- 02 10月, 2014 3 次提交
-
-
由 David Sterba 提交于
We know the tree block size, no need to pass it around. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
Errors in readahead are not fatal and ignored elsewhere in the code. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
The parent_transid parameter has been unused since its introduction in ca7a79ad ("Pass down the expected generation number when reading tree blocks"). In reada_tree_block, it was even wrongly set to leafsize. Transid check is done in the proper read and readahead ignores errors. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
- 23 9月, 2014 2 次提交
-
-
由 Josef Bacik 提交于
Trying to reproduce a log enospc bug I hit a panic in the async reclaim code during log replay. This is because we use fs_info->fs_root as our root for shrinking and such. Technically we can use whatever root we want, but let's just not allow async reclaim while we're doing log replay. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
One problem that has plagued us is that a user will use up all of his space with data, remove a bunch of that data, and then try to create a bunch of small files and run out of space. This happens because all the chunks were allocated for data since the metadata requirements were so low. But now there's a bunch of empty data block groups and not enough metadata space to do anything. This patch solves this problem by automatically deleting empty block groups. If we notice the used count go down to 0 when deleting or on mount notice that a block group has a used count of 0 then we will queue it to be deleted. When the cleaner thread runs we will double check to make sure the block group is still empty and then we will delete it. This patch has the side effect of no longer having a bunch of BUG_ON()'s in the chunk delete code, which will be helpful for both this and relocate. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 18 9月, 2014 5 次提交
-
-
由 Miao Xie 提交于
There were several problems about chunk mutex usage: - Lock chunk mutex when updating metadata. It would cause the nested deadlock because updating metadata might need allocate new chunks that need acquire chunk mutex. We remove chunk mutex at this case, because b-tree lock and other lock mechanism can help us. - ABBA deadlock occured between device_list_mutex and chunk_mutex. When we update device status, we must acquire device_list_mutex at the beginning, and then we might get chunk_mutex during the device status update because we need allocate new chunks for metadata COW. But at most place, we acquire chunk_mutex at first and then acquire device list mutex. We need change the lock order. - Some place we needn't acquire chunk_mutex. For example we needn't get chunk_mutex when we free a empty seed fs_devices structure. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Liu Bo 提交于
One of my tests shows that when we really don't have space to reclaim via flush_space and also run out of space, this async reclaim work loops on adding itself into the workqueue and keeps writing something to disk according to iostat's results, and these writes mainly comes from commit_transaction which writes super_block. This's unacceptable as it can be bad to disks, especially memeory storages. This adds a check to avoid the above situation. Signed-off-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
Only wraps the ALIGN macro. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
The nodesize and leafsize were never of different values. Unify the usage and make nodesize the one. Cleanup the redundant checks and helpers. Shaves a few bytes from .text: text data bss dec hex filename 852418 24560 23112 900090 dbbfa btrfs.ko.before 851074 24584 23112 898770 db6d2 btrfs.ko.after Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
btrfs_set_key_type and btrfs_key_type are used inconsistently along with open coded variants. Other members of btrfs_key are accessed directly without any helpers anyway. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
- 24 8月, 2014 1 次提交
-
-
由 Liu Bo 提交于
This has been reported and discussed for a long time, and this hang occurs in both 3.15 and 3.16. Btrfs now migrates to use kernel workqueue, but it introduces this hang problem. Btrfs has a kind of work queued as an ordered way, which means that its ordered_func() must be processed in the way of FIFO, so it usually looks like -- normal_work_helper(arg) work = container_of(arg, struct btrfs_work, normal_work); work->func() <---- (we name it work X) for ordered_work in wq->ordered_list ordered_work->ordered_func() ordered_work->ordered_free() The hang is a rare case, first when we find free space, we get an uncached block group, then we go to read its free space cache inode for free space information, so it will file a readahead request btrfs_readpages() for page that is not in page cache __do_readpage() submit_extent_page() btrfs_submit_bio_hook() btrfs_bio_wq_end_io() submit_bio() end_workqueue_bio() <--(ret by the 1st endio) queue a work(named work