1. 16 9月, 2019 1 次提交
  2. 12 9月, 2018 1 次提交
    • A
      KVM: PPC: Avoid marking DMA-mapped pages dirty in real mode · 425333bf
      Alexey Kardashevskiy 提交于
      At the moment the real mode handler of H_PUT_TCE calls iommu_tce_xchg_rm()
      which in turn reads the old TCE and if it was a valid entry, marks
      the physical page dirty if it was mapped for writing. Since it is in
      real mode, realmode_pfn_to_page() is used instead of pfn_to_page()
      to get the page struct. However SetPageDirty() itself reads the compound
      page head and returns a virtual address for the head page struct and
      setting dirty bit for that kills the system.
      
      This adds additional dirty bit tracking into the MM/IOMMU API for use
      in the real mode. Note that this does not change how VFIO and
      KVM (in virtual mode) set this bit. The KVM (real mode) changes include:
      - use the lowest bit of the cached host phys address to carry
      the dirty bit;
      - mark pages dirty when they are unpinned which happens when
      the preregistered memory is released which always happens in virtual
      mode;
      - add mm_iommu_ua_mark_dirty_rm() helper to set delayed dirty bit;
      - change iommu_tce_xchg_rm() to take the kvm struct for the mm to use
      in the new mm_iommu_ua_mark_dirty_rm() helper;
      - move iommu_tce_xchg_rm() to book3s_64_vio_hv.c (which is the only
      caller anyway) to reduce the real mode KVM and IOMMU knowledge
      across different subsystems.
      
      This removes realmode_pfn_to_page() as it is not used anymore.
      
      While we at it, remove some EXPORT_SYMBOL_GPL() as that code is for
      the real mode only and modules cannot call it anyway.
      Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru>
      Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      425333bf
  3. 01 8月, 2018 1 次提交
  4. 18 7月, 2018 1 次提交
    • A
      KVM: PPC: Check if IOMMU page is contained in the pinned physical page · 76fa4975
      Alexey Kardashevskiy 提交于
      A VM which has:
       - a DMA capable device passed through to it (eg. network card);
       - running a malicious kernel that ignores H_PUT_TCE failure;
       - capability of using IOMMU pages bigger that physical pages
      can create an IOMMU mapping that exposes (for example) 16MB of
      the host physical memory to the device when only 64K was allocated to the VM.
      
      The remaining 16MB - 64K will be some other content of host memory, possibly
      including pages of the VM, but also pages of host kernel memory, host
      programs or other VMs.
      
      The attacking VM does not control the location of the page it can map,
      and is only allowed to map as many pages as it has pages of RAM.
      
      We already have a check in drivers/vfio/vfio_iommu_spapr_tce.c that
      an IOMMU page is contained in the physical page so the PCI hardware won't
      get access to unassigned host memory; however this check is missing in
      the KVM fastpath (H_PUT_TCE accelerated code). We were lucky so far and
      did not hit this yet as the very first time when the mapping happens
      we do not have tbl::it_userspace allocated yet and fall back to
      the userspace which in turn calls VFIO IOMMU driver, this fails and
      the guest does not retry,
      
      This stores the smallest preregistered page size in the preregistered
      region descriptor and changes the mm_iommu_xxx API to check this against
      the IOMMU page size.
      
      This calculates maximum page size as a minimum of the natural region
      alignment and compound page size. For the page shift this uses the shift
      returned by find_linux_pte() which indicates how the page is mapped to
      the current userspace - if the page is huge and this is not a zero, then
      it is a leaf pte and the page is mapped within the range.
      
      Fixes: 121f80ba ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO")
      Cc: stable@vger.kernel.org # v4.12+
      Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru>
      Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      76fa4975
  5. 09 5月, 2018 1 次提交
  6. 30 3月, 2018 1 次提交
  7. 23 3月, 2018 1 次提交
  8. 20 1月, 2018 6 次提交
  9. 23 12月, 2017 1 次提交
    • T
      arch, mm: Allow arch_dup_mmap() to fail · c10e83f5
      Thomas Gleixner 提交于
      In order to sanitize the LDT initialization on x86 arch_dup_mmap() must be
      allowed to fail. Fix up all instances.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Andy Lutomirsky <luto@kernel.org>
      Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Borislav Petkov <bpetkov@suse.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: David Laight <David.Laight@aculab.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Eduardo Valentin <eduval@amazon.com>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: aliguori@amazon.com
      Cc: dan.j.williams@intel.com
      Cc: hughd@google.com
      Cc: keescook@google.com
      Cc: kirill.shutemov@linux.intel.com
      Cc: linux-mm@kvack.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      c10e83f5
  10. 06 11月, 2017 1 次提交
    • N
      powerpc/64s/radix: Fix process table entry cache invalidation · 30b49ec7
      Nicholas Piggin 提交于
      According to the architecture, the process table entry cache must be
      flushed with tlbie RIC=2.
      
