- 04 6月, 2018 1 次提交
-
-
由 Al Viro 提交于
This reverts commit cab64df1. Having vfs_open() in some cases drop the reference to struct file combined with error = vfs_open(path, f, cred); if (error) { put_filp(f); return ERR_PTR(error); } return f; is flat-out wrong. It used to be error = vfs_open(path, f, cred); if (!error) { /* from now on we need fput() to dispose of f */ error = open_check_o_direct(f); if (error) { fput(f); f = ERR_PTR(error); } } else { put_filp(f); f = ERR_PTR(error); } and sure, having that open_check_o_direct() boilerplate gotten rid of is nice, but not that way... Worse, another call chain (via finish_open()) is FUBAR now wrt FILE_OPENED handling - in that case we get error returned, with file already hit by fput() *AND* FILE_OPENED not set. Guess what happens in path_openat(), when it hits if (!(opened & FILE_OPENED)) { BUG_ON(!error); put_filp(file); } The root cause of all that crap is that the callers of do_dentry_open() have no way to tell which way did it fail; while that could be fixed up (by passing something like int *opened to do_dentry_open() and have it marked if we'd called ->open()), it's probably much too late in the cycle to do so right now. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 4月, 2018 9 次提交
-
-
由 Dominik Brodowski 提交于
Using the ksys_ftruncate() wrapper allows us to get rid of in-kernel calls to the sys_ftruncate() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_ftruncate(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-interal do_fchownat() wrapper allows us to get rid of fs-internal calls to the sys_fchownat() syscall. Introducing the ksys_fchown() helper and the ksys_{,}chown() wrappers allows us to avoid the in-kernel calls to the sys_{,l,f}chown() syscalls. The ksys_ prefix denotes that these functions are meant as a drop-in replacement for the syscalls. In particular, they use the same calling convention as sys_{,l,f}chown(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-internal do_faccessat() helper allows us to get rid of fs-internal calls to the sys_faccessat() syscall. Introducing the ksys_access() wrapper allows us to avoid the in-kernel calls to the sys_access() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_access(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
fs: add ksys_fchmod() and do_fchmodat() helpers and ksys_chmod() wrapper; remove in-kernel calls to syscall Using the fs-internal do_fchmodat() helper allows us to get rid of fs-internal calls to the sys_fchmodat() syscall. Introducing the ksys_fchmod() helper and the ksys_chmod() wrapper allows us to avoid the in-kernel calls to the sys_fchmod() and sys_chmod() syscalls. The ksys_ prefix denotes that these functions are meant as a drop-in replacement for the syscalls. In particular, they use the same calling convention as sys_fchmod() and sys_chmod(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-internal do_linkat() helper allows us to get rid of fs-internal calls to the sys_linkat() syscall. Introducing the ksys_link() wrapper allows us to avoid the in-kernel calls to sys_link() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_link(). In the near future, the only fs-external user of ksys_link() should be converted to use vfs_link() instead. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-internal do_mknodat() helper allows us to get rid of fs-internal calls to the sys_mknodat() syscall. Introducing the ksys_mknod() wrapper allows us to avoid the in-kernel calls to sys_mknod() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_mknod(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-internal do_symlinkat() helper allows us to get rid of fs-internal calls to the sys_symlinkat() syscall. Introducing the ksys_symlink() wrapper allows us to avoid the in-kernel calls to the sys_symlink() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_symlink(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-internal do_mkdirat() helper allows us to get rid of fs-internal calls to the sys_mkdirat() syscall. Introducing the ksys_mkdir() wrapper allows us to avoid the in-kernel calls to the sys_mkdir() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_mkdir(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using this wrapper allows us to avoid the in-kernel calls to the sys_rmdir() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_rmdir(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
- 28 3月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
do_dentry_open is where we do the actual open of the file, so this is where we should do our O_DIRECT sanity check to cover all potential callers. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 10 11月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
And make it take a struct filename instead of a user pointer. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 05 9月, 2017 1 次提交
-
-
由 Miklos Szeredi 提交于
