- 03 7月, 2012 2 次提交
-
-
由 Paul E. McKenney 提交于
The CONFIG_TREE_PREEMPT_RCU and CONFIG_TINY_PREEMPT_RCU versions of __rcu_read_lock() and __rcu_read_unlock() are identical, so this commit consolidates them into kernel/rcupdate.h. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
This reverts commit 616c310e. (Move PREEMPT_RCU preemption to switch_to() invocation). Testing by Sasha Levin <levinsasha928@gmail.com> showed that this can result in deadlock due to invoking the scheduler when one of the runqueue locks is held. Because this commit was simply a performance optimization, revert it. Reported-by: NSasha Levin <levinsasha928@gmail.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NSasha Levin <levinsasha928@gmail.com>
-
- 07 6月, 2012 3 次提交
-
-
由 Paul E. McKenney 提交于
When a CPU is entering dyntick-idle mode, tick_nohz_stop_sched_tick() calls rcu_needs_cpu() see if RCU needs that CPU, and, if not, computes the next wakeup time based on the timer wheels. Only later, when actually entering the idle loop, rcu_prepare_for_idle() will be invoked. In some cases, rcu_prepare_for_idle() will post timers to wake the CPU back up. But all for naught: The next wakeup time for the CPU has already been computed, and posting a timer afterwards does not force that wakeup time to be recomputed. This means that rcu_prepare_for_idle()'s have no effect. This is not a problem on a busy system because something else will wake up the CPU soon enough. However, on lightly loaded systems, the CPU might stay asleep for a considerable length of time. If that CPU has a callback that the rest of the system is waiting on, the system might run very slowly or (in theory) even hang. This commit avoids this problem by having rcu_needs_cpu() give tick_nohz_stop_sched_tick() an estimate of when RCU will need the CPU to wake back up, which tick_nohz_stop_sched_tick() takes into account when programming the CPU's wakeup time. An alternative approach is for rcu_prepare_for_idle() to use hrtimers instead of normal timers, but timers are much more efficient than are hrtimers for frequently and repeatedly posting and cancelling a given timer, which is exactly what RCU_FAST_NO_HZ does. Reported-by: NPascal Chapperon <pascal.chapperon@wanadoo.fr> Reported-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Tested-by: NPascal Chapperon <pascal.chapperon@wanadoo.fr>
-
由 Paul E. McKenney 提交于
The RCU_FAST_NO_HZ code relies on a number of per-CPU variables. This works, but is hidden from someone scanning the data structures in rcutree.h. This commit therefore converts these per-CPU variables to fields in the per-CPU rcu_dynticks structures. Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Tested-by: NPascal Chapperon <pascal.chapperon@wanadoo.fr>
-
由 Paul E. McKenney 提交于
In the current code, a short dyntick-idle interval (where there is at least one non-lazy callback on the CPU) and a long dyntick-idle interval (where there are only lazy callbacks on the CPU) are traced identically, which can be less than helpful. This commit therefore emits different event traces in these two cases. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Tested-by: NPascal Chapperon <pascal.chapperon@wanadoo.fr>
-
- 10 5月, 2012 2 次提交
-
-
由 Paul E. McKenney 提交于
The current initialization of the RCU_FAST_NO_HZ per-CPU variables makes needless and fragile assumptions about the initial value of things like the jiffies counter. This commit therefore explicitly initializes all of them that are better started with a non-zero value. It also adds some comments describing the per-CPU state variables. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The current RCU_FAST_NO_HZ assumes that timers do not migrate unless a CPU goes offline, in which case it assumes that the CPU will have to come out of dyntick-idle mode (cancelling the timer) in order to go offline. This is important because when RCU_FAST_NO_HZ permits a CPU to enter dyntick-idle mode despite having RCU callbacks pending, it posts a timer on that CPU to force a wakeup on that CPU. This wakeup ensures that the CPU will eventually handle the end of the grace period, including invoking its RCU callbacks. However, Pascal Chapperon's test setup shows that the timer handler rcu_idle_gp_timer_func() really does get invoked in some cases. This is problematic because this can cause the CPU that entered dyntick-idle mode despite still having RCU callbacks pending to remain in dyntick-idle mode indefinitely, which means that its RCU callbacks might never be invoked. This situation can result in grace-period delays or even system hangs, which matches Pascal's observations of slow boot-up and shutdown (https://lkml.org/lkml/2012/4/5/142). See also the bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=806548 This commit therefore causes the "should never be invoked" timer handler rcu_idle_gp_timer_func() to use smp_call_function_single() to wake up the CPU for which the timer was intended, allowing that CPU to invoke its RCU callbacks in a timely manner. Reported-by: NPascal Chapperon <pascal.chapperon@wanadoo.fr> Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 03 5月, 2012 2 次提交
-
-
由 Paul E. McKenney 提交于
