- 12 4月, 2018 40 次提交
-
-
由 Joonsoo Kim 提交于
Freepage on ZONE_HIGHMEM doesn't work for kernel memory so it's not that important to reserve. When ZONE_MOVABLE is used, this problem would theorectically cause to decrease usable memory for GFP_HIGHUSER_MOVABLE allocation request which is mainly used for page cache and anon page allocation. So, fix it by setting 0 to sysctl_lowmem_reserve_ratio[ZONE_HIGHMEM]. And, defining sysctl_lowmem_reserve_ratio array by MAX_NR_ZONES - 1 size makes code complex. For example, if there is highmem system, following reserve ratio is activated for *NORMAL ZONE* which would be easyily misleading people. #ifdef CONFIG_HIGHMEM 32 #endif This patch also fixes this situation by defining sysctl_lowmem_reserve_ratio array by MAX_NR_ZONES and place "#ifdef" to right place. Link: http://lkml.kernel.org/r/1504672525-17915-1-git-send-email-iamjoonsoo.kim@lge.comSigned-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Tested-by: NTony Lindgren <tony@atomide.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: NZi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
No allocation callback is using this argument anymore. new_page_node used to use this parameter to convey node_id resp. migration error up to move_pages code (do_move_page_to_node_array). The error status never made it into the final status field and we have a better way to communicate node id to the status field now. All other allocation callbacks simply ignored the argument so we can drop it finally. [mhocko@suse.com: fix migration callback] Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz [akpm@linux-foundation.org: fix alloc_misplaced_dst_page()] [mhocko@kernel.org: fix build] Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NZi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NKirill A. Shutemov <kirill@shutemov.name> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Colin Ian King 提交于
The pointer swap_avail_heads is local to the source and does not need to be in global scope, so make it static. Cleans up sparse warning: mm/swapfile.c:88:19: warning: symbol 'swap_avail_heads' was not declared. Should it be static? Link: http://lkml.kernel.org/r/20180206215836.12366-1-colin.king@canonical.comSigned-off-by: NColin Ian King <colin.king@canonical.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: N"Huang, Ying" <ying.huang@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
syzbot has triggered a NULL ptr dereference when allocation fault injection enforces a failure and alloc_mem_cgroup_per_node_info initializes memcg->nodeinfo only half way through. But __mem_cgroup_free still tries to free all per-node data and dereferences pn->lruvec_stat_cpu unconditioanlly even if the specific per-node data hasn't been initialized. The bug is quite unlikely to hit because small allocations do not fail and we would need quite some numa nodes to make struct mem_cgroup_per_node large enough to cross the costly order. Link: http://lkml.kernel.org/r/20180406100906.17790-1-mhocko@kernel.org Reported-by: syzbot+8a5de3cce7cdc70e9ebe@syzkaller.appspotmail.com Fixes: 00f3ca2c ("mm: memcontrol: per-lruvec stats infrastructure") Signed-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tom Abraham 提交于
Calling swapon() on a zero length swap file on SSD can lead to a divide-by-zero. Although creating such files isn't possible with mkswap and they woud be considered invalid, it would be better for the swapon code to be more robust and handle this condition gracefully (return -EINVAL). Especially since the fix is small and straightforward. To help with wear leveling on SSD, the swapon syscall calculates a random position in the swap file using modulo p->highest_bit, which is set to maxpages - 1 in read_swap_header. If the swap file is zero length, read_swap_header sets maxpages=1 and last_page=0, resulting in p->highest_bit=0 and we divide-by-zero when we modulo p->highest_bit in swapon syscall. This can be prevented by having read_swap_header return zero if last_page is zero. Link: http://lkml.kernel.org/r/5AC747C1020000A7001FA82C@prv-mh.provo.novell.comSigned-off-by: NThomas Abraham <tabraham@suse.com> Reported-by: <Mark.Landis@Teradata.