1. 07 1月, 2012 1 次提交
  2. 04 1月, 2012 1 次提交
    • A
      vfs: fix the stupidity with i_dentry in inode destructors · 6b520e05
      Al Viro 提交于
      Seeing that just about every destructor got that INIT_LIST_HEAD() copied into
      it, there is no point whatsoever keeping this INIT_LIST_HEAD in inode_init_once();
      the cost of taking it into inode_init_always() will be negligible for pipes
      and sockets and negative for everything else.  Not to mention the removal of
      boilerplate code from ->destroy_inode() instances...
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      6b520e05
  3. 21 7月, 2011 1 次提交
  4. 27 5月, 2011 1 次提交
    • C
      fs: pass exact type of data dirties to ->dirty_inode · aa385729
      Christoph Hellwig 提交于
      Tell the filesystem if we just updated timestamp (I_DIRTY_SYNC) or
      anything else, so that the filesystem can track internally if it
      needs to push out a transaction for fdatasync or not.
      
      This is just the prototype change with no user for it yet.  I plan
      to push large XFS changes for the next merge window, and getting
      this trivial infrastructure in this window would help a lot to avoid
      tree interdependencies.
      
      Also remove incorrect comments that ->dirty_inode can't block.  That
      has been changed a long time ago, and many implementations rely on it.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      aa385729
  5. 31 3月, 2011 1 次提交
  6. 13 1月, 2011 1 次提交
    • J
      quota: Fix deadlock during path resolution · f00c9e44
      Jan Kara 提交于
      As Al Viro pointed out path resolution during Q_QUOTAON calls to quotactl
      is prone to deadlocks. We hold s_umount semaphore for reading during the
      path resolution and resolution itself may need to acquire the semaphore
      for writing when e. g. autofs mountpoint is passed.
      
      Solve the problem by performing the resolution before we get hold of the
      superblock (and thus s_umount semaphore). The whole thing is complicated
      by the fact that some filesystems (OCFS2) ignore the path argument. So to
      distinguish between filesystem which want the path and which do not we
      introduce new .quota_on_meta callback which does not get the path. OCFS2
      then uses this callback instead of old .quota_on.
      
      CC: Al Viro <viro@ZenIV.linux.org.uk>
      CC: Christoph Hellwig <hch@lst.de>
      CC: Ted Ts'o <tytso@mit.edu>
      CC: Joel Becker <joel.becker@oracle.com>
      Signed-off-by: NJan Kara <jack@suse.cz>
      f00c9e44
  7. 07 1月, 2011 1 次提交
    • N
      fs: icache RCU free inodes · fa0d7e3d
      Nick Piggin 提交于
      RCU free the struct inode. This will allow:
      
      - Subsequent store-free path walking patch. The inode must be consulted for
        permissions when walking, so an RCU inode reference is a must.
      - sb_inode_list_lock to be moved inside i_lock because sb list walkers who want
        to take i_lock no longer need to take sb_inode_list_lock to walk the list in
        the first place. This will simplify and optimize locking.
      - Could remove some nested trylock loops in dcache code
      - Could potentially simplify things a bit in VM land. Do not need to take the
        page lock to follow page->mapping.
      
      The downsides of this is the performance cost of using RCU. In a simple
      creat/unlink microbenchmark, performance drops by about 10% due to inability to
      reuse cache-hot slab objects. As iterations increase and RCU freeing starts
      kicking over, this increases to about 20%.
      
      In cases where inode lifetimes are longer (ie. many inodes may be allocated
      during the average life span of a single inode), a lot of this cache reuse is
      not applicable, so the regression caused by this patch is smaller.
      
      The cache-hot regression could largely be avoided by using SLAB_DESTROY_BY_RCU,
      however this adds some complexity to list walking and store-free path walking,
      so I prefer to implement this at a later date, if it is shown to be a win in
      real situations. I haven't found a regression in any non-micro benchmark so I
      doubt it will be a problem.
      Signed-off-by: NNick Piggin <npiggin@kernel.dk>
      fa0d7e3d
  8. 18 11月, 2010 1 次提交
  9. 29 10月, 2010 1 次提交
  10. 10 8月, 2010 2 次提交
  11. 27 5月, 2010 1 次提交
    • J
      reiserfs: Fix resuming of quotas on remount read-write · f4b113ae
      Jan Kara 提交于
      When quota was suspended on remount-ro, finish_unfinished() will try to turn
      it on again (which fails) and also turns the quotas off on exit. Fix the
      function to check whether quotas are already on at function entry and do
      not turn them off in that case.
      