When running preemptible RCU, if a task exits in an RCU read-side critical section having blocked within that same RCU read-side critical section, the task must be removed from the list of tasks blocking a grace period (perhaps the current grace period, perhaps the next grace period, depending on timing). The exit() path invokes exit_rcu() to do this cleanup. However, the current implementation of exit_rcu() needlessly does the cleanup even if the task did not block within the current RCU read-side critical section, which wastes time and needlessly increases the size of the state space. Fix this by only doing the cleanup if the current task is actually on the list of tasks blocking some grace period. While we are at it, consolidate the two identical exit_rcu() functions into a single function. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NLinus Torvalds <torvalds@linux-foundation.org> Conflicts: kernel/rcupdate.c
-
由 Paul E. McKenney 提交于
Currently, PREEMPT_RCU readers are enqueued upon entry to the scheduler. This is inefficient because enqueuing is required only if there is a context switch, and entry to the scheduler does not guarantee a context switch. The commit therefore moves the enqueuing to immediately precede the call to switch_to() from the scheduler. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 5月, 2012 1 次提交
-
-
由 Paul E. McKenney 提交于
Timers are subject to migration, which can lead to the following system-hang scenario when CONFIG_RCU_FAST_NO_HZ=y: 1. CPU 0 executes synchronize_rcu(), which posts an RCU callback. 2. CPU 0 then goes idle. It cannot immediately invoke the callback, but there is nothing RCU needs from ti, so it enters dyntick-idle mode after posting a timer. 3. The timer gets migrated to CPU 1. 4. CPU 0 never wakes up, so the synchronize_rcu() never returns, so the system hangs. This commit fixes this problem by using mod_timer_pinned(), as suggested by Peter Zijlstra, to ensure that the timer is actually posted on the running CPU. Reported-by: NDipankar Sarma <dipankar@in.ibm.com> Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 26 4月, 2012 1 次提交
-
-
由 Paul E. McKenney 提交于
RCU_FAST_NO_HZ uses a timer to limit the time that a CPU with callbacks can remain in dyntick-idle mode. This timer is cancelled when the CPU exits idle, and therefore should never fire. However, if the timer were migrated to some other CPU for whatever reason (1) the timer could actually fire and (2) firing on some other CPU would fail to wake up the CPU with callbacks, possibly resulting in sluggishness or a system hang. This commit therfore adds a WARN_ON_ONCE() to the timer handler in order to detect this condition. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 25 4月, 2012 3 次提交
-
-
由 Paul E. McKenney 提交于
Both Steven Rostedt's new idle-capable trace macros and the RCU_NONIDLE() macro can cause RCU to momentarily pause out of idle without the rest of the system being involved. This can cause rcu_prepare_for_idle() to run through its state machine too quickly, which can in turn result in needless scheduling-clock interrupts. This commit therefore adds code to enable rcu_prepare_for_idle() to distinguish between an initial entry to idle on the one hand (which needs to advance the rcu_prepare_for_idle() state machine) and an idle reentry due to idle-capable trace macros and RCU_NONIDLE() on the other hand (which should avoid advancing the rcu_prepare_for_idle() state machine). Additional state is maintained to allow the timer to be correctly reposted when returning after a momentary pause out of idle, and even more state is maintained to detect when new non-lazy callbacks have been enqueued (which may require re-evaluation of the approach to idleness). Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The RCU_FAST_NO_HZ facility uses an hrtimer to wake up a CPU when it is allowed to go into dyntick-idle mode, which is almost always cancelled soon after. This is not what hrtimers are good at, so this commit switches to the timer wheel. Reported-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Traces of rcu_prep_idle events can be confusing because rcu_cleanup_after_idle() does no tracing. This commit therefore adds this tracing. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 22 2月, 2012 14 次提交
-
-
由 Paul E. McKenney 提交于
This commit handles workloads that transition quickly between idle and non-idle, and where the CPU's callbacks cannot be invoked, but where RCU does not have anything immediate for the CPU to do. Without this patch, the RCU_FAST_NO_HZ code can be invoked repeatedly on each entry to idle. The commit sets the per-CPU rcu_dyntick_holdoff variable to hold off further attempts for a tick. Reported-by: N"Abou Gazala, Neven M" <neven.m.abou.gazala@intel.com> Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
If a softirq is pending, the current CPU has RCU callbacks pending, and RCU does not immediately need anything from this CPU, then the current code resets the RCU_FAST_NO_HZ state machine. This means that upon exit from the subsequent softirq handler, RCU_FAST_NO_HZ will try really hard to force RCU into dyntick-idle mode. And if the same conditions hold after a few tries (determined by RCU_IDLE_OPT_FLUSHES), the same situation can repeat, possibly endlessly. This scenario is not particularly good for battery lifetime. This commit therefore suppresses the early exit from the RCU_FAST_NO_HZ state machine in the case where there is a softirq pending. This change forces the state machine to retain its memory, and to enter holdoff if this condition persists. Reported-by: N"Abou Gazala, Neven M" <neven.m.abou.gazala@intel.com> Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The expedited RCU primitives can be quite useful, but they have some high costs as well. This commit updates and creates docbook comments calling out the costs, and updates the RCU documentation as well. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Because newly offlined CPUs continue executing after completing the CPU_DYING notifiers, they legitimately enter the scheduler and use RCU while appearing to be offline. This calls for a more sophisticated approach as follows: 1. RCU marks the CPU online during the CPU_UP_PREPARE phase. 