- 07 10月, 2012 1 次提交
-
-
由 Len Brown 提交于
Counting SMIs is popular, so add a dedicated "-s" option to do it, and juggle some of the other option letters. -S is now system summary (was -s) -c is 32 bit counter (was -d) -C is 64-bit counter (was -D) -p is 1st thread in core (was -c) -P is 1st thread in package (was -p) bump the minor version number Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 28 9月, 2012 1 次提交
-
-
由 Len Brown 提交于
# turbostat -d 0x34 is useful for printing the number of SMI's within an interval on Nehalem and newer processors. where # turbostat -m 0x34 will simply print out the total SMI count since reset. Suggested-by: Andi Kleen Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 27 9月, 2012 5 次提交
-
-
由 Len Brown 提交于
-m MSR# prints the specified MSR in 32-bit format -M MSR# prints the specified MSR in 64-bit format Signed-off-by: NLen Brown <len.brown@intel.com>
-
由 Len Brown 提交于
The -M option dumps the specified 64-bit MSR with every sample. Previously it was output at the end of each line. However, with the v2 style of printing, the lines are now staggered, making MSR output hard to read. So move the MSR output column to the left where things are aligned. Signed-off-by: NLen Brown <len.brown@intel.com>
-
由 Len Brown 提交于
The "turbo-limit" is the maximum opportunistic processor speed, assuming no electrical or thermal constraints. For a given processor, the turbo-limit varies, depending on the number of active cores. Generally, there is more opportunity when fewer cores are active. Under the "-v" verbose option, turbostat would print the turbo-limits for the four cases of 1 to 4 cores active. Expand that capability to cover the cases of turbo opportunities with up to 16 cores active. Note that not all hardware platforms supply this information, and that sometimes a valid limit may be specified for a core which is not actually present. Signed-off-by: NLen Brown <len.brown@intel.com>
-
由 Len Brown 提交于
MSR_TSC is no longer needed because we now use RDTSC directly. Signed-off-by: NLen Brown <len.brown@intel.com>
-
由 Len Brown 提交于
This fix is required to run on IVB Xeon, which previously had an incorrect cpuid model number listed. Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 20 7月, 2012 2 次提交
-
-
由 Len Brown 提交于
Under some conditions, c1% was displayed as very large number, much higher than 100%. c1% is not measured, it is derived as "that, which is left over" from other counters. However, the other counters are not collected atomically, and so it is possible for c1% to be calaculagted as a small negative number -- displayed as very large positive. There was a check for mperf vs tsc for this already, but it needed to also include the other counters that are used to calculate c1. Signed-off-by: NLen Brown <len.brown@intel.com>
-
由 Len Brown 提交于
Measuring large profoundly-idle configurations requires turbostat to be more lightweight. Otherwise, the operation of turbostat itself can interfere with the measurements. This re-write makes turbostat topology aware. Hardware is accessed in "topology order". Redundant hardware accesses are deleted. Redundant output is deleted. Also, output is buffered and local RDTSC use replaces remote MSR access for TSC. From a feature point of view, the output looks different since redundant figures are absent. Also, there are now -c and -p options -- to restrict output to the 1st thread in each core, and the 1st thread in each package, respectively. This is helpful to reduce output on big systems, where more detail than the "-s" system summary is desired. Finally, periodic mode output is now on stdout, not stderr. Turbostat v2 is also slightly more robust in handling run-time CPU online/offline events, as it now checks the actual map of on-line cpus rather than just the total number of on-line cpus. Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 04 6月, 2012 2 次提交
-
-
由 Len Brown 提交于
Initial IVB support went into turbostat in Linux-3.1: 553575f1 (tools turbostat: recognize and run properly on IVB) However, when running on IVB, turbostat would fail to report the new couters added with SNB, c7, pc2 and pc7. So in scenarios where these counters are non-zero on IVB, turbostat would report erroneous residencey results. In particular c7 time would be added to c1 time, since c1 time is calculated as "that which is left over". Also, turbostat reports MHz capabilities when passed the "-v" option, and it would incorrectly report 133MHz bclk instead of 100MHz bclk for IVB, which would inflate GHz reported with that option. This patch is a backport of a fix already included in turbostat v2. Signed-off-by: NLen Brown <len.brown@intel.com>