      Currently the process table entry is set to invalid right before the
      PID is returned to the allocator, with no invalidation. This works on
      existing implementations that are known to not cache the process table
      entry for any except the current PIDR.
      
      It is architecturally correct and cleaner to invalidate with RIC=2
      after clearing the process table entry and before the PID is returned
      to the allocator. This can be done in arch_exit_mmap that runs before
      the final flush, and to ensure the final flush (fullmm) is always a
      RIC=2 variant.
      Signed-off-by: NNicholas Piggin <npiggin@gmail.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      30b49ec7
  11. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  12. 28 9月, 2017 1 次提交
    • F
      cxl: Enable global TLBIs for cxl contexts · 03b8abed
      Frederic Barrat 提交于
      The PSL and nMMU need to see all TLB invalidations for the memory
      contexts used on the adapter. For the hash memory model, it is done by
      making all TLBIs global as soon as the cxl driver is in use. For
      radix, we need something similar, but we can refine and only convert
      to global the invalidations for contexts actually used by the device.
      
      The new mm_context_add_copro() API increments the 'active_cpus' count
      for the contexts attached to the cxl adapter. As soon as there's more
      than 1 active cpu, the TLBIs for the context become global. Active cpu
      count must be decremented when detaching to restore locality if
      possible and to avoid overflowing the counter.
      
      The hash memory model support is somewhat limited, as we can't
      decrement the active cpus count when mm_context_remove_copro() is
      called, because we can't flush the TLB for a mm on hash. So TLBIs
      remain global on hash.
      Signed-off-by: NFrederic Barrat <fbarrat@linux.vnet.ibm.com>
      Fixes: f24be42a ("cxl: Add psl9 specific code")
      Tested-by: NAlistair Popple <alistair@popple.id.au>
      [mpe: Fold in updated comment on the barrier from Fred]
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      03b8abed
  13. 23 8月, 2017 4 次提交
  14. 18 8月, 2017 1 次提交
  15. 03 8月, 2017 1 次提交
  16. 26 7月, 2017 1 次提交
    • B
      powerpc/mm/radix: Workaround prefetch issue with KVM · a25bd72b
      Benjamin Herrenschmidt 提交于
      There's a somewhat architectural issue with Radix MMU and KVM.
      
      When coming out of a guest with AIL (Alternate Interrupt Location, ie,
      MMU enabled), we start executing hypervisor code with the PID register
      still containing whatever the guest has been using.
      
      The problem is that the CPU can (and will) then start prefetching or
      speculatively load from whatever host context has that same PID (if
      any), thus bringing translations for that context into the TLB, which
      Linux doesn't know about.
      
      This can cause stale translations and subsequent crashes.
      
      Fixing this in a way that is neither racy nor a huge performance
      impact is difficult. We could just make the host invalidations always
      use broadcast forms but that would hurt single threaded programs for
      example.
      
      We chose to fix it instead by partitioning the PID space between guest
      and host. This is possible because today Linux only use 19 out of the
      20 bits of PID space, so existing guests will work if we make the host
      use the top half of the 20 bits space.
      
      We additionally add support for a property to indicate to Linux the
      size of the PID register which will be useful if we eventually have
      processors with a larger PID space available.
      
      There is still an issue with malicious guests purposefully setting the
      PID register to a value in the hosts PID range. Hopefully future HW
      can prevent that, but in the meantime, we handle it with a pair of
      kludges:
      
       - On the way out of a guest, before we clear the current VCPU in the
         PACA, we check the PID and if it's outside of the permitted range
         we flush the TLB for that PID.
      
       - When context switching, if the mm is "new" on that CPU (the
         corresponding bit was set for the first time in the mm cpumask), we
         check if any sibling thread is in KVM (has a non-NULL VCPU pointer
         in the PACA). If that is the case, we also flush the PID for that
         CPU (core).
      
      This second part is needed to handle the case where a process is
      migrated (or starts a new pthread) on a sibling thread of the CPU
      coming out of KVM, as there's a window where stale translations can
      exist before we detect it and flush them out.
      