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Commit a983b5eb ("mm: memcontrol: fix excessive complexity in memory.stat reporting") added per-cpu drift to all memory cgroup stats and events shown in memory.stat and memory.events. For memory.stat this is acceptable. But memory.events issues file notifications, and somebody polling the file for changes will be confused when the counters in it are unchanged after a wakeup. Luckily, the events in memory.events - MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX, MEMCG_OOM - are sufficiently rare and high-level that we don't need per-cpu buffering for them: MEMCG_HIGH and MEMCG_MAX would be the most frequent, but they're counting invocations of reclaim, which is a complex operation that touches many shared cachelines. This splits memory.events from the generic VM events and tracks them in their own, unbuffered atomic counters. That's also cleaner, as it eliminates the ugly enum nesting of VM and cgroup events. [hannes@cmpxchg.org: "array subscript is above array bounds"] Link: http://lkml.kernel.org/r/20180406155441.GA20806@cmpxchg.org Link: http://lkml.kernel.org/r/20180405175507.GA24817@cmpxchg.org Fixes: a983b5eb ("mm: memcontrol: fix excessive complexity in memory.stat reporting") Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NTejun Heo <tj@kernel.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Rik van Riel <riel@surriel.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Claudio Imbrenda 提交于
When using KSM with use_zero_pages, we replace anonymous pages containing only zeroes with actual zero pages, which are not anonymous. We need to do proper accounting of the mm counters, otherwise we will get wrong values in /proc and a BUG message in dmesg when tearing down the mm. Link: http://lkml.kernel.org/r/1522931274-15552-1-git-send-email-imbrenda@linux.vnet.ibm.com Fixes: e86c59b1 ("mm/ksm: improve deduplication of zero pages with colouring") Signed-off-by: NClaudio Imbrenda <imbrenda@linux.vnet.ibm.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
We have a perfectly good macro to determine whether the gfp flags allow you to sleep or not; use it instead of trying to infer it. Link: http://lkml.kernel.org/r/20180408062206.GC16007@bombadil.infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Vitaly Wool <vitalywool@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xidong Wang 提交于
In z3fold_create_pool(), the memory allocated by __alloc_percpu() is not released on the error path that pool->compact_wq , which holds the return value of create_singlethread_workqueue(), is NULL. This will result in a memory leak bug. [akpm@linux-foundation.org: fix oops on kzalloc() failure, check __alloc_percpu() retval] Link: http://lkml.kernel.org/r/1522803111-29209-1-git-send-email-wangxidong_97@163.comSigned-off-by: NXidong Wang <wangxidong_97@163.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
A THP memcg charge can trigger the oom killer since 25160354 ("mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations"). We have used an explicit __GFP_NORETRY previously which ruled the OOM killer automagically. Memcg charge path should be semantically compliant with the allocation path and that means that if we do not trigger the OOM killer for costly orders which should do the same in the memcg charge path as well. Otherwise we are forcing callers to distinguish the two and use different gfp masks which is both non-intuitive and bug prone. As soon as we get a costly high order kmalloc user we even do not have any means to tell the memcg specific gfp mask to prevent from OOM because the charging is deep within guts of the slab allocator. The unexpected memcg OOM on THP has already been fixed upstream by 9d3c3354 ("mm, thp: do not cause memcg oom for thp") but this is a one-off fix rather than a generic solution. Teach mem_cgroup_oom to bail out on costly order requests to fix the THP issue as well as any other costly OOM eligible allocations to be added in future. Also revert 9d3c3354 because special gfp for THP is no longer needed. Link: http://lkml.kernel.org/r/20180403193129.22146-1-mhocko@kernel.org Fixes: 25160354 ("mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations") Signed-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ralph Campbell 提交于
Use of pte_write(pte) is only valid for present pte, the common code which set the migration entry can be reach for both valid present pte and special swap entry (for device memory). Fix the code to use the mpfn value which properly handle both cases. On x86 this did not have any bad side effect because pte write bit is below PAGE_BIT_GLOBAL and thus special swap entry have it set to 0 which in turn means we were always creating read only special migration entry. So once migration did finish we always write protected the CPU page table entry (moreover this is only an issue when migrating from device memory to system memory). End effect is that CPU write access would fault again and restore write permission. This behaviour isn't too bad; it just burns CPU cycles by forcing CPU to take a second fault on write access. ie, double faulting the same address. There is no corruption or incorrect states (it behaves as a COWed page from a fork with a mapcount of 1). Link: http://lkml.kernel.org/r/20180402023506.12180-1-jglisse@redhat.comSigned-off-by: NRalph Campbell <rcampbell@nvidia.com> Signed-off-by: NJérôme Glisse <jglisse@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Wei Yang 提交于