      CC: reiserfs-devel@vger.kernel.org
      Signed-off-by: NJan Kara <jack@suse.cz>
      f4b113ae
  12. 24 5月, 2010 5 次提交
  13. 31 3月, 2010 1 次提交
  14. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  15. 05 3月, 2010 6 次提交
    • C
      dquot: cleanup dquot initialize routine · 871a2931
      Christoph Hellwig 提交于
      Get rid of the initialize dquot operation - it is now always called from
      the filesystem and if a filesystem really needs it's own (which none
      currently does) it can just call into it's own routine directly.
      
      Rename the now static low-level dquot_initialize helper to __dquot_initialize
      and vfs_dq_init to dquot_initialize to have a consistent namespace.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJan Kara <jack@suse.cz>
      871a2931
    • C
      dquot: cleanup dquot drop routine · 9f754758
      Christoph Hellwig 提交于
      Get rid of the drop dquot operation - it is now always called from
      the filesystem and if a filesystem really needs it's own (which none
      currently does) it can just call into it's own routine directly.
      
      Rename the now static low-level dquot_drop helper to __dquot_drop
      and vfs_dq_drop to dquot_drop to have a consistent namespace.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJan Kara <jack@suse.cz>
      9f754758
    • C
      dquot: move dquot drop responsibility into the filesystem · 257ba15c
      Christoph Hellwig 提交于
      Currently clear_inode calls vfs_dq_drop directly.  This means
      we tie the quota code into the VFS.  Get rid of that and make the
      filesystem responsible for the drop inside the ->clear_inode
      superblock operation.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJan Kara <jack@suse.cz>
      257ba15c
    • C
      dquot: cleanup dquot transfer routine · b43fa828
      Christoph Hellwig 提交于
      Get rid of the transfer dquot operation - it is now always called from
      the filesystem and if a filesystem really needs it's own (which none
      currently does) it can just call into it's own routine directly.
      
      Rename the now static low-level dquot_transfer helper to __dquot_transfer
      and vfs_dq_transfer to dquot_transfer to have a consistent namespace,
      and make the new dquot_transfer return a normal negative errno value
      which all callers expect.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJan Kara <jack@suse.cz>
      b43fa828
    • C
      dquot: cleanup inode allocation / freeing routines · 63936dda
      Christoph Hellwig 提交于
      Get rid of the alloc_inode and free_inode dquot operations - they are
      always called from the filesystem and if a filesystem really needs
      their own (which none currently does) it can just call into it's
      own routine directly.
      
      Also get rid of the vfs_dq_alloc/vfs_dq_free wrappers and always
      call the lowlevel dquot_alloc_inode / dqout_free_inode routines
      directly, which now lose the number argument which is always 1.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJan Kara <jack@suse.cz>
      63936dda
    • C
      dquot: cleanup space allocation / freeing routines · 5dd4056d
      Christoph Hellwig 提交于
      Get rid of the alloc_space, free_space, reserve_space, claim_space and
      release_rsv dquot operations - they are always called from the filesystem
      and if a filesystem really needs their own (which none currently does)
      it can just call into it's own routine directly.
      
      Move shared logic into the common __dquot_alloc_space,
      dquot_claim_space_nodirty and __dquot_free_space low-level methods,
      and rationalize the wrappers around it to move as much as possible
      code into the common block for CONFIG_QUOTA vs not.  Also rename
      all these helpers to be named dquot_* instead of vfs_dq_*.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJan Kara <jack@suse.cz>
      5dd4056d
  16. 16 12月, 2009 1 次提交
  17. 22 9月, 2009 2 次提交
  18. 14 9月, 2009 2 次提交
    • F
      kill-the-BKL/reiserfs: only acquire the write lock once in reiserfs_dirty_inode · dc8f6d89
      Frederic Weisbecker 提交于
      Impact: fix a deadlock
      
      reiserfs_dirty_inode() is the super_operations::dirty_inode() callback
      of reiserfs. It can be called from different contexts where the write
      lock can be already held.
      
      But this function also grab the write lock (possibly recursively).
      Subsequent release of the lock before sleep will actually not release
      the lock if the caller of mark_inode_dirty() (which in turn calls
      reiserfs_dirty_inode()) already owns the lock.
      
      A typical case:
      
      reiserfs_write_end() {
      	acquire_write_lock()
      	mark_inode_dirty() {
      		reiserfs_dirty_inode() {
      			reacquire_write_lock() {
      				journal_begin() {
      					do_journal_begin_r() {
      						/*
      						 * fail to release, still
      						 * one depth of lock
      						 */
      						release_write_lock()
      						reiserfs_wait_on_write_block() {
      							wait_event()
      
      The event is usually provided by something which needs the write lock but
      it hasn't been released.
      