Y) for the 2nd also the real endio() So the hang occurs when work Y's work_struct and work X's work_struct happens to share the same address. A bit more explanation, A,B,C -- struct btrfs_work arg -- struct work_struct kthread: worker_thread() pick up a work_struct from @worklist process_one_work(arg) worker->current_work = arg; <-- arg is A->normal_work worker->current_func(arg) normal_work_helper(arg) A = container_of(arg, struct btrfs_work, normal_work); A->func() A->ordered_func() A->ordered_free() <-- A gets freed B->ordered_func() submit_compressed_extents() find_free_extent() load_free_space_inode() ... <-- (the above readhead stack) end_workqueue_bio() btrfs_queue_work(work C) B->ordered_free() As if work A has a high priority in wq->ordered_list and there are more ordered works queued after it, such as B->ordered_func(), its memory could have been freed before normal_work_helper() returns, which means that kernel workqueue code worker_thread() still has worker->current_work pointer to be work A->normal_work's, ie. arg's address. Meanwhile, work C is allocated after work A is freed, work C->normal_work and work A->normal_work are likely to share the same address(I confirmed this with ftrace output, so I'm not just guessing, it's rare though). When another kthread picks up work C->normal_work to process, and finds our kthread is processing it(see find_worker_executing_work()), it'll think work C as a collision and skip then, which ends up nobody processing work C. So the situation is that our kthread is waiting forever on work C. Besides, there're other cases that can lead to deadlock, but the real problem is that all btrfs workqueue shares one work->func, -- normal_work_helper, so this makes each workqueue to have its own helper function, but only a wraper pf normal_work_helper. With this patch, I no long hit the above hang. Signed-off-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 19 8月, 2014 1 次提交
-
-
由 Miao Xie 提交于
The original code allocated new chunks by the number of the writable devices and missing devices to make sure that any RAID levels on a degraded FS continue to be honored, but it introduced a problem that it stopped us to allocating new chunks, the steps to reproduce is following: # mkfs.btrfs -m raid1 -d raid1 -f <dev0> <dev1> # mkfs.btrfs -f <dev1> //Removing <dev1> from the original fs # mount -o degraded <dev0> <mnt> # dd if=/dev/null of=<mnt>/tmpfile bs=1M It is because we allocate new chunks only on the writable devices, if we take the number of missing devices into account, and want to allocate new chunks with higher RAID level, we will fail becaue we don't have enough writable device. Fix it by ignoring the number of missing devices when allocating new chunks. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 15 8月, 2014 2 次提交
-
-
由 Mark Fasheh 提交于
During its tree walk, btrfs_drop_snapshot() will skip any shared subtrees it encounters. This is incorrect when we have qgroups turned on as those subtrees need to have their contents accounted. In particular, the case we're concerned with is when removing our snapshot root leaves the subtree with only one root reference. In those cases we need to find the last remaining root and add each extent in the subtree to the corresponding qgroup exclusive counts. This patch implements the shared subtree walk and a new qgroup operation, BTRFS_QGROUP_OPER_SUB_SUBTREE. When an operation of this type is encountered during qgroup accounting, we search for any root references to that extent and in the case that we find only one reference left, we go ahead and do the math on it's exclusive counts. Signed-off-by: NMark Fasheh <mfasheh@suse.de> Reviewed-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
Before I extended the no_quota arg to btrfs_dec/inc_ref because I didn't understand how snapshot delete was using it and assumed that we needed the quota operations there. With Mark's work this has turned out to be not the case, we _always_ need to use no_quota for btrfs_dec/inc_ref, so just drop the argument and make __btrfs_mod_ref call it's process function with no_quota set always. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 03 7月, 2014 1 次提交
-
-
由 Liu Bo 提交于
This percpu counter @total_bytes_pinned is introduced to skip unnecessary operations of 'commit transaction', it accounts for those space we may free but are stuck in delayed refs. And we zero out @space_info->total_bytes_pinned every transaction period so we have a better idea of how much space we'll actually free up by committing this transaction. However, we do the 'zero out' part a little earlier, before we actually unpin space, so we end up returning ENOSPC when we actually have free space that's just unpinned from committing transaction. xfstests/generic/074 complained then. This fixes it by actually accounting the percpu pinned number when 'unpin', and since it's protected by space_info->lock, the race is gone now. Signed-off-by: NLiu Bo <bo.li.liu@oracle.com> Reviewed-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 20 6月, 2014 1 次提交