-
由 Len Brown 提交于
Linux 3.4 included a modification to turbostat to lower cross-call overhead by using scheduler affinity: 15aaa346 (tools turbostat: reduce measurement overhead due to IPIs) In the use-case where turbostat forks a child program, that change had the un-intended side-effect of binding the child to the last cpu in the system. This change removed the binding before forking the child. This is a back-port of a fix already included in turbostat v2. Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 30 3月, 2012 3 次提交
-
-
由 Len Brown 提交于
Sometimes users have turbostat running in interval mode when they take processors offline/online. Previously, turbostat would survive, but not gracefully. Tighten up the error checking so turbostat notices changesn sooner, and print just 1 line on change: turbostat: re-initialized with num_cpus %d Signed-off-by: NLen Brown <len.brown@intel.com>
-
由 Len Brown 提交于
turbostat uses /dev/cpu/*/msr interface to read MSRs. For modern systems, it reads 10 MSR/CPU. This can be observed as 10 "Function Call Interrupts" per CPU per sample added to /proc/interrupts. This overhead is measurable on large idle systems, and as Yoquan Song pointed out, it can even trick cpuidle into thinking the system is busy. Here turbostat re-schedules itself in-turn to each CPU so that its MSR reads will always be local. This replaces the 10 "Function Call Interrupts" with a single "Rescheduling interrupt" per sample per CPU. On an idle 32-CPU system, this shifts some residency from the shallow c1 state to the deeper c7 state: # ./turbostat.old -s %c0 GHz TSC %c1 %c3 %c6 %c7 %pc2 %pc3 %pc6 %pc7 0.27 1.29 2.29 0.95 0.02 0.00 98.77 20.23 0.00 77.41 0.00 0.25 1.24 2.29 0.98 0.02 0.00 98.75 20.34 0.03 77.74 0.00 0.27 1.22 2.29 0.54 0.00 0.00 99.18 20.64 0.00 77.70 0.00 0.26 1.22 2.29 1.22 0.00 0.00 98.52 20.22 0.00 77.74 0.00 0.26 1.38 2.29 0.78 0.02 0.00 98.95 20.51 0.05 77.56 0.00 ^C i# ./turbostat.new -s %c0 GHz TSC %c1 %c3 %c6 %c7 %pc2 %pc3 %pc6 %pc7 0.27 1.20 2.29 0.24 0.01 0.00 99.49 20.58 0.00 78.20 0.00 0.27 1.22 2.29 0.25 0.00 0.00 99.48 20.79 0.00 77.85 0.00 0.27 1.20 2.29 0.25 0.02 0.00 99.46 20.71 0.03 77.89 0.00 0.28 1.26 2.29 0.25 0.01 0.00 99.46 20.89 0.02 77.67 0.00 0.27 1.20 2.29 0.24 0.01 0.00 99.48 20.65 0.00 78.04 0.00 cc: Youquan Song <youquan.song@intel.com> Signed-off-by: NLen Brown <len.brown@intel.com>
-
由 Len Brown 提交于
turbostat -s cuts down on the amount of output, per user request. also treak some output whitespace and the man page. Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 18 11月, 2011 1 次提交
-
-
由 Len Brown 提交于
Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 03 8月, 2011 1 次提交
-
-
由 Len Brown 提交于
Reduce columns for package number to 1. If you can afford more than 9 packages, you can also afford a terminal with more than 80 columns:-) Also shave a column also off the package C-states Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 04 7月, 2011 1 次提交
-
-
由 Len Brown 提交于
dump only the counters which are active Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 10 4月, 2011 1 次提交
-
-
由 Justin P. Mattock 提交于
Signed-off-by: NJustin P. Mattock <justinmattock@gmail.com> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 11 2月, 2011 2 次提交
-
-
由 Len Brown 提交于
Follow kernel coding style traditions more closely. Delete typedef, re-name "per cpu counters" to simply be counters etc. This patch changes no functionality. Suggested-by: NThiago Farina <tfransosi@gmail.com> Signed-off-by: NLen Brown <len.brown@intel.com>
-
由 Thomas Renninger 提交于
bug could cause false positive on indicating presence of invarient TSC or APERF support. Signed-off-by: NThomas Renninger <trenn@suse.de> Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 12 1月, 2011 1 次提交
-
-
由 Len Brown 提交于
turbostat is a Linux tool to observe proper operation of Intel(R) Turbo Boost Technology. turbostat displays the actual processor frequency on x86 processors that include APERF and MPERF MSRs. Note that turbostat is of limited utility on Linux kernels 2.6.29 and older, as acpi_cpufreq cleared APERF/MPERF up through that release. On Intel Core i3/i5/i7 (Nehalem) and newer processors, turbostat also displays residency in idle power saving states, which are necessary for diagnosing any cpuidle issues that may have an effect on turbo-mode. See the turbostat.8 man page for example usage. Signed-off-by: NLen Brown <len.brown@intel.com>
-