__highest_present_section_nr is a more strict boundary than NR_MEM_SECTIONS. So checking __highest_present_section_nr directly is enough. Link: http://lkml.kernel.org/r/20180330032044.21647-1-richard.weiyang@gmail.comSigned-off-by: NWei Yang <richard.weiyang@gmail.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
change_pte_range is called from task work context to mark PTEs for receiving NUMA faulting hints. If the marked pages are dirty then migration may fail. Some filesystems cannot migrate dirty pages without blocking so are skipped in MIGRATE_ASYNC mode which just wastes CPU. Even when they can, it can be a waste of cycles when the pages are shared forcing higher scan rates. This patch avoids marking shared dirty pages for hinting faults but also will skip a migration if the page was dirtied after the scanner updated a clean page. This is most noticeable running the NASA Parallel Benchmark when backed by btrfs, the default root filesystem for some distributions, but also noticeable when using XFS. The following are results from a 4-socket machine running a 4.16-rc4 kernel with some scheduler patches that are pending for the next merge window. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 Time cg.D 459.07 ( 0.00%) 444.21 ( 3.24%) Time ep.D 76.96 ( 0.00%) 77.69 ( -0.95%) Time is.D 25.55 ( 0.00%) 27.85 ( -9.00%) Time lu.D 601.58 ( 0.00%) 596.87 ( 0.78%) Time mg.D 107.73 ( 0.00%) 108.22 ( -0.45%) is.D regresses slightly in terms of absolute time but note that that particular load varies quite a bit from run to run. The more relevant observation is the total system CPU usage. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 User 71471.91 70627.04 System 11078.96 8256.13 Elapsed 661.66 632.74 That is a substantial drop in system CPU usage and overall the workload completes faster. The NUMA balancing statistics are also interesting NUMA base PTE updates 111407972 139848884 NUMA huge PMD updates 206506 264869 NUMA page range updates 217139044 275461812 NUMA hint faults 4300924 3719784 NUMA hint local faults 3012539 3416618 NUMA hint local percent 70 91 NUMA pages migrated 1517487 1358420 While more PTEs are scanned due to changes in what faults are gathered, it's clear that a far higher percentage of faults are local as the bulk of the remote hits were dirty pages that, in this case with btrfs, had no chance of migrating. The following is a comparison when using XFS as that is a more realistic filesystem choice for a data partition 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1r47 Time cg.D 485.28 ( 0.00%) 442.62 ( 8.79%) Time ep.D 77.68 ( 0.00%) 77.54 ( 0.18%) Time is.D 26.44 ( 0.00%) 24.79 ( 6.24%) Time lu.D 597.46 ( 0.00%) 597.11 ( 0.06%) Time mg.D 142.65 ( 0.00%) 105.83 ( 25.81%) That is a reasonable gain on two relatively long-lived workloads. While not presented, there is also a substantial drop in system CPu usage and the NUMA balancing stats show similar improvements in locality as btrfs did. Link: http://lkml.kernel.org/r/20180326094334.zserdec62gwmmfqf@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NRik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
This fix typos and syntaxes, thanks to Randy Dunlap for pointing them out (they were all my faults). Link: http://lkml.kernel.org/r/20180409151859.4713-1-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NRalph Campbell <rcampbell@nvidia.com> Reviewed-by: NRandy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Arnd Bergmann 提交于
The last fix was still wrong, as we need the inline dummy functions also for the case that CONFIG_HMM is enabled but CONFIG_HMM_MIRROR is not: kernel/fork.o: In function `__mmdrop': fork.c:(.text+0x14f6): undefined reference to `hmm_mm_destroy' This adds back the second copy of the dummy functions, hopefully this time in the right place. Link: http://lkml.kernel.org/r/20180404110236.804484-1-arnd@arndb.de Fixes: 8900d06a277a ("mm/hmm: fix header file if/else/endif maze") Signed-off-by: NArnd Bergmann <arnd@arndb.de> Reviewed-by: NJérôme Glisse <jglisse@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
