- 12 8月, 2011 1 次提交
-
-
由 Suzuki Poulose 提交于
This patch adds kexec support for PPC440 based chipsets. This work is based on the KEXEC patches for FSL BookE. The FSL BookE patch and the code flow could be found at the link below: http://patchwork.ozlabs.org/patch/49359/ Steps: 1) Invalidate all the TLB entries except the one this code is run from 2) Create a tmp mapping for our code in the other address space and jump to it 3) Invalidate the entry we used 4) Create a 1:1 mapping for 0-2GiB in blocks of 256M 5) Jump to the new 1:1 mapping and invalidate the tmp mapping I have tested this patches on Ebony, Sequoia boards and Virtex on QEMU. You need kexec-tools commit e8b7939b1e or newer for ppc440x support, available at: git://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.gitSigned-off-by: NSuzuki Poulose <suzuki@in.ibm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NJosh Boyer <jwboyer@gmail.com>
-
- 10 8月, 2011 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
Brown paper bag day, previous commit wouldn't work very well with modules enabled. Move the exports into the ifdef. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 05 8月, 2011 6 次提交
-
-
由 Benjamin Herrenschmidt 提交于
Commit fea80311 "iomap: make IOPORT/PCI mapping functions conditional" Broke powerpc build without CONFIG_PCI as we would still define pci_iomap(), which overlaps with the new empty inline in the headers. Make our implementation conditional on CONFIG_PCI Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Anton Blanchard 提交于
We are seeing boot failures on some very large boxes even with commit b5416ca9 (powerpc: Move kdump default base address to 64MB on 64bit). This patch halves the RMO so both kernels get about the same amount of RMO memory. On large machines this region will be at least 256MB, so each kernel will get 128MB. We cap it at 256MB (small SLB size) since some early allocations need to be in the bolted SLB region. We could relax this on machines with 1TB SLBs in a future patch. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 David Ahern 提交于
Panic observed on an older kernel when collecting call chains for the context-switch software event: [<b0180e00>]rb_erase+0x1b4/0x3e8 [<b00430f4>]__dequeue_entity+0x50/0xe8 [<b0043304>]set_next_entity+0x178/0x1bc [<b0043440>]pick_next_task_fair+0xb0/0x118 [<b02ada80>]schedule+0x500/0x614 [<b02afaa8>]rwsem_down_failed_common+0xf0/0x264 [<b02afca0>]rwsem_down_read_failed+0x34/0x54 [<b02aed4c>]down_read+0x3c/0x54 [<b0023b58>]do_page_fault+0x114/0x5e8 [<b001e350>]handle_page_fault+0xc/0x80 [<b0022dec>]perf_callchain+0x224/0x31c [<b009ba70>]perf_prepare_sample+0x240/0x2fc [<b009d760>]__perf_event_overflow+0x280/0x398 [<b009d914>]perf_swevent_overflow+0x9c/0x10c [<b009db54>]perf_swevent_ctx_event+0x1d0/0x230 [<b009dc38>]do_perf_sw_event+0x84/0xe4 [<b009dde8>]perf_sw_event_context_switch+0x150/0x1b4 [<b009de90>]perf_event_task_sched_out+0x44/0x2d4 [<b02ad840>]schedule+0x2c0/0x614 [<b0047dc0>]__cond_resched+0x34/0x90 [<b02adcc8>]_cond_resched+0x4c/0x68 [<b00bccf8>]move_page_tables+0xb0/0x418 [<b00d7ee0>]setup_arg_pages+0x184/0x2a0 [<b0110914>]load_elf_binary+0x394/0x1208 [<b00d6e28>]search_binary_handler+0xe0/0x2c4 [<b00d834c>]do_execve+0x1bc/0x268 [<b0015394>]sys_execve+0x84/0xc8 [<b001df10>]ret_from_syscall+0x0/0x3c A page fault occurred walking the callchain while creating a perf sample for the context-switch event. To handle the page fault the mmap_sem is needed, but it is currently held by setup_arg_pages. (setup_arg_pages calls shift_arg_pages with the mmap_sem held. shift_arg_pages then calls move_page_tables which has a cond_resched at the top of its for loop - hitting that cond_resched is what caused the context switch.) This is an extension of Anton's proposed patch: https://lkml.org/lkml/2011/7/24/151 adding case for 32-bit ppc. Tested on the system that first generated the panic and then again with latest kernel using a PPC VM. I am not able to test the 64-bit path - I do not have H/W for it and 64-bit PPC VMs (qemu on Intel) is horribly slow. Signed-off-by: NDavid Ahern <dsahern@gmail.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Anton Blanchard 提交于
Add a newline to the panic messages in make_room. Also fix a comment that suggested our chunk size is 4Mb. It's 1MB. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Anton Blanchard 提交于
I have a box that fails in OF during boot with: DEFAULT CATCH!, exception-handler=fff00400 at %SRR0: 49424d2c4c6f6768 %SRR1: 800000004000b002 ie "IBM,Logh". OF got corrupted with a device tree string. Looking at make_room and alloc_up, we claim the first chunk (1 MB) but we never claim any more. mem_end is always set to alloc_top which is the top of our available address space, guaranteeing we will never call alloc_up and claim more memory. Also alloc_up wasn't setting alloc_bottom to the bottom of the available address space. This doesn't help the box to boot, but we at least fail with an obvious error. We could relocate the device tree in a future patch. Signed-off-by: NAnton Blanchard <anton@samba.org> Cc: <stable@kernel.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Scott Wood 提交于