Problem with ioctl() is that it's a file operation, yet often used as an inode operation (i.e. modify the inode despite the file being opened for read-only). mnt_want_write_file() is used by filesystems in such cases to get write access on an arbitrary open file. Since overlayfs lets filesystems do all file operations, including ioctl, this can lead to mnt_want_write_file() returning OK for a lower file and modification of that lower file. This patch prevents modification by checking if the file is from an overlayfs lower layer and returning EPERM in that case. Need to introduce a mnt_want_write_file_path() variant that still does the old thing for inode operations that can do the copy up + modification correctly in such cases (fchown, fsetxattr, fremovexattr). This does not address the correctness of such ioctls on overlayfs (the correct way would be to copy up and attempt to perform ioctl on upper file). In theory this could be a regression. We very much hope that nobody is relying on such a hack in any sane setup. While this patch meddles in VFS code, it has no effect on non-overlayfs filesystems. Reported-by: N"zhangyi (F)" <yi.zhang@huawei.com> Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
- 02 9月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
When we introduced the bmap redo log items, we set MS_ACTIVE on the mountpoint and XFS_IRECOVERY on the inode to prevent unlinked inodes from being truncated prematurely during log recovery. This also had the effect of putting linked inodes on the lru instead of evicting them. Unfortunately, we neglected to find all those unreferenced lru inodes and evict them after finishing log recovery, which means that we leak them if anything goes wrong in the rest of xfs_mountfs, because the lru is only cleaned out on unmount. Therefore, evict unreferenced inodes in the lru list immediately after clearing MS_ACTIVE. Fixes: 17c12bcd ("xfs: when replaying bmap operations, don't let unlinked inodes get reaped") Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Cc: viro@ZenIV.linux.org.uk Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 30 4月, 2017 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 18 4月, 2017 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 31 1月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 06 12月, 2016 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 30 11月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
We want to use the per-sb completion workqueue from the new iomap direct I/O code. Signed-off-by: NChristoph Hellwig <hch@lst.de> Tested-by: NJens Axboe <axboe@fb.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 28 9月, 2016 1 次提交
-
-
由 Rasmus Villemoes 提交于
The actual definition in fs/nsfs.c is already const. Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 19 9月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
This allows the DAX code to use it. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 16 9月, 2016 1 次提交
-
-
由 Miklos Szeredi 提交于
On overlayfs relatime_need_update() needs inode times to be correct on overlay inode. But i_mtime and i_ctime are updated by filesystem code on underlying inode only, so they will be out-of-date on the overlay inode. This patch copies the times from the underlying inode if needed. This can't be done if called from RCU lookup (link following) but link m/ctime are not updated by fs, so this is all right. This patch doesn't change functionality for anything but overlayfs. Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
- 03 8月, 2016 1 次提交
-
-
由 Miklos Szeredi 提交于
Only used by the vfs. Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
- 21 6月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
Add infrastructure for multipage buffered writes. This is implemented using an main iterator that applies an actor function to a range that can be written. This infrastucture is used to implement a buffered write helper, one to zero file ranges and one to implement the ->page_mkwrite VM operations. All of them borrow a fair amount of code from fs/buffers. for now by using an internal version of __block_write_begin that gets passed an iomap and builds the corresponding buffer head. The file system is gets a set of paired ->iomap_begin and ->iomap_end calls which allow it to map/reserve a range and get a notification once the write code is finished with it. Based on earlier code from Dave Chinner. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBob Peterson <rpeterso@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 10 6月, 2016 1 次提交
-
-
由 Al Viro 提交于
d_walk() relies upon the tree not getting rearranged under it without rename_lock being touched. And we do grab rename_lock around the places that change the tree topology. Unfortunately, branch reordering is just as bad from d_walk() POV and we have two places that do it without touching rename_lock - one in handling of cursors (for ramfs-style directories) and another in autofs. autofs one is a separate story; this commit deals with the cursors. * mark cursor dentries explicitly at allocation time * make __dentry_kill() leave ->d_child.next pointing to the next non-cursor sibling, making sure that it won't be moved around unnoticed before the parent is relocked on ascend-to-parent path in d_walk(). * make d_walk() skip cursors explicitly; strictly speaking it's not necessary (all callbacks we pass to d_walk() are no-ops on cursors), but it makes analysis easier. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 31 3月, 2016 1 次提交