hmm_devmem_find() requires rcu_read_lock_held() but there's nothing which actually uses the RCU protection. The only caller is hmm_devmem_pages_create() which already grabs the mutex and does superfluous rcu_read_lock/unlock() around the function. This doesn't add anything and just adds to confusion. Remove the RCU protection and open-code the radix tree lookup. If this needs to become more sophisticated in the future, let's add them back when necessary. Link: http://lkml.kernel.org/r/20180314194515.1661824-4-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Reviewed-by: NJérôme Glisse <jglisse@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Benjamin LaHaise <bcrl@kvack.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
Users of hmm_vma_fault() and hmm_vma_get_pfns() provide a flags array and pfn shift value allowing them to define their own encoding for HMM pfn that are fill inside the pfns array of the hmm_range struct. With this device driver can get pfn that match their own private encoding out of HMM without having to do any conversion. [rcampbell@nvidia.com: don't ignore specific pte fault flag in hmm_vma_fault()] Link: http://lkml.kernel.org/r/20180326213009.2460-2-jglisse@redhat.com [rcampbell@nvidia.com: clarify fault logic for device private memory] Link: http://lkml.kernel.org/r/20180326213009.2460-3-jglisse@redhat.com Link: http://lkml.kernel.org/r/20180323005527.758-16-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Signed-off-by: NRalph Campbell <rcampbell@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
This changes hmm_vma_fault() to not take a global write fault flag for a range but instead rely on caller to populate HMM pfns array with proper fault flag ie HMM_PFN_VALID if driver want read fault for that address or HMM_PFN_VALID and HMM_PFN_WRITE for write. Moreover by setting HMM_PFN_DEVICE_PRIVATE the device driver can ask for device private memory to be migrated back to system memory through page fault. This is more flexible API and it better reflects how device handles and reports fault. Link: http://lkml.kernel.org/r/20180323005527.758-15-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
No functional change, just create one function to handle pmd and one to handle pte (hmm_vma_handle_pmd() and hmm_vma_handle_pte()). Link: http://lkml.kernel.org/r/20180323005527.758-14-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
Move hmm_pfns_clear() closer to where it is used to make it clear it is not use by page table walkers. Link: http://lkml.kernel.org/r/20180323005527.758-13-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
Make naming consistent across code, DEVICE_PRIVATE is the name use outside HMM code so use that one. Link: http://lkml.kernel.org/r/20180323005527.758-12-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
There is no point in differentiating between a range for which there is not even a directory (and thus entries) and empty entry (pte_none() or pmd_none() returns true). Simply drop the distinction ie remove HMM_PFN_EMPTY flag and merge now duplicate hmm_vma_walk_hole() and hmm_vma_walk_clear() functions. Link: http://lkml.kernel.org/r/20180323005527.758-11-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
Special vma (one with any of the VM_SPECIAL flags) can not be access by device because there is no consistent model across device drivers on those vma and their backing memory. This patch directly use hmm_range struct for hmm_pfns_special() argument as it is always affecting the whole vma and thus the whole range. It also make behavior consistent after this patch both hmm_vma_fault() and hmm_vma_get_pfns() returns -EINVAL when facing such vma. Previously hmm_vma_fault() returned 0 and hmm_vma_get_pfns() return -EINVAL but both were filling the HMM pfn array with special entry. Link: http://lkml.kernel.org/r/20180323005527.758-10-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
All device driver we care about are using 64bits page table entry. In order to match this and to avoid useless define convert all HMM pfn to directly use uint64_t. It is a first step on the road to allow driver to directly use pfn value return by HMM (saving memory and CPU cycles use for conversion between the two). Link: http://lkml.kernel.org/r/20180323005527.758-9-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