-
-
由 Miao Xie 提交于
When we mounted the filesystem after the crash, we got the following message: BTRFS error (device xxx): block group xxxx has wrong amount of free space BTRFS error (device xxx): failed to load free space cache for block group xxx It is because we didn't update the metadata of the allocated space (in extent tree) until the file data was written into the disk. During this time, there was no information about the allocated spaces in either the extent tree nor the free space cache. when we wrote out the free space cache at this time (commit transaction), those spaces were lost. In fact, only the free space that is used to store the file data had this problem, the others didn't because the metadata of them is updated in the same transaction context. There are many methods which can fix the above problem - track the allocated space, and write it out when we write out the free space cache - account the size of the allocated space that is used to store the file data, if the size is not zero, don't write out the free space cache. The first one is complex and may make the performance drop down. This patch chose the second method, we use a per-block-group variant to account the size of that allocated space. Besides that, we also introduce a per-block-group read-write semaphore to avoid the race between the allocation and the free space cache write out. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 10 6月, 2014 9 次提交
-
-
由 Jeff Mahoney 提交于
We are currently allocating space_info objects in an array when we allocate space_info. When a user does something like: # btrfs balance start -mconvert=raid1 -dconvert=raid1 /mnt # btrfs balance start -mconvert=single -dconvert=single /mnt -f # btrfs balance start -mconvert=raid1 -dconvert=raid1 / We can end up with memory corruption since the kobject hasn't been reinitialized properly and the name pointer was left set. The rationale behind allocating them statically was to avoid creating a separate kobject container that just contained the raid type. It used the index in the array to determine the index. Ultimately, though, this wastes more memory than it saves in all but the most complex scenarios and introduces kobject lifetime questions. This patch allocates the kobjects dynamically instead. Note that we also remove the kobject_get/put of the parent kobject since kobject_add and kobject_del do that internally. Signed-off-by: NJeff Mahoney <jeffm@suse.com> Reported-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Chris Mason 提交于
Delayed extent operations are triggered during transaction commits. The goal is to queue up a healthly batch of changes to the extent allocation tree and run through them in bulk. This farms them off to async helper threads. The goal is to have the bulk of the delayed operations being done in the background, but this is also important to limit our stack footprint. Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
I've noticed an extra line after "use no compression", but search revealed much more in messages of more critical levels and rare errors. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
This exercises the various parts of the new qgroup accounting code. We do some basic stuff and do some things with the shared refs to make sure all that code works. I had to add a bunch of infrastructure because I needed to be able to insert items into a fake tree without having to do all the hard work myself, hopefully this will be usefull in the future. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Wang Shilong 提交于
We hit something like the following function call flows: |->run_delalloc_range() |->btrfs_join_transaction() |->cow_file_range() |->btrfs_join_transaction() |->find_free_extent() |->btrfs_join_transaction() Trace infomation can be seen as: [ 7411.127040] ------------[ cut here ]------------ [ 7411.127060] WARNING: CPU: 0 PID: 11557 at fs/btrfs/transaction.c:383 start_transaction+0x561/0x580 [btrfs]() [ 7411.127079] CPU: 0 PID: 11557 Comm: kworker/u8:9 Tainted: G O 3.13.0+ #4 [ 7411.127080] Hardware name: LENOVO QiTianM4350/ , BIOS F1KT52AUS 05/24/2013 [ 7411.127085] Workqueue: writeback bdi_writeback_workfn (flush-btrfs-5) [ 7411.127092] Call Trace: [ 7411.127097] [<ffffffff815b87b0>] dump_stack+0x45/0x56 [ 7411.127101] [<ffffffff81051ffd>] warn_slowpath_common+0x7d/0xa0 [ 7411.127102] [<ffffffff810520da>] warn_slowpath_null+0x1a/0x20 [ 7411.127109] [<ffffffffa0444fb1>] start_transaction+0x561/0x580 [btrfs] [ 7411.127115] [<ffffffffa0445027>] btrfs_join_transaction+0x17/0x20 [btrfs] [ 7411.127120] [<ffffffffa0431c91>] find_free_extent+0xa21/0xb50 [btrfs] [ 7411.127126] [<ffffffffa0431f68>] btrfs_reserve_extent+0xa8/0x1a0 [btrfs] [ 7411.127131] [<ffffffffa04322ce>] btrfs_alloc_free_block+0xee/0x440 [btrfs] [ 7411.127137] [<ffffffffa043bd6e>] ? btree_set_page_dirty+0xe/0x10 [btrfs] [ 7411.127142] [<ffffffffa041da51>] __btrfs_cow_block+0x121/0x530 [btrfs] [ 7411.127146] [<ffffffffa041dfff>] btrfs_cow_block+0x11f/0x1c0 [btrfs] [ 7411.127151] [<ffffffffa0421b74>] btrfs_search_slot+0x1d4/0x9c0 [btrfs] [ 7411.127157] [<ffffffffa0438567>] btrfs_lookup_file_extent+0x37/0x40 [btrfs] [ 7411.127163] [<ffffffffa0456bfc>] __btrfs_drop_extents+0x16c/0xd90 [btrfs] [ 7411.127169] [<ffffffffa0444ae3>] ? start_transaction+0x93/0x580 [btrfs] [ 7411.127171] [<ffffffff811663e2>] ? kmem_cache_alloc+0x132/0x140 [ 7411.127176] [<ffffffffa041cd9a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs] [ 7411.127182] [<ffffffffa044aa61>] cow_file_range_inline+0x181/0x2e0 [btrfs] [ 7411.127187] [<ffffffffa044aead>] cow_file_range+0x2ed/0x440 [btrfs] [ 7411.127194] [<ffffffffa0464d7f>] ? free_extent_buffer+0x4f/0xb0 [btrfs] [ 7411.127200] [<ffffffffa044b38f>] run_delalloc_nocow+0x38f/0xa60 [btrfs] [ 7411.127207] [<ffffffffa0461600>] ? test_range_bit+0x30/0x180 [btrfs] [ 7411.127212] [<ffffffffa044bd48>] run_delalloc_range+0x2e8/0x350 [btrfs] [ 7411.127219] [<ffffffffa04618f9>] ? find_lock_delalloc_range+0x1a9/0x1e0 [btrfs] [ 7411.127222] [<ffffffff812a1e71>] ? blk_queue_bio+0x2c1/0x330 [ 7411.127228] [<ffffffffa0462ad4>] __extent_writepage+0x2f4/0x760 [btrfs] Here we fix it by avoiding joining transaction again if we have held a transaction handle when allocating chunk in find_free_extent(). Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
Before applying this patch, the task had to reclaim the metadata space by itself if the metadata space was not enough. And When the task started the space reclamation, all the other tasks which wanted to reserve the metadata space were blocked. At some cases, they would be blocked for a long time, it made the performance fluctuate wildly. So we introduce the background metadata space reclamation, when the space is about to be exhausted, we insert a reclaim work into the workqueue, the worker of the workqueue helps us to reclaim the reserved space at the background. By this way, the tasks needn't reclaim the space by themselves at most cases, and even if the tasks have to reclaim the space or are blocked for the space reclamation, they will get enough space more quickly. Here is my test result(Tested by compilebench): Memory: 2GB CPU: 2Cores * 1CPU Partition: 40GB(SSD) Test command: # compilebench -D <mnt> -m Without this patch: intial create total runs 30 avg 54.36 MB/s (user 0.52s sys 2.44s) compile total runs 30 avg 123.72 MB/s (user 0.13s sys 1.17s) read compiled tree total runs 3 avg 81.15 MB/s (user 0.74s sys 4.89s) delete compiled tree total runs 30 avg 5.32 seconds (user 0.35s sys 4.37s) With this patch: intial create total runs 30 avg 59.80 MB/s (user 0.52s sys 2.53s) compile total runs 30 avg 151.44 MB/s (user 0.13s sys 1.11s) read compiled tree total runs 3 avg 83.25 MB/s (user 0.76s sys 4.91s) delete compiled tree total runs 30 avg 5.29 seconds (user 0.34s sys 4.34s) Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 25 4月, 2014 2 次提交
-
-
由 Filipe Manana 提交于
If we had to retry on the profiles seqlock (due to a concurrent write), we would set bits on the input flags that corresponded both to the current profile and to previous values of the profile. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
If skinny metadata is enabled and our first tree search fails to find a skinny extent item, we may repeat a tree search for a "fat" extent item (if the previous item in the leaf is not the "fat" extent we're looking for). However we were not setting the new key's objectid to the right value, as we previously used the same key variable to peek at the previous item in the leaf, which has a different objectid. So just set the right objectid to avoid modifying/deleting a wrong item if we repeat the tree search. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 08 4月, 2014 2 次提交
-
-
由 Josef Bacik 提交于
I'm not sure why we weren't aborting here in the first place, it is obviously a bad time from the fact that we print the leaf and yell loudly about it. Fix this up, otherwise we panic because our path could be pointing into oblivion. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Jeff Mahoney 提交于
When encountering memory pressure, testers have run into the following lockdep warning. It was caused by __link_block_group calling kobject_add with the groups_sem held. kobject_add calls kvasprintf with GFP_KERNEL, which gets us into reclaim context. The kobject doesn't actually need to be added under the lock -- it just needs to ensure that it's only added for the first block group to be linked. ========================================================= [ INFO: possible irq lock inversion dependency detected ] 3.14.0-rc8-default #1 Not tainted --------------------------------------------------------- kswapd0/169 just changed the state of lock: (&delayed_node->mutex){+.+.-.}, at: [<ffffffffa018baea>] __btrfs_release_delayed_node+0x3a/0x200 [btrfs] but this lock took another, RECLAIM_FS-unsafe lock in the past: (&found->groups_sem){+++++.} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&found->groups_sem); local_irq_disable(); lock(&delayed_node->mutex); lock(&found->groups_sem); <Interrupt> lock(&delayed_node->mutex); *** DEADLOCK *** 2 locks held by kswapd0/169: #0: (shrinker_rwsem){++++..}, at: [<ffffffff81159e8a>] shrink_slab+0x3a/0x160 #1: (&type->s_umount_key#27){++++..}, at: [<ffffffff811bac6f>] grab_super_passive+0x3f/0x90 Signed-off-by: NJeff Mahoney <jeffm@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 07 4月, 2014 2 次提交