Commit af9eef3c caused cpu_setup to see the_cpu_spec, rather than the source struct. However, on 32-bit, the return value of identify_cpu was being used for feature fixups, and identify_cpu was returning the source struct. So if cpu_setup patches the feature bits, the update won't affect the fixups. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 27 7月, 2011 1 次提交
-
-
由 Arun Sharma 提交于
This allows us to move duplicated code in <asm/atomic.h> (atomic_inc_not_zero() for now) to <linux/atomic.h> Signed-off-by: NArun Sharma <asharma@fb.com> Reviewed-by: NEric Dumazet <eric.dumazet@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: NMike Frysinger <vapier@gentoo.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 7月, 2011 1 次提交
-
-
由 Amerigo Wang 提交于
It is not necessary to share the same notifier.h. This patch already moves register_reboot_notifier() and unregister_reboot_notifier() from kernel/notifier.c to kernel/sys.c. [amwang@redhat.com: make allyesconfig succeed on ppc64] Signed-off-by: NWANG Cong <amwang@redhat.com> Cc: David Miller <davem@davemloft.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Greg KH <greg@kroah.com> Signed-off-by: NWANG Cong <amwang@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 7月, 2011 1 次提交
-
-
由 Jonas Bonn 提交于
This patch removes all the module loader hook implementations in the architecture specific code where the functionality is the same as that now provided by the recently added default hooks. Signed-off-by: NJonas Bonn <jonas@southpole.se> Acked-by: NMike Frysinger <vapier@gentoo.org> Acked-by: NGeert Uytterhoeven <geert@linux-m68k.org> Tested-by: NMichal Simek <monstr@monstr.eu> Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
-
- 22 7月, 2011 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
We already did it for hard IRQs but it looks like we forgot to do it for softirqs. Without this, we would lose flags such as TIF_NEED_RESCHED set using current_thread_info() by something running of a softirq. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 19 7月, 2011 6 次提交
-
-
由 Andrew Gabbasov 提交于
Kernel loadable module can use hard_smp_processor_id() if building with SMP kernel. In order to make it work for UP kernels too, boot_cpuid_phys symbol (which is what hard_smp_processor_id() macro resolves to in non-SMP configuration) must be exported. Signed-off-by: NAndrew Gabbasov <andrew_gabbasov@mentor.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Michael Neuling 提交于
Now we have the CFAR saved add it to the oops output. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Anton Blanchard 提交于
HFI creates interrupts each time a window is setup. This results in a lot of messages in the kernel log buffer: irq: irq 199007 on host null mapped to virtual irq 351 This box has over 3500 of them, causing more important kernel messages to be overwritten. We can get at this information via debugfs now so we may as well turn it into a pr_debug. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Michael Neuling 提交于
The existing code it pretty ugly. How about we clean it up even more like this? From: Anton Blanchard <anton@samba.org> We check for timeout expiry in the outer loop, but we also need to check it in the inner loop or we can lock up forever waiting for a CPU to hit real mode. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NMichael Neuling <mikey@neuling.org> Cc: <stable@kernel.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Dmitry Eremin-Solenikov 提交于
This fixes the following warning: WARNING: arch/powerpc/kernel/built-in.o(.text+0x29768): Section mismatch in reference from the function .register_power_pmu() to the function .cpuinit.text:.power_pmu_notifier() The function .register_power_pmu() references the function __cpuinit .power_pmu_notifier(). This is often because .register_power_pmu lacks a __cpuinit annotation or the annotation of .power_pmu_notifier is wrong. Signed-off-by: NDmitry Eremin-Solenikov <dbaryshkov@gmail.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Mathias Krause 提交于
The address limit is already set in flush_old_exec() so this set_fs(USER_DS) is redundant. Signed-off-by: NMathias Krause <minipli@googlemail.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 12 7月, 2011 17 次提交
-
-
由 Dave Kleikamp 提交于