Only peculiar architecture allow write without read thus assume that any valid pfn do allow for read. Note we do not care for write only because it does make sense with thing like atomic compare and exchange or any other operations that allow you to get the memory value through them. Link: http://lkml.kernel.org/r/20180323005527.758-8-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
Both hmm_vma_fault() and hmm_vma_get_pfns() were taking a hmm_range struct as parameter and were initializing that struct with others of their parameters. Have caller of those function do this as they are likely to already do and only pass this struct to both function this shorten function signature and make it easier in the future to add new parameters by simply adding them to the structure. Link: http://lkml.kernel.org/r/20180323005527.758-7-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
The private field of mm_walk struct point to an hmm_vma_walk struct and not to the hmm_range struct desired. Fix to get proper struct pointer. Link: http://lkml.kernel.org/r/20180323005527.758-6-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
This code was lost in translation at one point. This properly call mmu_notifier_unregister_no_release() once last user is gone. This fix the zombie mm_struct as without this patch we do not drop the refcount we have on it. Link: http://lkml.kernel.org/r/20180323005527.758-5-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ralph Campbell 提交于
hmm_mirror_register() registers a callback for when the CPU pagetable is modified. Normally, the device driver will call hmm_mirror_unregister() when the process using the device is finished. However, if the process exits uncleanly, the struct_mm can be destroyed with no warning to the device driver. Link: http://lkml.kernel.org/r/20180323005527.758-4-jglisse@redhat.comSigned-off-by: NRalph Campbell <rcampbell@nvidia.com> Signed-off-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
The #if/#else/#endif for IS_ENABLED(CONFIG_HMM) were wrong. Because of this after multiple include there was multiple definition of both hmm_mm_init() and hmm_mm_destroy() leading to build failure if HMM was enabled (CONFIG_HMM set). Link: http://lkml.kernel.org/r/20180323005527.758-3-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Acked-by: NBalbir Singh <bsingharora@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ralph Campbell 提交于
Update the documentation for HMM to fix minor typos and phrasing to be a bit more readable. Link: http://lkml.kernel.org/r/20180323005527.758-2-jglisse@redhat.comSigned-off-by: NRalph Campbell <rcampbell@nvidia.com> Signed-off-by: NJérôme Glisse <jglisse@redhat.com> Cc: Stephen Bates <sbates@raithlin.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Steven Rostedt 提交于
The trace event trace_mm_vmscan_lru_shrink_inactive() currently has 12 parameters! Seven of them are from the reclaim_stat structure. This structure is currently local to mm/vmscan.c. By moving it to the global vmstat.h header, we can also reference it from the vmscan tracepoints. In moving it, it brings down the overhead of passing so many arguments to the trace event. In the future, we may limit the number of arguments that a trace event may pass (ideally just 6, but more realistically it may be 8). Before this patch, the code to call the trace event is this: 0f 83 aa fe ff ff jae ffffffff811e6261 <shrink_inactive_list+0x1e1> 48 8b 45 a0 mov -0x60(%rbp),%rax 45 8b 64 24 20 mov 0x20(%r12),%r12d 44 8b 6d d4 mov -0x2c(%rbp),%r13d 8b 4d d0 mov -0x30(%rbp),%ecx 44 8b 75 cc mov -0x34(%rbp),%r14d 44 8b 7d c8 mov -0x38(%rbp),%r15d 48 89 45 90 mov %rax,-0x70(%rbp) 8b 83 b8 fe ff ff mov -0x148(%rbx),%eax 8b 55 c0 mov -0x40(%rbp),%edx 8b 7d c4 mov -0x3c(%rbp),%edi 8b 75 b8 mov -0x48(%rbp),%esi 89 45 80 mov %eax,-0x80(%rbp) 65 ff 05 e4 f7 e2 7e incl %gs:0x7ee2f7e4(%rip) # 15bd0 <__preempt_count> 48 8b 05 75 5b 13 01 mov 0x1135b75(%rip),%rax # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28> 48 85 c0 test %rax,%rax 74 72 je ffffffff811e646a <shrink_inactive_list+0x3ea> 48 89 c3 mov %rax,%rbx 4c 8b 10 mov (%rax),%r10 89 f8 mov %edi,%eax 48 89 85 68 ff ff ff mov %rax,-0x98(%rbp) 89 f0 mov %esi,%eax 48 89 85 60 ff ff ff mov %rax,-0xa0(%rbp) 89 c8 mov %ecx,%eax 48 89 85 78 ff ff ff mov %rax,-0x88(%rbp) 89 d0 mov %edx,%eax 48 89 85 70 ff ff ff mov %rax,-0x90(%rbp) 8b 45 8c mov -0x74(%rbp),%eax 48 8b 7b 08 mov 0x8(%rbx),%rdi 48 83 c3 18 add $0x18,%rbx 50 push %rax 41 54 push %r12 41 55 push %r13 ff b5 78 ff ff ff pushq -0x88(%rbp) 41 56 push %r14 41 57 push %r15 ff b5 70 ff ff ff pushq -0x90(%rbp) 4c 8b 8d 68 ff ff ff mov -0x98(%rbp),%r9 4c 8b 85 60 ff ff ff mov -0xa0(%rbp),%r8 48 8b 4d 98 mov -0x68(%rbp),%rcx 48 8b 55 90 mov -0x70(%rbp),%rdx 8b 75 80 mov -0x80(%rbp),%esi 41 ff d2 callq *%r10 After the patch: 0f 83 a8 fe ff ff jae ffffffff811e626d <shrink_inactive_list+0x1cd> 8b 9b b8 fe ff ff mov -0x148(%rbx),%ebx 45 8b 64 24 20 mov 0x20(%r12),%r12d 4c 8b 6d a0 mov -0x60(%rbp),%r13 65 ff 05 f5 f7 e2 7e incl %gs:0x7ee2f7f5(%rip) # 15bd0 <__preempt_count> 4c 8b 35 86 5b 13 01 mov 0x1135b86(%rip),%r14 # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28> 4d 85 f6 test %r14,%r14 74 2a je ffffffff811e6411 <shrink_inactive_list+0x371> 49 8b 06 mov (%r14),%rax 8b 4d 8c mov -0x74(%rbp),%ecx 49 8b 7e 08 mov 0x8(%r14),%rdi 49 83 c6 18 add $0x18,%r14 4c 89 ea mov %r13,%rdx 45 89 e1 mov %r12d,%r9d 4c 8d 45 b8 lea -0x48(%rbp),%r8 89 de mov %ebx,%esi 51 push %rcx 48 8b 4d 98 mov -0x68(%rbp),%rcx ff d0 callq *%rax Link: http://lkml.kernel.org/r/2559d7cb-ec60-1200-2362-04fa34fd02bb@fb.com Link: http://lkml.kernel.org/r/20180322121003.4177af15@gandalf.local.homeSigned-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Reported-by: NAlexei Starovoitov <ast@fb.com> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexei Starovoitov <ast@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Ryabinin 提交于
memcg reclaim may alter pgdat->flags based on the state of LRU lists in cgroup and its children. PGDAT_WRITEBACK may force kswapd to sleep congested_wait(), PGDAT_DIRTY may force kswapd to writeback filesystem pages. But the worst here is PGDAT_CONGESTED, since it may force all direct reclaims to stall in wait_iff_congested(). Note that only kswapd have powers to clear any of these bits. This might just never happen if cgroup limits configured that way. So all direct reclaims will stall as long as we have some congested bdi in the system. Leave all pgdat->flags manipulations to kswapd. kswapd scans the whole pgdat, only kswapd can clear pgdat->flags once node is balanced, thus it's reasonable to leave all decisions about node state to kswapd. Why only kswapd? Why not allow to global direct reclaim change these flags? It is because currently only kswapd can clear these flags. I'm less worried about the case when PGDAT_CONGESTED falsely not set, and more worried about the case when it falsely set. If direct reclaimer sets PGDAT_CONGESTED, do we have guarantee that after the congestion problem is sorted out, kswapd will be woken up and clear the flag? It seems like there is no such guarantee. E.g. direct reclaimers may eventually balance pgdat and kswapd simply won't wake up (see wakeup_kswapd()). Moving pgdat->flags manipulation to kswapd, means that cgroup2 recalim now loses its congestion throttling mechanism. Add per-cgroup congestion state and throttle cgroup2 reclaimers if memcg is in congestion state. Currently there is no need in per-cgroup PGDAT_WRITEBACK and PGDAT_DIRTY bits since they alter only kswapd behavior. The problem could be easily demonstrated by creating heavy congestion in one cgroup: echo "+memory" > /sys/fs/cgroup/cgroup.subtree_control mkdir -p /sys/fs/cgroup/congester echo 512M > /sys/fs/cgroup/congester/memory.max echo $$ > /sys/fs/cgroup/congester/cgroup.procs /* generate a lot of diry data on slow HDD */ while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done & .... while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done & and some job in another cgroup: mkdir /sys/fs/cgroup/victim echo 128M > /sys/fs/cgroup/victim/memory.max # time cat /dev/sda > /dev/null real 10m15.054s user 0m0.487s sys 1m8.505s According to the tracepoint in wait_iff_congested(), the 'cat' spent 50% of the time sleeping there. With the patch, cat don't waste time anymore: # time cat /dev/sda > /dev/null real 5m32.911s user 0m0.411s sys 0m56.664s [aryabinin@virtuozzo.com: congestion state should be per-node] Link: http://lkml.kernel.org/r/20180406135215.10057-1-aryabinin@virtuozzo.com [ayabinin@virtuozzo.com: make congestion state per-cgroup-per-node instead of just per-cgroup[ Link: http://lkml.kernel.org/r/20180406180254.8970-2-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20180323152029.11084-5-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Ryabinin 提交于