      A future optimization could be added by keeping track of whether the
      PID has ever been used and avoid doing that for completely fresh PIDs.
      We could similarily mark PIDs that have been the subject of a global
      invalidation as "fresh". But for now this will do.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      [mpe: Rework the asm to build with CONFIG_PPC_RADIX_MMU=n, drop
            unneeded include of kvm_book3s_asm.h]
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      a25bd72b
  17. 24 4月, 2017 1 次提交
    • D
      powerpc/mm: Ensure IRQs are off in switch_mm() · 9765ad13
      David Gibson 提交于
      powerpc expects IRQs to already be (soft) disabled when switch_mm() is
      called, as made clear in the commit message of 9c1e1052 ("powerpc: Allow
      perf_counters to access user memory at interrupt time").
      
      Aside from any race conditions that might exist between switch_mm() and an IRQ,
      there is also an unconditional hard_irq_disable() in switch_slb(). If that isn't
      followed at some point by an IRQ enable then interrupts will remain disabled
      until we return to userspace.
      
      It is true that when switch_mm() is called from the scheduler IRQs are off, but
      not when it's called by use_mm(). Looking closer we see that last year in commit
      f98db601 ("sched/core: Add switch_mm_irqs_off() and use it in the scheduler")
      this was made more explicit by the addition of switch_mm_irqs_off() which is now
      called by the scheduler, vs switch_mm() which is used by use_mm().
      
      Arguably it is a bug in use_mm() to call switch_mm() in a different context than
      it expects, but fixing that will take time.
      
      This was discovered recently when vhost started throwing warnings such as:
      
        BUG: sleeping function called from invalid context at kernel/mutex.c:578
        in_atomic(): 0, irqs_disabled(): 1, pid: 10768, name: vhost-10760
        no locks held by vhost-10760/10768.
        irq event stamp: 10
        hardirqs last  enabled at (9):  _raw_spin_unlock_irq+0x40/0x80
        hardirqs last disabled at (10): switch_slb+0x2e4/0x490
        softirqs last  enabled at (0):  copy_process+0x5e8/0x1260
        softirqs last disabled at (0):  (null)
        Call Trace:
          show_stack+0x88/0x390 (unreliable)
          dump_stack+0x30/0x44
          __might_sleep+0x1c4/0x2d0
          mutex_lock_nested+0x74/0x5c0
          cgroup_attach_task_all+0x5c/0x180
          vhost_attach_cgroups_work+0x58/0x80 [vhost]
          vhost_worker+0x24c/0x3d0 [vhost]
          kthread+0xec/0x100
          ret_from_kernel_thread+0x5c/0xd4
      
      Prior to commit 04b96e55 ("vhost: lockless enqueuing") (Aug 2016) the
      vhost_worker() would do a spin_unlock_irq() not long after calling use_mm(),
      which had the effect of reenabling IRQs. Since that commit removed the locking
      in vhost_worker() the body of the vhost_worker() loop now runs with interrupts
      off causing the warnings.
      
      This patch addresses the problem by making the powerpc code mirror the x86 code,
      ie. we disable interrupts in switch_mm(), and optimise the scheduler case by
      defining switch_mm_irqs_off().
      
      Cc: stable@vger.kernel.org # v4.7+
      Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au>
      [mpe: Flesh out/rewrite change log, add stable]
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      9765ad13
  18. 01 4月, 2017 1 次提交
    • A
      powerpc/pseries: Skip using reserved virtual address range · 82228e36
      Aneesh Kumar K.V 提交于
      Now that we use all the available virtual address range, we need to make
      sure we don't generate VSID such that it overlaps with the reserved vsid
      range. Reserved vsid range include the virtual address range used by the
      adjunct partition and also the VRMA virtual segment. We find the context
      value that can result in generating such a VSID and reserve it early in
      boot.
      
      We don't look at the adjunct range, because for now we disable the
      adjunct usage in a Linux LPAR via CAS interface.
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      [mpe: Rewrite hash__reserve_context_id(), move the rest into pseries]
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      82228e36
  19. 31 3月, 2017 1 次提交
  20. 27 3月, 2017 1 次提交
  21. 18 3月, 2017 1 次提交
  22. 02 12月, 2016 2 次提交
  23. 04 10月, 2016 1 次提交
  24. 29 9月, 2016 1 次提交
    • B
      KVM: PPC: Book3S HV: Migrate pinned pages out of CMA · 2e5bbb54
      Balbir Singh 提交于
      When PCI Device pass-through is enabled via VFIO, KVM-PPC will
      pin pages using get_user_pages_fast(). One of the downsides of
      the pinning is that the page could be in CMA region. The CMA
      region is used for other allocations like the hash page table.
      Ideally we want the pinned pages to be from non CMA region.
      