2. RCU marks the CPU offline during the CPU_DEAD phase. 3. Diagnostics regarding use of read-side RCU by offline CPUs use RCU's accounting rather than the cpu_online_map. (Note that __call_rcu() still uses cpu_online_map to detect illegal invocations within CPU_DYING notifiers.) 4. Offline CPUs are prevented from hanging the system by force_quiescent_state(), which pays attention to cpu_online_map. Some additional work (in a later commit) will be needed to guarantee that force_quiescent_state() waits a full jiffy before assuming that a CPU is offline, for example, when called from idle entry. (This commit also makes the one-jiffy wait explicit, since the old-style implicit wait can now be defeated by RCU_FAST_NO_HZ and by rcutorture.) This approach avoids the false positives encountered when attempting to use more exact classification of CPU online/offline state. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The rcu_prepare_for_idle() function is always called with interrupts disabled, so there is no reason to disable interrupts again within rcu_prepare_for_idle(). Therefore, this commit removes all of the interrupt disabling, also removing a latent disabling-unbalance bug. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Now that TREE_RCU and TREE_PREEMPT_RCU no longer do anything different for the single-CPU case, there is no need for multiple definitions of synchronize_sched_expedited(). It is no longer in any sense a plug-in, so move it from kernel/rcutree_plugin.h to kernel/rcutree.c. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Although it is legal to use RCU during early boot, it is anything but legal to use RCU at runtime from an offlined CPU. After all, RCU explicitly ignores offlined CPUs. This commit therefore adds checks for runtime use of RCU from offlined CPUs. These checks are not perfect, in particular, they can be subverted through use of things like rcu_dereference_raw(). Note that it is not possible to put checks in rcu_read_lock() and friends due to the fact that these primitives are used in code that might be used under either RCU or lock-based protection, which means that checking rcu_read_lock() gets you fat piles of false positives. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
There have been situations where RCU CPU stall warnings were caused by issues in scheduling-clock timer initialization. To make it easier to track these down, this commit causes the RCU CPU stall-warning messages to print out the number of scheduling-clock interrupts taken in the current grace period for each stalled CPU. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Now that both TINY_RCU and TINY_PREEMPT_RCU have been in place for awhile, it is time to remove UP support from TREE_RCU, which is what this commit does. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The recent updates to RCU_CPU_FAST_NO_HZ have an rcu_needs_cpu() that does more than just check for callbacks, so get the name for rcu_preempt_needs_cpu() consistent with that change, now calling it rcu_preempt_cpu_has_callbacks(). Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Currently, a given CPU is permitted to remain in dyntick-idle mode indefinitely if it has only lazy RCU callbacks queued. This is vulnerable to corner cases in NUMA systems, so limit the time to six seconds by default. (Currently controlled by a cpp macro.) Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Move ->qsmaskinit and blkd_tasks[] manipulation to the CPU_DYING notifier. This simplifies the code by eliminating a potential deadlock and by reducing the responsibilities of force_quiescent_state(). Also rename functions to make their connection to the CPU-hotplug stages explicit. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
When CONFIG_RCU_FAST_NO_HZ is enabled, RCU will allow a given CPU to enter dyntick-idle mode even if it still has RCU callbacks queued. RCU avoids system hangs in this case by scheduling a timer for several jiffies in the future. However, if all of the callbacks on that CPU are from kfree_rcu(), there is no reason to wake the CPU up, as it is not a problem to defer freeing of memory. This commit therefore tracks the number of callbacks on a given CPU that are from kfree_rcu(), and avoids scheduling the timer if all of a given CPU's callbacks are from kfree_rcu(). Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
It is illegal to have a grace period within a same-flavor RCU read-side critical section, so this commit adds lockdep-RCU checks to splat when such abuse is encountered. This commit does not detect more elaborate RCU deadlock situations. These situations might be a job for lockdep enhancements. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 12 12月, 2011 12 次提交
-
-
由 Paul E. McKenney 提交于
Both TINY_RCU's and TREE_RCU's implementations of rcu_boost() access the ->boost_tasks and ->exp_tasks fields without preventing concurrent changes to these fields. This commit therefore applies ACCESS_ONCE in order to prevent compiler mischief. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This reverts commit 5342e269. The approach taken in this patch was deemed too abusive to mutexes, and thus too likely to result in maintenance problems in the future. Instead, we will disallow RCU read-side critical sections that partially overlap with interrupt-disbled code segments. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