The 44x code (which is shared by 47x) assumes the available physical memory begins at 0x00000000. This is not necessarily the case in an AMP environment. Support CONFIG_RELOCATABLE for 476 in order to allow the kernel to be loaded into a higher memory range. Signed-off-by: NTony Breeds <tony@bakeyournoodle.com> Signed-off-by: NDave Kleikamp <shaggy@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Josh Boyer <jwboyer@linux.vnet.ibm.com> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NJosh Boyer <jwboyer@linux.vnet.ibm.com>
-
由 Rob Herring 提交于
This renames pci flags functions and enums in preparation for creating generic version in asm-generic/pci-bridge.h. The following search and replace is done: s/ppc_pci_/pci_/ s/PPC_PCI_/PCI_/ Direct accesses to ppc_pci_flag variable are replaced with helper functions. Signed-off-by: NRob Herring <rob.herring@calxeda.com> Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org>
-
由 Dave Kleikamp 提交于
Since other OS's may be running on the other cores don't use tlbivax Signed-off-by: NDave Kleikamp <shaggy@linux.vnet.ibm.com> Signed-off-by: NTony Breeds <tony@bakeyournoodle.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Josh Boyer <jwboyer@linux.vnet.ibm.com> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NJosh Boyer <jwboyer@linux.vnet.ibm.com>
-
由 Paul Mackerras 提交于
This adds support for running KVM guests in supervisor mode on those PPC970 processors that have a usable hypervisor mode. Unfortunately, Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to 1), but the YDL PowerStation does have a usable hypervisor mode. There are several differences between the PPC970 and POWER7 in how guests are managed. These differences are accommodated using the CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature bits. Notably, on PPC970: * The LPCR, LPID or RMOR registers don't exist, and the functions of those registers are provided by bits in HID4 and one bit in HID0. * External interrupts can be directed to the hypervisor, but unlike POWER7 they are masked by MSR[EE] in non-hypervisor modes and use SRR0/1 not HSRR0/1. * There is no virtual RMA (VRMA) mode; the guest must use an RMO (real mode offset) area. * The TLB entries are not tagged with the LPID, so it is necessary to flush the whole TLB on partition switch. Furthermore, when switching partitions we have to ensure that no other CPU is executing the tlbie or tlbsync instructions in either the old or the new partition, otherwise undefined behaviour can occur. * The PMU has 8 counters (PMC registers) rather than 6. * The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist. * The SLB has 64 entries rather than 32. * There is no mediated external interrupt facility, so if we switch to a guest that has a virtual external interrupt pending but the guest has MSR[EE] = 0, we have to arrange to have an interrupt pending for it so that we can get control back once it re-enables interrupts. We do that by sending ourselves an IPI with smp_send_reschedule after hard-disabling interrupts. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This replaces the single CPU_FTR_HVMODE_206 bit with two bits, one to indicate that we have a usable hypervisor mode, and another to indicate that the processor conforms to PowerISA version 2.06. We also add another bit to indicate that the processor conforms to ISA version 2.01 and set that for PPC970 and derivatives. Some PPC970 chips (specifically those in Apple machines) have a hypervisor mode in that MSR[HV] is always 1, but the hypervisor mode is not useful in the sense that there is no way to run any code in supervisor mode (HV=0 PR=0). On these processors, the LPES0 and LPES1 bits in HID4 are always 0, and we use that as a way of detecting that hypervisor mode is not useful. Where we have a feature section in assembly code around code that only applies on POWER7 in hypervisor mode, we use a construct like END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) The definition of END_FTR_SECTION_IFSET is such that the code will be enabled (not overwritten with nops) only if all bits in the provided mask are set. Note that the CPU feature check in __tlbie() only needs to check the ARCH_206 bit, not the HVMODE bit, because __tlbie() can only get called if we are running bare-metal, i.e. in hypervisor mode. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds infrastructure which will be needed to allow book3s_hv KVM to run on older POWER processors, including PPC970, which don't support the Virtual Real Mode Area (VRMA) facility, but only the Real Mode Offset (RMO) facility. These processors require a physically contiguous, aligned area of memory for each guest. When the guest does an access in real mode (MMU off), the address is compared against a limit value, and if it is lower, the address is ORed with an offset value (from the Real Mode Offset Register (RMOR)) and the result becomes the real address for the access. The size of the RMA has to be one of a set of supported values, which usually includes 64MB, 128MB, 256MB and some larger powers of 2. Since we are unlikely to be able to allocate 64MB or more of physically contiguous memory after the kernel has been running for a while, we allocate a pool of RMAs at boot time using the bootmem allocator. The size and number of the RMAs can be set using the kvm_rma_size=xx and kvm_rma_count=xx kernel command line options. KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability of the pool of preallocated RMAs. The capability value is 1 if the processor can use an RMA but doesn't require one (because it supports the VRMA facility), or 2 if the processor requires an RMA for each guest. This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the pool and returns a file descriptor which can be used to map the RMA. It also returns the size of the RMA in the argument structure. Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION ioctl calls from userspace. To cope with this, we now preallocate the kvm->arch.ram_pginfo array when the VM is created with a size sufficient for up to 64GB of guest memory. Subsequently we will get rid of this array and use memory associated with each memslot instead. This moves most of the code that translates the user addresses into host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level to kvmppc_core_prepare_memory_region. Also, instead of having to look up the VMA for each page in order to check the page size, we now check that the pages we get are compound pages of 16MB. However, if we are adding memory that is mapped to an RMA, we don't bother with calling get_user_pages_fast and instead just offset from the base pfn for the RMA. Typically the RMA gets added after vcpus are created, which makes it inconvenient to have the LPCR (logical partition control register) value in the vcpu->arch struct, since the LPCR controls whether the processor uses RMA or VRMA for the guest. This moves the LPCR value into the kvm->arch struct and arranges for the MER (mediated external request) bit, which is the only bit that varies between vcpus, to be set in assembly code when going into the guest if there is a pending external interrupt request. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This lifts the restriction that book3s_hv guests can only run one hardware thread per core, and allows them to use up to 4 threads per core on POWER7. The host still has to run single-threaded. This capability is advertised to qemu through a new KVM_CAP_PPC_SMT capability. The return value of the ioctl querying this capability is the number of vcpus per virtual CPU core (vcore), currently 4. To use this, the host kernel should be booted with all threads active, and then all the secondary threads should be offlined. This will put the secondary threads into nap mode. KVM will then wake them from nap mode and use them for running guest code (while they are still offline). To wake the secondary threads, we send them an IPI using a new xics_wake_cpu() function, implemented in arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage we assume that the platform has a XICS interrupt controller and we are using icp-native.c to drive it. Since the woken thread will need to acknowledge and clear the IPI, we also export the base physical address of the XICS registers using kvmppc_set_xics_phys() for use in the low-level KVM book3s code. When a vcpu is created, it is assigned to a virtual CPU core. The vcore number is obtained by dividing the vcpu number by the number of threads per core in the host. This number is exported to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes to run the guest in single-threaded mode, it should make all vcpu numbers be multiples of the number of threads per core. We distinguish three states of a vcpu: runnable (i.e., ready to execute the guest), blocked (that is, idle), and busy in host. We currently implement a policy that the vcore can run only when all its threads are runnable or blocked. This way, if a vcpu needs to execute elsewhere in the kernel or in qemu, it can do so without being starved of CPU by the other vcpus. When a vcore starts to run, it executes in the context of one of the vcpu threads. The other vcpu threads all go to sleep and stay asleep until something happens requiring the vcpu thread to return to qemu, or to wake up to run the vcore (this can happen when another vcpu thread goes from busy in host state to blocked). It can happen that a vcpu goes from blocked to runnable state (e.g. because of an interrupt), and the vcore it belongs to is already running. In that case it can start to run immediately as long as the none of the vcpus in the vcore have started to exit the guest. We send the next free thread in the vcore an IPI to get it to start to execute the guest. It synchronizes with the other threads via the vcore->entry_exit_count field to make sure that it doesn't go into the guest if the other vcpus are exiting by the time that it is ready to actually enter the guest. Note that there is no fixed relationship between the hardware thread number and the vcpu number. Hardware threads are assigned to vcpus as they become runnable, so we will always use the lower-numbered hardware threads in preference to higher-numbered threads if not all the vcpus in the vcore are runnable, regardless of which vcpus are runnable. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds the infrastructure for handling PAPR hcalls in the kernel, either early in the guest exit path while we are still in real mode, or later once the MMU has been turned back on and we are in the full kernel context. The advantage of handling hcalls in real mode if possible is that we avoid two partition switches -- and this will become more important when we support SMT4 guests, since a partition switch means we have to pull all of the threads in the core out of the guest. The disadvantage is that we can only access the kernel linear mapping, not anything vmalloced or ioremapped, since the MMU is off. This also adds code to handle the following hcalls in real mode: H_ENTER Add an HPTE to the hashed page table H_REMOVE Remove an HPTE from the hashed page table H_READ Read HPTEs from the hashed page table H_PROTECT Change the protection bits in an HPTE H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table H_SET_DABR Set the data address breakpoint register Plus code to handle the following hcalls in the kernel: H_CEDE Idle the vcpu until an interrupt or H_PROD hcall arrives H_PROD Wake up a ceded vcpu H_REGISTER_VPA Register a virtual processor area (VPA) The code that runs in real mode has to be in the base kernel, not in the module, if KVM is compiled as a module. The real-mode code can only access the kernel linear mapping, not vmalloc or ioremap space. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
There are several fields in struct kvmppc_book3s_shadow_vcpu that temporarily store bits of host state while a guest is running, rather than anything relating to the particular guest or vcpu. This splits them out into a new kvmppc_host_state structure and modifies the definitions in asm-offsets.c to suit. On 32-bit, we have a kvmppc_host_state structure inside the kvmppc_book3s_shadow_vcpu since the assembly code needs to be able to get to them both with one pointer. On 64-bit they are separate fields in the PACA. This means that on 64-bit we don't need to copy the kvmppc_host_state in and out on vcpu load/unload, and in future will mean that the book3s_hv code doesn't need a shadow_vcpu struct in the PACA at all. That does mean that we have to be careful not to rely on any values persisting in the hstate field of the paca across any point where we could block or get preempted. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
In hypervisor mode, the LPCR controls several aspects of guest partitions, including virtual partition memory mode, and also controls whether the hypervisor decrementer interrupts are enabled. This sets up LPCR at boot time so that guest partitions will use a virtual real memory area (VRMA) composed of 16MB large pages, and hypervisor decrementer interrupts are disabled. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Instead of branching out-of-line with the DO_KVM macro to check if we are in a KVM guest at the time of an interrupt, this moves the KVM check inline in the first-level interrupt handlers. This speeds up the non-KVM case and makes sure that none of the interrupt handlers are missing the check. Because the first-level interrupt handlers are now larger, some things had to be move out of line in exceptions-64s.S. This all necessitated some minor changes to the interrupt entry code in KVM. This also streamlines the book3s_32 KVM test. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Liu Yu 提交于
Dynamically assign host PIDs to guest PIDs, splitting each guest PID into multiple host (shadow) PIDs based on kernel/user and MSR[IS/DS]. Use both PID0 and PID1 so that the shadow PIDs for the right mode can be selected, that correspond both to guest TID = zero and guest TID = guest PID. This allows us to significantly reduce the frequency of needing to invalidate the entire TLB. When the guest mode or PID changes, we just update the host PID0/PID1. And since the allocation of shadow PIDs is global, multiple guests can share the TLB without conflict. Note that KVM does not yet support the guest setting PID1 or PID2 to a value other than zero. This will need to be fixed for nested KVM to work. Until then, we enforce the requirement for guest PID1/PID2 to stay zero by failing the emulation if the guest tries to set them to something else. Signed-off-by: NLiu Yu <yu.liu@freescale.com> Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