      This patch (currently only for KVM PPC with VFIO) forcefully
      migrates the pages out (huge pages are omitted for the moment).
      There are more efficient ways of doing this, but that might
      be elaborate and might impact a larger audience beyond just
      the kvm ppc implementation.
      
      The magic is in new_iommu_non_cma_page() which allocates the
      new page from a non CMA region.
      
      I've tested the patches lightly at my end. The full solution
      requires migration of THP pages in the CMA region. That work
      will be done incrementally on top of this.
      Signed-off-by: NBalbir Singh <bsingharora@gmail.com>
      Acked-by: NAlexey Kardashevskiy <aik@ozlabs.ru>
      [mpe: Merged via powerpc tree as that's where the changes are]
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      2e5bbb54
  25. 01 5月, 2016 2 次提交
  26. 19 2月, 2016 2 次提交
    • D
      mm/core, x86/mm/pkeys: Differentiate instruction fetches · d61172b4
      Dave Hansen 提交于
      As discussed earlier, we attempt to enforce protection keys in
      software.
      
      However, the code checks all faults to ensure that they are not
      violating protection key permissions.  It was assumed that all
      faults are either write faults where we check PKRU[key].WD (write
      disable) or read faults where we check the AD (access disable)
      bit.
      
      But, there is a third category of faults for protection keys:
      instruction faults.  Instruction faults never run afoul of
      protection keys because they do not affect instruction fetches.
      
      So, plumb the PF_INSTR bit down in to the
      arch_vma_access_permitted() function where we do the protection
      key checks.
      
      We also add a new FAULT_FLAG_INSTRUCTION.  This is because
      handle_mm_fault() is not passed the architecture-specific
      error_code where we keep PF_INSTR, so we need to encode the
      instruction fetch information in to the arch-generic fault
      flags.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dave Hansen <dave@sr71.net>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: linux-mm@kvack.org
      Link: http://lkml.kernel.org/r/20160212210224.96928009@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      d61172b4
    • D
      mm/core: Do not enforce PKEY permissions on remote mm access · 1b2ee126
      Dave Hansen 提交于
      We try to enforce protection keys in software the same way that we
      do in hardware.  (See long example below).
      
      But, we only want to do this when accessing our *own* process's
      memory.  If GDB set PKRU[6].AD=1 (disable access to PKEY 6), then
      tried to PTRACE_POKE a target process which just happened to have
      some mprotect_pkey(pkey=6) memory, we do *not* want to deny the
      debugger access to that memory.  PKRU is fundamentally a
      thread-local structure and we do not want to enforce it on access
      to _another_ thread's data.
      
      This gets especially tricky when we have workqueues or other
      delayed-work mechanisms that might run in a random process's context.
      We can check that we only enforce pkeys when operating on our *own* mm,
      but delayed work gets performed when a random user context is active.
      We might end up with a situation where a delayed-work gup fails when
      running randomly under its "own" task but succeeds when running under
      another process.  We want to avoid that.
      
      To avoid that, we use the new GUP flag: FOLL_REMOTE and add a
      fault flag: FAULT_FLAG_REMOTE.  They indicate that we are
      walking an mm which is not guranteed to be the same as
      current->mm and should not be subject to protection key
      enforcement.
      
      Thanks to Jerome Glisse for pointing out this scenario.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Chinner <dchinner@redhat.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: David Gibson <david@gibson.dropbear.id.au>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
      Cc: Dominik Vogt <vogt@linux.vnet.ibm.com>
      Cc: Eric B Munson <emunson@akamai.com>
      Cc: Geliang Tang <geliangtang@163.com>
      Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jason Low <jason.low2@hp.com>
      Cc: Jerome Marchand <jmarchan@redhat.com>
      Cc: Joerg Roedel <joro@8bytes.org>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Matthew Wilcox <willy@linux.intel.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Michael Ellerman <mpe@ellerman.id.au>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Mikulas Patocka <mpatocka@redhat.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Shachar Raindel <raindel@mellanox.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Xie XiuQi <xiexiuqi@huawei.com>
      Cc: iommu@lists.linux-foundation.org
      Cc: linux-arch@vger.kernel.org
      Cc: linux-kernel@vger.kernel.org
      Cc: linux-mm@kvack.org
      Cc: linux-s390@vger.kernel.org
      Cc: linuxppc-dev@lists.ozlabs.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      1b2ee126
  27. 18 2月, 2016 1 次提交
    • D
      mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys · 33a709b2
      Dave Hansen 提交于
      Today, for normal faults and page table walks, we check the VMA
      and/or PTE to ensure that it is compatible with the action.  For
      instance, if we get a write fault on a non-writeable VMA, we
      SIGSEGV.
      