      We use reiserfs_write_lock_once() here to ensure we only grab the
      write lock in one level.
      Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: Alessio Igor Bogani <abogani@texware.it>
      Cc: Jeff Mahoney <jeffm@suse.com>
      Cc: Chris Mason <chris.mason@oracle.com>
      LKML-Reference: <1239680065-25013-4-git-send-email-fweisbec@gmail.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      dc8f6d89
    • F
      reiserfs: kill-the-BKL · 8ebc4232
      Frederic Weisbecker 提交于
      This patch is an attempt to remove the Bkl based locking scheme from
      reiserfs and is intended.
      
      It is a bit inspired from an old attempt by Peter Zijlstra:
      
         http://lkml.indiana.edu/hypermail/linux/kernel/0704.2/2174.html
      
      The bkl is heavily used in this filesystem to prevent from
      concurrent write accesses on the filesystem.
      
      Reiserfs makes a deep use of the specific properties of the Bkl:
      
      - It can be acqquired recursively by a same task
      - It is released on the schedule() calls and reacquired when schedule() returns
      
      The two properties above are a roadmap for the reiserfs write locking so it's
      very hard to simply replace it with a common mutex.
      
      - We need a recursive-able locking unless we want to restructure several blocks
        of the code.
      - We need to identify the sites where the bkl was implictly relaxed
        (schedule, wait, sync, etc...) so that we can in turn release and
        reacquire our new lock explicitly.
        Such implicit releases of the lock are often required to let other
        resources producer/consumer do their job or we can suffer unexpected
        starvations or deadlocks.
      
      So the new lock that replaces the bkl here is a per superblock mutex with a
      specific property: it can be acquired recursively by a same task, like the
      bkl.
      
      For such purpose, we integrate a lock owner and a lock depth field on the
      superblock information structure.
      
      The first axis on this patch is to turn reiserfs_write_(un)lock() function
      into a wrapper to manage this mutex. Also some explicit calls to
      lock_kernel() have been converted to reiserfs_write_lock() helpers.
      
      The second axis is to find the important blocking sites (schedule...(),
      wait_on_buffer(), sync_dirty_buffer(), etc...) and then apply an explicit
      release of the write lock on these locations before blocking. Then we can
      safely wait for those who can give us resources or those who need some.
      Typically this is a fight between the current writer, the reiserfs workqueue
      (aka the async commiter) and the pdflush threads.
      
      The third axis is a consequence of the second. The write lock is usually
      on top of a lock dependency chain which can include the journal lock, the
      flush lock or the commit lock. So it's dangerous to release and trying to
      reacquire the write lock while we still hold other locks.
      
      This is fine with the bkl:
      
            T1                       T2
      
      lock_kernel()
          mutex_lock(A)
          unlock_kernel()
          // do something
                                  lock_kernel()
                                      mutex_lock(A) -> already locked by T1
                                      schedule() (and then unlock_kernel())
          lock_kernel()
          mutex_unlock(A)
          ....
      
      This is not fine with a mutex:
      
            T1                       T2
      
      mutex_lock(write)
          mutex_lock(A)
          mutex_unlock(write)
          // do something
                                 mutex_lock(write)
                                    mutex_lock(A) -> already locked by T1
                                    schedule()
      
          mutex_lock(write) -> already locked by T2
          deadlock
      
      The solution in this patch is to provide a helper which releases the write
      lock and sleep a bit if we can't lock a mutex that depend on it. It's another
      simulation of the bkl behaviour.
      
      The last axis is to locate the fs callbacks that are called with the bkl held,
      according to Documentation/filesystem/Locking.
      
      Those are:
      
      - reiserfs_remount
      - reiserfs_fill_super
      - reiserfs_put_super
      
      Reiserfs didn't need to explicitly lock because of the context of these callbacks.
      But now we must take care of that with the new locking.
      
      After this patch, reiserfs suffers from a slight performance regression (for now).
      On UP, a high volume write with dd reports an average of 27 MB/s instead
      of 30 MB/s without the patch applied.
      Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com>
      Reviewed-by: NIngo Molnar <mingo@elte.hu>
      Cc: Jeff Mahoney <jeffm@suse.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Bron Gondwana <brong@fastmail.fm>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      LKML-Reference: <1239070789-13354-1-git-send-email-fweisbec@gmail.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      8ebc4232
  19. 09 7月, 2009 1 次提交
  20. 24 6月, 2009 2 次提交
  21. 12 6月, 2009 5 次提交
  22. 18 5月, 2009 1 次提交
  23. 09 5月, 2009 1 次提交
    • A
      Fix races around the access to ->s_options · 2a32cebd
      Al Viro 提交于
      Put generic_show_options read access to s_options under rcu_read_lock,
      split save_mount_options() into "we are setting it the first time"
      (uses in foo_fill_super()) and "we are relacing and freeing the old one",
      synchronize_rcu() before kfree() in the latter.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      2a32cebd