This is done lazily. The SPE save will be done only if the guest has used SPE since the last preemption or heavyweight exit. Restore will be done only on demand, when enabling MSR_SPE in the shadow MSR, in response to an SPE fault or mtmsr emulation. For SPEFSCR, Linux already switches it on context switch (non-lazily), so the only remaining bit is to save it between qemu and the guest. Signed-off-by: NLiu Yu <yu.liu@freescale.com> Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
Keep the guest MSR and the guest-mode true MSR separate, rather than modifying the guest MSR on each guest entry to produce a true MSR. Any bits which should be modified based on guest MSR must be explicitly propagated from vcpu->arch.shared->msr to vcpu->arch.shadow_msr in kvmppc_set_msr(). While we're modifying the guest entry code, reorder a few instructions to bury some load latencies. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
Previously, these macros hardcoded THREAD_EVR0 as the base of the save area, relative to the base register passed. This base offset is now passed as a separate macro parameter, allowing reuse with other SPE save areas, such as used by KVM. Acked-by: NKumar Gala <galak@kernel.crashing.org> Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 yu liu 提交于
giveup_spe() saves the SPE state which is protected by MSR[SPE]. However, modifying SPEFSCR does not trap when MSR[SPE]=0. And since SPEFSCR is already saved/restored in _switch(), not all the callers want to save SPEFSCR again. Thus, saving SPEFSCR should not belong to giveup_spe(). This patch moves SPEFSCR saving to flush_spe_to_thread(), and cleans up the caller that needs to save SPEFSCR accordingly. Signed-off-by: NLiu Yu <yu.liu@freescale.com> Acked-by: NKumar Gala <galak@kernel.crashing.org> Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 08 7月, 2011 3 次提交
-
-
由 Kumar Gala 提交于
The only reason to require a dma_ops struct is to see if it has implemented set_dma_mask. If not we can fall back to setting the mask directly. This resolves an issue with how to sequence the setting of a DMA mask for platform devices. Before we had an issue in that we have no way of setting the DMA mask before the various low level bus notifiers get called that might check it (swiotlb). So now we can do: pdev = platform_device_alloc("foobar", 0); dma_set_mask(&pdev->dev, DMA_BIT_MASK(37)); platform_device_add(pdev); And expect the right thing to happen with the bus notifiers get called via platform_device_add. Acked-by: NGreg Kroah-Hartman <gregkh@suse.de> Signed-off-by: NKumar Gala <galak@kernel.crashing.org>
-
由 Kumar Gala 提交于
We have a long standing issues with platform devices not have a valid dma_mask pointer. This hasn't been an issue to date as no platform device has tried to set its dma_mask value to a non-default value. Acked-by: NGreg Kroah-Hartman <gregkh@suse.de> Signed-off-by: NKumar Gala <galak@kernel.crashing.org>
-
由 Becky Bruce 提交于
This is used to round-robin TLBCAM entries. Signed-off-by: NBecky Bruce <beckyb@kernel.crashing.org> Signed-off-by: NKumar Gala <galak@kernel.crashing.org>
-
- 01 7月, 2011 2 次提交
-
-
由 Avi Kivity 提交于
The perf_event overflow handler does not receive any caller-derived argument, so many callers need to resort to looking up the perf_event in their local data structure. This is ugly and doesn't scale if a single callback services many perf_events. Fix by adding a context parameter to perf_event_create_kernel_counter() (and derived hardware breakpoints APIs) and storing it in the perf_event. The field can be accessed from the callback as event->overflow_handler_context. All callers are updated. Signed-off-by: NAvi Kivity <avi@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1309362157-6596-2-git-send-email-avi@redhat.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Add a NODE level to the generic cache events which is used to measure local vs remote memory accesses. Like all other cache events, an ACCESS is HIT+MISS, if there is no way to distinguish between reads and writes do reads only etc.. The below needs filling out for !x86 (which I filled out with unsupported events). I'm fairly sure ARM can leave it like that since it doesn't strike me as an architecture that even has NUMA support. SH might have something since it does appear to have some NUMA bits. Sparc64, PowerPC and MIPS certainly want a good look there since they clearly are NUMA capable. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: David Miller <davem@davemloft.net> Cc: Anton Blanchard <anton@samba.org> Cc: David Daney <ddaney@caviumnetworks.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1303508226.4865.8.camel@laptopSigned-off-by: NIngo Molnar <mingo@elte.hu>
-