月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
This fixes two minor issues in the implementation of get_memory_map(): - Currently, it assumes that sizeof(efi_memory_desc_t) == desc_size, which is usually true, but not mandated by the spec. (This was added intentionally to allow future additions to the definition of efi_memory_desc_t). The way the loop is implemented currently, the added slack space may be insufficient if desc_size is larger, which in some corner cases could result in the loop never terminating. - It allocates 32 efi_memory_desc_t entries first (again, using the size of the struct instead of desc_size), and frees and reallocates if it turns out to be insufficient. Few implementations of UEFI have such small memory maps, which results in a unnecessary allocate/free pair on each invocation. Fix this by calling the get_memory_map() boot service first with a '0' input value for map size to retrieve the map size and desc size from the firmware and only then perform the allocation, using desc_size rather than sizeof(efi_memory_desc_t). Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 16 1月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
This ensures all stub component are freed when the kernel proper is done booting, by prefixing the names of all ELF sections that have the SHF_ALLOC attribute with ".init". This approach ensures that even implicitly emitted allocated data (like initializer values and string literals) are covered. At the same time, remove some __init annotations in the stub that have now become redundant, and add the __init annotation to handle_kernel_image which will now trigger a section mismatch warning without it. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 13 1月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
In order to support kexec, the kernel needs to be able to deal with the state of the UEFI firmware after SetVirtualAddressMap() has been called. To avoid having separate code paths for non-kexec and kexec, let's move the call to SetVirtualAddressMap() to the stub: this will guarantee us that it will only be called once (since the stub is not executed during kexec), and ensures that the UEFI state is identical between kexec and normal boot. This implies that the layout of the virtual mapping needs to be created by the stub as well. All regions are rounded up to a naturally aligned multiple of 64 KB (for compatibility with 64k pages kernels) and recorded in the UEFI memory map. The kernel proper reads those values and installs the mappings in a dedicated set of page tables that are swapped in during UEFI Runtime Services calls. Acked-by: NLeif Lindholm <leif.lindholm@linaro.org> Acked-by: NMatt Fleming <matt.fleming@intel.com> Tested-by: NLeif Lindholm <leif.lindholm@linaro.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
-
- 12 1月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
On systems with 64 KB pages, it is preferable for UEFI memory map entries to be 64 KB aligned multiples of 64 KB, because it relieves us of having to deal with the residues. So, if EFI_ALLOC_ALIGN is #define'd by the platform, use it to round up all memory allocations made. Acked-by: NMatt Fleming <matt.fleming@intel.com> Acked-by: NBorislav Petkov <bp@suse.de> Tested-by: NLeif Lindholm <leif.lindholm@linaro.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
-