-
-
由 Josef Bacik 提交于
Lets try this again. We can deadlock the box if we send on a box and try to write onto the same fs with the app that is trying to listen to the send pipe. This is because the writer could get stuck waiting for a transaction commit which is being blocked by the send. So fix this by making sure looking at the commit roots is always going to be consistent. We do this by keeping track of which roots need to have their commit roots swapped during commit, and then taking the commit_root_sem and swapping them all at once. Then make sure we take a read lock on the commit_root_sem in cases where we search the commit root to make sure we're always looking at a consistent view of the commit roots. Previously we had problems with this because we would swap a fs tree commit root and then swap the extent tree commit root independently which would cause the backref walking code to screw up sometimes. With this patch we no longer deadlock and pass all the weird send/receive corner cases. Thanks, Reportedy-by: NHugo Mills <hugo@carfax.org.uk> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
We could have possibly added an extent_op to the locked_ref while we dropped locked_ref->lock, so check for this case as well and loop around. Otherwise we could lose flag updates which would lead to extent tree corruption. Thanks, cc: stable@vger.kernel.org Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 11 3月, 2014 6 次提交
-
-
由 Miao Xie 提交于
We needn't flush all delalloc inodes when we doesn't get s_umount lock, or we would make the tasks wait for a long time. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com>
-
由 Miao Xie 提交于
generic/074 in xfstests failed sometimes because of the enospc error, the reason of this problem is that we just reclaimed the space we need from the reserved space for delalloc, and then tried to reserve the space, but if some task did no-flush reservation between the above reclamation and reservation, Task1 Task2 shrink_delalloc() reclaim 1 block (The space that can be reserved now is 1 block) do no-flush reservation reserve 1 block (The space that can be reserved now is 0 block) reserving 1 block failed the reservation of Task1 failed, but in fact, there was enough space to reserve if we could reclaim more space before. Fix this problem by the aggressive reclamation of the reserved delalloc metadata space. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com>
-
由 Miao Xie 提交于
The reason is: - The per-cpu counter has its own lock to protect itself. - Here we needn't get a exact value. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com>
-
由 Miao Xie 提交于
If the snapshot creation happened after the nocow write but before the dirty data flush, we would fail to flush the dirty data because of no space. So we must keep track of when those nocow write operations start and when they end, if there are nocow writers, the snapshot creators must wait. In order to implement this function, I introduce btrfs_{start, end}_nocow_write(), which is similar to mnt_{want,drop}_write(). These two functions are only used for nocow file write operations. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com>
-
由 Qu Wenruo 提交于
Since the "_struct" suffix is mainly used for distinguish the differnt btrfs_work between the original and the newly created one, there is no need using the suffix since all btrfs_workers are changed into btrfs_workqueue. Also this patch fixed some codes whose code style is changed due to the too long "_struct" suffix. Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com> Tested-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NJosef Bacik <jbacik@fb.com>
-
由 Qu Wenruo 提交于
Replace the fs_info->cache_workers with the newly created btrfs_workqueue. Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com> Tested-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NJosef Bacik <jbacik@fb.com>
-
- 09 2月, 2014 1 次提交
-
-
由 Josef Bacik 提交于
A user reported a 100% cpu hang with my new delayed ref code. Turns out I forgot to increase the count check when we can't run a delayed ref because of the tree mod log. If we can't run any delayed refs during this there is no point in continuing to look, and we need to break out. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 29 1月, 2014 2 次提交
-
-
由 Chris Mason 提交于
Our goto out should have gone a little farther. Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
We allocate the free space from the former block group, not the current one, so should use the former one to output the trace information. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-