We have separate LRU list for each memory cgroup. Memory reclaim iterates over cgroups and calls shrink_inactive_list() every inactive LRU list. Based on the state of a single LRU shrink_inactive_list() may flag the whole node as dirty,congested or under writeback. This is obviously wrong and hurtful. It's especially hurtful when we have possibly small congested cgroup in system. Than *all* direct reclaims waste time by sleeping in wait_iff_congested(). And the more memcgs in the system we have the longer memory allocation stall is, because wait_iff_congested() called on each lru-list scan. Sum reclaim stats across all visited LRUs on node and flag node as dirty, congested or under writeback based on that sum. Also call congestion_wait(), wait_iff_congested() once per pgdat scan, instead of once per lru-list scan. This only fixes the problem for global reclaim case. Per-cgroup reclaim may alter global pgdat flags too, which is wrong. But that is separate issue and will be addressed in the next patch. This change will not have any effect on a systems with all workload concentrated in a single cgroup. [aryabinin@virtuozzo.com: check nr_writeback against all nr_taken, not just file] Link: http://lkml.kernel.org/r/20180406180254.8970-1-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20180323152029.11084-4-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Ryabinin 提交于
Only kswapd can have non-zero nr_immediate, and current_may_throttle() is always true for kswapd (PF_LESS_THROTTLE bit is never set) thus it's enough to check stat.nr_immediate only. Link: http://lkml.kernel.org/r/20180315164553.17856-4-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Ryabinin 提交于
Update some comments that became stale since transiton from per-zone to per-node reclaim. Link: http://lkml.kernel.org/r/20180315164553.17856-2-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roman Gushchin 提交于
Indirectly reclaimable memory can consume a significant part of total memory and it's actually reclaimable (it will be released under actual memory pressure). So, the overcommit logic should treat it as free. Otherwise, it's possible to cause random system-wide memory allocation failures by consuming a significant amount of memory by indirectly reclaimable memory, e.g. dentry external names. If overcommit policy GUESS is used, it might be used for denial of service attack under some conditions. The following program illustrates the approach. It causes the kernel to allocate an unreclaimable kmalloc-256 chunk for each stat() call, so that at some point the overcommit logic may start blocking large allocation system-wide. int main() { char buf[256]; unsigned long i; struct stat statbuf; buf[0] = '/'; for (i = 1; i < sizeof(buf); i++) buf[i] = '_'; for (i = 0; 1; i++) { sprintf(&buf[248], "%8lu", i); stat(buf, &statbuf); } return 0; } This patch in combination with related indirectly reclaimable memory patches closes this issue. Link: http://lkml.kernel.org/r/20180313130041.8078-1-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roman Gushchin 提交于
I received a report about suspicious growth of unreclaimable slabs on some machines. I've found that it happens on machines with low memory pressure, and these unreclaimable slabs are external names attached to dentries. External names are allocated using generic kmalloc() function, so they are accounted as unreclaimable. But they are held by dentries, which are reclaimable, and they will be reclaimed under the memory pressure. In particular, this breaks MemAvailable calculation, as it doesn't take unreclaimable slabs into account. This leads to a silly situation, when a machine is almost idle, has no memory pressure and therefore has a big dentry cache. And the resulting MemAvailable is too low to start a new workload. To address the issue, the NR_INDIRECTLY_RECLAIMABLE_BYTES counter is used to track the amount of memory, consumed by external names. The counter is increased in the dentry allocation path, if an external name structure is allocated; and it's decreased in the dentry freeing path. To reproduce the problem I've used the following Python script: import os for iter in range (0, 10000000): try: name = ("/some_long_name_%d" % iter) + "_" * 220 os.stat(name) except Exception: pass Without this patch: $ cat /proc/meminfo | grep MemAvailable MemAvailable: 7811688 kB $ python indirect.py $ cat /proc/meminfo | grep MemAvailable MemAvailable: 2753052 kB With the patch: $ cat /proc/meminfo | grep MemAvailable MemAvailable: 7809516 kB $ python indirect.py $ cat /proc/meminfo | grep MemAvailable MemAvailable: 7749144 kB [guro@fb.com: fix indirectly reclaimable memory accounting for CONFIG_SLOB] Link: http://lkml.kernel.org/r/20180312194140.19517-1-guro@fb.com [guro@fb.com: fix indirectly reclaimable memory accounting] Link: http://lkml.kernel.org/r/20180313125701.7955-1-guro@fb.com Link: http://lkml.kernel.org/r/20180305133743.12746-5-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-