If there are other CPUs active at a given point in time, then there is a limit to what a given CPU can do to advance the current RCU grace period. Beyond this limit, attempting to force the RCU grace period forward will do nothing but consume energy burning CPU cycles. Therefore, this commit takes an adaptive approach to RCU_FAST_NO_HZ preparations for idle. It pushes the RCU core state machine for two cycles unconditionally, and then it will push from zero to three additional cycles, but only as long as the RCU core has work for this CPU to do immediately. The rcu_pending() function is used to check whether the RCU core has such work. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The rcu_do_batch() function that invokes callbacks for TREE_RCU and TREE_PREEMPT_RCU normally throttles callback invocation to avoid degrading scheduling latency. However, as long as the CPU would otherwise be idle, there is no downside to continuing to invoke any callbacks that have passed through their grace periods. In fact, processing such callbacks in a timely manner has the benefit of increasing the probability that the CPU can enter the power-saving dyntick-idle mode. Therefore, this commit allows callback invocation to continue beyond the preset limit as long as the scheduler does not have some other task to run and as long as context is that of the idle task or the relevant RCU kthread. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The current implementation of RCU_FAST_NO_HZ prevents CPUs from entering dyntick-idle state if they have RCU callbacks pending. Unfortunately, this has the side-effect of often preventing them from entering this state, especially if at least one other CPU is not in dyntick-idle state. However, the resulting per-tick wakeup is wasteful in many cases: if the CPU has already fully responded to the current RCU grace period, there will be nothing for it to do until this grace period ends, which will frequently take several jiffies. This commit therefore permits a CPU that has done everything that the current grace period has asked of it (rcu_pending() == 0) even if it still as RCU callbacks pending. However, such a CPU posts a timer to wake it up several jiffies later (6 jiffies, based on experience with grace-period lengths). This wakeup is required to handle situations that can result in all CPUs being in dyntick-idle mode, thus failing to ever complete the current grace period. If a CPU wakes up before the timer goes off, then it cancels that timer, thus avoiding spurious wakeups. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Re-enable interrupts across calls to quiescent-state functions and also across force_quiescent_state() to reduce latency. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
With the new implementation of RCU_FAST_NO_HZ, it was possible to hang RCU grace periods as follows: o CPU 0 attempts to go idle, cycles several times through the rcu_prepare_for_idle() loop, then goes dyntick-idle when RCU needs nothing more from it, while still having at least on RCU callback pending. o CPU 1 goes idle with no callbacks. Both CPUs can then stay in dyntick-idle mode indefinitely, preventing the RCU grace period from ever completing, possibly hanging the system. This commit therefore prevents CPUs that have RCU callbacks from entering dyntick-idle mode. This approach also eliminates the need for the end-of-grace-period IPIs used previously. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
If a CPU enters dyntick-idle mode with callbacks pending, it will need an IPI at the end of the grace period. However, if it exits dyntick-idle mode before the grace period ends, it will be needlessly IPIed at the end of the grace period. Therefore, this commit clears the per-CPU rcu_awake_at_gp_end flag when a CPU determines that it does not need it. This in turn requires disabling interrupts across much of rcu_prepare_for_idle() in order to avoid having nested interrupts clearing this state out from under us. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The earlier version would attempt to push callbacks through five times before going into dyntick-idle mode if callbacks remained, but the CPU had done all that it needed to do for the current RCU grace periods. This is wasteful: In most cases, once the CPU has done all that it needs to for the current RCU grace periods, it will make no further progress on the callbacks no matter how many times it loops through the RCU core processing and the idle-entry code. This commit therefore goes to dyntick-idle mode whenever the current CPU has done all it can for the current grace period. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit adds trace_rcu_prep_idle(), which is invoked from rcu_prepare_for_idle() and rcu_wake_cpu() to trace attempts on the part of RCU to force CPUs into dyntick-idle mode. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Currently, RCU does not permit a CPU to enter dyntick-idle mode if that CPU has any RCU callbacks queued. This means that workloads for which each CPU wakes up and does some RCU updates every few ticks will never enter dyntick-idle mode. This can result in significant unnecessary power consumption, so this patch permits a given to enter dyntick-idle mode if it has callbacks, but only if that same CPU has completed all current work for the RCU core. We determine use rcu_pending() to determine whether a given CPU has completed all current work for the RCU core. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Thomas Gleixner 提交于
Empty void functions do not need "return", so this commit removes it from rcu_report_exp_rnp(). Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-