      We try to do the same thing for protection keys.  Basically, we
      try to make sure that if a user does this:
      
      	mprotect(ptr, size, PROT_NONE);
      	*ptr = foo;
      
      they see the same effects with protection keys when they do this:
      
      	mprotect(ptr, size, PROT_READ|PROT_WRITE);
      	set_pkey(ptr, size, 4);
      	wrpkru(0xffffff3f); // access disable pkey 4
      	*ptr = foo;
      
      The state to do that checking is in the VMA, but we also
      sometimes have to do it on the page tables only, like when doing
      a get_user_pages_fast() where we have no VMA.
      
      We add two functions and expose them to generic code:
      
      	arch_pte_access_permitted(pte_flags, write)
      	arch_vma_access_permitted(vma, write)
      
      These are, of course, backed up in x86 arch code with checks
      against the PTE or VMA's protection key.
      
      But, there are also cases where we do not want to respect
      protection keys.  When we ptrace(), for instance, we do not want
      to apply the tracer's PKRU permissions to the PTEs from the
      process being traced.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Hansen <dave@sr71.net>
      Cc: David Gibson <david@gibson.dropbear.id.au>
      Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
      Cc: David Vrabel <david.vrabel@citrix.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
      Cc: Dominik Vogt <vogt@linux.vnet.ibm.com>
      Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Jason Low <jason.low2@hp.com>
      Cc: Jerome Marchand <jmarchan@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Matthew Wilcox <willy@linux.intel.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Michael Ellerman <mpe@ellerman.id.au>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Mikulas Patocka <mpatocka@redhat.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Shachar Raindel <raindel@mellanox.com>
      Cc: Stephen Smalley <sds@tycho.nsa.gov>
      Cc: Toshi Kani <toshi.kani@hpe.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: linux-arch@vger.kernel.org
      Cc: linux-kernel@vger.kernel.org
      Cc: linux-mm@kvack.org
      Cc: linux-s390@vger.kernel.org
      Cc: linuxppc-dev@lists.ozlabs.org
      Link: http://lkml.kernel.org/r/20160212210219.14D5D715@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      33a709b2
  28. 25 6月, 2015 1 次提交
  29. 11 6月, 2015 1 次提交
    • A
      powerpc/mmu: Add userspace-to-physical addresses translation cache · 15b244a8
      Alexey Kardashevskiy 提交于
      We are adding support for DMA memory pre-registration to be used in
      conjunction with VFIO. The idea is that the userspace which is going to
      run a guest may want to pre-register a user space memory region so
      it all gets pinned once and never goes away. Having this done,
      a hypervisor will not have to pin/unpin pages on every DMA map/unmap
      request. This is going to help with multiple pinning of the same memory.
      
      Another use of it is in-kernel real mode (mmu off) acceleration of
      DMA requests where real time translation of guest physical to host
      physical addresses is non-trivial and may fail as linux ptes may be
      temporarily invalid. Also, having cached host physical addresses
      (compared to just pinning at the start and then walking the page table
      again on every H_PUT_TCE), we can be sure that the addresses which we put
      into TCE table are the ones we already pinned.
      
      This adds a list of memory regions to mm_context_t. Each region consists
      of a header and a list of physical addresses. This adds API to:
      1. register/unregister memory regions;
      2. do final cleanup (which puts all pre-registered pages);
      3. do userspace to physical address translation;
      4. manage usage counters; multiple registration of the same memory
      is allowed (once per container).
      
      This implements 2 counters per registered memory region:
      - @mapped: incremented on every DMA mapping; decremented on unmapping;
      initialized to 1 when a region is just registered; once it becomes zero,
      no more mappings allowe;
      - @used: incremented on every "register" ioctl; decremented on
      "unregister"; unregistration is allowed for DMA mapped regions unless
      it is the very last reference. For the very last reference this checks
      that the region is still mapped and returns -EBUSY so the userspace
      gets to know that memory is still pinned and unregistration needs to
      be retried; @used remains 1.
      
      Host physical addresses are stored in vmalloc'ed array. In order to
      access these in the real mode (mmu off), there is a real_vmalloc_addr()
      helper. In-kernel acceleration patchset will move it from KVM to MMU code.
      Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru>
      Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au>
      Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      15b244a8