-
-
由 James Bottomley 提交于
I need an API that allows me to obtain a clone of the current file pointer to pass in to an exec handler. I've labelled this as an internal API because I can't see how it would be useful outside of the fs subsystem. The use case will be a persistent binfmt_misc handler. Signed-off-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Acked-by: NSerge Hallyn <serge.hallyn@canonical.com> Acked-by: NJan Kara <jack@suse.cz>
-
- 09 1月, 2016 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 04 1月, 2016 1 次提交
-
-
由 Al Viro 提交于
let it just return NULL, pointer to kernel copy or ERR_PTR(). Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 18 8月, 2015 2 次提交
-
-
由 Dave Chinner 提交于
There's a small consistency problem between the inode and writeback naming. Writeback calls the "for IO" inode queues b_io and b_more_io, but the inode calls these the "writeback list" or i_wb_list. This makes it hard to an new "under writeback" list to the inode, or call it an "under IO" list on the bdi because either way we'll have writeback on IO and IO on writeback and it'll just be confusing. I'm getting confused just writing this! So, rename the inode "for IO" list variable to i_io_list so we can add a new "writeback list" in a subsequent patch. Signed-off-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Reviewed-by: NJan Kara <jack@suse.cz> Reviewed-by: NChristoph Hellwig <hch@lst.de> Tested-by: NDave Chinner <dchinner@redhat.com>
-
由 Dave Chinner 提交于
The process of reducing contention on per-superblock inode lists starts with moving the locking to match the per-superblock inode list. This takes the global lock out of the picture and reduces the contention problems to within a single filesystem. This doesn't get rid of contention as the locks still have global CPU scope, but it does isolate operations on different superblocks form each other. Signed-off-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Reviewed-by: NJan Kara <jack@suse.cz> Reviewed-by: NChristoph Hellwig <hch@lst.de> Tested-by: NDave Chinner <dchinner@redhat.com>
-
- 19 6月, 2015 1 次提交
-
-
由 David Howells 提交于
Make file->f_path always point to the overlay dentry so that the path in /proc/pid/fd is correct and to ensure that label-based LSMs have access to the overlay as well as the underlay (path-based LSMs probably don't need it). Using my union testsuite to set things up, before the patch I see: [root@andromeda union-testsuite]# bash 5</mnt/a/foo107 [root@andromeda union-testsuite]# ls -l /proc/$$/fd/ ... lr-x------. 1 root root 64 Jun 5 14:38 5 -> /a/foo107 [root@andromeda union-testsuite]# stat /mnt/a/foo107 ... Device: 23h/35d Inode: 13381 Links: 1 ... [root@andromeda union-testsuite]# stat -L /proc/$$/fd/5 ... Device: 23h/35d Inode: 13381 Links: 1 ... After the patch: [root@andromeda union-testsuite]# bash 5</mnt/a/foo107 [root@andromeda union-testsuite]# ls -l /proc/$$/fd/ ... lr-x------. 1 root root 64 Jun 5 14:22 5 -> /mnt/a/foo107 [root@andromeda union-testsuite]# stat /mnt/a/foo107 ... Device: 23h/35d Inode: 40346 Links: 1 ... [root@andromeda union-testsuite]# stat -L /proc/$$/fd/5 ... Device: 23h/35d Inode: 40346 Links: 1 ... Note the change in where /proc/$$/fd/5 points to in the ls command. It was pointing to /a/foo107 (which doesn't exist) and now points to /mnt/a/foo107 (which is correct). The inode accessed, however, is the lower layer. The union layer is on device 25h/37d and the upper layer on 24h/36d. Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 23 2月, 2015 1 次提交
-
-
由 Konstantin Khlebnikov 提交于
I've noticed significant locking contention in memory reclaimer around sb_lock inside grab_super_passive(). Grab_super_passive() is called from two places: in icache/dcache shrinkers (function super_cache_scan) and from writeback (function __writeback_inodes_wb). Both are required for progress in memory allocator. Grab_super_passive() acquires sb_lock to increment sb->s_count and check sb->s_instances. It seems sb->s_umount locked for read is enough here: super-block deactivation always runs under sb->s_umount locked for write. Protecting super-block itself isn't a problem: in super_cache_scan() sb is protected by shrinker_rwsem: it cannot be freed if its slab shrinkers are still active. Inside writeback super-block comes from inode from bdi writeback list under wb->list_lock. This patch removes locking sb_lock and checks s_instances under s_umount: generic_shutdown_super() unlinks it under sb->s_umount locked for write. New variant is called trylock_super() and since it only locks semaphore, callers must call up_read(&sb->s_umount) instead of drop_super(sb) when they're done. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 13 2月, 2015 1 次提交
-
-
由 Vladimir Davydov 提交于
Kmem accounting of memcg is unusable now, because it lacks slab shrinker support. That means when we hit the limit we will get ENOMEM w/o any chance to recover. What we should do then is to call shrink_slab, which would reclaim old inode/dentry caches from this cgroup. This is what this patch set is intended to do. Basically, it does two things. First, it introduces the notion of per-memcg slab shrinker. A shrinker that wants to reclaim objects per cgroup should mark itself as SHRINKER_MEMCG_AWARE. Then it will be passed the memory cgroup to scan from in shrink_control->memcg. For such shrinkers shrink_slab iterates over the whole cgroup subtree under the target cgroup and calls the shrinker for each kmem-active memory cgroup. Secondly, this patch set makes the list_lru structure per-memcg. It's done transparently to list_lru users - everything they have to do is to tell list_lru_init that they want memcg-aware list_lru. Then the list_lru will automatically distribute objects among per-memcg lists basing on which cgroup the object is accounted to. This way to make FS shrinkers (icache, dcache) memcg-aware we only need to make them use memcg-aware list_lru, and this is what this patch set does. As before, this patch set only enables per-memcg kmem reclaim when the pressure goes from memory.limit, not from memory.kmem.limit. Handling memory.kmem.limit is going to be tricky due to GFP_NOFS allocations, and it is still unclear whether we will have this knob in the unified hierarchy. This patch (of 9): NUMA aware slab shrinkers use the list_lru structure to distribute objects coming from different NUMA nodes to different lists. Whenever such a shrinker needs to count or scan objects from a particular node, it issues commands like this: count = list_lru_count_node(lru, sc->nid); freed = list_lru_walk_node(lru, sc->nid, isolate_func, isolate_arg, &sc->nr_to_scan); where sc is an instance of the shrink_control structure passed to it from vmscan. To simplify this, let's add special list_lru functions to be used by shrinkers, list_lru_shrink_count() and list_lru_shrink_walk(), which consolidate the nid and nr_to_scan arguments in the shrink_control structure. This will also allow us to avoid patching shrinkers that use list_lru when we make shrink_slab() per-memcg - all we will have to do is extend the shrink_control structure to include the target memcg and make list_lru_shrink_{count,walk} handle this appropriately. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Suggested-by: NDave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 1月, 2015 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 11 12月, 2014 1 次提交
-
-
由 Al Viro 提交于
New pseudo-filesystem: nsfs. Targets of /proc/*/ns/* live there now. It's not mountable (not even registered, so it's not in /proc/filesystems, etc.). Files on it *are* bindable - we explicitly permit that in do_loopback(). This stuff lives in fs/nsfs.c now; proc_ns_fget() moved there as well. get_proc_ns() is a macro now (it's simply returning ->i_private; would have been an inline, if not for header ordering headache). proc_ns_inode() is an ex-parrot. The interface used in procfs is ns_get_path(path, task, ops) and ns_get_name(buf, size, task, ops). Dentries and inodes are never hashed; a non-counting reference to dentry is stashed in ns_common (removed by ->d_prune()) and reused by ns_get_path() if present. See ns_get_path()/ns_prune_dentry/nsfs_evict() for details of that mechanism. As the result, proc_ns_follow_link() has stopped poking in nd->path.mnt; it does nd_jump_link() on a consistent <vfsmount,dentry> pair it gets from ns_get_path(). Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 24 10月, 2014 2 次提交
-
-
由 Miklos Szeredi 提交于
We need to be able to check inode permissions (but not filesystem implied permissions) for stackable filesystems. Expose this interface for overlayfs. Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz>
-
由 Miklos Szeredi 提交于
Export do_splice_direct() to modules. Needed by overlay filesystem. Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz>
-
- 10 10月, 2014 1 次提交
-
-
由 Akinobu Mita 提交于
Add guard_bio_eod() check for mpage code in order to allow us to do IO even on the odd last sectors of a device, even if the block size is some multiple of the physical sector size. Using mpage_readpages() for block device requires this guard check. Signed-off-by: NAkinobu Mita <akinobu.mita@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 10月, 2014 1 次提交
-
-
由 Tim Gardner 提交于
The gcc version 4.9.1 compiler complains Even though it isn't possible for these variables to not get initialized before they are used. fs/namespace.c: In function ‘SyS_mount’: fs/namespace.c:2720:8: warning: ‘kernel_dev’ may be used uninitialized in this function [-Wmaybe-uninitialized] ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, ^ fs/namespace.c:2699:8: note: ‘kernel_dev’ was declared here char *kernel_dev; ^ fs/namespace.c:2720:8: warning: ‘kernel_type’ may be used uninitialized in this function [-Wmaybe-uninitialized] ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, ^ fs/namespace.c:2697:8: note: ‘kernel_type’ was declared here char *kernel_type; ^ Fix the warnings by simplifying copy_mount_string() as suggested by Al Viro. Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: NTim Gardner <tim.gardner@canonical.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 08 8月, 2014 1 次提交
-
-
由 Al Viro 提交于
These externs belong in fs/internal.h. Rename (they are not acct-specific anymore) and move them over there. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-